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Maximizing multi-source data
Integration and minimizing the
parameters for greenhouse tomato
crop water requirement prediction

Xinyue Lv?, Youli Li%3*, Lili Zhangzhong?*“, Chaoyang Tong?, Yibo Wei', Guangwei Li’ &
YingruYang*

Accurate scientific predicting of water requirements for protected agriculture crops is essential for
informed irrigation management. The Penman-Monteith model, endorsed by the Food and Agriculture
Organization of the United Nations (FAO), is currently the predominant approach for estimating crop
water needs. However, the complexity of its numerous parameters and the potential for empirical
parameter inaccuracies pose significant challenges to precise water requirement predictions. In

this study, we introduce a novel water demand prediction model for greenhouse tomato crops that
leverages multi-source data fusion. We employed the ExG (Excess Green) algorithm and the maximum
inter-class variance method to develop an algorithm for extracting canopy coverage from image
segmentation. Subsequently, Spearman correlation analysis was utilized to select the combination of
canopy coverage and environmental data, followed by the random forest feature importance ranking
method to identify the most optimal feature variables. We constructed average fusion, weighted
fusion, and stacking fusion models based on RandomForest, LightGBM, and CatBoost machine
learning algorithms to accurately predict the water requirements of greenhouse tomato crops. The
results show that the stacking model has the best prediction effect, and the error is lower than that
of RandomForest, LightGBM, CatBoost, Average fusion model and Weighted fusion model. The
feature combination of Tmax, Ts, and CC, filtered using Spearman and RandomForest, demonstrated
the lowest prediction errors, with reductions in MSE, MAE, and RMSE of over 4%, 14%, and 3%,
respectively, compared to other parameter combinations. The R? value increased by 1%, indicating
enhanced reliability and generalization. This research comprehensively considered various factors,
including environmental, soil, and crop growth conditions, that influence crop water requirements.
By integrating image and environmental data, we developed a water requirement prediction model
for greenhouse tomato crops based on the principles of decoupling and minimizing characteristic
parameters, offering innovative technical support for scientific irrigation practices.
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Facility horticulture is a modern agricultural production method that uses new production equipment, and
management techniques to regulate the environmental parameters such as temperature, light, water, and
fertilizer in greenhouses'2. In greenhouse cultivation, by establishing a scientific water requirement prediction
model, a deeper understanding of the growth patterns of greenhouse crops can be achieved, providing basis for
scientific irrigation®.

Currently, the Penman-Monteith model, as advocated by FAO-56, serves as the standard for calculating
crop water requirements and has been extensively applied to greenhouse crops including tomatoes, eggplants,
and lettuce?”’. The model’s predictive power for crop water demand is derived from the multiplication of the
reference crop evapotranspiration (ET,) by the crop coefficient (K ). Consequently, the ease of acquisition and
the reliability of these parameters—ET, and K —are pivotal to the efficiency and accuracy of water requirement
predicts. Jo et al.® employed weighing sensors to monitor the actual transpiration rate, recording tomato crop
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weight changes at 10-minute intervals, and subsequently developed a water demand prediction model grounded
in the established Penman-Monteith (P-M) formula and crop coefficient (K ). Dong et al.? conducted an
analysis of the spatio-temporal patterns of reference evapotranspiration, temperature, relative humidity, and
sunlight duration across China, introducing an innovative enhanced GWA algorithm (MDSL-GWA) designed
to refine the empirical estimation of ET . Despite its utility, the Penman-Monteith model’s broad application is
constrained by the necessity to estimate elusive parameters such as aerodynamic resistance, which is integral to
its input parameters but challenging to ascertain. Furthermore, the model’s critical calculation parameter (K ) is
often determined empirically and is subject to variation due to diverse climatic conditions and soil properties,
leading to significant discrepancies in practical scenarios. Research indicates that the Mean Square Error (MSE)
of K_throughout the tomato’s growth cycle can range from 11.9 to 71.4%'°, underscoring the need for more
precise predictive tools in agricultural water management.

Therefore, with the advancement of computer technology, researchers have begun to propose methods that
use machine learning to directly predict water requirements without the need to calculate ET, and K_separately.
Dong et al.!! proposed a novel model for predicting crop evapotranspiration in the wheat-corn rotation system
of the Loess Plateau in China (GWA-CNN-BiLSTM). This model is based on the Grey Wolf Algorithm and uses
five parameters, including net solar radiation (R) and saturation vapor pressure deficit (VPD), for prediction.
The model achieved a relative root mean square error (RRMSE) ranging from 8.4 to 41.5%. Fuentes et al.!?
used micrometeorological data and artificial neural networks (ANN) for modeling actual evapotranspiration
and energy balance estimation in vineyards, and the established model demonstrated high accuracy and
performance, with a determination coefficient R? of 0.97. Tunal et al.!* employed ANN network to estimate
the crop water requirements (ET.) of tomatoes, and compared it with the traditional Penman-Monteith model,
finding that the ANN model improved the prediction accuracy for ET_by 30% compared to traditional methods.
However, crop water requirements are affected by various factors such as the growth condition of the crop itself,
environment, soil, representing a nonlinear and complex characteristic of change. Therefore, this study considers
the acquisition of crop growth conditions through imagery and combines it with environmental data, adhering
to the principle of decoupling and minimizing characteristic parameters, to propose a multi-source data fusion
model for predicting the water requirements of greenhouse tomato crops, predicting the water requirements of
greenhouse tomato crops with a small number of parameters. The main objectives include: (1) Using the super
green algorithm and the maximum inter-class variance method, a tomato canopy coverage extraction algorithm
based on image segmentation is proposed, overcoming the difficulty of traditional methods in large-area
measurement; (2) Under the full consideration of crop, soil and environment, the optimal combination of feature
variables was proposed based on the principle of reducing the correlation of feature parameters and minimizing
the feature parameters, combined with Spearman correlation analysis and random forest feature importance
ranking method.; (3) Fusion algorithm based on single machine learning algorithms is proposed to construct
a water requirement prediction model for greenhouse tomato crops, and its reliability and generalization are
verified.

Method

Data acquisition

Data acquisition was conducted in the solar greenhouse of the National Precision Agriculture Research
Demonstration Base in Xiaotangshan Town, Changping District, Beijing, China (East Longitude 116.46°, North
Latitude 40.18°, altitude 50 m), which is a scientific research and test base of Beijing Academy of Agriculture and
Forestry Sciences. Changping District of Beijing belongs to the temperate continental monsoon climate zone,
which is the main area of solar greenhouse production in Beijing.

The cultivation experiment was carried out on tomato crops, using rectangular foam boxes as substrate slots,
with dimensions of 100 cm*60 cm*40 cm, filled with coconut coir as the substrate. To ensure the vertical growth
of tomato plants, the experiment utilized ropes to hang the plants from hanging scales to prevent environmental
factors from affecting growth direction and leaf angles. Additionally, to avoid the impact of substrate moisture
evaporation on the measurement of tomato water requirements, a transparent ground film was laid over the
substrate surface. The data collected during the experiment included environmental data, image data, and crop
water requirement data. The trial was divided into two seasons: the spring planting (from May 20, 2022, to July
22,2022) and the autumn planting (from September 28, 2022, to January 6, 2023).

Environmental data were collected using greenhouse environmental sensors to measure air temperature (T,
C), relative humidity (RH, %), soil temperature (Ts, C), light intensity (E, Lux), and CO, concentration (ppm),
with the sensors positioned approximately 20 cm above the crop. A photovoltaic total radiation sensor was
used to collect cumulative light radiation data (Rn, Kj-m*h~!) inside the greenhouse, placed 2 meters above the
ground and 5 m away from the rear wall of the greenhouse. The technical specifications of the sensors are shown
in Table 1. Environmental sensor data were acquired at 10-minute intervals and transmitted to the monitoring
software via a wireless gateway. Image data were captured using an infrared mobile timed camera, the Forsafe
H805, to obtain visible light images. The camera is placed in a fixed position directly above the tomato plant,
giving a top-down view based on the planting layout of the tomato. The camera was set to take photos every hour,
with an image resolution of 5200*3900 PPI (Pixels Per Inch).

The crop water requirement (ET) is determined by measuring the substrate weight of tomato plants using
a self-developed online substrate weighing system. The weighing system adopts LoRa wireless communication
technology, the measurement error is £0.03%, and the collection frequency is 10 minutes. In this study, an
automatic controller tube was used to manage nutrient solution irrigation once a day to provide the required
nutrients for plant growth, that is, irrigation was started 2 hours after the local sunrise time, and irrigation
was ended when the matrix water content reached the upper limit (field moisture capacity), and the irrigation
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Number | Measurement Parameters | Resolution Measurement Accuracy | Measurement Range | Collection Frequency
1 Air Temperature(T, ‘C) 0.01C +0.2C -30~70C 10 min

2 Air Humidity(RH, %) 0.01%RH +2%RH 0~100%RH 10 min

3 Soil Temperature(Ts, C) 0.01°C +0.5C -30~70C 10 min

4 (Lét‘f}ﬁtui';tem“y 11k +5% 0~200,000 Ix 10 min

5 CO, Concentration(ppm) | 1 ppm +50ppm 0~5000ppm 10 min

6 (C}{lritlllzﬂartrll\jgi(}}:)ﬂr Radiation 1 W/m? Annual Change Rate +2% | 0~2000 W/m? 10 min

7 Visible Light Image 5200%3900 PPT | - - 2h

Table 1. Technical specifications of greenhouse Sensors.

duration was less than 10 min, during which the crop water demand ET_ was ignored. Therefore, the calculation
of crop water demand ET, is shown in formula (1):

ET. =BWr1 — BWrs (1)

Among them, BWr; represents the substrate weight of the tomato plants at the previous time point, while
BW 2 denotes the substrate weight at the subsequent time point.

Data processing

Utilizing air temperature and humidity data gathered at 10-minute intervals, we derive six key parameters:
the hourly/daily average air temperature (Tm), the peak air temperature (Tmax), the lowest air temperature
(Tmin), the mean air humidity (RHm), the highest air humidity (RHmax), and the lowest air humidity (RHmin),
employing both mean and extremum calculations. Concurrently, soil temperature and CO, concentration,
also measured every 10 min, inform the determination of the hourly/daily soil temperature (Ts) and CO,
concentration, achieved through averaging. Based on the light intensity and accumulated light radiation
data collected every 10 min, the two parameters of hourly/daily light intensity (E) and accumulated light
radiation (Rn) are calculated by cumulative calculation. The collection of actual visible light images of crops
is complemented by a rigorous screening process to exclude images characterized by anomalous positioning,
blurriness, or inadequate lighting conditions. For those individual time periods where sufficient and effective
images could not be obtained after screening, we employed data augmentation techniques to supplement the
dataset. This involved geometric transformations (such as rotation, flipping, and scaling) of high-quality images
from adjacent times, as well as subtle adjustments to brightness and contrast to simulate different lighting
conditions. Although these enhanced images were synthetic, they retained the core shape and texture features of
the crops, effectively filling the data gap without introducing significant deviations.

Construction of a water requirement prediction model for greenhouse tomato crops

This paper proposes a multi-source data fusion model for predicting the water requirements of greenhouse
tomato crops, based on images and environmental data. The model aims to calculate the water needs of
greenhouse tomato crops with a minimal number of parameters and simple computations, providing a
foundation for implementing appropriate irrigation measures. The model first establishes an algorithm
for extracting the canopy coverage of greenhouse tomatoes based on image segmentation. It then combines
canopy coverage with environmental data to select feature variable combinations with high correlation using
Spearman’s correlation analysis method and chooses the optimal feature variables using the random forest
feature importance ranking method. Finally, three types of fusion models (Average fusion, Weighted fusion, and
Stacking) are constructed based on the RandomForest (RF), LightGBM, and CatBoost models. The greenhouse
tomato crop water requirement prediction model is built through comparative experimental results. The model
framework is illustrated in Fig. 1.

Canopy coverage extraction

The ExG (Excess Green) algorithm extracts green plant images effectively, suppressing shadows, withered grass,
and soil images, making the plant images more prominent. However, the segmentation effect may be affected
under strong light conditions. The ExG algorithm is used to perform grayscale processing on the images, as
shown in Eq. (2).

ExG=2G-R-B (2)

In this context, G represents the pixel value of the green channel, R represents the pixel value of the red channel,
and B represents the pixel value of the blue channel.

The Maximum Inter-Class Variance Method (Otsu Method)' is an automatic threshold selection technique
that does not require the manual setting of additional parameters. It segments the image into two parts: the
target and the background, based on the selected threshold. The method calculates the maximum inter-class
variance value corresponding to the pixel’s grayscale value, and the threshold at which the inter-class variance is
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Fig. 1. Framework Diagram of the Water Requirement Prediction Model for Greenhouse Tomato Crops.

maximized is considered the optimal threshold T. Then, the grayscale value of each pixel is compared with the
threshold value T, and based on the comparison, the pixel is classified as either plant or background.
The total average grayscale value of an image is:

u = wolp + wiuy (3)
The inter-class variance is:
2
g = wowi (up-u1) 4)

In this context, w,, is the proportion of plant pixel counts to the total image, u, is the average grayscale value of
the plant; w, is the proportion of background pixel counts to the image, u, is the average grayscale value of the
background; where w,+w, =1.

For the collected visible light images, the ExG algorithm is used for grayscale processing in combination with
the Otsu method to segment tomato plants from the background. The segmentation effect is shown in Fig. 2.
Observations from Fig. 2(a)-(d) indicate that the canopy coverage expands in tandem with the growth of the
tomatoes.

Based on the segmented tomato plants, the proportion of green tomato plants out of all pixel points in the
image is calculated, which represents the canopy coverage at this moment. Therefore, the calculation of daily
canopy coverage is as shown in Eq. (5).
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Fig. 2. Threshold Segmentation Effect Images.

Number | Feature Name Feature Symbol | Unit
1 Maximum Daily Air Temperature | Tmax c

2 Average Daily Air Temperature Tm T

3 Minimum Daily Air Temperature | Tmin c

4 Maximum Daily Humidity RHmax %

5 Average Daily Humidity RHm %

6 Minimum Daily Humidity RHmin %

7 soil temperature Ts C

8 Cumulative Solar Radiation Rn Kj-m=2h!
9 Light Intensity E Lux
10 CO, concentration CO, ppm
11 Canopy coverage CcC %

Table 2. Feature Parameters.

1 n
(kagz:CQ (5)

In this iontext, CC represents the daily canopy coverage, and CC; represents the canopy coverage at the i-th
moment.

Optimal feature variable selection

When performing feature selection, a common approach is to calculate the significance of each characteristic
and retain the most relevant features. However, during the direct ranking of feature importance, there is a risk
that a feature may be mistakenly deemed less important and discarded due to high correlations among multiple
feature variables, even though discarding one might not affect the outcome. In order to avoid this situation,
Spearman correlation analysis!®> was used in this paper to calculate the correlation coefficient among multiple
variables, screen the combination of characteristic variables with high correlation, and set a threshold for the
correlation coefficient. For each set of features whose correlation is above the threshold, only one feature variable
is retained. When a duplicate variable is present in more than one combination, the duplicate variable is retained
and other variables with a high correlation with this variable are removed. After the screening, the random
forest feature importance ranking method is used to calculate the significance of each characteristic variable for
predicting the water requirements of greenhouse tomato crops, and the optimal feature variables are selected
based on a predefined importance threshold.

Data collected from environmental and image sensors, after preprocessing, yield 11 feature parameters as
shown in Table 2.

Spearman’s correlation analysis is a method for calculating the correlation between two variables. The method
is to rank the values of multiple variables and calculate the rank correlation (Spearman’s correlation coeflicient)
between them. Spearman’s correlation coeflicient ranges from —1 to 1. A value of -1 indicates a completely
negative correlation, a value of 0 indicates no correlation between the two variables, and a value of 1 indicates a
completely positive correlation. The calculation method for the correlation coeflicient is shown in Eq. (6).

6> d?
p:1_n(n2—1) ©)

Scientific Reports|  (2025) 15:29161 | https://doi.org/10.1038/s41598-025-12324-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Where, n is the number of samples, and d, is the difference between the position values of the i-th data pair.

The calculation steps for the Random Forest feature importance ranking method are as follows: (1) Train a
random forest model on the training set; (2) Randomly shuffle the values of a certain feature variable, and then
make predictions on the new dataset; (3) Calculate the loss function using the predicted values and the true
values; the degradation in model performance after random shuffling represents the importance of the randomly
shuffled column; (4) Restore the values of the feature variable that was randomly shuffled, repeat step (2) on the
data of the next feature variable, and continue this process until the importance of each feature variable has been
calculated.

Machine learning algorithm

RandomPForest (RF)!® is an ensemble learning method that constructs multiple decision trees for classification
or regression. In the training process, this method does not build a large decision tree with the entire training
data set, but uses different subsets and feature attributes to build several small decision trees, each subset is built
by randomly selected samples and feature attributes, and then merged into a more powerful model, as shown
in Eq. (7). The RandomForest excels due to its capacity to enhance the model’s performance and introduce
randomness during the training process, thereby improving the model’s generalization capability and reducing the
risk of overfitting. The hyperparameter is set to: n_estimators=[10, 50, 100, 200, 400], max_depth=[None, 10, 20,
30, 50], min_samples_split=[2, 5, 10], min_samples_leaf=[1, 2, 4], max_features=[log2}'sqrt’]. After conducting
experiments, the optimal combination of hyperparameters was obtained as follows: n_estimators=[400], max_
depth=[20], min_samples_split=[2], min_samples_leaf=[1], max_features=[log2’].

T
=13 hix) )
=1

el

A
In this context, ¥ represents the final prediction result of the RandomForest, T denotes the number of decision

trees, and h;(x) is the prediction result of the i-th decision tree for the data point x.

LightGBM'" is a gradient-based decision tree algorithm that iteratively trains a series of weak classifiers
(decision trees) and combines them into a strong classifier. The method principles can be divided into the
following steps: (1) Initialize the model and related parameters. (2) Calculate the first and second order gradient
information of the samples. (3) Train multiple decision trees sequentially, with each tree’s training objective
being to minimize the loss function (usually the mean squared error or log loss function). (4) Update the
model parameters using gradient descent to reduce the value of the loss function. (5) Repeat steps (3) and
(4) until the specified number of iterations is reached or the model performance meets the threshold to stop.
The hyperparameter is set to: objective = regression, metric =mse, num_leaves =20, learning_rate=0.1, feature_
fraction=0.9.

CatBoost'® is a gradient boosting decision tree-based machine learning algorithm that excels at handling
datasets with a large number of categorical features. Unlike traditional gradient boosting algorithms, CatBoost
does not require one-hot encoding for categorical features; instead, it directly uses these features for training,
thus avoiding information loss and increased computational complexity. The formula is shown in Eq. (8). The
hyperparameter is set to: iterations =4, learning _rate=1, depth=4.

T
Zg = Z%‘h(w;&) (8)
i=1

A
In this context, ¥ represents the final prediction result of CatBoost, T denotes the number of decision trees, 7;

is the weight of the i-th decision tree, and h(z; d;) is the prediction result of the i-th decision tree for the data
point x.

The averaging method combines the prediction results of multiple models for classification or regression. The
core idea is to consider all model predictions as equally important and calculate their arithmetic mean as the
final prediction. In this paper, an averaging fusion model is constructed based on the integration of three models:
RandomForest, LightGBM, and CatBoost, as shown in Eq. (9), where F represents the final prediction result;
n represents the number of models, which is 3 in this case; y; denotes the prediction result of the i-th model.

F—;;yi 9)

Weighted averaging'® is a method for classification or regression that assigns different weights to the prediction
results of each model. The core idea is to allocate weights based on the performance or confidence of each model,
with better-performing models receiving higher weights. In this paper, the weights are determined using the
models’ MSE, where the weight is inversely proportional to the MSE. The smaller the model’s MSE, the greater
the weight. The formula is shown in Eq. (10), where w; represents the weight assigned to the i-th model, with
the sum of weights equaling 1.
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F= Zwiyi (10)
i=1

Stacking? is an advanced ensemble learning technique that constructs a new model, known as a meta-model,
by integrating the predictions of multiple base models. In this study, we employed a stacking approach where
the predictions from three base models (Random Forest, LightGBM, and CatBoost) were used as input
features to train a meta-model. Specifically, we used Linear Regression as the meta-learner to combine these
predictions. The core idea is to leverage the complementary strengths of diverse base models by learning their
prediction patterns through the meta-model, which can enhance overall predictive performance. This approach
significantly improves the model’s generalization capability by capturing complex relationships among base
model predictions and reducing systematic errors.

Experimental environment

The training environment for this study is CPU: i7-12700 F 2.10 GHz, GPU: RTX 3060Ti, operating system:
64-bit, RAM: 16 GB. The model uses Python language. The Python version and the various versions of the
environment packages used in this article are as follows: Python 3.9, numpy 2.0.2, pandas 2.3.0, scikit-learn
1.6.1, matplotlib 3.9.4.

Evaluation index
This study employed four common statistical metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), and Coefficient of Determination (R?).

MAE = %Z; lyi — 9l (11)
MSE = %Z; (yi — 9:)° (12)
RMSE — || 2=t (13)
RP=1-— MQ (14)

Zi (gz - yi)2

In this context, n is the total count of predict outcomes, g, represents the predicted value, ¥; is the actual value,
and g, represents the average value.

Results and analysis

Different model results of multiple parameter combinations

For the daily data of spring-season tomatoes, the feature correlation heatmap after Spearman correlation analysis
is shown in Fig. 3(a). Feature combinations with an absolute correlation value above 0.8 include: (Tm, Ts),
(RHmax, RHm), (RHm, RHmin), (Rn, E). Based on the strongly correlated feature combinations mentioned
above, and following the principle of using fewer feature input parameters, seven feature parameters were
selected: Tmax, Tmin, RHm, Ts, Rn, Co,, and CC. After analyzing the feature correlations, we performed a
random forest feature importance ranking on seven feature parameters, namely Tmax, Tmin, RHm, Ts, Rn,

1.0 Feature Importance
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Fig. 3. Heatmap of Tomato Feature Correlations and Feature Importance Ranking.
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Number | Feature Selection Number of Feature Parameters | Feature Parameters
1 None 11 Tmax. Tm. Tmin. RHmax. RHm. RHmin. Ts\ Rn. E. CO,. CC
2 Spearman 7 Tmax. Tmin. RHm. Ts. Rn. CO,. CC
3 Spearman + RandomPForest | 5 Tmax. Ts. CC. Tmin. CO
(5 features) 2
4 Spearman + RandomForest 3 Tmax. Ts. CC
(3 features)

Table 3. Parameter Combinations.
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Fig. 4. Comparison of Single Machine Learning Model Results for Daily Data of Spring-Season Tomatoes.

CO,, and CC. The results are shown in Fig. 3(b). It can be seen that Tmax has the greatest impact on tomato
ETc, followed by Ts, while RHm has the smallest impact on tomato ETc. If only five parameters are chosen, then
Tmax, Ts, CC, Tmin, and CO, can be selected. If only three parameters are chosen, then Tmax, Ts, and CC can
be selected.

Table 3 presents the four parameter combinations used for model construction. The parameter combination
without feature selection includes all 11 feature parameters, namely Tmax, Tm, Tmin, RHmax, RHm, RHmin, Ts,
Rn, E, COZ, and CC. The parameter combination after Spearman feature selection includes 7 feature parameters:
Tmax, Tmin, RHm, Ts, Rn, CO,, and CC. The parameter combinations after Spearman + RandomForest feature
selection include 5 feature parameters: Tmax, Ts, CC, Tmin, Co,, and 3 feature parameters: Tmax, Ts, and CC.

This data set divides the training set and the test set according to the ratio of 8:2, and the results below are
the model results under the test set. For different parameter combinations as model inputs, RandomForest,
LightGBM, and CatBoost models were constructed separately for predicting the water requirements of
greenhouse tomato crops. The model results are shown in Fig. 4. Figure 4(a) shows the model prediction results
for the 11 feature parameters without feature selection. The RandomForest model has the smallest error and the
highest R2. The MSE of the RandomForest model is 0.025 to 0.042 lower than the other two models, the MAE
is 0.076 to 0.093 lower, and the RMSE is 0.057 to 0.088 lower. Figure 4(b) shows the model prediction results
for the 7 feature parameters after Spearman feature selection. The RandomForest model has the smallest error
and the highest R?, with the MSE being 0.059 to 0.068 lower than the other two models, the MAE being 0.12 to
0.145 lower, and the RMSE being 0.126 to 0.14 lower. Figure 4(c) shows the model prediction results for the 5
feature parameters after Spearman + RandomForest feature selection. The RandomForest model has the smallest
error and the highest R?, with the MSE being 0.012 to 0.042 lower than the other two models, the MAE being
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0.006 to 0.088 lower, and the RMSE being 0.028 to 0.086 lower. Figure 4(d) shows the model prediction results
for the 3 feature parameters after Spearman + RandomForest feature selection. The RandomForest model has
the smallest error and the highest R2, with the MSE being 0.031 to 0.05 lower than the other two models, the
MAE being 0.069 to 0.116 lower, and the RMSE being 0.074 to 0.109 lower. In summary, for the four different
parameter combinations, the RandomForest model has the lowest MSE, MAE, and RMSE among the three
models, and the highest R2 Among the same RandomForest models, the model with the 5 feature parameter
combination after Spearman + RandomForest feature selection has the largest error, and the model with the
parameter combination after Spearman feature selection has the smallest error, with the MSE, MAE, and RMSE
errors being reduced by 21%, 23%, and 12% respectively, and the R? being increased by 0.6-2.7%.

Based on the three models (i.e., RandomForest, LightGBM, CatBoost), fusion models (i.e., Average fusion,
Weighted fusion, Stacking) were constructed separately for predicting the water requirements of greenhouse
tomato crops, and the model results are shown in Fig. 5. Figure 5(a) shows the model prediction results for all
11 feature parameters without feature selection. The errors of the three fusion models are all lower than the
best-performing RandomForest model among the single machine learning models, and the R? is higher. Among
them, the Stacking model has the smallest error and the highest R%. The MSE of the Stacking model is 0.012 to
0.013 lower than the other two models, the MAE is 0.011 to 0.015 lower, and the RMSE is 0.034 to 0.038 lower.
Figure 5(b) shows the model prediction results for the 7 feature parameters after Spearman feature selection.
The MSE of the Stacking model is 0.012 to 0.014 lower than the other two models, and the RMSE is 0.035 to 0.04
lower, with the R? being 0.037 to 0.043 higher than the other two models. Although the MAE of the Stacking
model is higher than the Weighted fusion model, the difference is only 0.001. Figure 5(c) shows the model
prediction results for the 5 feature parameters after Spearman + RandomForest feature selection. The MSE of the
Stacking model is 0.014 to 0.015 lower than the other two models, the MAE is 0.007 to 0.011 lower, the RMSE is
0.04 to 0.042 lower, and the R? is 0.042 to 0.044 higher than the other two models. Figure 5(d) shows the model
prediction results for the 3 feature parameters after Spearman + RandomForest feature selection. The MSE of the
Stacking model is 0.019 to 0.02 lower than the other two models, the MAE is 0.031 to 0.032 lower, the RMSE
is 0.054 to 0.056 lower, and the R? is 0.057 to 0.06 higher than the other two models. In summary, for the four
different parameter combinations, the Stacking model has the lowest MSE, MAE, and RMSE among the three
fusion models, and the highest R2.

Comparing the best fusion model with the single machine learning model results, as shown in Fig. 6, the
Stacking model, which performs the best among the fusion models, has lower error and higher R? than the
RandomForest model, which performs the best among the single machine learning models. Specifically, the

- Average fusion Weighted fusion Stacking - Average fusion Weighted fusion Stacking
MSE MSE
MAE  « R MAE S > R2
RMSE RMSE

(a) (b)

- Average fusion Weighted fusion Stacking B Average fusion Weighted fusion Stacking
MSE MSE
MAE - R2 MAE R
RMSE RMSE
(©) (d)

Fig. 5. Comparison of Different Fusion Model Results for Daily Data of Spring-Season Tomatoes.
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Fig. 7. Comparison of Single Machine Learning Model Results for Hourly Data of Spring-Season Tomatoes.

MSE is reduced by 0.01, the MAE is reduced by 0.003, the RMSE is reduced by 0.03, and the R? is increased
by 0.03. When using the Stacking model, the model with the 3 feature parameter combination selected by
Spearman + RandomForest feature selection has the smallest error, while the model with the parameter
combination selected by Spearman feature selection has the largest error. The MSE, MAE, and RMSE errors
are reduced by 19%, 16%, and 10% respectively, and the R? is increased by 1.5%. Therefore, only the three
parameters Tmax, Ts, and CC, combined with the proposed Stacking fusion model, can accurately predict the
water requirements of greenhouse tomatoes, significantly reducing the computational complexity of traditional
formulas.

Model reliability and generalization verification
The performance of the proposed optimal parameter combinations and models is verified in the hourly data
of spring-season tomatoes to ensure the reliability of the method at different resolutions. The results of the
RandomForest, LightGBM, and CatBoost models are shown in Fig. 7, with Fig. 7(a) displaying the model
prediction results for all 11 feature parameters, and Fig. 7(b) showing the model prediction results for the
optimal feature parameter combinations. The results of the Average fusion, Weighted fusion, and Stacking
models are shown in Fig. 8, with Fig. 8(a) displaying the model prediction results for all 11 feature parameters,
and Fig. 8(b) showing the model prediction results for the optimal feature parameter combinations. It can be
seen that, whether for the RandomForest, LightGBM, CatBoost models, or for the Average fusion, Weighted
fusion, Stacking ensemble models, the prediction error using the optimal feature parameter combinations is
lower than that using all feature parameters. Compared to the results using the original full set of parameters
within the same model, the MSE is reduced by 0.001 to 0.007, the MAE is reduced by 0.001 to 0.025, and the
RMSE is reduced by 0.003 to 0.022. The proposed greenhouse tomato water requirement prediction model, that
is, the Stacking ensemble model with feature parameters Tmax, Ts, and CC, performs the best. Compared to the
three machine learning models with the original full set of parameters, the MSE is reduced by 26-33%, the MAE
is reduced by 5-21%, and the RMSE is reduced by 13-16%.

Figure 9 is a scatter plot of prediction results from all 11 feature parameters in different models using hourly
data of spring-season tomatoes, while Fig. 10 is a scatter plot of prediction results from the optimal feature
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Fig. 9. Scatter Diagram of predict Outcomes from Different Models with All 11 Feature Parameters.

parameter combinations in different models using the same data. It can be observed that, whether for the
RandomForest, LightGBM, CatBoost models, or for the Average fusion, Weighted fusion, Stacking ensemble
models, the R? values obtained using the optimal feature parameter combinations are all higher than those using
all feature parameters, by 1 to 10% points. The facility tomato water requirement prediction model proposed
in this paper, which is the Stacking ensemble model with feature parameters Tmax, Ts, and CC, has the highest
R?, with prediction values closer to the actual values. Compared to the three machine learning models with all
original parameters, the R? has increased by 9 to 13% points.

In the autumn-season tomato daily data, the performance of the proposed optimal parameter combinations
and models is verified to ensure the generalization of the method. The prediction results of different models for
the autumn-season tomato daily data are compared with the true values, as shown in Fig. 11. Figure 11(a) presents
the model predict outcomes for all 11 feature parameters, and Fig. 11(b) presents the model predict outcomes
for the optimal feature parameter combinations. The horizontal coordinate in the figure represents 12 randomly
selected test data, and the vertical axis indicates the mean of the predict outcomes across various models.
“Single machine learning model” indicates the mean of the predict outcomes of RandomForest, Light GBM,
and CatBoost, “Fusion model” indicates the mean of the predict outcomes of Average fusion, Weighted fusion,
and Stacking, and “True value” represents the actual value of the crop water requirement. It can be seen that
the predict outcomes of the Fusion model are generally closer to the actual values, and the models using the
optimal feature parameter combinations are closer to the true values compared to the models using all 11 feature
parameters. Therefore, the proposed fusion model performs better than the single machine learning models, and
the models using the optimal feature parameter combinations have better prediction effects.
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Fig. 11. Error Bar Chart of Prediction Results from Different Models for Daily Data of Autumn-Season
Tomatoes.

The results of the RandomForest, LightGBM, and CatBoost models are shown in Fig. 12, with Fig. 12(a)
displaying the model prediction results for all 11 feature parameters, and Fig. 12(b) showing the model
prediction results for the optimal feature parameter combinations. It can be seen that for the RandomForest,
LightGBM, and CatBoost models, the prediction errors using the optimal feature parameter combinations are
lower than those using all feature parameters, with MSE reduced by 0.12 to 0.153, MAE reduced by 0.103 to
0.156, RMSE reduced by 0.116 to 0.155, and the predicted R%using the optimal feature parameter combinations
is higher than that using all feature parameters, with R? increased by 0.085 to 0.103. The results for the Average
fusion, Weighted fusion, and Stacking models with all 11 feature parameters and the optimal feature parameter
combinations are shown in Fig. 13. It can be seen that for the Average fusion, Weighted fusion, and Stacking
models, the prediction errors using the optimal feature parameter combinations are lower than those using all
feature parameters, with MSE reduced by 0.122 to 0.278, MAE reduced by 0.006 to 0.178, RMSE reduced by
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Fig. 13. Comparison of Different Fusion Model Results for Daily Data of Autumn-Season Tomatoes.

0.162 to 0.181, and the predicted R? using the optimal feature parameter combinations is higher than that using
all feature parameters, with R? increased by 0.096 to 0.103. In summary, the facility tomato water requirement
prediction model proposed in this paper, which is the Stacking ensemble model with feature parameters Tmax,
Ts, and CC, performs the best. Compared to the three machine learning models with all original parameters, the
MSE is reduced by more than 71%, the MAE is reduced by more than 6%, the RMSE is reduced by more than
41%, and the R? is increased by more than 13%.

Discussion

The performance of the integrated model in this study is better than that of the single model, which is consistent
with the relevant research conclusions??2. Integration model integrates multiple models with different
characteristics and can mine data information from different angles. There are differences in the ability of
different models to capture data features, as in image recognition tasks, some models are good at recognizing
the contours of objects, while others are sensitive to color features. By integrating these models, data features
can be obtained comprehensively, and the generalization ability and prediction accuracy of the model can be
effectively improved.

This study found that models with fewer parameters performed better under certain conditions?. Models
with many parameters tend to overfit, learn too much noise and details in training data, and have poor
generalization ability on new data. However, the model with fewer parameters has a simple structure, can
focus on core features and avoid overfitting. In this study, although the parameters of the optimized model are
reduced, each characteristic parameter involved in modeling has an important impact on crop water demand, so
the prediction is more stable and accurate.

From the perspective of crop physiology and meteorology, temperature parameters (Tmax, Tmin, Ts), relative
humidity parameters (RHm) and radiation parameters (Rn) had significant effects on tomato water demand.
Alshami et al.>* proposed that solar radiation has a significant impact on the photosynthesis and transpiration of
tomatoes. High temperature accelerated transpiration of tomato and increased water demand. Low temperature
decreased transpiration but affected root water absorption, so reasonable water supply was needed. Tuzel et al.?>
proposed that, in addition to temperature, relative humidity and radiation also have a significant impact on the
transpiration and water requirements of tomatoes. Low relative humidity caused rapid water evaporation and
increased water demand, high relative humidity inhibited transpiration and reduced water demand, but disease
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control should be taken into account. Radiation promoted tomato photosynthesis, increased water demand for
time cooperation, and heated up leaves to accelerate water evaporation. However, excessive radiation damaged
leaves and changed water demand, so irrigation strategies should be adjusted according to its changes.

However, there are still some limitations in this study. For example, the image segmentation algorithm is
greatly affected by natural conditions such as illumination change and occlusion; The data based on the model
construction is not long enough in time span, only covering spring and autumn tomatoes, and it is difficult to
reflect the influence of climate fluctuation and planting mode adjustment on tomato water demand in different
years. In practical application scenarios, the impact of factors such as ventilation equipment operation and
irrigation system differences on the tomato canopy microenvironment is not fully considered, which limits the
adaptability of the prediction model under different facility conditions and makes it difficult to directly apply
it to the cultivation environment of various facilities to accurately predict the tomato water requirement. In
the future, we can improve the water demand prediction method of tomato by optimizing algorithm model,
expanding data range and considering environmental factors comprehensively.

Conclusion

Accurate prediction of crop water requirements can serve as a basis for irrigation decision-making and contribute
to the stable growth of crops. The paper proposes an image segmentation-based algorithm for extracting the
canopy coverage of greenhouse tomatoes, which was applied to both spring and autumn crops to extract the
canopy coverage. By combining Spearman’s correlation analysis and the random forest feature importance
ranking method, an optimal combination of feature variables was proposed. Ultimately, a water requirement
prediction model for greenhouse tomato crops was constructed using single machine learning algorithms and
ensemble algorithms. Using daily data from the spring season for parameter selection and model building, it was
found that models with different combinations of parameters, particularly Tmax, Ts, and CC, had the greatest
impact on the water requirements of greenhouse tomatoes, and the Stacking ensemble model showed the best
prediction performance. Compared to single machine learning models, the MSE, MAE, and RMSE errors were
reduced by more than 31%, 12%, and 17% respectively, and the R? was increased by more than 3%. Compared
to the Stacking model without feature selection, the MSE, MAE, and RMSE errors were reduced by 19%, 16%,
and 10% respectively, and the R? was improved by 1.5%. Moreover, good results were achieved in both hourly
data from the spring season and daily data from the autumn season. Compared to the original RandomForest,
LightGBM, and CatBoost models with all parameters, the MSE was reduced by more than 26%, the MAE was
reduced by more than 5%, the RMSE was reduced by more than 13%, and the R? was increased by more than
9%. Therefore, the multi-source data fusion model for predicting the water requirements of greenhouse tomato
crops proposed in this paper has excellent reliability and generalization. Compared to the traditional PM model,
this model uses image algorithms to extract key crop growth parameters, saving manpower. It also reduces the
model’s required parameters and computational complexity, and can effectively predict crop cultivation water
requirements.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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