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The integration of AI simulation models within smart electrical prosthetic systems represents a 
significant advancement in disability disease diagnosis. However, the selection and evaluation of 
these AI models interpret some multi-criteria decision-making dilemmas because of the presence 
of uncertainty and bipolarity (positive and negative aspects) of the selection criteria. Current 
literature lacks the selection and evaluation of AI simulation models that consider both bipolarity 
and uncertainty of the criteria, while prevailing Choquet integral aggregation operators despite their 
strong capabilities for handling information relationships, fail to efficiently process bipolar fuzzy 
information. The existence of this limitation makes it challenging to identify element interactions and 
non-linear relationships in uncertain environments containing both positive and negative aspects. 
To overcome these gaps, first, we develop two operators that are the bipolar fuzzy Choquet integral 
averaging and bipolar fuzzy Choquet integral geometric operators that uniquely integrate dual aspects 
(bipolarity) with criterion interaction modeling capabilities, fundamentally differing from traditional 
fuzzy approaches that cannot simultaneously process dual aspects of criterion. Secondly, we design a 
new multi-criteria decision-making approach using these operators to assess AI simulation models for 
prosthetic systems, since the criteria involved such as diagnostic accuracy, computational efficiency, 
and system reliability, have both positive and negative aspects that need to be considered together. 
Our method was applied in detail to select AI simulation models for smart electrical prosthetic systems 
and compared with some prevailing methods and standard Choquet integral approaches. This showed 
that our method is more precise and produces better evaluation results. It introduces a new theoretical 
basis for bipolar fuzzy Choquet integral aggregation and offers medical professionals a reliable way 
to pick the best AI simulation models for important prosthetic applications that influence patient 
outcomes and the functioning of prosthetics.

Keywords  Artificial intelligence, Disability, Electrical prosthetic systems, Choquet integral, MCDM 
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The inclusion of AI simulation models within smart prosthetic systems creates an important advancement 
in disability diagnosis and treatment through real-time analysis of user movement patterns and neurological 
signals. Machine learning algorithms in these models analyze sensor data from electrical prosthetics to detect 
neurological and muscular disorders that impact prosthetic functionality. Through simulated conditions, the 
AI systems diagnose variations in disability effects which helps medical decision-makers anticipate functional 
changes in prosthetics to customize individual adjustments. The models track user behavior patterns continuously 
to spot minor behavioral shifts that signal disability disease development. The technology enhances diagnostic 
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precision while enabling prosthetic systems to deliver better support to users who have different levels of 
disability.

The AI simulation model employs artificial intelligence abilities to manufacture complex system simulations 
and conduct their analysis. A significant advantage of AI simulation models over traditional simulation 
approaches is their ability to learn system patterns alongside their ability to adapt to changing conditions and 
produce new solutions from their training data sets1–3. Their unique ability to model complex and dynamic 
systems and poorly understood systems makes them valuable for modeling tasks beyond traditional methods’ 
capabilities. AI simulation models achieve their predictive capabilities through data learning and inference 
which produces outcomes that deterministic systems cannot match. Multiple artificial intelligence techniques 
help build these models. The identification of patterns and relationships inside simulated system data sets is 
commonly achieved through deep learning and machine learning techniques4. Through data analysis, the 
model acquires system dynamic information regardless of the model’s inability to simplify system dynamics 
by expressing them as mathematical equations. Building use data processing together with configuration data 
evaluation and environmental factor consideration enables AI algorithms to generate performance predictions 
for different design alternatives regarding energy efficiency and comfort safety5. The assessment results assist 
building site designers in selecting design choices that lead to optimal performance results.

AI simulation models used for diagnosing disability diseases in smart electrical prosthetic systems represent 
an important advancement in modern healthcare technology. Advanced artificial intelligence models deliver 
essential advancements in both technologies used for disability detection and prosthetic device medical 
solutions. The AI models utilize continuous analysis of disability-related indicators within prosthetic system 
sensor data which enables them to identify signals that indicate developing diseases or increasing severity. The 
capability to detect conditions early allows intervention teams to organize timely treatments as well as modify 
their treatment methods. The analysis of unique movement patterns and neural signals alongside physiological 
reactions enables these models to create individualized patient profiles that produce optimized prosthetic 
adjustments and adaptive therapeutic interventions. The implementation of early warning detection AI systems 
enables health providers to detect upcoming medical complications which enables them to execute preventive 
healthcare strategies. This technology enables remote patient monitoring to combine complex advanced care 
services with financial savings decreasing the need for medical office attendance. By using AI models researchers 
gain better awareness of disease progression in multiple patient groups and this generates crucial medical 
knowledge about disability conditions. The integration of AI into prosthetic systems creates an end-to-end 
diagnostic-treatment solution that generates outstanding healthcare services for people with disabilities along 
with enhanced therapeutic outcomes and life-quality benefits.

The selection and evaluation of AI simulation models for disability disease diagnosis in smart electrical 
prosthetic systems leads to an MCDM challenge because multiple essential factors operate simultaneously. The 
evaluation process becomes complicated because it requires the assessment of competing criteria that unite 
performance metrics with technical requirements clinical aspects implementation aspects and user-specific 
parameters. When assessing these systems, it is essential to find an equilibrium between diagnostic quality and 
resource efficiency through examinations involving system dependability allocation and analysis of scalability 
capabilities and protection requirements together with regulatory specifications. The decision-making process 
becomes complex due to the interdependent criteria that demand simultaneous optimization of multiple 
objectives to determine the best AI simulation model for healthcare situations and patient groups.

Bipolar fuzzy theory in MCDM procedures
Bipolar fuzzy set (BFS)6 stands as a major MCDM procedure advancement because it enables effective analysis of 
positive and negative aspects of information in complex decision environments. Bipolarity enhances traditional 
fuzzy sets to create a representation system for determining membership degrees in positive and negative aspects. 
Bipolar fuzzy TOPSIS utilizes classical TOPSIS principles alongside BFSs to enable effective decision evaluation 
when working with both positive and negative aspects of criteria7. The implementation of BFSs provides substantial 
benefits to MCDM applications because decision-makers encounter unpredictable and imprecise situations that 
commonly appear in practical environments. Various research approaches incorporating BFSs have been created 
to enhance decision accuracy according to recent studies. BFWA operators form the basis of an effective method 
to combine multiple criteria preferences for precise alternative analysis8. The approach performs option ranking 
by calculating scores from combined positive and negative evaluations to assist decision-makers in finding their 
best choices. Bipolar fuzzy theory enhances MCDM procedures through complete alternative assessments that 
handle positive and negative aspects. The dual evaluation standard enhances decision-making frameworks by 
creating more accurate operational techniques to handle problems across various domains. Recurring research 
activities within this subject create advanced methods that demonstrate the potential to strengthen upcoming 
decision-making outcomes.

Research problem and motivation
Selecting and assessing AI simulation models for diagnosing disability diseases in smart electrical prosthetic 
systems is a challenging MCDM problem that directly influences the health of more than 40 million prosthetic 
users globally, but existing approaches do not handle the inherent uncertainty and bipolarity in this area well. 
The evaluation process faces many problems because each selection criterion has both positive and negative 
sides that must be considered together—for example, accuracy in diagnosis can be high (positive) and can be 
low (negative) and cost, higher the cost (negative aspects) and lower the cost (positive aspects). In addition, 
these criteria show that there are strong connections between them, since moderate gains in accuracy and speed 
can lead to much bigger benefits in diagnostics, security, and connectivity, risks from security and connectivity 
features tend to multiply rather than add up and reliability and innovation are often substitutes instead of 
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complements. Currently, no one used such comprehensive frameworks for selecting AI simulation models 
that handle both uncertainty analysis and bipolar criterion assessment which are both important for making 
decisions in prosthetic systems.

Traditional fuzzy set (FS) methods are not suitable because they cannot handle both the positives and 
negatives of the same criterion at the same time, while standard MCDM methods that use linear aggregation 
cannot handle the way some criteria interact such as the relationship between diagnostic accuracy and real-
time processing or the way some criteria balance each other such as between system reliability and adaptive 
learning. While Choquet integral aggregation operators (AOs) are excellent at processing information with 
variable relationships and at detecting interactions between criteria that other methods cannot, the existing 
operators struggle to handle bipolar fuzzy information efficiently which means they cannot detect interactions 
and non-linear relationships in uncertain environments with both positive and negative aspects. Because of 
this methodological gap, decision-makers are unable to properly weigh the positive and negative aspects of 
different AI models such as how much precision they offer versus how much they cost to run, how safe they 
are versus how flexible they are, or how much they can be personalized versus how much they follow standard 
rules. Consequently, there exists an urgent necessity for interpreting a MCDM approach that can successfully 
integrate BFS with Choquet integral AOs to create a robust framework capable of coping with the complex, 
uncertain, and inherently bipolar nature of AI simulation model evaluation criteria, thereby enabling healthcare 
professionals and biomedical engineers to make evidence-based, optimal selection decisions that maximize 
diagnostic accuracy while minimizing system limitations and ensuring superior patient outcomes in smart 
electrical prosthetic applications.

Contribution
The main contribution of this article is given as follows.

•	 Introducing bipolar fuzzy choquet integral AOs: We interpret two vital mathematical AOs that are the bipolar 
fuzzy Choquet integral averaging (BFCIA) and the bipolar fuzzy Choquet integral geometric (BFCIG) op-
erators, that signify the first comprehensive integration of BFS with Choquet integral aggregation methods.

•	 Single framework integration for dual-aspect processing: With our advanced operators, we can handle both 
the fuzzy measures of criteria and their positive and negative aspects together, so there is no need for different 
evaluation systems and we can assess all aspects of criteria at once.

•	 Creating a MCDM methodology: We develop a MCDM that is designed to handle complex problems with 
bipolarity and uncertain information and aggregated by Choquet integral AOs.

•	 Practical healthcare application demonstration (case study): We use a detailed case study to prove that our 
framework can be used in real life by choosing the best AI simulation models for prosthetic systems, high-
lighting how it addresses tough MCDM problems in healthcare.

•	 Comprehensive justification via comparative analysis: We prove that our approach performs better than ex-
isting theories by comparing them in detail and showing their effectiveness in handling complex medical 
technology assessment decisions.

•	 Bridge between theoretical development and clinical practice: We show how advanced methods can be used 
in practice to help choose the best medical technology for patients.

•	 Enhanced decision-making precision: Our approach makes it possible to evaluate AI simulation models with 
great precision by considering both sides of each evaluation criterion and how different factors affect each 
other.

The flowchart of the contribution is devised in (Fig. 1).
Our bipolar fuzzy method is different from conventional FSs because it allows each criterion to have both 

positive and negative membership, making it possible to fully represent the ambivalence of AI prosthetic 
evaluation. Our method is better than intuitionistic fuzzy sets, neutrosophic sets hesitant fuzzy sets, etc. because 
it models the two-sided nature of decision criteria, rather than handling hesitancy or indeterminacy which is 
important for prosthetic AI evaluation since each criterion has both positive and negative aspects that must be 
considered together, unlike other complex fuzzy approaches that address various types of uncertainty but do 
not capture the bipolarity of criteria. We address the main issue of existing Choquet integral operators which 
cannot process bipolar information, by developing new operators that keep the Choquet integral’s advantages in 
modeling criterion interactions and add the ability to handle both positive and negative membership degrees, 
making it possible to detect both synergistic and antagonistic effects between criterion benefits and drawbacks 
that traditional methods cannot detect.

Layout of the article
In Sect. 2, we analyze the literature review and in Sect. 3, we devise some basic concepts related to BFS and a 
concept of fuzzy measure. In Sect. 4, we devise Choquet integral AOs within the framework of BFS and discuss 
the related properties. In Sect. 5, we devise an MCDM methodology based on the developed Choquet integral 
AOs and then analyze a case study related to the selection and assessment of AI simulation models. In Sect. 6, we 
interpret a comparative study of our work with certain prevailing ones. Section 7 has the conclusion.

Literature review
The literature on disability, prosthetics, and rehabilitation encompasses a broad range of research that paves 
the way to presenting critical interplay between medical advancements for patients, patient-centric approaches, 
and the psychosocial impact on prosthetic use. A foundational perspective was presented by Kraft et al.9, who 
explored the varied experiences of multiple sclerosis patients, where the focus of the interplay between disability 
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and disease duration was centered on the necessity for tailored rehabilitation services. Their contributions were 
to bring the patient-centric approach to diagnose and treat complex chronic diseases. Portillo and Sancho10 
advanced microbiological diagnostic techniques for prosthetic joint infections with the advent of state-of-the-art 
technology, which helps improve diagnostic accuracy. Modern microbiological methodologies used in this study 
helped reduce the risks from prosthetic implants through effective infection management. Carson11 specifically 
targeted penile prosthesis infections, describing new diagnostic, treatment, and prevention approaches. His 
efforts highlighted the necessity of focused strategies in prosthetic care, specifically both physiological and 
procedural contributors that impact clinical results. Durstine et al.12 changed the focus to the advantages of 
exercise for chronic illness and disability. Such work emphasizes the ability of regular physical activity to augment 
better physical functioning, reduce disablement, and enhance psychological well-being as a consideration for 
inclusion into rehabilitation programs. Le Bars et al.13 conversely investigated disorders in systemic disturbances 
secondary to using removable prosthetic appliances, serving to illustrate interactions between prosthetic design 
and generalized health outcomes. Wolfart et al.14 made further contributions by examining the oral health-related 
quality of life for shortened dental arches under prosthetic treatment. Results showed improved management of 
pain, jaw functions, and general patient satisfaction. Psychosocial aspects of prosthetic use were examined by 
Tamari15, who reviewed the association of body image with prosthetic aesthetics and disability within the context 
of Paralympic culture. This study threw light on the cultural and emotional impact of prosthetics and supported 
the design which integrated functionality with aesthetics to improve self-perception and social integration. 
Feine et al.16 furthered the evaluation of implant-supported prostheses by setting firm criteria for the outcome 
assessment to ensure that the outcome is determined within a standardized framework in evaluating the success 
of prosthetic treatments. Matsuka et al.17 conceptualized the oriented diagnostic nomenclature system with 
patient disability as a focus in prosthetic dentistry as a tool for safe and valid diagnostic practice for a more 
valid assessment of the patient and individual treatment plan. Psychological adaptation to prosthetic use was the 
focus of the study by Gallagher and MacLachlan18 which explored coping mechanisms and adjustment in adults 
with prosthetic limbs. Nevelsteen et al.19 addressed the challenges of prosthetic infections in vascular surgery by 
proposing autogenous reconstruction with lower extremity deep veins as a viable alternative for treating prosthetic 
infections after reconstructive aortoiliac surgery. Matyokubovna20 paid special attention to the complications 
with removable prosthetics - diseases of the oral mucous membrane. The work included preventing and regular 
monitoring of such risks in prosthetic dentistry. Schiff et al.21 have made original contributions to prosthetic 
reconstruction in cases of cognitive disability acquired as a result of brain injury. Their work has added more 
prosthetic applications to benefit beyond rehabilitation: that is physical to cognitive benefits. In conjunction, 
these articles are significant inputs into the large and comprehensive database that understands more than just 
single-dimension benefits through using prosthetics for rehabilitation, impacting health outcomes, or enhancing 
the quality of life while catering to both physiological and psychological attributes of disability.

MCDM techniques
MCDM has emerged as an essential methodology for dealing with complex decision-making problems 
involving multiple criteria. Massam22 provided one of the earliest comprehensive reviews of MCDM techniques, 
particularly in the field of planning. His work underscored the importance of considering multiple criteria in 
decision-making processes, especially when these decisions have long-term impacts. Bonissone et al.23 propose 
a framework for MCDM and they created a comprehensive framework for MCDM research and applications, 
especially focusing on adaptability in computational intelligence and also integrating these techniques with 

Fig. 1.  The flowchart of contribution.
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artificial intelligence and machine learning to enhance the decision-making outcomes. The versatility of 
MCDM techniques has increased as decision problems have become more complex. Zavadskas et al.24 presented 
a modern review of MCDM and multi-attribute decision-making (MADM) methods by organizing them 
according to their technology and economic development usage. Taherdoost and Madanchian25 presented 
updated MCDM ideas through their research about modern industry trends and sustainability along with 
fuzzy logic applications. The authors demonstrated how modern technological developments require greater 
consideration during MCDM technique applications. MCDM has experienced a major advancement through 
the incorporation of fuzzy logic which enables decision-making under uncertain and imprecise conditions. 
Traditional MCDM methods gained flexibility through fuzzy logic integration according to Chu and Lin26 in 
their work. The researchers at Chen et al.27 used fuzzy MCDM to identify the most suitable watershed plan for 
environmental purposes. Their use of fuzzy logic helped deal with the imprecision in data and expert opinions, 
highlighting the strengths of fuzzy MCDM in complex environmental decision-making. The comparison of 
different fuzzy MCDM methods was further explored by Zamani-Sabzi et al.28, who conducted a statistical and 
analytical assessment of various techniques under fuzzy environments. Wang et al.29 applied the fuzzy MCDM 
approach for selecting optimal renewable energy plant locations in Vietnam and showed how to solve the issue 
of conflicting economic, environmental, and social goals by offering balanced solutions to planning sustainable 
energy resources. Fuzzy MCDM has been complimented by some hybrid approaches of multiple techniques 
that have emerged in decision-making tools. Ahmed et al.30 used a Hybrid Fuzzy AHP/VIKOR method to select 
the funding strategy for advanced prosthetic and orthotic medical devices for low-income countries. Similarly, 
Buyukozkan and Mukul31 have further explored hesitant fuzzy linguistic MCDM methods that can be useful 
in evaluating smart health technologies. Their research demonstrated how the hesitant fuzzy approach can be 
applied to model uncertainty in human judgment, particularly in assessing new health technologies. Dhumras 
and Bajaj32 proposed an improved EDAS approach to MCDM in robotic agrifarming based on picture fuzzy soft 
(PFS) Dombi AOs. Dhumras et al.33 have extensively discussed the application of modified TOPSIS methodology 
in green supplier selection problems based on R-norm q-rung picture fuzzy information measures and R-norm 
picture fuzzy discriminant measures were discussed by Singh et al.34. In addition, Dhumras et al.35 developed 
the TOPSIS/VIKOR approach within the framework of q-rung picture fuzzy that is federated learning-oriented 
in electronic marketing strategic planning, and Sharma et al.36 focused on banking site selection and used new 
picture fuzzy discriminant measures. Similar progress in q-rung orthopair fuzzy hypersoft sets has been made by 
Khan and colleagues, who proposed ordered aggregation operators to select green suppliers37, determine tourism 
carrying capacity38, and analyze the cryptocurrency market with hypersoft set al.gorithms based on aggregation 
operators39. Al-Sabri et al.40 have also added to the integration of Pythagorean fuzzy approaches by using cubic 
fuzzy Einstein AOs in investment management, and Mahapatra et al.41 have added to dynamic group decision-
making in the context of enterprise resource planning selection using two-tuples Pythagorean fuzzy MOORA 
approaches. Dhumras et al.42 proposed similarity measures of complex picture fuzzy sets (CPFSs) applicable 
in pattern recognition. In simple the MCDM literature has thus illustrated how such techniques are critical 
for making complex decisions across domains. From early development to contemporary developments, the 
inclusion of fuzzy logic and hybrid methods into MCDM has significantly opened up applications in renewable 
energy, healthcare, and environmental management, among others. Given the increasingly complicated nature 
of decision problems, the MCDM will always serve as an efficient tool in researchers’ and practitioners’ analyses 
and decision-making strategies in facing multiple-dimensional problems that are getting ever more uncertain 
with time.

Preliminaries
In this section, we devise some basic concepts related to BFS and a concept of fuzzy measure.

Definition 1  6The following framework displays the notion of BFS

	 I =
{(

ŗ, ∂ P
I (ŗ) , ∂ N

I (ŗ)
)

| ŗ∈ Z
}

Where ∂ P
I (ŗ) ∈ [0, 1] is analyzed as a positive membership grade and ∂ N

I (ŗ) ∈ [−1, 0] is analyzed as the 
negative membership grade of each ŗ∈ Ỳ. The set I =

(
∂ P

I , ∂ N
I

)
 is devised as a bipolar fuzzy number (BFN)

Definition 2  43For two BFNs I1 =
(
∂ P

I1 , ∂ N
I1

)
 and I2 =

(
∂ P

I2 , ∂ N
I2

)
 and ∂́ ≥ 0, we have

1. 

	 I1 ⊕ I2 =
(
∂ P

I1 + ∂ P
I2 − ∂ P

I1 ∂ P
I2 , −

(
∂ N

I1 ∂ N
I2

))

2. 

	 I1 ⊗ I2 =
(
∂ P

I1 ∂ P
I2 , ∂ N

I1 + ∂ N
I2 + ∂ N

I1 ∂ N
I2

)

3. 

	
∂́I1 =

(
1 −

(
1 − ∂ P

I1

)∂́
, −

(∣∣∂ N
I1

∣∣∂́
))
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4. 

	
I ∂́

1 =
((

∂ P
I1

)∂́
, −1 +

(
1 + ∂ N

I1

)∂́
)

 

Definition 3  44For a BFN I =
(
∂ P

I , ∂ N
I

)
,

	
S (I) = 1

2
(
1 + ∂ P

I + ∂ N
I

)
SB (I) ∈ [0, 1]

is analyzed as score value and

	
H (I) = ∂ P

I − ∂ N
I

2 , H (I) ∈ [0, 1]

is analyzed as an accuracy value of I

Definition 4  45A function T : 2Z → [0, 1] is interpreted as a fuzzy measure over Z  if

	 T (∅ ) = 0, T (Z) = 1If Z1, Z2 ∈ P (Z) and Z1 ⊆ Z2, then T (Z1) ≤ T (Z2).

Bipolar fuzzy choquet integral AOs
In this Section, we devise Choquet integral AOs within the framework of BFS and discuss the related properties.

Definition 5  Let a gathering of BFNs Ij =
(

∂ P
Ij , ∂ N

Ij

)
, j = 1, 2, . . . , n over Z  and let T be a fuzzy meas-

ure over Z . Then the BFCIA operator is evaluated as

	
BF CIA (I1, I2, . . . , In) =

n
⊕
j = 1

(
T

(
Vξ (j)

)
− T

(
Vξ (j+1)

))
Iξ (j)

Where, (ξ (1) , ξ (2) , . . . , ξ (n)) is a permutation of (1, 2, . . . , n) such that ξ
(
j− 1

)
≥ ξ

(
j
)

, for 
j = 2, 3, . . . , n, Vξ (j) =

{
yξ (j)| j ≤ k

}
 for k ≥ 1 and Vξ (j+1) = ∅ .

Theorem 1  Let a gathering of BFNs Ij =
(

∂ P
Ij , ∂ N

Ij

)
, j = 1, 2, . . . , n over Z  and let T be a fuzzy measure 

over Z . Then operating BFCIA operator over Ij gives a BFN i.e.

	
BF CIA (I1, I2, . . . , In) =

(
1 −

∏
n
j=1

(
1 − ∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

, −
∏

n
j=1

∣∣∣∂ N
Iξ (j)

∣∣∣
(

T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)))

(1)

Proof  Let n = 2. Then to prove that

	
BF CIA (I1, I2) =

(
1 −

∏
2
j=1

(
1 − ∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

, −
∏

2
j=1

∣∣∣∂ N
Iξ (j)

∣∣∣
(

T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)))

.

By taking n = 2, Eq. (1) is

	
BF CIA (I1, I2) =

2
⊕
j = 1

(
T

(
Vξ (j)

)
− T

(
Vξ (j+1)

))
Iξ (j) =

(
T

(
Vξ (1)

)
− T

(
Vξ (2)

))
Iξ (1) ⊕

(
T

(
Vξ (2)

)
− T

(
Vξ (3)

))
Iξ (2)

And we have

	

(
T

(
Vξ (1)

)
− T

(
Vξ (2)

))
Iξ (1) =

(
1 −

(
1 − ∂ P

Iξ (1)

)( T(Vξ (1))− T(Vξ (2)))
, −

(∣∣∣∂ N
Iξ (1)

∣∣∣(
T(Vξ (1))− T(Vξ (2)))

))

	

(
T

(
Vξ (2)

)
− T

(
Vξ (3)

))
Iξ (2) =

(
1 −

(
1 − ∂ P

Iξ (2)

)( T(Vξ (2))− T(Vξ (3)))
, −

(∣∣∣∂ N
Iξ (2)

∣∣∣(
T(Vξ (2))− T(Vξ (3)))

))

Then,

	
BF CIA (I1, I2) =

2
⊕
j = 1

(
T

(
Vξ (j)

)
− T

(
Vξ (j+1)

))
Iξ (j)
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=
(

1 −
(

1 − ∂ P
Iξ (1)

)( T(Vξ (1))− T(Vξ (2)))
, −

(∣∣∣∂ N
Iξ (1)

∣∣∣(
T(Vξ (1))− T(Vξ (2)))

))

⊕
(

1 −
(

1 − ∂ P
Iξ (2)

)( T(Vξ (2))− T(Vξ (3)))
, −

(∣∣∣∂ N
Iξ (2)

∣∣∣(
T(Vξ (2))− T(Vξ (3)))

))

	
=

(
1 −

∏
2
j=1

(
1 − ∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

, −
∏

2
j=1

∣∣∣∂ N
Iξ (j)

∣∣∣
(

T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)))

This reveals that Eq. (1) is satisfied for n = 2. Let Eq. (1) holds for n = Q, i.e.

	
BF CIA (I1, I2, . . . , IQ) =

(
1 −

∏
Q
j=1

(
1 − ∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

, −
∏

Q
j=1

∣∣∣∂ N
Iξ (j)

∣∣∣
(

T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)))

Now to prove that Eq. (1) is satisfied for n = Q + 1. Thus,

	 BF CIA (I1, I2, . . . , IQ, IQ+1 ) = BF CIA (I1, I2, . . . , IQ) ⊕ IQ+1

	

=

(
1 −

∏
Q
j=1

(
1 − ∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

, −
∏

Q
j=1

∣∣∣∂ N
Iξ (j)

∣∣∣
(

T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)))

⊕
(

1 −
(

1 − ∂ P
Iξ (Q+1)

)( T(Vξ (Q+1))− T(Vξ (Q+2)))
, −

(∣∣∣∂ N
Iξ (Q+1)

∣∣∣(
T(Vξ (Q+1))− T(Vξ (Q+2)))

))

	
=

(
1 −

∏
Q+1
j=1

(
1 − ∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

, −
∏

Q+1
j=1

∣∣∣∂ N
Iξ (j)

∣∣∣
(

T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)))

	 BF CIA (I1, I2, . . . , IQ, IQ+1 )

Example 1  Let I1 = (0.7, −0.6) and I2 = (0.5, −0.3) be two BFNs over Z . Let T be a fuzzy measure on 
Z  such as T (I1) = 0.4, T (I2) = 0.6, T (I1, I1) = 1.0. Then

	 BF CIA (I1, I2) =
(
1 −

(
(1 − 0.5)1−0.6 × (1 − 0.7)0.6−0.4)

, −
(
|−0.3|1−0.6 × |−0.7|0.6−0.4))

	 =
(
1 −

(
(1 − 0.5)0.4 × (1 − 0.7)0.2)

, −
(
|−0.3|0.4 × |−0.7|0.2))

= (0.4043, −0.5578)

Properties
The following are the properties that the BFCIA operator satisfy.

•	 Idempotency: Let a gathering of BFNs Ij =
(

∂ P
Ij , ∂ N

Ij

)
, j = 1, 2, . . . , n over Z  and let T be a fuzzy 

measure over Z . if Ij = I ∀ j, then,

	 BF CIA (I1, I2, . . . In) = I

Proof  As we have

	
BF CIA (I1, I2, . . . , In) =

(
1 −

∏
n
j=1

(
1 − ∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

, −
∏

n
j=1

∣∣∣∂ N
Iξ (j)

∣∣∣
(

T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)))

and if Ij = I ∀ j, then we have

	
BF CIA (I, I, . . . , I) =

(
1 −

∏
n
j=1

(
1 − ∂ P

I
)∑

n
j=1

(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

, −
∏

n
j=1

∣∣∂ N
I

∣∣
∑

n
j=1

(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)))

Since 
∑ n

j=1

(
T

(
Vξ (j)

)
− T

(
Vξ (j+1)

))
= 1, thus

	 BF CIA (I1, I2, . . . In) = I

•	 Monotonicity: Let two gatherings of BFNs Ij =
(

∂ P
Ij , ∂ N

Ij

)
, and I#

j =
(

∂ P
I#
j

, ∂ N
I#
j

)
 j = 1, 2, . . . , n 

over Z  and let T be a fuzzy measure over Z . If ∂ P
Ij ≤ ∂ P

I#
j

, ∂ N
Ij ≤ ∂ N

I#
j

, then
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	 BF CIA (I1, I2, . . . In) ≤ BF CIA
(
I#

1 , I#
2 , . . . I#

n
)

Proof  As Vξ (j+1) ⊆ Vξ (j), then T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)

≥ 0 ∀ j. Further, we have ∂ P
Ij ≤ ∂ P

I#
j

, then

	
∂ P

Iξ (j) ≤ ∂ P
I#

ξ (j)
⇒ 1 − ∂ P

Iξ (j) ≥ 1 − ∂ P
I#

ξ (j)

	
⇒

(
1 − ∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≥
(

1 − ∂ P
I#

ξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

	
⇒ −

∏
n
j=1

(
1 − ∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≤ −
∏

n
j=1

(
1 − ∂ P

I
I#

ξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

	
⇒ 1 −

∏
n
j=1

(
1 − ∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≤ 1 −
∏

n
j=1

(
1 − ∂ P

I
I#

ξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

Next, we have ∂ N
Ij ≤ ∂ N

I#
j

, then

	
∂ N

Iξ (j) ≤ ∂ N
I#

ξ (j)
⇒

∣∣∣∂ N
Iξ (j)

∣∣∣ ≥
∣∣∣∣∂ N

I#
ξ (j)

∣∣∣∣

	
⇒

∣∣∣∂ N
Iξ (j)

∣∣∣
(

T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≥
∣∣∣∣∂ N

I#
ξ (j)

∣∣∣∣

(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

	
⇒ −

∏
n
j=1

∣∣∣∂ N
Iξ (j)

∣∣∣
(

T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≤ −
∏

n
j=1

∣∣∣∂ N
Iξ (j)

∣∣∣
(

T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

	 ⇒ BF CIA (I1, I2, . . . In) ≤ BF CIA
(
I#

1 , I#
2 , . . . I#

n
)

•	 Boundedness: Let a gathering of BFNs Ij =
(

∂ P
Ij , ∂ N

Ij

)
, j = 1, 2, . . . , n over Z  and let T be a fuzzy 

measure over Z . If I− =
(

min
j

{
∂ P

Ij

}
, min

j

{
∂ N

Ij

})
 and I+ =

(
max
j

{
∂ P

Ij

}
, max

j

{
∂ N

Ij

})
, then

	 I− ≤ BF CIA (I1, I2, . . . In) ≤ I+

Proof  As Vξ (j+1) ⊆ Vξ (j), then T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)

≥ 0 ∀ j and (ξ (1) , ξ (2) , . . . , ξ (n)) is a 

permutation of (1, 2, . . . , n). We have that ∀ j

	
min
j

{
∂ P

Iξ (j)

}
≤ ∂ P

Iξ (j) ≤ max
j

{
∂ P

Iξ (j)

}

	

⇒
∏

n
j=1

(
1 − min

j

{
∂ P

Iξ (j)

})(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≥
∏

n
j=1

(
1 − ∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≥
∏

n
j=1

(
1 − max

j

{
∂ P

Iξ (j)

})(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

	

⇒
(

1 − min
j

{
∂ P

Iξ (j)

})∑
n
j=1

(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≥
∏

n
j=1

(
1 − ∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≥
(

1 − max
j

{
∂ P

Iξ (j)

})∑
n
j=1

(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))
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⇒ 1 −
(

1 − min
j

{
∂ P

Iξ (j)

})∑
n
j=1

(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≤ 1 −
∏

n
j=1

(
1 − ∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≤ 1 −
(

1 − max
j

{
∂ P

Iξ (j)

})∑
n
j=1

(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

	
⇒ min

j

{
∂ P

Iξ (j)

}
≤ 1 −

∏
n
j=1

(
1 − ∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≤ max
j

{
∂ P

Iξ (j)

}

Since we have that

	
min
j

{
∂ N

Iξ (j)

}
≤ ∂ N

Iξ (j) ≤ max
j

{
∂ N

Iξ (j)

}

	
⇒

∣∣∣∣min
j

{
∂ N

Iξ (j)

}∣∣∣∣ ≥
∣∣∣∂ N

Iξ (j)

∣∣∣ ≥
∣∣∣∣max

j

{
∂ N

Iξ (j)

}∣∣∣∣

	
⇒

∣∣∣∣min
j

{
∂ N

Iξ (j)

}∣∣∣∣

(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≥
∣∣∣∂ N

Iξ (j)

∣∣∣
(

T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≥
∣∣∣∣max

j

{
∂ N

Iξ (j)

}∣∣∣∣

(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

	
⇒ −

∏
n
j=1

∣∣∣∣min
j

{
∂ N

Iξ (j)

}∣∣∣∣

(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≤ −
∏

n
j=1

∣∣∣∂ N
Iξ (j)

∣∣∣
(

T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≤ −
∏

n
j=1

∣∣∣∣max
j

{
∂ N

Iξ (j)

}∣∣∣∣

(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

	
⇒ min

j

{
∂ N

Iξ (j)

}
≤ −

∏
n
j=1

∣∣∣∂ N
Iξ (j)

∣∣∣
(

T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

≤ max
j

{
∂ N

Iξ (j)

}

If I1 =
(
∂ P

I1 , ∂ N
I1

)
 and I2 =

(
∂ P

I2 , ∂ N
I2

)
 are two BFNS, then I1 ≤ I2 iff ∂ P

I1 ≤ ∂ P
I1  and ∂ N

I1 ≤ ∂ N
I1 . 

Using this we have that

	 I− ≤ BF CIA (I1, I2, . . . In) ≤ I+

Definition 6  Let a gathering of BFNs Ij =
(

∂ P
Ij , ∂ N

Ij

)
, j = 1, 2, . . . , n over Z  and let T be a fuzzy meas-

ure over Z . Then the BFCIG operator is evaluated as

	
BF CIG (I1, I2, . . . , In) =

n
⊗
j = 1

(
Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

Where, (ξ (1) , ξ (2) , . . . , ξ (n)) is a permutation of (1, 2, . . . , n) such that ξ
(
j− 1

)
≥ ξ

(
j
)

, for 
j = 2, 3, . . . , n, Vξ (j) =

{
yξ (j)| j ≤ k

}
 for k ≥ 1 and Vξ (j+1) = ∅ .

Theorem 2  Let a gathering of BFNs Ij =
(

∂ P
Ij , ∂ N

Ij

)
, j = 1, 2, . . . , n over Z  and let T be a fuzzy measure 

over Z . Then operating BFCIG operator over Ij gives a BFN i.e.

	
BF CIG (I1, I2, . . . , In) =

(∏
n
j=1

(
∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

, −1 +
∏

n
j=1

(
1 + ∂ N

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)))

(2)

Proof  Let n = 2. Then to prove that

	
BF CIG (I1, I2) =

(∏
2
j=1

(
∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

, −1 +
∏

2
j=1

(
1 + ∂ N

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)))

By taking n = 2, Eq. (2) is

	
BF CIG (I1, I2) =

2
⊗
j = 1

(
Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

=
(
Iξ (1)

)( T(Vξ (1))− T(Vξ (2))) ⊗
(
Iξ (2)

)( T(Vξ (2))− T(Vξ (3)))

And we have

	

(
Iξ (1)

)( T(Vξ (1))− T(Vξ (2))) =
((

∂ P
Iξ (1)

)( T(Vξ (1))− T(Vξ (2)))
, −1 +

(
1 + ∂ N

Iξ (1)

)( T(Vξ (1))− T(Vξ (2)))
)
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(
Iξ (2)

)( T(Vξ (2))− T(Vξ (3))) =
((

∂ P
Iξ (2)

)( T(Vξ (2))− T(Vξ (3)))
, −1 +

(
1 + ∂ N

Iξ (2)

)( T(Vξ (2))− T(Vξ (3)))
)

Then,

	
BF CIG (I1, I2) =

2
⊗
j = 1

(
Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

	

=
((

∂ P
Iξ (1)

)( T(Vξ (1))− T(Vξ (2)))
, −1 +

(
1 + ∂ N

Iξ (1)

)( T(Vξ (1))− T(Vξ (2)))
)

⊗
((

∂ P
Iξ (2)

)( T(Vξ (2))− T(Vξ (3)))
, −1 +

(
1 + ∂ N

Iξ (2)

)( T(Vξ (2))− T(Vξ (3)))
)

	
=

(∏
2
j=1

(
∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

, −1 +
∏

2
j=1

(
1 + ∂ N

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)))

This reveals that Eq. (2) is satisfied for n = 2. Let Eq. (2) holds for n = Q, i.e.

	
BF CIG (I1, I2, . . . , IQ) =

(∏
Q
j=1

(
∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

, −1 +
∏

Q
j=1

(
1 + ∂ N

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)))

Now to prove that Eq. (2) is satisfied for n = Q + 1. Thus,

	 BF CIG (I1, I2, . . . , IQ, IQ+1 ) = BF CIG (I1, I2, . . . , IQ) ⊗ IQ+1

	

=

(∏
Q
j=1

(
∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

, −1 +
∏

Q
j=1

(
1 + ∂ N

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)))

⊗
((

∂ P
Iξ (Q+1)

)( T(Vξ (Q+1))− T(Vξ (Q+2)))
, −1 +

(
1 + ∂ N

Iξ (Q+1)

)( T(Vξ (Q+1))− T(Vξ (Q+3)))
)

	
=

(∏
Q+1
j=1

(
∂ P

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
))

, −1 +
∏

Q+1
j=1

(
1 + ∂ N

Iξ (j)

)(
T
(

Vξ (j)
)

− T
(

Vξ (j+1)
)))

	 BF CIG (I1, I2, . . . , IQ, IQ+1 )

Example 2  Let I1 = (0.7, −0.6) and I2 = (0.5, −0.3) be two BFNs over Z . Let T be a fuzzy measure on 
Z  such as T (I1) = 0.4, T (I2) = 0.6, T (I1, I1) = 1.0. Then

	 BF CIG (I1, I2) =
(
(0.5)1−0.6 × (0.7)0.6−0.4, −1 +

(
(1 − 0.3)1−0.6 × (1 − 0.6)0.6−0.4))

	 =
(
(0.5)0.4 × (0.7)0.2, −1 +

(
(1 − 0.3)0.4 × (1 − 0.6)0.2))

= (0.7057, −0.2781)

Properties
The BFCIG operator hold, idempotency, monotonicity, and boundedness.

Bipolar fuzzy MCDM technique based on choquet integral operators
Consider a situation, where m number of alternatives i.e. {X1,X2, . . . , Xm} are available for evaluation 
based on  number of criteria i.e. {τ 1, τ 2, . . . , τ n} with the help of r number of decision makers i.e. 
{P1,P2, . . . , Pr}. These decision-makers have to assess and evaluate the given alternatives based on the 
provided criteria. For this, they provide their assessment values in linguistic terms and develop a linguistic 
decision matrix that is El =

[
σ

(l)
jk

]
m× n

. Note that σ
(l)
jk  present the evaluation value of jth alternative based 

on kth criterion and lth expert. This is a typical MCDM (multi-criteria group decision-making (MCGDM)) 
problem. To handle this MCDM problem, we are going to develop a bipolar fuzzy CODAS approach as follows.

Step 1  Transform linguistic decision matrices to bipolar fuzzy matrices.

With most of the criteria, uncertainty and bipolarity are involved. Thus, it is important to consider the 
uncertainties and bipolarities of the criteria of the alternatives. Because of this, the linguistic assessment values 
provided by the decision-makers must be transformed into bipolar fuzzy numbers and create bipolar fuzzy 

decision matrices (BFDMs) ElB =
[
F (l)
jk

]
m× n

 and
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ElB =
[
F (l)
jk

]
m× n

=

X1
X2
.
.
.
Xm

τ 1 τ 2 . . . τ n


(
∂ P,l

F11
, ∂ N ,l

F11

) (
∂ P,l

F12
, ∂ N ,l

F12

)
. . .

(
∂ P,l

F1n , ∂ N ,l
F1n

)
(

∂ P,l
F21

, ∂ N ,l
F21

) (
∂ P,l

F22
, ∂ N ,l

F22

)
. . .

(
∂ P,l

F2n , ∂ N ,l
F2n

)
. . . . . .
. . . . . .
. . . . . .(

∂ P,l
Fm1

, ∂ N ,l
Fm1

) (
∂ P,l

Fm2
, ∂ N ,l

Fm2

)
. . .

(
∂ P,l

Fmn , ∂ N ,l
Fmn

)




Step 2  Transform all BFDMs into a single BFDM.

This step contains the transformation of all BFDMs into a single BFDM (SBFDM) and this action will be 
performed by using bipolar fuzzy weighted averaging or bipolar fuzzy weighted geometric operator. The SBFDM 
is

	

EB =
[
Fjk

]
m× n =

X1
X2
.
.
.
Xm

τ 1 τ 2 . . . τ n


(
∂ P,#

F11
, ∂ N ,#

F11

) (
∂ P,#

F12
, ∂ N ,#

F12

)
. . .

(
∂ P,#

F1n , ∂ N ,#
F1n

)
(

∂ P,#
F21

, ∂ N ,#
F21

) (
∂ P,#

F22
, ∂ N ,#

F22

)
. . .

(
∂ P,#

F2n , ∂ N ,#
F2n

)
. . . . . .
. . . . . .
. . . . . .(

∂ P,#
Fm1

, ∂ N ,#
Fm1

) (
∂ P,#

Fm2
, ∂ N ,#

Fm2

)
. . .

(
∂ P,#

Fmn , ∂ N ,#
Fmn

)




Step 3  Standardize the SBFDM.

To remove the effects of the cost type of criteria, there is a need for standardization of SBFDM. This will be 
performed by using the formula.

	

(
∂ P,∼

Fjk
, ∂ N ,∼

Fjk

)
=




(
∂ P,#

Fjk
, ∂ N ,#

Fjk

)
if k ∈ Bn(

1 − ∂ P,#
Fjk

, −1 − ∂ N ,#
Fjk

)
if k ∈ Cn

Where C is for the cost kind of criterion and B is for the benefit type of criterion. The standardized SBFDM 
(SSBFDM) is given as below

	

SEB =
[
F∼
jk

]
m× n =

X1
X2
.
.
.
Xm

τ 1 τ 2 . . . τ n


(
∂ P,∼

F11
, ∂ N ,∼

F11

) (
∂ P,∼

F12
, ∂ N ,∼

F12

)
. . .

(
∂ P,∼

F1n , ∂ N ,∼
F1n

)
(

∂ P,∼
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Step 4  Fuzzy measure for criteria.

In this step, consider the fuzzy measure of criteria.

Step 5  Aggregate the SSBFDM.

Aggregate SSBFDM by employing BFCIA (Eq. 1) or BFCIG (Eq. 2) operators to achieve the aggregate value of 
each alternative.

Step 6  Achieve score values.

Get the score values of the aggregated outcomes of each alternative by using the following formula

	
S

(
Xj

)
= 1

2
(
1 + ∂ P

Xj + ∂ N
Xj

)

In case of any two same score values, find the accuracy values as follows

	
H

(
Xj

)
=

∂ P
Xj − ∂ N

Xj

2

Step 7  Rank the alternatives.

In this last step, the alternatives will be ranked by employing score or accuracy values and the finest alternative 
will be determined.

Figure 2 displays the flowchart of the BF MCDM technique.
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Case study
The field of smart electrical prosthetics has evolved through AI-driven capabilities to improve service delivery 
for people with disabilities in recent years. The systems need precise AI models that both diagnose different 
disability conditions and modify prosthetic reactions for optimal patient outcomes. The selection and assessment 
of suitable AI simulation models play an essential role because they determine both patient life quality and the 
success of prosthetic treatment. Selecting the optimal AI platform represents a challenge because it must process 

Fig. 2.  The flowchart of bipolar fuzzy MCDM method using BFCIA and BFCIG operators.
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complex bio signals effectively while delivering precise diagnostic results and performing smooth integration 
with prosthetic devices.

Problem statement
The leading prosthetics research center needs to find the best AI simulation model that will enhance diagnosis 
features for their advanced electrical prosthesis systems. The chosen platform will determine how well the center 
diagnoses disabilities and delivers suitable prosthetic solutions. The Center assigned a decision maker that has 
to select and assess the AI simulation model. The selection process focuses on four different AI platforms which 
present distinct features and operational trade-offs. These AI simulations are described in (Table 1).

For assessing these AI simulations, the decision analyst considered 4 criteria which are interpreted in 
(Table 2).

The decision analyst assesses these AI simulations based on the considered criteria and provides their 
assessment values in linguistic terms. (See Table 3)

O is utilized instead of Outstanding, E is utilized instead of Excellent, G is utilized instead of Good, S is 
utilized instead of Satisfactory, M  is utilized instead of Marginal, D is utilized instead of Deficient, and U  is 
utilized instead of Unacceptable in Table 3. To solve this MCDM problem, we use the deduced bipolar fuzzy 
MCDM technique.

Step 1  As the criteria have uncertainty and bipolarity, thus it is required to transform the linguistic assessment 
values into the bipolar fuzzy framework. For this, we have the following scale of transformation, which is given 
in (Table 4).

Notation Criteria Explanation

τ 1
Diagnostic 
Accuracy

Diagnostic Accuracy describes how well the platform detects and diagnoses disability-related conditions by analyzing prosthetic sensor data 
together with patient movement patterns. The system demonstrates both precise early warning sign detection and reliable consistent diagnostic 
results regardless of patient profiles.

τ 2
Processing 
Speed

The platform must demonstrate efficient processing of real-time data streams generated by prosthetic devices through Processing Speed. The 
system’s diagnostic alert response time and its simultaneous processing of multiple data streams together with its speed of delivering actionable 
insights to healthcare providers form the basis of this criterion.

τ 3 Adaptability
Personal health systems demonstrate adaptability through their ability to learn this new data and handle a range of disability types. The platform 
demonstrates diagnostic flexibility through individualized patient profiling and develops enhanced accuracy by continuously learning from 
patient interactions and outcome data.

τ 4
Integration 
Capability

The Integration Capability section examines the platform’s ability to connect with current prosthetic hardware along with medical systems. The 
criterion examines technical support availability together with documentation quality and platform compatibility with prosthetic devices and 
healthcare information systems. The evaluation takes into account both the simplicity of installation and upkeep within current medical facilities.

Table 2.  The selection criteria of considered AI simulations.

 

Notation AI simulation Explanation

X1 TensorFlow Medical
The open-source framework TensorFlow Medical functions specifically for medical applications to develop smart electrical prosthetic systems. 
The system uses deep learning models to analyze biosignals obtained from prosthetic devices for real-time disability-related condition 
diagnosis. Through advanced neural networks, this platform analyzes complex patient data patterns to deliver extensive diagnostic support to 
healthcare professionals who work with prosthetic systems.

X2
BioSignal Analytics 
Pro

BioSignal Analytics Pro functions as a cloud-based system that specifically processes signals obtained from smart prosthetics. The solution 
enables the identification of disability-related conditions early through advanced pattern recognition algorithms reviewing continuous 
prosthesis data. Real-time diagnosis powers are delivered through the platform because its state-of-the-art data processing capabilities help 
healthcare providers select optimal treatments and adjustments for patients receiving prosthetics.

X3 NeuroTech AI
Through the NeuroTech AI platform using neural networks, the system aims to enhance signal processing procedures between prosthetic 
devices. The system examines motion patterns and neural signals for medical problems and functional disabilities through its analysis process. 
Machine learning algorithms at an advanced stage assist the system to examine complex neurological patterns which leads to comprehensive 
data about patient locomotion and prosthetic operation.

X4 ProsMed AI
The standalone AI solution ProsMed AI serves only smart prosthetic systems. Designated diagnostic applications in the platform work 
on actual prosthetic device data to detect and diagnose potential disabilities and related issues. The system operates with both complete 
monitoring features and adaptive learning systems that boost its ability to detect problems more precisely as time progresses.

X5
SmartLimb 
Intelligence

SmartLimb Intelligence is a complete solution that uses AI to maximize the performance of the prosthetic device with real-time biomechanical 
insights. The system incorporates sensor fusion technology to examine gait patterns, muscle activation signals, and joint dynamics of 
sophisticated prosthetic limbs. The platform offers predictive maintenance warnings, custom adjustment suggestions, and the progress of 
rehabilitation through machine learning algorithms to enable prosthetists and physical therapists to offer more efficient care to patients.

X6 ProstheticVision AI
ProstheticVision AI is a computer vision and deep learning-based system to study the patterns of movement of prosthetic users and the results 
of their functioning. The platform analyzes video data during a rehabilitation session and sensor data of prosthetic devices to evaluate the 
progress in mobility and the presence of possible complications. Its adaptive algorithms are trained on the data about each patient to offer 
personalized therapy recommendations and identify the early signs of prosthetic misalignment or the difficulties in adapting to the prosthesis.

X7 BioAdapt Neural

BioAdapt Neural is a company that deals with neural signal processing of next-generation myoelectric prosthetics. The platform employs 
sophisticated signal processing algorithms to identify intricate patterns of muscle activation and convert them into accurate control 
commands of the prosthesis. Its machine-learning models continually adjust to shifts in the quality of the muscle signals, so they can keep the 
prosthetics at their best as patients heal and adjust. The system can also offer diagnostic information on nerve activity and muscle condition to 
facilitate the overall prosthetic rehabilitation programs.

Table 1.  The AI simulations.

 

Scientific Reports |        (2025) 15:29244 13| https://doi.org/10.1038/s41598-025-12267-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Through the scale of transformation, we obtain the BFDM, given in (Table 5).

Step 2  In this case study, there is only one decision-maker, so no need for this step.

Step 3  The criteria is benefit type so no need for standardization in this case.

Step 4  Consider a fuzzy measure of criteria as below.

	 T (τ 1) = 0.29, T (τ 2) = 0.47, T (τ 3) = 0.66, T (τ 4) = 0.72

	 T (τ 1, τ 2) = 0.63, T (τ 1, τ 3) = 0.74, T (τ 1, τ 4) = 0.81, T (τ 2, τ 3) = 0.87

	 T (τ 2, τ 4) = 0.85, T (τ 3, τ 4) = 0.79, T (τ 1, τ 2, τ 3) = 0.9, T (τ 1, τ 2, τ 4) = 0.92 T (τ 1, τ 3, τ 4) = 0.94

	 T (τ 2, τ 3, τ 4) = 0.96, T (τ 1, τ 2, τ 3, τ 4) = 1

Step 5  Aggregated the assessment values by using BFCIA and BFCIG operators and the result is presented in 
(Table 6).

Step 6  The score values of AI simulations are devised in (Table 7).

The score value of S (X1) will be devised as

Alternatives/criteria τ 1 τ 2 τ 3 τ 4

X1 (0.95, −0. 1) (0.88, −0.22 ) (0.34, −0.67) (0.26, −0.82)

X2 (0.5, −0.54 ) (0.34, −0.67) (0.15, −0.91) (0.95, −0. 1)

X3 (0.88, −0.22 ) (0.79, −0.34 ) (0.95, −0. 1) (0.26, −0.82)

X4 (0.79, −0.34 ) (0.5, −0.54 ) (0.34, −0.67) (0.88, −0.22 )

X5 (0.34, −0.67) (0.88, −0.22 ) (0.79, −0.34 ) (0.26, −0.82)

X6 (0.15, −0.91) (0.95, −0. 1) (0.88, −0.22 ) (0.79, −0.34 )

X7 (0.34, −0.67) (0.26, −0.82) (0.88, −0.22 ) (0.5, −0.54 )

Table 5.  The bipolar fuzzy decision matrix after the transformation.

 

Linguistic terms BFNs

Outstanding ( O) (0.95, −0. 1)

Excellent (E) (0.88, −0.22 )

Good (G) (0.79, −0.34 )

Satisfactory (S) (0.5, −0.54 )

Marginal (M) (0.34, −0.67)

Deficient (D) (0.26, −0.82)

Unacceptable (U) (0.15, −0.91)

Table 4.  The transformation scale to transform the linguistic terms into bfns.

 

Alternatives/criteria τ 1 τ 2 τ 3 τ 4

X1 O E M D

X2 S M U O

X3 E G O D

X4 G S M E

X5 M E G D

X6 U O E G

X7 M D E S

Table 3.  The assessment values of AI simulation models (Hypothetical data).

 

Scientific Reports |        (2025) 15:29244 14| https://doi.org/10.1038/s41598-025-12267-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
S (X1) = 1

2 (1 + 0.649 − 0.456) = 0.597

The rest can be obtained in a similar pattern.

Step 7  Table 8 reveals the ranking of AI simulations.

The findings contained in Fig.  3; Table  8 have major practical implications for healthcare practitioners and 
biomedical engineers implicated in the process of choosing AI simulation models of smart electrical prosthetic 
systems. The fact that NeuroTech AI ( (X3)) was ranked as the best option in both BFCIA and BFCIG operators 
shows that our bipolar fuzzy Choquet integral method is sound in making intricate decisions where criteria have 
both positive and negative features. This conclusion indicates that the high level of neural signal processing and 
motion pattern analysis by NeuroTech AI and good adaptability features can be prioritized over the possible 
drawbacks of other functions because of the interdependence of evaluation criteria. The near performance of 
ProstheticVision AI (X6) as the second-best alternative suggests that computer vision-based methods also have 
a high potential in prosthetics. Notably, the significant gap in the ranking of the traditional methods and our 
approach indicates the crucial role of addressing criterion interactions and bipolarity in the process of selecting 
AI models to be used in practice, a factor that may have a serious effect on patient outcomes and the effectiveness 
of the prosthetic system. These findings will give healthcare decision-makers evidence-based information on 
how to optimize diagnostic accuracy and reduce system limitations, which will eventually translate to better 
patient care and prosthetic functionality in clinical practice.

Comparative study
The establishment of superiority and necessity for our proposed method required a comparison with multiple 
popular existing theories. The comparison encompassed multiple established approaches, including the 
intuitionistic fuzzy (IF) Choquet integral arithmetic AOs and linked MCDM approach Interpreted by Tan and 
Chen46 within the IF framework, IF Choquet integral geometric AOs and corresponding MCDM technique 
devised by Tan47, Choquet integral-based AOs and decision-making processes within interval-valued IF set 
interpreted by Garg et al.48, Pythagorean fuzzy Choquet integral AOs and MABAC approach, developed by Peng 
and Yang49 and Choquet integral AOs within the hesitant fuzzy set (HFS), devised by Wei et al.50. We applied 
existing methodologies and our proposed Choquet integral AOs and MCDM technique within BFSs to analyze 
the data in (Table 5). The results appear in (Tables 9 and 10, and Fig. 4).

The comparative analysis showed that there are serious theoretical and practical limitations of the available 
aggregation operators and MCDM approaches, especially their inability to process and combine the negative 
features of evaluation criteria with positive ones. The critical review of the Choquet integral AOs presented 

Operators Ranking

BFCIA X3 ≥ X6 ≥ X1 ≥ X4 ≥ X5 ≥ X7 ≥ X2

BFCIG X3 ≥ X4 ≥ X6 ≥ X1 ≥ X5 ≥ X7 ≥ X2

Table 8.  The ranking of AI simulation models.

 

Operators S (X1) S (X2) S (X3) S (X4) S (X5) S (X6) S (X7)

BFCIA 0.597 0.392 0.7 0.57 0.51 0.69 0.393
BFCIG 0.416 0.29 0.541 0.506 0.396 0.453 0.345

Table 7.  The score values of AI simulation models.

 

Operators BFCIA operator BFCIG operator

X1 (0.649, −0.456) (0.449, −0.617)

X2 (0.415, −0.632) (0.317, −0.737)

X3 (0.762, −0.362) (0.579, −0.516)

X4 (0.616, −0.476) (0.532, −0.519)

X5 (0.563, −0.543) (0.432, −0.64)

X6 (0.753, −0.373) (0.509, −0.604)

X7 (0.419, −0.633) (0.371, −0.68)

Table 6.  The aggregated outcomes of AI simulation models.
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in the existing literature reveals the essential methodological gap: these operators are not effective in treating 
bipolarity, which requires the consideration and assessment of both positive and negative membership degrees 
of criteria at the same time. This shortcoming is especially undesirable when it comes to complex decision-
making processes like the choice of an AI simulation model to use in prosthetic systems, where every criterion 
has both positive and negative aspects, which need to be considered holistically. The theoretical framework of 
the proposed bipolar fuzzy Choquet integral is the first comprehensive theoretical framework that has been 
able to allow Choquet integral AOs to aggregate and process genuinely bipolar information structures. The 
methodological contribution is a solution to the research gap in the literature on AI simulation model selection, 
in which the past research systematically ignored or poorly addressed the negative aspect of evaluation criteria 
in the selection procedure. As such, the proposed methodology is the first of its kind to be comprehensive in its 

Operators Ranking

Tan and Chen46 Collapse

Tan47 Collapse

Garg et al.48 Collapse

Peng and Yang49 Collapse

Wei et al.50 Collapse

BFCIA X3 ≥ X6 ≥ X1 ≥ X4 ≥ X5 ≥ X7 ≥ X2

BFCIG X3 ≥ X4 ≥ X6 ≥ X1 ≥ X5 ≥ X7 ≥ X2

Table 10.  The ranking of the comparison between existing and developed theories.

 

Operators Technique S (X1) S (X2) S (X3) S (X4) S (X5) S (X6) S (X1)
Tan and Chen46 MCDM collapse collapse collapse collapse collapse collapse collapse

Tan47 MCDM collapse collapse collapse collapse collapse collapse collapse

Garg et al.48 MCDM collapse collapse collapse collapse collapse collapse collapse

Peng and Yang49 MABAC collapse collapse collapse collapse collapse collapse collapse

Wei et al.50 MCDM collapse collapse collapse collapse collapse collapse collapse

BFCIA MCDM 0.597 0.392 0.7 0.57 0.51 0.69 0.393
BFCIG MCDM 0.416 0.29 0.541 0.506 0.396 0.453 0.345

Table 9.  The comparison between existing and developed theories.

 

Fig. 3.  The graphical interpretation of score values of AI simulation models.
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integration and processing of bipolarity in AI simulation model evaluation, and as such presents a more realistic, 
theoretically grounded, and practically implementable decision-making structure to these important healthcare 
technology selection decisions.

Conclusion
This article addressed the important MCDM problem of choosing and ranking AI simulation models to diagnose 
disability diseases in smart electrical prosthetic systems with innovative BFCIA and BFCIG operators, which is 
the first mathematical framework to effectively combine BFSs with Choquet integral AOs to assess healthcare 
technology. The theoretical value of our contribution is threefold: firstly, we constructed operators that are 
uniquely capable of representing both positive and negative membership degrees and, at the same time, model 
non-linear interactions among criteria, and thus, it fills the gap between bipolarity representation and non-
linear aggregation processes; secondly, we addressed the inherent shortcoming of the existing Choquet integral 
frameworks that are unable to process bipolar fuzzy information, and thus, we can detect both synergetic and 
antagonistic effects between criterion positive and negative aspects that cannot be detected using standard 
methods. Further, we developed a MCDM method by using BFCIA and BFCIG operators within the framework 
of BFSs and then discussed a case study. The overall validation of the case study showed that NeuroTech AI is 
the best possible solution with BFCIA 0.7 and BFCIG 0.541, which outperforms others in terms of its high 
balance between diagnostic accuracy (0.88, −0.22) and adaptability (0.95, −0.1) and acceptable integration 
capabilities, which directly leads to a high level of precision in treatment and quality of life of more than 
40 million people using prostheses in the world. The revolutionary potential of this study goes well beyond the 
field of prosthetics to transform the entire field of healthcare technology assessment to transform healthcare 
decision-making in any area where decision criteria are inherently bipolar and have complex interdependencies, 
such as medical device selection, treatment protocol optimization, and the design of healthcare systems, by 
offering clinicians, biomedical engineers, and healthcare policymakers a rigorous mathematically based, 
evidence-based decision-making framework that can maximize therapeutic benefits and minimize system 
risks and functional limitations. The comparative analysis that we have conducted proves beyond doubt that 
the proposed framework is more accurate in evaluation than the traditional MCDM methods, and standard 
Choquet integral methods since it processes the dual-aspect criteria relationships which the traditional methods 
cannot process simultaneously.

Future direction
The potential future research directions include: the development of multi-agent extensions that will allow 
collaborative decision-making in interdisciplinary healthcare teams of prosthetists, physicians, and rehabilitation 
specialists; the development of scalable architectures that will support enterprise-level healthcare networks with 
thousands of AI options and dynamic evaluation criteria; the design of adaptive operators that will include 
real-time learning capabilities to support the dynamic nature of prosthetic technologies and changing patient 

Fig. 4.  The graphical structure of prevailing and proposed work.
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demographics; to expand Choquet Integral to picture fuzzy51–53, complex hesitant fuzzy54,55, and bipolar complex 
fuzzy sets56,57.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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