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The study investigates the correlation between CD3 T-cell expression levels and cervical cancer 
(CC) while developing a magnetic resonance (MR) imaging-based radiomics model for preoperative 
prediction of CD3 T-cell expression levels. Prognostic correlations between CD3D, CD3E, and CD3G 
gene expressions and various cancers were analyzed using the Cancer Genome Atlas (TCGA) database. 
Protein–protein interaction (PPI) analysis via the STRING database identified associations between 
these genes and T lymphocyte activity. Gene Set Enrichment Analysis (GSEA) revealed immune 
pathway enrichment by categorizing genes based on CD3D expression levels. Correlations between 
immune checkpoint molecules and CD3 complex genes were also assessed. The study retrospectively 
included 202 patients with pathologically confirmed early-stage CC who underwent preoperative MRI, 
divided into training and test groups. Radiomic features were extracted from the whole-lesion tumor 
region of interest (ROItumor) and from peritumoral regions with 3 mm and 5 mm margins (ROI3mm 
and ROI5mm, respectively). Various machine learning algorithms, including Support Vector Machine 
(SVM), Logistic Regression, Random Forest, AdaBoost, and Decision Tree, were used to construct 
radiomics models based on different ROIs, and diagnostic performances were compared to identify 
the optimal approach. The best-performing algorithm was combined with intra- and peritumoral 
features and clinically relevant independent risk factors to develop a comprehensive predictive model. 
Analysis of the TCGA database demonstrated significant associations between CD3D, CD3E, and 
CD3G expressions and several cancers, including CC (p < 0.05). PPI analysis highlighted connections 
between these genes and T lymphocyte function, while GSEA indicated enrichment of immune-
related pathways linked to CD3D. Immune checkpoint correlations showed positive associations with 
CD3 complex genes. Radiomics analysis selected 18 features from ROItumor and ROI3mm across MRI 
sequences. The SVM algorithm achieved the highest predictive performance for CD3 T-cell expression 
status, with an area under the curve (AUC) of 0.93 in the training group and 0.92 in the test group. This 
MR-based radiomics model effectively predicts CD3 expression status in patients with early-stage CC, 
offering a non-invasive tool for preoperative assessment of CD3 expression, but its clinical utility needs 
further prospective validation.
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Cervical cancer (CC) is the most prevalent malignancy of the female reproductive system1,2. According to the 
World Health Organization (WHO), approximately 660,000 new cases and 350,000 deaths from CC occur 
globally each year1. In China alone, over 110,000 new diagnoses and 61,000 deaths are reported annually2. While 
traditional treatments such as surgery, radiotherapy, and chemotherapy are effective for early-stage CC, there is a 
growing need to explore innovative approaches that could further improve patient outcomes3. This highlights the 
urgent need for innovative clinical treatments. Immunotherapy, including immune checkpoint inhibitors (ICIs), 
antibody–drug conjugates (ADCs), and targeted therapies, has emerged as a promising approach for advanced 
and metastatic CC. However, patient responses to these therapies are highly variable4,5. Existing biomarkers 
such as PD-L1 and MSI-H have significant limitations in predicting immunotherapy outcomes4, underscoring 
the necessity of developing accurate predictive models to identify potential responders and optimize treatment 
strategies.

Recent studies increasingly emphasize the immunological roles of T cell subtypes, but their prognostic and 
therapeutic significance across different cancers remains insufficiently understood6,7. Histopathological evidence 
frequently demonstrates T lymphocyte infiltration within tumor nests, where these immune cells contribute 
to the tumor microenvironment and influence cancer progression and treatment outcomes8,9. Single-cell 
sequencing has revealed significant heterogeneity in T lymphocyte populations across malignancies, correlating 
with varying responses to radiotherapy, chemotherapy, and immunotherapy8,10. As a result, identifying reliable 
predictive biomarkers to enhance the efficacy of immunotherapy has become a critical focus in CC research.

At the molecular level, the CD3 complex (comprising CD3D, CD3E, and CD3G) is a pivotal marker for T 
lymphocyte identification and profiling, making it an essential target for immunological investigations11,12. This 
study utilized pan-cancer analysis of data from The Cancer Genome Atlas (TCGA) to evaluate the prognostic 
significance of T lymphocyte infiltration across various malignancies. Despite these advancements, objective 
and non-invasive methods for assessing T lymphocyte abundance in clinical settings remain unavailable.

Radiomics, a rapidly evolving field in medical imaging, presents a non-invasive and promising methodology 
for assessing the tumor immune microenvironment13–15. By extracting quantitative features from imaging 
modalities such as computed tomography (CT) and magnetic resonance imaging (MRI), radiomics enables 
phenotypic characterization of the immune landscape within tumors14. This approach deepens the understanding 
of tumor-immune interactions and supports the development of personalized therapeutic strategies with the 
potential to improve clinical outcomes8. Recent studies have increasingly investigated radiomics to identify 
associations between imaging features and tumor immune markers11,12,14,16. For example, CT-derived radiomic 
features have demonstrated potential in predicting CTLA4 expression in clear cell renal cell carcinoma17, while 
MRI-based radiomic features have shown efficacy in estimating CD3 + T lymphocyte levels in glioblastoma18.

Focusing on CC, where T lymphocyte infiltration significantly influences disease progression and therapeutic 
outcomes, this study leverages immunohistochemistry to detect CD3 as a marker of T cell presence in tumor 
tissues. A radiomics model was developed to identify imaging features indicative of CD3 expression levels, 
offering a non-invasive method to evaluate variations in T lymphocyte abundance. These radiomic features 
provide valuable insights into tumor immune status, aiding in the prediction of immunotherapy responses and 
enhancing prognostic assessments for patients with CC. In summary, this approach enables more personalized 
and effective treatment strategies.

Materials and methods
Data acquisition and comprehensive analysis of T lymphocytes in cancer
To investigate the clinical significance of T lymphocytes, CD3D, CD3E, and CD3G were selected as candidate 
gene markers. Normal tissue data from the GTEx database (https://gtexportal.org/) were integrated with tumor 
tissue data from The TCGA database (https://cancergenome.nih.gov) for a comprehensive joint analysis. Samples 
with zero gene expression values were excluded to mitigate potential biases arising from technical artifacts or 
non-expression states. RNA sequencing data underwent processing and standardization using the Toil pipeline, 
followed by log2 transformation (value + 1). Analyses included Kaplan–Meier (K-M) survival analysis, clinical 
parameter evaluation, immune checkpoint correlation analysis, and gene set enrichment analysis (GSEA), 
conducted via the Xiantao Academic platform with the R package (version 4.2.1; https://www.xiantaozi.com/).

The study analyzed 16 cancer types: bladder urothelial carcinoma (BLCA), breast invasive carcinoma 
(BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), cholangiocarcinoma 
(CHOL), colon adenocarcinoma (COADREAD), esophageal carcinoma (ESCA), head and neck squamous cell 
carcinoma (HNSC), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma and squamous cell carcinoma 
(LUADLUSC), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), prostate 
adenocarcinoma (PRAD), rectum adenocarcinoma (READ), skin cutaneous melanoma (SKCM), stomach 
adenocarcinoma (STAD), and uterine corpus endometrial carcinoma (UCEC). Kaplan–Meier survival curves 
for these cancers were plotted, categorizing samples into high- and low-expression groups based on median gene 
expression levels to reduce subjective bias.

Protein–protein interaction (PPI) analysis utilized the STRING database (https://string-db.org/) with a 
confidence score threshold > 0.7. GSEA identified significant pathway differences between high- and low-
expression groups, with criteria for significance set at a false discovery rate (FDR) < 0.25 and a p-value < 0.05.

Immunomonitoring correlation analysis examined the relationship between CD3D expression and immune 
checkpoint molecules, with results visualized in heatmaps to elucidate the immune landscape.

Immunohistochemistry (IHC) was performed using the Ventana Benchmark ULTRA automated staining 
system (Ventana Medical Systems, Tucson, AZ). Staining utilized a mouse monoclonal anti-CD3 antibody 
(clone 12,730, 1:100 dilution; Santa Cruz Biotechnology), with 3,3′-diaminobenzidine (DAB) as the chromogen. 
Positive controls confirmed strong CD3 staining in cervical carcinoma tissues, while phosphate-buffered saline 
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(PBS) served as the negative control. Tissue images were scanned using the TEKsqray digital slide scanner 
(Shenzhen Shengqiang Technology Co., Ltd, China).

Patients and clinical data
This retrospective study received approval from the Institutional Review Board (IRB) of Xiangyang Centre 
Hospital, with informed consent waived due to its retrospective nature. All methods were performed in 
accordance with the relevant guidelines and regulations, including the Declaration of Helsinki. Patients with 
pathologically confirmed early-stage CC treated at the hospital between December 2020 and December 2023 
were enrolled. Inclusion criteria comprised: (1) a diagnosis of early-stage CC (FIGO stages IA2-IIA) confirmed 
by surgical pathology, (2) availability of preoperative multi-parametric MRI (mpMRI) scans, (3) complete 
pathological data including CD3 expression status, and (4) no history of gynecological malignancies, prior pelvic 
surgeries, or previous radiotherapy or chemotherapy. Patients were excluded if they had undergone cervical 
conization, presented low-quality MRI images, or had lesions smaller than 5 mm in diameter on MRI. A total 
of 202 patients were included in the analysis, comprising 119 with low CD3 expression and 83 with high CD3 
expression (Fig. 1). We observed that the FIGO stage and histological grade were correlated with the number 
of CD3 + T cells (Figure S1A,B). Based on this observation, we determined a cutoff value to distinguish CD3 
expression levels, which was subsequently used as the classification criterion in our follow-up studies. High CD3 
expression was defined as the presence of at least 20 CD3-positive cells per 1000 square micrometers of tissue 
(Fig. 2A, B).

Clinical and laboratory data were extracted from electronic medical records, encompassing CD3 expression 
status, patient age, clinical symptoms, obstetric history, blood tumor biomarkers, and peripheral blood counts.

MRI acquisition and image analysis
All participants underwent mpMRI within 2 weeks prior to surgery, using a 3.0  T MRI scanner. The MRI 
protocol included axial T2-weighted imaging (T2WI) with fat suppression, diffusion-weighted imaging (DWI), 
and contrast-enhanced T1-weighted imaging (CE-MRI) sequences. Detailed scanning parameters for each 
sequence are listed in Table 1.

MRI images were independently reviewed by Radiologist A, an abdominal and pelvic imaging specialist 
with 5 years of experience. Radiologist A conducted the analysis blinded to clinical and histopathological data 
to minimize bias. For quantitative assessment, apparent diffusion coefficient (ADC) values were calculated 

Fig. 1.  Flowchart depicting patient selection.
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using FireVoxel software (version 4.23; https://www.firevoxel.org/). Additionally, the presence of an intact dark 
stromal ring and the longest lesion diameter on axial T2WI images were recorded.

Tumor segmentation, feature extraction, and selection
Tumor segmentation was conducted using the Deepwise Multimodal Research Platform (version 2.3, Beijing 
Deepwise & League of PHD Technology Co., Ltd, Beijing, China; https://keyan.deepwise.com), which enables 
precise three-dimensional (3D) delineation of tumor regions. Manual 3D regions of interest (ROIs) were 
delineated on DWI with a b-value of 800  s/mm2, T2WI, and CE-MRI images (Fig.  2C, D). The segmented 
ROIs from DWI were mapped onto corresponding ADC maps for consistency and analysis. Peritumoral regions 
with 3 mm (ROI3mm) and 5 mm (ROI5mm) radial thicknesses were automatically generated using the Deepwise 
platform to facilitate the analysis of peritumoral features.

Initial segmentation was performed by Radiologist A and subsequently reviewed and refined by Radiologist 
B, an expert with over 10 years of experience in gynecological oncology. To ensure the reproducibility of ROI 
segmentation, intra-observer agreement was assessed using the intra-class correlation coefficient (ICC). Thirty 

Sequence Axial T2WI Axial CE Axial DWI

Technique TSE VIBE EPI

TR/TE (ms) 2500/86 6.82/2.39 4300/60

Thickness (mm) 4 3 4

FOV (mm2) 260 × 260 320 × 320 260 × 260

Average 2 1 2

b-values (s/mm2) 50/800

Table 1.  MRI imaging parameters of each sequence in patients. T2WI, T2 weighted imaging; CE, contrast 
enhancement; DWI, diffusion weighted imaging; TSE, turbo spin echo; EPI, echo planar imaging; TR/TE, 
repetition time/ echo time; FOV, field of view; VIBE, volumetric interpolated breath-hold examination.

 

Fig. 2.  Immunohistochemistry and T2W imaging results from patients with high and low CD3 expression. 
Immunohistochemical results (scale bar: 50 µm) and the original image with a mask highlighting low CD3 
expression are shown in (A) and (C), respectively; corresponding images with masks highlighting high CD3 
expression are shown in (B) and (D).
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randomly selected patients underwent repeat segmentation after a 1-month interval, providing an objective 
measure of reliability and reproducibility.

To standardize datasets, all images were resampled to a uniform resolution of 1 × 1 × 1 mm using B-spline 
interpolation. Radiomic feature extraction was performed on the segmented regions using the Deepwise 
platform, encompassing first-order statistics, shape features, and texture features. Texture features included the 
gray-level co-occurrence matrix (GLCM), gray-level size zone matrix (GLSZM), gray-level run length matrix 
(GLRLM), and gray-level difference matrix (GLDM). Additionally, features were derived from preprocessed 
images using methods such as wavelet filtering, Laplacian of Gaussian (LoG) filtering, Gradient, LBP2D (Local 
Binary Pattern 2D), and nonlinear intensity transformations (e.g., square, square root, logarithm, exponential). 
A total of 1,502 radiomic features were extracted for each tumor volume, ROI3mm, and ROI5mm across ADC, 
T2WI, and CE-MRI sequences. Detailed categorization and statistics of radiomic features are provided in 
Supplementary Table S1.

To ensure the reliability and effectiveness of our radiomics features, we implemented a rigorous three-step 
feature selection process. Initially, the Intraclass Correlation Coefficient (ICC) with a threshold of > 0.8 was 
employed to evaluate the reproducibility of features across repeated measurements or observers. Features with 
high ICC values were retained to ensure robustness and reliability, consistent with best practices in radiomics 
research. Subsequently, we performed a pairwise Pearson correlation analysis to eliminate highly collinear features 
(threshold: |r|> 0.8), which helps to reduce feature redundancy and mitigate multicollinearity effects during 
model training. Finally, the F-test (ANOVA) served as a univariate filter method to assess the discriminatory 
capacity of each feature in distinguishing outcome classes, preserving features exhibiting significant statistical 
relevance for classification purposes.

Model construction and evaluation
Predictive models were constructed using five established machine learning algorithms: Support Vector 
Machine (SVM), Logistic Regression, Random Forest, AdaBoost, and Decision Tree. These models were trained 
on features extracted from multiple mpMRI sequences, including CE-MRI, T2WI, and ADC images. Given the 
high dimensionality and complexity of medical imaging data, coupled with the risk of overfitting, SVM was 
selected as the final algorithm due to its superior performance and robustness.

We performed hyperparameter tuning using grid search on the training set for all five machine learning 
models evaluated in this study. The best-performing hyperparameter combination for each algorithm was 
selected based on performance on test group, rather than k-fold cross-validation. And default settings were 
not used for any of the models. Details of the hyperparameter optimization strategy for five machine learning 
models are provided in Supplementary Table S2.

To explore the impact of tumor heterogeneity and the peritumoral microenvironment, models were developed 
using tumor ROIs and varying peritumoral ROIs, specifically the tumor ROI (ROItumor) and peritumoral rings at 
3 mm (ROI3mm) and 5 mm (ROI5mm) from the tumor boundary. This approach sought to determine the optimal 
peritumoral ROI for predictive modeling (Supplementary Table S3).

A clinical model was also constructed by incorporating significant clinical risk factors derived from clinical, 
laboratory, and conventional imaging characteristics. The top-performing radiomics model was subsequently 
integrated with the clinical model to form a comprehensive predictive model designed to enhance overall 
performance. In the radiomics analysis, considering the definition of high CD3 expression, the distribution 
of FIGO subgroups was regarded as a potential confounding factor. We constructed a distribution table for 
high and low CD3 expression groups across FIGO IA, IB, and IIA subgroups and evaluated the differences 
between groups using the chi-square test. Additionally, we explored the impact of incorporating FIGO staging 
as a variable into the clinical model and compared it with the model without this variable using the Delong test 
to assess the differences between them.

Model discrimination was evaluated through receiver operating characteristic (ROC) curve analysis, with 
metrics including area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV). Calibration and decision utility were assessed using calibration curves and 
Decision Curve Analysis (DCA) for both training and test cohorts. Additionally, SHapley Additive exPlanations 
(SHAP) values were employed to interpret the contribution of individual features to predictions, providing 
transparency into the model’s decision-making process.

Statistical analysis
Statistical analyses were conducted using the Deepwise Multimodal Research Platform (version 2.3) and Xiantao 
Academic website with the R package (version 4.2.1; https://www.xiantaozi.com/). Continuous variables were 
tested for normality and variance homogeneity, with comparisons made using the Student’s t-test or the Wilcoxon 
rank-sum test, as appropriate. Categorical variables were compared using the Chi-square test or Fisher’s exact 
test.

Survival analysis was performed using the Kaplan–Meier method, with log-rank tests for comparing survival 
curves between groups. The “survival” (version 3.3.1), “survminer” (version 0.4.9), and “ggplot2” (version 
3.3.6) R packages were utilized for visualization. PPI analysis was conducted using the STRING database with a 
confidence score threshold > 0.7 to ensure reliability. GSEA compared CD3D high- and low-expression groups 
using DESeq2 and the “clusterProfiler” package, identifying significant pathways (FDR < 0.25) and visualizing 
results with “ggplot2.”

The relationship between CD3D expression and immune checkpoint molecules was assessed via Spearman 
correlation analysis, with results visualized as a heatmap using “ggplot2.” Statistical significance was set at a p-
value < 0.05. All data preprocessing steps were performed in accordance with CLEAR (Checklist for Artificial 
Intelligence in Medical Imaging) guidelines. The CLEAR checklist is provided in Supplementary 2.

Scientific Reports |        (2025) 15:26754 5| https://doi.org/10.1038/s41598-025-12162-9

www.nature.com/scientificreports/

https://www.xiantaozi.com/
http://www.nature.com/scientificreports


Results
Bioinformatics analysis in the TCGA database
Prognostic analysis of 16 common malignant tumor types in the TCGA database demonstrated significant 
correlations between the expressions of CD3D, CD3E, and CD3G and cancers such as uterine endometrial 
cancer, ovarian cancer, CC, cutaneous malignant melanoma, breast cancer, and head and neck squamous cell 
carcinoma (p < 0.05) (Fig. 3). PPI analysis via the STRING database identified CD3E, CD3G, CD2, CD4, CD8A, 
CD247, LCK, TRAT1, and ZAP70 as closely related genes to CD3D.

GSEA, categorizing genes into high- and low-expression groups based on CD3D levels, revealed significant 
enrichment of immune-related pathways associated with CD3D across all tumor types (Fig. 4).

Correlation analysis of CD3D expression with immune checkpoint molecules—including BTLA, CD27, 
CD274, CTLA4, ICOS, LAG3, TIGIT, TNFRSF4, and TNFRSF9—showed strong positive correlations with 
CD3D, CD3E, and CD3G (Fig.  5). These results highlight the potential of immune checkpoint inhibitors to 
modulate T lymphocyte populations and shape the anti-cancer immune microenvironment.

Baseline characteristics of the clinical cohort
The study included 202 patients with early-stage CC, consisting of 119 with low CD3 expression and 83 with high 
CD3 expression. Patient ages ranged from 26 to 77 years (mean age: 52.3 years). Detailed clinicopathological 
characteristics are summarized in Table 2.

Within the training cohort, significant differences were observed between low and high CD3 expression 
groups in terms of the presence of an intact stromal ring and serum SCC levels. Additionally, the distribution of 
the longest tumor diameter varied significantly between the two groups in both the training (p = 0.02) and test 
(p = 0.047) cohorts. No other clinicopathological parameters showed significant differences (p > 0.05).

Fig. 3.  Prognostic Kaplan–Meier curve for CD3D across 16 types of malignant tumors from TCGA data.
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Feature selection
From T2WI images, ICC analysis yielded 1487, 1466, and 1479 features from ROItumor, ROI3mm, and ROI5mm, 
respectively. For ADCmap images, 1467, 1472, and 1487 features were extracted from ROItumor, ROI3mm, and 
ROI5mm, respectively. CE-MRI images provided 1480, 1465, and 1484 features from the same regions.

Feature correlation analysis and F-test selection reduced dataset dimensionality, retaining 18 features for the 
combined ROItumor + ROI3mm model derived from mpMRI sequences (Supplementary Table S4).

Univariate analysis of clinical and imaging characteristics (Table 3) revealed significant differences in platelet 
(PLT) count and tumor longest diameter between low and high CD3 expression groups within the training 
cohort (p < 0.05). These variables were included in subsequent multivariate analyses and model development to 
enhance predictive performance.

Chi-square testing revealed significant differences in CD3-high/CD3-low distribution across FIGO sub-stages 
(χ2 = 77.919, p < 0.001), with higher CD3 expression observed in High stages (IIA 61.4% vs. IB 38.6% vs. IA 0%) 
(Supplementary Figure S1B and Table S5). Incorporating FIGO stage into the clinical model minimally affected 
the prognostic significance of CD3 status (AUC: 0.738 to 0.772, 95% CI 0.693–0.850). Delong’s test showed 
no significant difference in ROC curve performance between models with and without FIGO stage (p = 0.564, 
0.685) (Supplementary Table S6 and S7). Due to these findings and potential multicollinearity between FIGO 
stage and existing covariates, the original model (without FIGO stage) was retained.

Model construction and evaluation
The performance of machine learning algorithms utilizing mpMRI data is summarized in Table 4 and visualized 
in Figs. 6A and B. Five algorithms—SVM, Logistic Regression, Random Forest, AdaBoost, and Decision Tree—
were assessed for their predictive capabilities. Among these, the SVM model demonstrated superior predictive 
performance in both training and test cohorts, as indicated by the ROC curves.

Models incorporating ROItumor, ROI3mm, and ROI5mm from CE-MRI, T2WI, and ADC sequences were 
evaluated across training and test groups (Supplement Table S2). The inclusion of ROI3mm significantly improved 
predictive efficacy for CD3 expression states compared to models using ROI5mm, leading to the selection of 
ROItumor and ROI3mm for the final radiomics models to optimize sensitivity and specificity.

Fig. 4.  GSEA of genes associated with CD3D gene overexpression.
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Table 5 details the AUC with 95% confidence intervals (CI), accuracy, sensitivity, specificity, PPV, and NPV 
for the clinical model, radiomics models (ROItumor + ROI3mm from mpMRI sequences), and the comprehensive 
model integrating radiomic and clinical data. Figures 6C and D depict the ROC curves for these models in both 
training and test cohorts. Notably, the comprehensive model, which combines radiomic features with clinical 
parameters, achieved the highest AUC values, reaching 0.93 (95% CI 0.88–0.97) in the training cohort and 0.92 
(95% CI 0.84–0.99) in the test cohort.

The influence of model variables was evaluated using SHAP values within the SVM algorithm, as shown 
in Fig.  7. SHAP analysis identified gradient_glcm_MCC_ADC as the most impactful feature in predicting 
outcomes, followed by lbp-2D_firstorder_Skewness_T1C, which demonstrated a positive contribution to the 
model’s predictions. Additional features, such as log-sigma-5-0-mm-3D_firstorder_InterquartileRange_ADC 
and exponential_firstorder_Minimum_T2W, also contributed significantly, highlighting their importance in the 
model’s predictive performance.

Calibration curve analysis and DCA were conducted for the clinical model, radiomics model 
(ROItumor + ROI3mm from mpMRI sequences), and the comprehensive model, indicating excellent calibration 
and clinical utility in both training and test cohorts (Fig. 8). Calibration curves revealed a strong alignment 
between predicted probabilities and actual outcomes, with the comprehensive model showing the best agreement, 
further validating its reliability. DCA demonstrated the clinical utility of the models across a range of threshold 
probabilities, with the comprehensive model offering the highest net benefit compared to the radiomics model 
for threshold probabilities between 0 and 0.4. This finding highlights the comprehensive model’s superior 
capability to balance sensitivity and specificity, underscoring its robustness and practical value in supporting 
clinical decision-making.

Fig. 5.  Correlation analysis between immune checkpoints and the CD3D molecule.
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Discussion
This study developed and validated machine learning models to predict CD3 T cell levels in early-stage CC 
using radiomic features extracted from tumor regions and 3 mm peritumoral rings on T2WI, ADC, and CE-
MRI images. The findings demonstrate a strong association between CD3 complex gene expression and several 
cancers, including CC, highlighting its potential as a prognostic biomarker. By integrating radiomic features 
with clinical data, the comprehensive model provides a promising non-invasive method for predicting CD3 
expression status. These results underscore the utility of combining radiomics and clinical data to optimize 
immunotherapy strategies and improve patient outcomes in CC management.

In CC, the extent of T lymphocyte infiltration is a critical indicator of the tumor microenvironment’s immune 
status and correlates with patient outcomes10,19–21. Previous research has shown that higher T lymphocyte 
levels within the tumor microenvironment enhance cytotoxic activity against tumor cells, thereby improving 
prognosis10,11,19. Consistent with these findings, the current analysis of TCGA data demonstrates that increased 
T lymphocyte abundance is associated with better prognoses across various cancers, including CC. Routine 
immunohistochemical assessments have reliably identified T lymphocytes in cancer tissues12. TCGA analysis 
has assisted radiomics in screening biomarkers and revealed the correlation between imaging features and 

Characteristics

Training group (n = 140) Test group (n = 62)

High Low p High Low p

Age, years 55.31 ± 9.898 51.582 ± 10.563 0.053 53.976 ± 10.951 52.381 ± 11.061 0.591

Clinical complaint 0.409 0.885

 Postcoital bleeding 37 (88.1%) 78 (79.6%) 24 (58.5%) 13 (61.9%)

 Incidental finding 3 (7.1%) 15 (15.3%) 3 (7.3%) 2 (9.5%)

 Increased secretion 2 (4.8%) 5 (5.1%) 14 (34.1%) 6 (28.6%)

Pregnancy 0.427 0.527

 None 0 (0.0%) 1 (1.0%) 0 (0.0%) 0 (0.0%)

 Single 1 (2.4%) 7 (7.1%) 4 (9.8%) 4 (19.0%)

 Several 41 (97.6%) 90 (91.8%) 37 (90.2%) 17 (81.0%)

Parturition 0.362 0.907

 None 0 (0.0%) 4 (4.1%) 0 (0.0%) 0 (0.0%)

 Single 12 (28.6%) 31 (31.6%) 15 (36.6%) 8 (38.1%)

 Several 30 (71.4%) 63 (64.3%) 26 (63.4%) 13 (61.9%)

HPV 0.103 0.35

 Negative 15 (35.7%) 22 (22.4%) 4 (9.8%) 0 (0.0%)

 Positive 27 (64.3%) 76 (77.6%) 37 (90.2%) 21 (100.0%)

SCC, ng/mL 1.82 (1.078–4.643) 1.12 (0.718–3.132) 0.015* 1.37 (0.92–3.32) 1.68 (0.89–3.8) 0.994

CA125, u/mL 14.45 (9.808–16.875) 14.45 (9.123–17.3) 0.553 13.6 (8.67–17.76) 17.61 (10.22–18.86) 0.252

RBC, 1012/L 4.135 (3.762–4.433) 4.115 (3.857–4.365) 0.815 4.07 (3.89–4.4) 4.36 (3.96–4.51) 0.096

PLT, 109/L 229 (185.25–271.5) 239.5 (181–283) 0.592 191 (150–245) 258 (211–313) 0.001*

Neutrophil, 109/L 3.15 (2.322–4.228) 2.915 (2.292–3.628) 0.329 2.92 (2.34–3.91) 3.81 (2.9–4.77) 0.071

Lymphocyte, 109/L 1.845 ± 0.497 1.784 ± 0.575 0.552 1.711 ± 0.705 1.835 ± 0.513 0.249

Hemoglobin, g/L 125.5 (118.5–132.75) 122.5 (114–130) 0.192 122 (113–129) 122 (115–135) 0.557

NLR 1.72 (1.075–2.513) 1.614 (1.324–2.286) 0.955 2.057 (1.535–2.482) 2.023 (1.593–2.41) 0.701

PLR 121.254 (94.379–160.55) 139.069 (104.851–174.722) 0.214 127.966 (92.271–167.361) 151.497 (113.194–173.46) 0.13

Pre FIGO stage 0.338 0.001*

 IA 2 (3.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

 IB 22 (39.3%) 81 (96.4%) 10 (34.5%) 31 (93.9%)

 IIA 32 (57.1%) 3 (3.6%) 19 (65.5%) 2 (6.1%)

Tumor longest diameter, mm 32.008 ± 8.888 25.931 ± 10.971 0.002* 24.96 ± 10.827 22.617 ± 5.507 0.047*

Stromal ring 0.001* 0.424

Continuous 14 (33.3%) 62 (63.3%) 20 (48.8%) 8 (38.1%)

Interrupt 28 (66.7%) 36 (36.7%) 21 (51.2%) 13 (61.9%)

meanADC, mm2/s 0.092 (0.084–0.1) 0.094 (0.067–0.129) 0.588 0.09 (0.078–0.105) 0.096 (0.087–0.099) 0.552

medADC, mm2/s 0.089 (0.082–0.099) 0.092 (0.066–0.125) 0.995 0.086 (0.077–0.101) 0.09 (0.084–0.098) 0.48

Table 2.  Distribution of clinicopathological characteristics in patients with high and low CD3 expression in 
both the training and test groups. LVSI, lymph-vascular space invasion; RBC, red blood cell; PLT, platelet; 
NLR, neutrophil/lymphocyte; PLR, platelet/lymphocyte; HPV, human papilloma virus; SCC, squamous 
cell carcinoma antigen; CA125, cancer antigen 125; FIGO, 2018, International Federation of Gynecology 
and Obstetrics; ADC, apparent diffusion coefficients; medADC, median ADC; meanADC, mean ADC; SD, 
standard deviation. p < 0.05. *represents a statistically significant difference.
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tumor biological behavior. Narang et al.18 confirmed that texture features of glioma are associated with CD3 T 
cell infiltration, with the model’s predictive AUC reaching 0.847. He et al.17 constructed a CT radiomics model 
to predict CTLA4 expression and survival in ccRCC. TCGA analysis may provide a broader molecular basis, 
such as immune-related gene expression profiles, enhance the integration of radiomics with immunological 
biomarkers, highlighting the potential of multimodal approaches to improve prognostic accuracy and guide 
personalized cancer treatment. The combination of these two studies highlights the potential of multimodal 
approaches. Building on this knowledge, this study focused on identifying MRI-derived imaging biomarkers 
reflective of T lymphocyte infiltration in CC, aiming to facilitate pre-treatment prediction of immune status and 
improve treatment planning.

Traditional radiomic studies have primarily focused on analyzing primary tumors, often neglecting 
peritumoral regions, which play a critical role in the tumor microenvironment22,23. Advances in peritumoral 
radiomics have shown its diagnostic and prognostic potential across various systemic diseases22–24. Although 
definitions of the peritumoral region vary, regions spanning 0 to 10 mm from the tumor boundary—particularly 
3  mm and 5  mm—are commonly analyzed25–28. In some cancers, the peritumor region may exhibit more 
pronounced changes in cellular density, necrosis, or structural organization, which could impact the peritumoral 
optimal distance for radiomic analysis. In this study, radiomic features extracted from 3 and 5 mm peritumoral 
rings demonstrated that the 3 mm ring provided superior diagnostic accuracy, as reflected by AUC values. These 
findings align with growing evidence that the immediate peritumoral microenvironment significantly influences 
tumor-immune interactions and cancer progression.

Model Group AUC(95%CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

DecisionTree
Training group 0.861 (0.798–0.898) 0.766 (0.695–0.837) 0.968 (0.917–1.000) 0.608 (0.500–0.713) 0.659 (0.560–0.756) 0.96 (0.900–1.000)

Test group 0.567 (0.516–0.697) 0.459 (0.344–0.574) 0.667 (0.458–0.864) 0.35 (0.212–0.500) 0.35 (0.214–0.500) 0.667 (0.454–0.857)

AdaBoost
Training group 0.947 (0.880–0.979) 0.879 (0.823–0.929) 0.887 (0.800–0.962) 0.873 (0.795–0.939) 0.846 (0.746–0.929) 0.908 (0.842–0.969)

Test group 0.705 (0.567–0.835) 0.639 (0.508–0.754) 0.714 (0.500–0.895) 0.600 (0.444–0.750) 0.484 (0.313–0.655) 0.800 (0.643–0.933)

RandomForest
Training group 0.998 (0.968–1) 0.979 (0.950–1.000) 0.968 (0.912–1.000) 0.987 (0.96–1.000) 0.984 (0.948–1.000) 0.975 (0.931–1.000)

Test group 0.627 (0.491–0.773) 0.623 (0.492–0.738) 0.429 (0.211–0.650) 0.725 (0.583–0.861) 0.450 (0.231–0.684) 0.707 (0.548–0.846)

SVM
Training group 0.926 (0.875–0.978) 0.886 (0.829–0.936) 0.929 (0.86–0.984) 0.857 (0.782–0.929) 0.813 (0.708–0.909) 0.947 (0.892–0.988)

Test group 0.807 (0.696–0.919) 0.774 (0.661–0.871) 0.63 (0.455–0.808) 0.886 (0.763–0.974) 0.810 (0.632–0.957) 0.756 (0.614–0.884)

LogisticRegression
Training group 0.834 (0.783–0.879) 0.780 (0.709–0.851) 0.807 (0.702–0.902) 0.76 (0.663–0.852) 0.725 (0.616–0.822) 0.833 (0.743–0.913)

Test group 0.676 (0.626–0.706) 0.672 (0.557–0.787) 0.667 (0.476–0.864) 0.675 (0.524–0.829) 0.519 (0.357–0.71) 0.794 (0.657–0.926)

Table 4.  Performance of various machine learning algorithms in the training and test groups based on mpMRI 
sequences.

 

Variables

Univariate analyses Multivariate analyses Multivariate analyses

OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

Age 1.027 (0.999–1.056) 0.055 1.027 (0.996–1.059) 0.087

Clinical complaint 1.290 (0.872–1.908) 0.202

Pregnancy 1.089 (0.919–1.290) 0.326

Parturition 1.188 (0.880–1.604) 0.260

HPV 0.764 (0.383–1.562) 0.445

SCC 1.015 (0.965–1.067) 0.572

CA125 0.971 (0.937–1.006) 0.101

RBC 0.902 (0.489–1.663) 0.742

PLT 0.995 (0.991–0.999) 0.018 0.996 (0.992–0.999) 0.037 0.994 (0.987–0.999) 0.034

Neutrophil 1.089 (0.919–1.290) 0.325

Lymphocyte 0.959 (0.591–1.558) 0.876

Hemoglobin 1.004 (0.985–1.023) 0.714

NLR 1.150 (0.936–1.413) 0.185

PLR 0.996 (0.991–1.001) 0.131

Pre FIGO stage 35.87 (0.00–97.263) 0.416

Tumor longest diameter 1.030 (1.002–1.058) 0.035 1.05 (1.006–1.096) 0.025 1.04 (1.002–1.079) 0. 038

Stromal ring 2.56 (1.165–3.640) 0.013 0.993 (0.433–2.276) 0.987 0.965 (0.200–4.655) 0.965

MeanADC 0.114 (0.013–1.004) 0.049 0.994 (0.98–1.009) 0.43

MedianADC 0.043 (0.004–0.441) 0.008 1.007 (0.992–1.023) 0.346

Radscore 8.682 (4.027–21.104) 0.00

Table 3.  Clinical predictors of cervical cancer: Univariate and multivariate analyses.
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Radiomic analysis ultimately identified 18 features from each tumor and the 3 mm peritumoral region to 
construct a predictive model for CD3 expression levels in CC. These features included six wavelet features, four 
first-order features, three morphological features, and five additional features. SHAP analysis highlighted GLCM 
features, first-order statistics, and wavelet transform features as the most influential in the model’s predictions. 
Among these, gradient_glcm_MCC_ADC had the highest contribution, reflecting tumor boundary clarity and 

Model Group AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

mpMRI 
(ROItumor + ROI3mm)

Training group 0.906 (0.857–0.954) 0.823 (0.759–0.887) 0.823 (0.722–0.914) 0.823 (0.738, 0.904) 0.785 (0.677–0.881) 0.855 (0.770–0.929)

Test group 0.837 (0.718–0.956) 0.754 (0.639–0.853) 0.905 (0.750–1.000) 0.675 (0.531–0.816) 0.594 (0.424–0.765) 0.931 (0.828–1.000)

Clinical
Training group 0.738 (0.652–0.823) 0.731 (0.66–0.794) 0.776 (0.662–0.883) 0.699 (0.607–0.788) 0.643 (0.531–0.747) 0.817 (0.723–0.908)

Test group 0.703 (0.559–0.847) 0.754 (0.639–0.853) 0.840 (0.667–0.963) 0.694 (0.533–0.838) 0.656 (0.471–0.818) 0.862 (0.720–0.969)

Comprehensive
Training group 0.93 (0.88–0.97) 0.865 (0.809–0.922) 0.810 (0.706–0.909) 0.904 (0.838–0.963) 0.855 (0.759–0.943) 0.872 (0.800–0.939)

Test group 0.92 (0.84–0.99) 0.869 (0.787–0.951) 0.800 (0.650–0.933) 0.917 (0.811–1.000) 0.870 (0.714–1.000) 0.868 (0.75–0.954)

Table 5.  AUC, specificity, sensitivity, accuracy, NPV, and PPV of different models in the training and test 
groups. AUC, area under the ROC curve; CI, confidence interval; PPV, positive predictive value; NPV, 
negative predictive value; mpMRI, CE-MRI + T2WI + ADC sequences; comprehensive model, mpMRI 
(ROItumor + ROI3mm) + clinical model.

 

Fig. 6.  ROC curves for various models. Comparison of ROC curves for five machine learning algorithm 
models in the training group (A) and test group (B) based on mpMRI sequences. (C) Training group and (D) 
test group analysis for mpMRI ROItumor + ROI3mm, clinical, and integrated models.
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internal structural consistency. GLCM plays a crucial role in quantitatively analyzing tumor heterogeneity by 
reflecting the distribution and positional relationships of pixels, thereby revealing the spatial irregularity within 
tumors29,30. Higher GLCM contrast indicates greater spatial heterogeneity, which is linked to microstructural 
complexity in tumors. Previous studies have also provided some clues that prognostic value of GLCM-based 
features in oesophageal cancer31. First-order and wavelet-based features captured the biological properties and 
heterogeneity of the tumors, enhancing the model’s ability to characterize tumor behavior and morphology32,33. 
Although characteristics from all imaging sequences contribute significantly, ADC-based features predominate 

Fig. 7.  Assessment of the relative influence of model variables in the SVM algorithm, based on SHAP 
values. Feature0: wavelet-HH_glszm_GrayLevelNonUniformityNormalized_ADC. Feature1: log-sigma-
5–0-mm-3D_firstorder_InterquartileRange_ADC. Feature2: lbp-2D_firstorder_Kurtosis_ADC. Feature3: 
wavelet-HH_glrlm_LongRunEmphasis_ADC. Feature4: wavelet-LH_glcm_Correlation_ADC. Feature5: 
wavelet-HL_gldm_DependenceVariance_ADC_3mm. Feature6: gradient_glcm_MCC_ADC. Feature7: 
lbp-2D_glcm_JointEntropy_ADC. Feature8: lbp-2D_firstorder_InterquartileRange_ADC. Feature9: wavelet-
LH_gldm_LargeDependenceLowGrayLevelEmphasis_ADC. Feature10: gradient_glcm_Imc2_ADC. Feature11: 
log-sigma-5–0-mm-3D_glcm_InverseVariance_T1C. Feature12: exponential_firstorder_Minimum_T2W. 
Feature13: log-sigma-5–0-mm-3D_glcm_DifferenceVariance_T1C. Feature14: logarithm_glszm_
HighGrayLevelZoneEmphasis_T2W. Feature15: lbp-2D_firstorder_Skewness_T1C. Feature16: wavelet-HH_
ngtdm_Busyness_ADC. Feature17: lbp-2D_gldm_DependenceVariance_T1C.
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in our model, which is probably due to their increased sensitivity in identifying minor yet crucial elements of 
tumor microenvironment. Previous studies have also reported the prognostic value of ADC-based radiomic 
features in some tumors, underscoring its potential to encapsulate biologically relevant information15,34.

The comprehensive model incorporated clinical risk factors, including the longest tumor diameter on axial 
T2WI images and PLT count. Tumors in the high CD3 expression group tended to be larger, with evidence 
of deeper stromal or parametrial invasion35. This aligns with the 2018 FIGO guidelines, which stress the 
importance of MRI-based tumor size measurement for accurate staging34. Specifically, the longest diameter 
on axial T2WI was chosen to correspond with transverse stromal penetration depth36. Elevated PLT counts, 
occurring in approximately 10% to 57% of cancer patients, are associated with tumor progression and metastasis 
through various mechanisms37,38. This study identified a negative correlation between elevated PLT counts and 
CD3 expression levels. This is in agreement with Zhao et al.39, who reported that increased PLT counts may act 
as a poor prognostic indicator for patients with early-stage CC. Similarly, Shi Jia Xin et al.40 observed higher PLT 
counts in patients with CC exhibiting lymph node metastasis compared to those without metastasis (p < 0.05) in 
the training cohort, although this difference was not significant in the validation cohort, aligning with previous 
reports.

Several limitations warrant consideration. First, the T-lymphocyte analysis relied on public database-derived 
data, which may be subject to variability in data quality and completeness. Second, the lack of comprehensive 
survival data and cross-database validation in the CC patient cohort limits the generalizability of the findings. 
Future studies should aim to develop radiomics models integrating multi-sequence imaging data and clinical 
parameters from diverse centers. Additionally, the current imaging dataset mainly focuses on early-stage 
patients and lacks data from advanced stages. Future research plans include increasing the sample size to cover 
the entire disease course from early to advanced stages, aiming for a more comprehensive perspective and 
accurate predictive models.

In conclusion, CD3 expression levels correlate significantly with CC staging and prognosis. By integrating 
intra- and peritumoral multi-sequence MRI radiomic features, tumor size, and PLT counts, this study developed 
an efficient model for predicting CD3 expression status in preoperative patients with CC. It could aid in 
identifying patients more likely to benefit from immunotherapy or other immune-targeted treatments, thus 
informing personalized treatment strategies.

Data availability
The datasets generated during the current study are included in this published article. Further inquiries can be 
available from the corresponding author.
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Fig. 8.  Decision Curve (A and B) and Calibration curve (C and D) for the clinical model, radiomics models 
(ROItumor + ROI3mm from mpMRI sequences), and integrated model (combination of radiomics and clinical 
models) in both the training and test groups.
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