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Metabolic reprogramming and
prognostic insights in molecular
landscapes driven by glycolysis in
ovarian cancer

Mingwei Wang#, QiaohuiYing%*, Yuncan Xing?, Shuchang Dai', Jue Wang® & Zhong Liu***

Ovarian cancer (OC) is a highly fatal gynecological malignancy primarily attributable to late-stage
detection and restricted treatment options. Aberrant glycolysis, exemplified by the Warburg effect,
facilitates tumor development, immunological evasion, and alteration of the microenvironment.
Identifying glycolysis-related biomarkers could provide novel insights into prognosis and potential
therapeutic targets for OC.The transcriptomic and clinical information of OC patients were obtained
from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression
Omnibus (GEO) databases. Differentially expressed glycolysis-related genes (GRGs) were identified
and analyzed for their prognostic significance. Consensus clustering was employed to identify
glycolysis subtypes, followed by pathway enrichment and immune infiltration analyses. A ten-gene
GRG signature was developed with LASSO-Cox regression and verified in various cohorts. Single-cell
RNA sequence and drug susceptibility analysis were performed to explore tumor microenvironment
heterogeneity and potential therapeutic agents.A total of 457 differentially expressed GRGs were
discovered, of which 30 were substantially linked with OC prognosis. Three molecular subtypes were
characterized, with cluster C exhibiting the worst prognosis and activation of tumor-associated
pathways. A prognostic model comprising ten genes (LMCD1, L1CAM, MYCN, GALT, IDO1, RPL18,
XBP1, LPAR3, RUNX3, PLCG1) was developed and validated, demonstrating robust predictive efficacy
across various cohorts. Immune analysis revealed substantial disparities in immune infiltration among
risk groups, whereas single-cell analysis identified several critical genes essential for metabolism,
proliferation, and interactions within the tumor microenvironment.This work highlights the prognostic
and therapeutic significance of GRGs in OC. The ten-gene GRG signature serves as a reliable framework
for risk assessment and the formulation of individualized treatment regimens. Nonetheless, further
experimental validation and extensive clinical research are necessary to enable the application of these
findings in clinical practice. These results highlight the potential of targeting glycolytic pathways as a
promising approach to improve the management and treatment outcomes of OC.
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effect

Ovarian cancer (OC) denotes malignant tumors that originate in the ovary, with 90-95% classified as primary
ovarian cancers and the remaining 5-10% resulting from metastatic lesions from other sites'. It demonstrates
considerable histological heterogeneity, with the primary subtypes being epithelial tumors, germ cell tumors, and
sex cord-stromal tumors, with epithelial tumors accounting for nearly 90% of cases®. As the third most prevalent
gynecological malignancy, following cervical and endometrial cancers, OC remains difficult to diagnose due to
the lack of early symptoms, often progressing to advanced stages before detection®*. Consequently, 60-70% of
patients present with late-stage disease, making OC the second leading cause of gynecological cancer-related
mortality after cervical cancer’. Annually, approximately 240,000 women are diagnosed worldwide, with a five-
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year survival rate below 45%°. However, the biological mechanisms underlying the development of OC and
efficient prognostic evaluation approaches remain ambiguous.

Previous studies have demonstrated that proliferating cancer cells increase glucose uptake and produce lactate
even under aerobic conditions’. This atypical metabolic phenotype, known as aerobic glycolysis or the Warburg
effect, is acknowledged as a characteristic of cancer, promoting tumor invasiveness and therapeutic resistance®.
In recent years, increasing attention has been given to the role of glycolysis in OC progression. This metabolic
reprogramming enhanced fatty acid synthesis, angiogenesis, and metastasis in OC, ultimately contributing to
poor clinical outcomes®!°. Genes such as ESM1, PRMT5, and ZEBI have been implicated in regulating glycolysis
in OC’~!1. However, the specific genes regulating the Warburg effect that are closely associated with prognosis
in OC remain unclear. Therefore, it is imperative to examine the pivotal genetic modifications and therapeutic
targets of aerobic glycolysis, together with the importance of metabolic coupling between cancer cells and the
tumor microenvironment, to devise innovative treatments for this highly fatal illness.

Precision oncology, which tailors treatment based on a patient’s genomic profile and disease trajectory, is
rapidly becoming a cornerstone of cancer management!2. With the widespread adoption of next-generation
sequencing technologies, an increasing number of molecularly defined cancer subtypes have been identified.
However, these subtypes correspond to rare patient populations, posing challenges for the recruitment and
execution of traditional large-scale clinical trials'*!'*. Computational oncology primarily encompasses the use
of computational models to investigate tumor biology and cancer therapeutics, including the pharmacokinetic
and pharmacodynamic relationships of anticancer agents!®. By constructing gene co-expression networks
and applying systems biology approaches, critical gene modules and prognostic biomarkers that conventional
methods might overlook can be revealed!®'”. Therefore, applying computational oncology tools to systematically
and data-drivenly elucidate glycolytic reprogramming will advance the development of precision oncology.

This study aims to comprehensively explore the relationship between glycolysis-related genes (GRGs) and the
development and progression of OC to identify critical therapeutic targets. By integrating data from The Cancer
Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) and employing machine learning techniques,
we identified key GRGs associated with prognosis and conducted drug sensitivity screening. Additionally, we
established a predictive model utilizing these genes, indicating significant potential for clinical application. This
research can provide valuable insights into the Warburg effect and lays a foundation for advancing precision
medicine in OC management.

Results

Characterizing GRGs in OC progression dynamics

A total of 457 GRGs were identified as significantly differentially expressed when comparing the transcriptomes
of ovarian cancer samples from the TCGA-OC dataset with those of normal ovarian tissues from the GTEx
database (Table S1). These differentially expressed genes (DEGs) were subsequently analyzed within the TCGA-
OC-GSE26193 cohort to evaluate their association with patient survival outcomes. Univariate Cox regression
analysis identified 30 GRGs that were significantly correlated with survival prognosis (Fig. 1 A). Among these, 18
genes were positively associated with poor prognosis in ovarian cancer patients, while 12 genes showed negative
associations. Furthermore, a network diagram of the GRGs was constructed to elucidate their interactions and
prognostic relevance, demonstrating that the majority of these genes exhibited positive regulatory effects, with
a minority functioning as favorable factors (Fig. 1B). Considering the frequent chromosomal segment gains
and losses observed in ovarian cancer, copy number variation (CNV) data were extracted from the TCGA
database for further analysis. Significant copy number gains were observed in genes such as MECOM, KLF2,
PDIA4, UCP2, GFPT2, LICAM, DYRK1B, HMGB3, and IDO1, while genes such as HSPB7, RUNX3, and RPL18
exhibited notable copy number losses (Fig. 1 C). A circular plot of copy number alterations revealed that gains
were predominantly located on chromosomes 6, 7, 8, 9, 11, and 12, whereas losses were primarily observed on
chromosomes 1, 4, and 20 (Fig. 1D). Overall, this part suggested a potential correlation between the variations
in GRGs and the prognosis of OC.

Molecular and immune landscape characterization of OC subtypes and their prognostic
implications

To further delineate the heterogeneity among OC subtypes, the TCGA-OC-GSE26193 cohort was classified
into three molecular subtypes based on the expression profiles of 30 prognosis-related GRGs. This classification
achieved optimal separation when k=3, with minimal overlap between the subtypes (Fig. 2 A). Survival analysis
revealed significant differences among the subtypes, with GRG cluster C associated with the poorest prognosis,
while cluster A exhibited the most favorable survival outcomes (Fig. 2B). The distinct spatial distributions of
these subtypes were visualized using principal component analysis (PCA) and Uniform Manifold Approximation
and Projection (UMAP), which highlighted clear separation among the clusters (Fig. 2C-D). Analysis of GRG
expression patterns across the three subtypes indicated that GFPT2, SUN2, LMCDI, TPM1, HSPB7, CBX7,
LICAM, ADHIB, FHL2, KLF2 and NR4A1 were predominantly expressed in GRG cluster C, aligning with
its association with the worst prognosis. In contrast, genes such as IDOI, UCP2 and XBPI were more highly
expressed in GRG cluster A, corresponding to a more favorable prognosis (Fig. 2E).

To further characterize the biological features of the three subtypes, immune infiltration analysis revealed
that subtype B exhibited the lowest level of immune cell infiltration, while no significant differences were
observed between subtypes A and C in terms of immune cell composition (Fig. 3A). The heatmap analysis
showed no notable differences in age distribution; however, it revealed elevated expression of genes such as
ADHIB, GFPT2, HSPB7, TPM1, FHL2, LMCDI, KLF2 and NR4A1 in subtype C, while CYBA, UCP2, IDO1
and TREM?2 were highly expressed in subtype A (Fig. 3B). Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis identified several pathways significantly enriched in subtype C, which is associated
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Fig. 1. Differentially expressed GRGs in OC and their correlation with prognosis. (A) A forest plot illustrating
the most significant 30 GRGs (P < 0.05) identified through univariate Cox regression analysis in TCGA-OC-
GSE26193 cohort. (B) A network diagram depicting the interrelationships among the GRGs. (C) Analysis of
CNVs in the 30 GRGs within the TCGA-OC-GSE26193 cohort. (D) Examination of chromosomal locations
and alterations in the GRGs.
with a poorer prognosis. These pathways included the focal adhesion, TGF-B signaling pathway, WNT
signaling pathway, ECM-receptor interaction, glycosaminoglycan biosynthesis, calcium signaling pathway,
GnRH signaling pathway, MAPK signaling pathway, pathways in cancer, and gap junctions (Fig. 3C, Fig. S1).
These pathways are frequently linked to distant metastasis and adverse cancer outcomes. Additionally, gene
set enrichment analysis (GSEA) highlighted the enrichment of the calcium signaling pathway and other key
pathways in subtype C (Fig. 3D). In summary, the findings in this section demonstrated the distinct biological
characteristics of the three subtypes classified based on GRGs, particularly the tumor-associated signaling
pathways activated in the low-prognosis C subtype.
A prognostic model was constructed for OC based on GRGs
Using the 30 differentially expressed GRGs previously identified, we conducted a Lasso-penalized Cox regression
analysis. The lambda (A) value that minimized cross-validation error was found to be 15. Through this approach,
we selected ten genes—LMCDI, LICAM, MYCN, GALT, IDO1, RPL18, XBP1, LPAR3, RUNX3 and PLCGI—as
key contributors to the construction of the prognostic model (Fig. 4 A). Based on the corresponding weight
coefficients for each gene, we calculated an individual “GRG score” using a formula in Table S2. Based on the
expression of these ten genes, individuals were stratified into high-risk and low-risk groups (Table S3). To
enhance the model’s validation, we randomly partitioned the TCGA-OC-GSE26193 cohort into training and
testing subsets. Survival analysis curves demonstrated that the prognosis of the high-risk group was significantly
worse than that of the low-risk group in both the training and testing cohorts (Fig. 4B-D). The receiver operating
characteristic (ROC) curves illustrated the model’s performance in predicting 1-year, 3-year, and 5-year survival
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Fig. 2. GRGs-based subgroup categorization in OC. (A) Utilizing consensus clustering, a consensus matrix
was established for k=3. (B) The analysis of overall survival revealed significant differences between A, B and
C subgroups (P < 0.001). (C, D) Employing PCA and UMAP techniques, these three subtypes were discerned
based on GRG expression patterns. (E) Analysis of GRGs expression across these three different subtype
clusters.
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Fig. 3. GSEA and immune infiltration in distinct subtype clusters. (A) Examination of immune infiltration
characteristics within these three subtype clusters. (B) A comprehensive heat map displayed the expression
profiles of GRGs alongside the clinicopathological attributes of these three subtypes. (C) KEGG enrichment
analysis of subtype A relative to subtype C. (D) Significant pathways enriched in the three molecular subtypes.

rates, with the area under the curve (AUC) for the training set exceeding 0.685, and the AUC for the testing
set above 0.583, further confirming the excellent predictive ability of our model (Fig. 4E-G). The risk score for
subtype C of OC was significantly elevated compared to subtypes A and B (Fig. 4H). A Sankey diagram was
employed to illustrate the connections among GRG clustering, risk categories, and survival status (Fig. 4I). This

Scientific Reports|  (2025) 15:26956

| https://doi.org/10.1038/s41598-025-12350-7

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

29 26 22 14 2 29 29 28 27 26 26 25 22 18 15 14 11 6 2 1
<
o
g T
g
g EYYY9S
so0
P 3 aaazeasil
5 3 12298
2 £ o
T - T
S 2
s 1 o
5 { {
©
2 |
©
£
T T T T T - T T

Log Lambda Log(%)
B Risk == Low risk = High risk C Risk == Lowrisk =+ High risk D Risk == Lowrisk = High risk
1.00 o o 1.00 0 1.00
Training set Testing set All samples
2075 2075 2075
3 ] z
© © ©
Qo Q Qo
[ [ [
2 0.50 2.0.50 4 0.50
® 0.25 © 0.25 ® 0.25
0.00 0.00 0.00
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 16 18 20
Time(years) Time(years) Time(years)
E o F e G e
o | o | @
o o =
£ S £ 31 £ 39
2 2 2
o < o < ] <
2] o | [2] o T %] o 7
N o N
© q—- —— AUC at 1 years: 0.685 ° —— AUC at 1 years: 0.598 ° T —— AUC at 1 years: 0.640
Jr/, AUC at 3 years: 0.717 AUC at 3 years: 0.583 g AUC at 3 years: 0.652
o | —— AUC at 5 years: 0.755 o | —— AUC at 5 years: 0.602 g a —— AUC at 5 years: 0.684
° g T T T T T ° g T T T T T T T T T T T
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 06 0.8 1.0
1-Specificity 1-Specificity 1-Specificity
H GRGcluster F&3 A [+ B 3 C |
4.3e-06
20 p <2.22e-16
T 1
5.8e-07
.
15
o
q
@
~ 10
2
14
Dead
5 . e o .
° o o K
o . Sog Vo ". 1
0 “ w n L
A B C
GRGC'USter GRGcluster Risk Fustat

Fig. 4. Development of a GRG-based prognostic signature. (A) Identification of prognostic GRGs using
LASSO regression with 10-fold cross-validation. (B-D) Kaplan-Meier survival curves showed the prognosis of
high-risk and low-risk groups, with the training set on the left, the testing set in the middle, and all samples
on the right. (E-G) Time-dependent ROC analysis for OS at 1, 3, and 5 years, with the training set on the left,
the testing set in the middle, and all samples on the right. (H) Risk score evaluation across three established
clusters. (I) Sankey diagram depicting transitions between subtypes and survival status.
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part effectively developed a predictive diagnostic model utilizing GRGs, which showed a robust capacity to
forecast the prognosis of OC patients.

External validation of the model and nomogram characterization

To further validate the prognostic model, two independent datasets, GSE53963 (N=174) and GSE140082
(N=380), were utilized to classify samples into high-risk and low-risk groups based on their GRG scores
(Fig. 5A-B). Cox survival analysis indicated that the low-risk group, as determined by the GRG score, showed
markedly enhanced long-term survival relative to the high-risk group, with P-values of 0.014 for GSE53963
and 0.023 for GSE140082. The univariate Cox regression analysis further validated the predictive significance
of the 10 modeling genes in the TCGA-OC-GSE26193 cohort (Fig. 5C). A heatmap visualization illustrated the
differential expression of these genes between the high-risk and low-risk groups (Fig. 5D). A nomogram was
created to predict patient prognosis by integrating the GRG score and clinical data (Fig. 5E). The nomogram’s
predicted accuracy was evaluated by a calibration plot, indicating that the model’s predictions sustained reliability
throughout time (Fig. 5F). The cumulative risk curve demonstrated notable survival disparities between the
high- and low-risk groups (Fig. 5G). A pharmacological susceptibility analysis was conducted to investigate
potential treatment implications, revealing 48 medicines with varying sensitivities across the high- and low-risk
groups (Fig. 5H, Fig. S2).

To further validate the accuracy of our model, the expression and prognostic relevance of the modeled genes
were assessed across different OC cohorts using the BEST platform. The expression patterns of GALT, LICAM
and LMCD1 were consistent with our initial findings, whereas XBPI expression in the GSE26712 cohort showed
an inverse trend. Additionally, no differential expression was observed for MYCN, PLCGI, RPL18 and RUNX3
in the GSE26712 cohort (Fig. 6 A). Further analysis confirmed the independent prognostic significance of these
ten GRGs across various OC cohorts, with results closely aligning with our previous findings (Fig. 6B). GSEA
of Hallmark pathways highlighted the significant involvement of these genes in glycolytic processes, which are
known to promote tumor initiation and progression (Fig. 6 C and D).

Association analysis of GRGs revealed differences in immune activity between the high-risk
and low-risk groups

The tumor microenvironment (TME) is crucial in tumor initiation and development, necessitating the
examination of immune microenvironment disparities between high- and low-risk populations for prospective
treatment approaches. The comparative analysis of immune cell types across samples involved normalizing each
sample’s immune cell components to a total of 1. The variation in immune cell proportions between the low-
risk and high-risk groups is shown in Fig. 7A. Subsequent examination of immune cell correlations yielded an
enhanced understanding of the immunological microenvironment in ovarian cancer (Fig. 7B). The high-risk
group had a greater number of resting dendritic cells and M0 macrophages relative to the low-risk group, while
activated dendritic cells, M1 macrophages, activated CD4 + memory T cells, and follicular helper T cells were
markedly diminished (Fig. 7C). The expression patterns of the ten genes in the GRG scoring model differed
between high- and low-risk groups, exhibiting a robust connection with immune cell infiltration. LICAM,
MYCN, IDO1, RPL18, LPAR3, RUNX3 and PLCGI exhibited a strong correlation with the patterns of immune
cell infiltration observed (Fig. 7D). Spearman correlation analysis indicated that the proportions of resting
and activated dendritic cells, activated CD4 + memory T cells, and follicular helper T cells significantly altered
with increasing risk scores (Fig. 7E). Notably, the proportion of M1 macrophages decreased significantly with
increasing risk score (R = —0.29, P=1.7 x 10™°) (Fig. 7 F). To evaluate the total TME, stromal and immunological
scores for both high-risk and low-risk groups were computed, revealing that the high-risk group exhibited
elevated stromal scores and diminished immune scores relative to the low-risk group (Fig. 7G).

To further investigate the role of the ten GRGs in TME at the single-cell level, their expression across
various stromal cell types was analyzed using the OV_GSE154600 dataset from the TISCH database. A total
of 26 cell clusters were identified, comprising 11 distinct cell types (Fig. 8 A). Notably, RPL18 was significantly
overexpressed in all 11 cell types, while LICAM showed higher expression specifically in malignant cells (Fig.
8B, S3). Hallmark analysis revealed that malignant cells, epithelial cells, and fibroblasts exhibited elevated levels
of glycolysis (Fig. 8 C). To explore the relationship between gene expression and functional scores, we utilized
the OC_GSE150864 dataset in the LnCeCell 2.0 platform. Further analysis of the relationship between gene
expression and functional scores revealed a significant correlation between the expression of LICAM, MYCN,
PLCGI and XBP1 with both proliferation and metastasis functional scores. In contrast, the expression of RPL18
and RUNX3 showed a negative correlation with these functional scores (Fig. 8D and E). Overall, the results in
this section demonstrated a close relationship between specific GRGs and immune cell infiltration in different
risk groups of OC.

Validation of model gene expression by qRT-PCR

To experimentally validate the expression patterns of the ten model genes identified from our bioinformatic
analysis, we performed quantitative real-time PCR (qQRT-PCR) in normal human ovarian epithelial cells (IOSE-
80) and ovarian cancer cells (OVCAR-3). As shown in Fig. 9, the expression levels of LICAM, LMCDI, PLCG1
and RUNX3 were significantly upregulated in cancer cells, while GALT, MYCN and XBP1 were markedly
downregulated. No statistical difference was found in the expression of IDOI1, LPAR3, and RPLI8. These
findings are basically consistent with the differential expression trends predicted by our computational analysis,
supporting the relevance of the identified genes in ovarian cancer progression.
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Fig. 7. Exploring the immune landscape in TME across varying risk scores. (A) Analysis of the composition
of immune cell infiltration at different risk levels. (B) Examination of interrelations among different immune
cells. (C) Comparison of immune cell profiles in high-risk and low-risk groups. (D) Study of the associations
between immune cells and these ten pivotal GRGs. (E) Correlation analysis between immune cells and risk
scores. (F) Macrophage M1 type and risk score showed a significant negative correlation (G) Comparative
analysis of estimate scores based on expression profiles in high-risk versus low-risk groups.
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Fig. 8. Analysis of GRGs in OC’s TME cells using scRNA-seq database. (A) Cell type identification and
quantification in dataset OV_GSE154600. (B) Analysis of the percentages and expression levels of key GRGs.
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Fig. 9. Validation of model gene expression by qRT-PCR in normal and ovarian cancer cell lines. The qRT-
PCR was performed to assess the mRNA expression levels of the ten prognostic model genes in normal
human ovarian epithelial cells (IOSE-80) and ovarian cancer cells (OVCAR-3). Relative expression levels
were normalized to ACTB and calculated using the 2724 method. *P < 0.05, **P < 0.01,**P < 0.001, ns: not
significant (Student’s t-test).

Discussion

This study thoroughly examined GRGs in OC, identifying 457 differently expressed GRGs, with 30 showing
a significant correlation with patient prognosis. Molecular and immunological profiling identified three
different OC subtypes, with GRG cluster C exhibiting the worse prognosis and activation of tumor-associated
signaling pathways. A prognostic model utilizing ten essential GRGs was developed and validated, exhibiting
robust prediction accuracy across various cohorts. External validation further substantiated the model’s strong
applicability, including the discovery of GRGs associated with glycolysis and tumor development. Furthermore,
the study of the immunological milieu revealed notable disparities in immune cell infiltration between high-
and low-risk groups, with particular GRGs closely associated with immune activity. These findings enhance
our understanding of GRG-related mechanisms in OC and provide a basis for developing tailored therapeutic
options.

We identified 30 GRGs significantly associated with survival prognosis. Among these, GFPT2, SUN2, TPM1,
LICAM, DYRKIB, KLF2, NR4A1, and TREM?2 exhibited notable copy number gains, which were positively
correlated with OC risk. GFPT2 and KLF2 demonstrated the most direct roles in glycolysis, influencing
glycolytic activity through the regulation of metabolic pathways and signal transduction'®!°. Other genes likely
impacted glycolysis indirectly by modulating cellular structures and gene expression'*?. Additionally, GFPT2,
TPM1 and LICAM were closely linked to OC chemoresistance?! 2. Tpm1.8/9 isoforms have been reported to be
specifically expressed in ascites-derived OC cells, where they promote invasion through epithelial-mesenchymal
transition (EMT), Wnt signaling, and inflammatory pathways®. Similarly, LICAM has been shown to enhance
stemness-related traits in OC cells, indicating its potential as a druggable target??. Furthermore, KLE2 acts as
a downstream effector of epigenetic regulation in OC?*while targeting TREM2 has been shown to improve
the efficacy of cancer immunotherapy?>. The present study further supports these findings, underscoring the
potential application of GRGs in OC prognosis and as targets for therapeutic intervention.

Among the three molecular subtypes of OC, the C subtype was found to be closely associated with the poorest
prognosis. This subtype was significantly associated with the aberrant overexpression of GRGs, including GFPT2,
SUN2, and TPM1. These molecular markers may serve as potential therapeutic targets. Tumor cells resistant to
phagocytosis have been shown to inhibit macrophage mitochondrial fission by overexpressing GFPT2, thereby
negatively impacting treatment outcomes®®. Recent research has also highlighted the interaction between
SUN2 and lamins, particularly Lamin A, which is closely related to immune evasion in tumors®’. Furthermore,
SUN2 was involved in the formation of spliceosome complexes and was highly correlated with various tumor
proliferation markers?. Although no studies have yet directly elucidated the underlying mechanisms of these
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GRGs in OC, based on the findings of the present study and the aforementioned related research, these genes are
likely to serve as potential therapeutic targets for OC with poor prognosis.

The pivotal role of TME in the onset and advancement of ovarian cancer, along with its influence on
resistance to anti-tumor therapies, has garnered heightened scrutiny?®?°. The metabolically adverse tumor
microenvironment creates obstacles for tumor-infiltrating immune cells, impeding sustained clinical remission
after immunotherapy?. The metabolic interaction between cancer cells and adjacent immune cells may influence
the magnitude and kind of immunological responses, underscoring the possible role of metabolic crosstalk
in immune surveillance and evasion. Acidosis resulting from aerobic glycolysis might hinder the function of
anti-tumor immune cells and diminish the phagocytic capabilities of tumor-associated macrophages, whereas
nutritional scarcity fosters the emergence of regulatory T cells and M2-like macrophages®’. The current work
indicates that the minimal immune cell infiltration in Subtype B may signify immune evasion, resulting in a
worse prognosis relative to Subtype A, and is marked by reduced expression of IDOI, TREM?2, and RUNX3.
Nonetheless, Subtype C, exhibiting the worse prognosis, possesses immune infiltration features akin to those
of Subtype A, which demonstrates the most favorable prognosis. The variability in immune cell infiltration
may not entirely account for the clinical prognosis of malignancies; other mechanisms, including metabolic
reprogramming and functional alterations in the immune milieu, may be more significant in explaining
prognostic discrepancies.

The study also identified a negative correlation between the infiltration of activated dendritic cells (DCs),
CD4 memory-activated T cells, follicular helper T cells, and M1 macrophages, and high tumor risk scores, with
significant associations between these favorable factors in the immune microenvironment and IDO1. Although
DCs constitute a rare immune cell population in tumors and lymphoid organs, they play a pivotal role in initiating
antigen-specific immunity and tolerance. Manipulating DCs holds excellent potential for inducing effective anti-
tumor immunity®"*2. DCs promote immune responses or tolerance by sampling and presenting antigens to T
cells, as well as providing immune regulatory signals through intercellular contact and cytokines*’. Tumor-
associated macrophages can exert their role in the tumor immune response through metabolic reprogramming,
with significant metabolic differences existing between different macrophage subtypes®. In specific contexts, M1
macrophages can promote immune cell recruitment, especially T cells and natural killer cells, by secreting large
amounts of pro-inflammatory cytokines (e.g., TNF-q, IL-1p, IL-6) and chemokines (e.g., CXCL9, CXCL10),
thereby inhibiting tumor growth®*. This finding is consistent with the results of our study. Furthermore, the
role of IDOI in tumor therapy is primarily reflected in its ability to suppress anti-tumor immune responses and
promote tumor immune escape through the metabolism of tryptophan®”-*. Therefore, IDO1 holds the potential
to become a target for future immunotherapy in OC.

The glycolysis-related model constructed in this study comprises ten genes (LMCDI1, LICAM, MYCN, GALT,
IDO1, RPL18, XBP1, LPAR3, RUNX3, and PLCG1), which were validated across ten different OC datasets. Other
studies have also attempted to predict the prognosis of ovarian cancer based on various biological processes. For
instance, anoikis-related features were used to predict ovarian cancer prognosis and characterize the immune
landscape®. Pyroptosis-related genes were identified as correlating with clinical staging of OC*’. Molecular
subtype identification and prognosis estimation of OC based on cuproptosis yielded promising results*!. In
comparison, the glycolysis-related nomogram we generated demonstrates favorable predictive performance and
stability across multiple datasets relative to earlier models. Moreover, we examined the expression patterns of
these ten genes using single-cell RNA sequence data, which suggested a potential clinical utility. Furthermore,
this study also demonstrated that high-risk groups based on GRGs exhibited reduced sensitivity to some
conventional anticancer drugs (e.g., Dasatinib and Foretinib), suggesting that GRGs may be involved in tumor
cell drug resistance mechanisms to some extent.

Notably, beyond modulating the Warburg effect and glycolysis, model-derived GRGs are implicated in
additional oncogenic processes. GSEA analysis revealed EMT as the top-ranked pathway. EMT facilitates
invasion, metastasis, and therapy resistance; enhanced glycolysis supports its energy and redox demands*?~*4.
Signature genes LMCDI, LICAM, and IDOI have been linked to both glycolysis and EMT#~#. Interferon-
related pathways were also enriched in the high-risk cohort. Interferons orchestrate the tumor immune
microenvironment, exhibiting context-dependent antitumor or immunosuppressive effects®®>!. Glycolysis can
modulate interferon signaling via altered cytokine secretion, antigen presentation, and epigenetic mechanisms™.
Thus, GRGs may both drive EMT and reshape immunity, potentially influencing immunotherapy outcomes. To
validate these hypotheses, future work should perturb LMCDI, LICAM or IDOI in ovarian cancer stem cells
and assess EMT markers (E-cadherin, N-cadherin, vimentin) alongside interferon signaling components (PD-
L1, MHC-], cytokine profiles). Complementary in vivo studies would further substantiate these mechanistic
links and therapeutic potential.

Notwithstanding the exemplary performance of our model in both the training and validation cohorts,
certain limitations persist. The patients were recruited retrospectively, which may obviously introduce some
degree of bias. Secondly, the biological roles of certain GRGs in our model have not been investigated in ovarian
cancer cells, which is essential for subsequent experimental investigation. Consequently, additional in vitro and
in vivo research are required to substantiate the GRGs found in this work, alongside subsequent high-quality,
large-sample, and rigorously monitored multi-center randomized controlled trials for additional confirmation.

Methods

Data collection and processing

Transcriptomic and clinical data for 429 OC patients were obtained from TCGA (https://www.cancer.gov/cc
g/research/genome-sequencing/tcga), along with transcriptomic data from 88 normal ovarian tissues from
the GTEx portal (http://www.gtexportal.org/home/) as a control group. Differentially expressed genes were
identified by comparing TCGA-OC samples with normal ovarian tissues. Additionally, the GSE26193 dataset,
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containing transcriptomic and clinical data for 107 OC patients, was retrieved from GEO (https://www.ncbi.
nlm.nih.gov/geo/). To reduce batch effects, the TCGA-OC and GSE26193 datasets were combined into a new
cohort, designated as TCGA-OC-GSE26193. For further validation, two external datasets, GSE53963 (N=174)
and GSE140082 (N=380), were downloaded from GEO. Transcriptomic and clinical data were extracted using
custom Perl scripts, with log2 transformations applied to the transcriptomic data, and gene expression levels
averaged for repeated measures. All analyses were performed using R (version 4.4.1) and Bioconductor (version
3.18) for data preprocessing, statistical analysis, and visualization.

Identification of GRGs

A total of 4,110 GRGs were identified by searching for the keyword “glycolysis” in the GeneCards database
(https://www.genecards.org/), as referenced in relevant publications (Table S4). A detailed analysis was then
conducted using the ‘limma’ package (version 3.58.1) from Bioconductor (version 3.18) on the TCGA-OC
cohort. By comparing these data with normal ovarian tissue samples from the GTEx database. Additionally,
these GRGs were subsequently analyzed for their association with survival outcomes in the merged cohort,
TCGA-OC-GSE26193. Univariate Cox regression analysis, performed using the ‘Survival’ package (version
3.5-7), was used to evaluate hazard ratios (HRs), 95% confidence intervals (Cls), and p-values for each gene.
The intricate interrelationships and prognostic implications of these GRGs were then visualized in a network
diagram, illustrating their complex interactions and underscoring their prognostic significance in ovarian cancer.

Advanced clustering and pathway analysis of glycolysis subtypes in OC

Consensus clustering was performed using the ‘ConsensusClusterPlus’ package (version 1.66.0) within the R
environment, enabling the identification and visualization of distinct GRG expression patterns in OC samples.
To assess the robustness and stability of the identified clusters, advanced dimensionality reduction techniques,
including UMAP and PCA, were applied, with the ‘ggplot2’ package used for visualization. A heatmap was
subsequently constructed to visualize the clinical characteristics associated with each subtype.

To further explore the biological relevance of these subtypes, functional and pathway enrichment analyses
were conducted®>°. Pathway enrichment was performed using the ‘GSEABase (version 1.64.0) and ‘GSVA
(version 1.50.0) packages, utilizing ‘c2.cp.kegg.symbol’ and ‘c5.go. symbols’ gene sets derived from the GSEA
database. Additionally, single-sample gene set enrichment analysis (ssGSEA) was applied to quantify TME
cell scores across individual OC samples. To depict immune infiltration patterns across the different glycolysis
subtypes, a box plot was created, highlighting variations in TME cell composition.

Developing a prognostic model for glycolysis in OC

The merged TCGA-OC-GSE26193 cohort was randomly partitioned into training and testing sets to ensure
balanced representation. The training set was utilized for model development, while the testing set was reserved
for internal validation. To further validate the model externally, two additional GSE datasets were incorporated.
A multivariate Cox regression analysis, combined with LASSO, was applied to identify the most prognostically
significant GRGs. The RiskScore was calculated as the cumulative product of each gene’s risk coefficient
and expression level () "Coefi* Expi). The glycolysis score was calculated by summing weighted gene
expression levels, where the weights were determined by their corresponding coefficients. OC samples were
categorized into high-risk and low-risk groups based on a median score of 0.983. Survival analysis was conducted
using the ‘survminer’ package (version 0.4.9), and predictive accuracy was assessed via ROC curves from the
‘timeROC’ package (version 0.4), with AUC calculation. A regression nomogram integrating the glycolysis score
and clinical factors was constructed using ‘regplot’ (version 1.1), and model calibration was evaluated with ‘rms’
(version 6.7-1). To assess the potential therapeutic implications of the risk model, drug response analysis was
performed using the “oncoPredict” R package. This tool utilizes gene expression profiles to predict the half-
maximal inhibitory concentration (IC50) values for a panel of common chemotherapeutic and targeted agents
based on the Genomics of Drug Sensitivity in Cancer (GDSC) database. Predicted IC50 values were compared
between high- and low-risk groups to identify drugs that may be more effective in specific subpopulations. A
p-value <0.05 was considered statistically significant.

Analyzing tumor microenvironment and prognostic indicators

The ESTIMATE algorithm, implemented via the ‘estimate’ package (version 1.0.13), was used to quantify
stromal and immune cell fractions, generating “ESTIMATEScore”, “StromalScore”, and “ImmuneScore” for each
tumor sample. Immune cell composition was further analyzed using CIBERSORT, a method that accurately
characterizes tumor microenvironment composition based on gene expression data. This analysis enabled the
identification of correlations between immune infiltration patterns and the expression of survival-related GRGs
(e.g., LMCDI1,L1CAM, MYCN, GALT,IDOI, RPL18, XBP1, LPAR3, RUNX3, PLCG1). Spearman rank correlation
analysis was performed to evaluate the relationship between risk scores and immune cell infiltration. Differences
in “ESTIMATEScores”, including “StromalScore” and “ImmuneScore’, between high- and low-glycolysis score
groups were visualized using violin plots.

TME analysis via single-cell RNA sequence

The Tumor Immune Single-Cell Hub (TISCH, http://tisch.comp-genomics.org), an online repository for singl
e-cell RNA sequence data on TME, was used to explore TME diversity across multiple datasets and cell types®.
Additionally, the updated LnCeCell 2.0 resource (http://bio-bigdata.hrbmu.edu.cn/LnCeCell/), focusing on
IncRNA-associated ceRNA networks, was utilized for further analysis of TME interactions, leveraging single-
cell and spatial transcriptomics data®. These tools facilitated the examination of correlations between GRGs and
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Gene

Forward primer

Reverse primer

LMCD1

CCGCTGGTGGACCTCATCTACTT

GCCGCAGACTCTCGCAGTAATG

L1CAM

GTCCTGCTCATCCTCTGCTTCATC

GCCTTCTCCTCGTTGTCACTCTC

MYCN

CCATCCACCAGCAGCACAACTAT

AGCAAGTCCGAGCGTGTTCAAT

GALT

AATGCTTGCTCAGGCTCAGAGG

TCAGGCGATGGTTGCTGTCTC

IDO1

TCATCTCACAGACCACAAGTCACAG

AGAGTTGGCAGTAAGGAACAGCAAT

RPL18

GGAGTGGACATCCGCCATAACAAG

CCTGGTTGAATGTGGAGTTGGTTCT

XBP1

TGGATTCTGGCGGTATTGACTCTT

GAAAGGGAGGCTGGTAAGGAACTG

LPAR3

GTGGTGTACCTGCGGATCTACG

TGGCTGCCTGTGTCACTCCT

RUNX3

CGGATGGTACGGTGGTGACTGT

AGTGGCTTGTGGTGCTGAGTGA

PLCG1

TGGTGCGGAAGCGGAATGAAC

TTCTCCAGTGCCTCCTCGTTGA

ACTB

GCACTCTTCCAGCCTTCCTTCC

CCGCCAGACAGCACTGTGTT

Table 1. Primer sequences for human qRT-PCR.

functional scores linked to ovarian cancer cell proliferation and metastasis, with detailed analysis conducted
through the CeStateTalk feature of the LnCeCell platform.

Validating the accuracy of prognostic indicators using the BEST data platform

The Biomarker Exploration for Solid Tumors (BEST) platform (https://rookieutopia.hiplot.com.cn/) provides a
robust tool for multi-cohort, multi-level biomarker analysis, encompassing 27 solid tumor types and a total of 363
high-quality cohorts, with nearly 50,000 samples. Designed to identify biomarkers with consistent performance
across independent cohorts, the platform is ideal for validating the reliability of the GRGs identified in this study
across various ovarian cancer cohorts®®.

Cell culture

The human ovarian surface epithelial cell line IOSE-80 and ovarian cancer cell line OVCAR-3 (SUNNCELL
Biotechnology Co., Ltd., Wuhan, China) were used. IOSE-80 cells were maintained in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (P/S),
whereas OVCAR-3 cells were cultured in RPMI-1640 medium supplemented with 20% FBS, 10 pug/mL insulin,
and 1% P/S. All cultures were kept at 37 °C with 5% CO, and passaged every 2-3 days upon reaching ~ 80-90%
confluence. Briefly, cells were washed with phosphate-buffered saline (PBS), detached using 0.25% trypsin-
EDTA, neutralized with complete medium, and centrifuged at 900 rpm for 3-5 min. The resulting pellet was
resuspended in fresh medium and reseeded at a 1:2-1:4 split ratio. Experiments utilized cells in the logarithmic
growth phase.

mRNA extraction and qRT-PCR

Total RNA was extracted using TransZol™ Up reagent (TransGen Biotech, Beijing, China) according to the
manufacturer’s instructions. RNA concentration and purity were measured using a NanoDrop spectrophotometer
(Thermo Fisher Scientific, USA). Subsequently, 1 ug of total RNA was reverse transcribed into cDNA using
the TransScript™ All-in-One First-Strand ¢cDNA Synthesis SuperMix for qPCR (One-Step gDNA Removal)
(TransGen Biotech, Beijing, China). Quantitative real-time PCR was performed using a Bio-Rad CFX96 Real-
Time PCR Detection System with PerfectStart™ Green qPCR SuperMix (TransGen Biotech, Beijing, China). The
qPCR reaction was conducted using a standard three-step amplification protocol for 42 cycles. Each reaction was
run in triplicate. ACTB was used as the internal control. Relative gene expression levels were calculated using the
2784C method. Primer sequences are listed in Table 1.

Comprehensive statistical analysis

All statistical analyses were conducted using R software (Version 4.4.1). Data were analyzed using appropriate
statistical tests, including t-tests and ANOVA. A significance threshold of P<0.05 was applied, and the false
discovery rate (FDR) was controlled with a cutoff value of q <0.05.

Data availability

The datasets generated and analyzed during the current study are publicly accessible via the GTEx Portal (http:/
/www.gtexportal.org/home/), the GEO database (https://www.ncbi.nlm.nih.gov/geo/), and The Cancer Genome
Atlas (TCGA) repository (http://cancergenome.nih.gov/). All raw data, together with detailed data-processing
workflows, can be downloaded from the following link: https://www.jianguoyun.com/p/DTayFkQQvvidDBi8
x-QFIAA. The scripts and code used to design this study are available in the GitHub repository: https://github.
com/mingwei3516/0C.git.
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