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Hydraulic fracturing (HF) is a pivotal technique in the oil and gas industry, aimed at enhancing 
hydrocarbon recovery by increasing reservoir permeability through high-pressure fluid injection. 
Despite its effectiveness, traditional methods used to evaluate HF performance often struggle 
to capture the complex, nonlinear interactions among operational and geological parameters. 
This study presents a comprehensive machine learning (ML)-based framework to address this 
challenge by predicting HF efficiency using three widely used algorithms: Random Forest (RF), 
Support Vector Machine (SVM), and Neural Networks (NN). The novelty of this research lies in the 
combined application of advanced statistical characterization and comparative ML modeling over 
a large-scale dataset comprising 16,000 records. Key statistical metrics, including mean, median, 
variance, skewness, and quartiles, were used to explore data distribution and inform model training. 
Additionally, the study uniquely evaluates model robustness across varying train/test data ratios 
(from 0.1 to 0.9), providing deeper insights into algorithm performance stability. Among the tested 
models, RF outperformed others by achieving the highest coefficient of determination (R2 = 0.9804), 
alongside the lowest Mean Absolute Deviation (MAD) and Root Mean Square Error (RMSE) for both 
training and testing phases. These results demonstrate RF’s capability in handling complex subsurface 
data with high accuracy and low computational cost. The proposed framework not only enhances 
predictive accuracy in HF evaluation but also serves as a practical tool for optimizing fracturing design 
and decision-making in field operations. This integrated approach represents a step forward in applying 
artificial intelligence for data-driven reservoir engineering and contributes to the advancement of 
intelligent hydraulic fracturing practices in heterogeneous and data-rich environments.
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Greek letters
µ	� Viscosity of the fracturing fluid (cP):
ξi	� Slack variable in optimization:
σ2	� Population variance
γ	� Parameter in RBF kernel
Latin letters
h	� Crack height
t	� Injection time (s)
X	� Crack length (ft)
Q1	� First quartile
Q3	� Third quartile
s2	� Sample variance
Abbreviations
ANN	� Artificial Neural Network
B-DNN	� Branched Deep Neural Network
BPNN	� Back Propagation Neural Network
CNN	� Convolutional Neural Network
GRU	� Gated Recurrent Unit
HF	� Hydraulic Fracturing
MAD	� Mean Absolute Deviation
MAPE	� Mean Absolute Percentage Error
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ML	� Machine Learning
MLR	� Multiple Linear Regression
NN	� Neural Networks
PSO	� Particle Swarm Optimization
RBF	� Radial Basis Function
RMSE	� Root Mean Square Error
RF	� Random Forest
RNN	� Recurrent Neural Network:
SVM	� Support Vector Machine

Modern hydraulic fracturing operations involve not only the initiation and propagation of fractures but also the 
careful design of treatment schedules, fluid composition, and proppant transport dynamics1,2. The selection of 
fracturing fluid—ranging from slickwater to gel-based systems—is tailored to reservoir characteristics such as 
permeability, mineralogy, and clay content3,4. Furthermore, the use of fiber optics, microseismic monitoring, and 
real-time pressure diagnostics allows engineers to visualize fracture propagation and adjust treatment in real-
time5,6. These innovations have significantly improved the control and efficiency of fracturing jobs. However, 
predicting the final fracture geometry, stimulated reservoir volume, and production response remains a major 
challenge due to subsurface uncertainties and complex rock-fluid interactions7. This complexity has encouraged 
the integration of data-driven approaches like machine learning to complement conventional physics-based 
models and enhance the design and evaluation of HF treatments8.

Hydraulic fracturing (HF) has emerged as one of the most transformative technologies in the development 
of unconventional hydrocarbon resources, such as shale oil and gas. By injecting high-pressure fluids into low-
permeability formations, HF induces fractures in the rock matrix, thereby significantly enhancing permeability 
and hydrocarbon flow. Over the past two decades, this technology has played a central role in increasing global 
oil and gas production, particularly in regions like North America, where tight reservoirs dominate energy 
portfolios9–15.

Despite its widespread application, HF remains a complex and cost-intensive process. The efficiency of HF 
operations is influenced by a multitude of interrelated factors, including reservoir heterogeneity, fluid properties, 
proppant characteristics, injection parameters, and geomechanical conditions16–24. Traditional physics-based 
simulation tools, while useful, often fail to capture the nonlinear and high-dimensional nature of these 
interactions, leading to suboptimal designs and predictions. As a result, there is a growing interest in data-driven 
approaches that can effectively model the complexity of HF systems and guide decision-making processes24–28.

Recent advancements in data acquisition technologies have generated a large volume of operational and 
geological data during HF operations. These datasets provide unprecedented opportunities for analyzing and 
predicting fracturing outcomes. However, traditional analytical methods often face limitations when addressing 
the complexity and nonlinearity inherent in such data. This highlights the need for innovative solutions capable 
of processing, analyzing, and extracting actionable insights from them.

Machine learning (ML), a subset of artificial intelligence, has emerged as a powerful tool for addressing 
complex challenges across various domains, including energy systems29–34. In the context of HF, ML 
algorithms can process large datasets, identify patterns, predict fracturing efficiency, and optimize operational 
parameters6,35–37. While previous studies have explored the application of ML within this domain, a significant 
gap remains in understanding the performance of different models under varying geological and operational 
conditions.

In 2024, Khouly et al.8 conducted a study and concluded that fracture geometry and conductivity are 
fundamental factors in optimizing HF operations, especially in zones adjacent to water-bearing or gas-bearing 
formations. This study utilized an Artificial Neural Network (ANN) model and data from 59 HF treatments 
in the Western Desert of Egypt. The data were divided into 70% for training, 15% for validation, and 15% for 
testing. After multiple trials, the optimal ANN architecture, such as the number of hidden layers and neurons, 
was determined. The results of this research demonstrated that the ANN model, with a correlation coefficient of 
0.93, achieved performance comparable to conventional fracture simulation software.

In 2024, Khan et al.38 conducted a study in which a physics-based dataset with 62 parameters was developed 
and transformed into a ML model. The results of this study showed that the transfer learning method successfully 
improved predictive performance across all outputs, with an average improvement of 15.12% in root mean 
square error (RMSE) and 15.88% in mean absolute percentage error (MAPE) when compared to training on 
real data. Additionally, particle swarm optimization (PSO) contributed to increased production, with optimized 
values 14.2% higher than the initial predictions. In 88% of the cases, the optimized values aligned with the real 
data.

In 2023, Li et al.39 investigated the application of ML for production forecasting in oil and gas fields. Due to 
its low computational cost, ML is widely used in production prediction for these fields. This study focused on 
the productivity prediction of shale gas wells with HF in the Changning area of the Sichuan Basin. Four different 
methods, including Multiple Linear Regression (MLR), Support Vector Machine (SVM), Random Forest (RF), 
and ANN, were evaluated. The results showed that the MLR and SVM methods performed poorly with relatively 
high errors (> 15%), whereas the ANN and RF methods yielded better results, with RF having a median error of 
around 12% and ANN having the smallest error (< 10%). After the production prediction, PSO was applied to 
improve gas production, leading to nearly a two-fold increase in gas output. This study provides valuable insights 
for shale gas production through HF in the Changning area.

This study aims to fill this gap by developing and evaluating an ML-based framework for HF performance 
prediction using a large-scale dataset (16,000 records) and three popular algorithms: RF, SVM, and Neural 
Networks (NN). A comprehensive statistical analysis is conducted to characterize input data, while model 
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performance is evaluated across various train/test data splits to ensure robustness. The results demonstrate the 
superior performance of the RF model in terms of accuracy and stability, offering valuable insights for optimizing 
HF design and improving reservoir management practices. This integrated approach not only contributes to the 
advancement of intelligent hydraulic fracturing but also provides a practical tool for real-world applications in 
heterogeneous and data-rich environments.

Literature review
Hydraulic fracturing
HF, commonly known as fracking, is an advanced technique used in the drilling and extraction of oil and gas 
resources. In this process, rock formations are fractured by injecting a high-pressure fluid into the wellbore40–47. 
This fluid typically consists of water, sand, and other proppant materials, which are used to create fractures and 
cracks in the rock structure48–51. The goal of HF is to create pathways within the rock layers that facilitate the 
easier and faster flow of natural gas, crude oil, and brine from the reservoir to the surface (Fig. 1).

Fig. 2.  The depiction of the PKN model: (a) illustrating the model setup, and (b) showcasing the assumption 
of plane strain on the vertical section.

 

Fig. 1.  Schematic depiction of HF.
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A key aspect of the HF process is that, once hydraulic pressure is applied to the reservoir and fractures are 
formed, the injected fluid is removed from the wellbore52–54. However, fine sand particles or similar materials, 
known as proppants, remain within the fractures55–58. These proppants effectively help keep the fractures open 
and prevent them from closing, ensuring continued hydrocarbon flow to the surface and improving the efficiency 
of extraction operations59,60.

HF plays a critical role in the exploitation of unconventional oil and gas resources, particularly in shale oil 
and gas fields, which are difficult to extract using conventional methods61–63. This technique has made vast 
reserves of shale gas and oil in various regions of the world, including the United States, a crucial source of 
energy64–66. Consequently, HF not only contributes to increasing oil and gas production but is also recognized 
as a key factor in ensuring global energy security.

This process consists of four main stages, each playing a crucial role in fracturing the rock structure and 
creating optimized pathways for hydrocarbon flow:

Perforation
In this stage, controlled explosions are conducted within the well using a specialized tool known as a Perforating 
Gun. The purpose of these explosions is to create small fractures in the wellbore, which serve as initial pathways 
for the flow of fluids into the reservoir. Typically, perforation occurs in specific sections of the well that are 
suitable for HF fluid injection. After this operation, hydraulic pressure is applied to the reservoir, causing these 
fractures to open more significantly, allowing fluids and proppants to penetrate deeper into the rock formation.

Injection of fluid and initial fracture creation
During this stage, HF fluid is injected into the wellbore. The fluid is injected under high pressure, which 
initiates the creation of primary fractures in the rock. Initially, these fractures are small enough to allow fluid 
movement within the reservoir, but as the operation progresses, the fractures expand, providing greater access 
to the hydrocarbon-bearing rock. The hydraulic fluid typically consists of water, chemicals, and sand, which help 
generate high pressure and stimulate the fracturing of the rock formation.

Continued fluid injection and proppant injection
Following the creation of the initial fractures, continued injection of hydraulic fluid is necessary to further open 
the fractures and access a larger portion of the reservoir. During this stage, proppants (such as sand or aluminum 
oxide) are injected along with the fracturing fluid. These proppants are crucial for maintaining the open fractures 
and preventing them from closing after the hydraulic pressure is reduced. The proppants effectively keep the 
fractures open, facilitating the flow of hydrocarbons from the reservoir into the wellbore.

Row Author(s)
Year of 
Publication Title

ML 
Technique Best Final Result Results of the Article

1 Khouly et 
al.8 2024

Integration Between Different 
Hydraulic Fracturing Techniques and 
Machine Learning in Optimizing 
and Evaluating Hydraulic Fracturing 
Treatment

ANN
Correlation 
coefficient (R) of 
0.93

The ANN model showed promising results for predicting 
fracture geometry, with a high correlation between predicted 
and actual fracture geometry parameters. The model 
outperformed common fracture simulation software.

2 Khan et 
al.38 2024

Physics-Informed Machine Learning 
for Hydraulic Fracturing—Part II: The 
Transfer Learning Experiment

Neural 
Networks 
with 
Transfer 
Learning

Average RMSE 
improvement of 
15.12% and MAPE 
improvement of 
15.88% compared 
to real-data-trained 
approach

Transfer learning demonstrated enhanced predictive 
capabilities across five outputs: fluid efficiency, pad ratio, 
proppant mass, maximum proppant concentration, and 
dimensionless productivity index (JD). The optimized values 
improved production, with 88% of instances showing optimal 
results.

3 Wang et 
al.67 2024

Characterization of natural fracture 
development in coal reservoirs using 
logging machine learning inversion, 
well test data and simulated geostress 
analyses

SVM, RF, 
XGBoost, 
BPNN

BPNN: 95.8% 
accuracy

BPNN outperformed other machine learning models (SVM, 
RF, XGBoost) in predicting fracture development, with an 
accuracy of 95.8%. The model successfully integrated geostress 
data with fracture prediction, showing good agreement with 
actual field data.

4 Luo et al.68 2024

Production Forecast for Multistage 
Hydraulically Fractured Shale Gas 
Well Based on Integration of Domain 
Knowledge and Deep Learning 
Algorithm

Deep 
Learning 
(GRU 
model with 
Mask layer)

MRE of 11.7%, 
77.4% lower than 
traditional models

The deep learning model integrated domain knowledge and 
outperformed traditional models, achieving a much lower 
mean relative error (MRE). The Mask layer improved data 
efficiency, enhancing the accuracy of the production forecast.

5 Li et al.39 2023
Prediction of Shale Gas Production by 
Hydraulic Fracturing in Changning 
Area Using Machine Learning 
Algorithms

MLR, SVM, 
RF, ANN

RF: ~12% median 
error, ANN: <10% 
error

The RF and ANN models were the most accurate for predicting 
shale gas production, with RF having a median error of ~12% 
and ANN having the smallest error (<10%). Particle swarm 
optimization improved production by approximately two times.

6 Yue et al.69 2022
Prediction of effective stimulated 
reservoir volume after hydraulic 
fracturing utilizing deep learning

Branched 
Deep 
Neural 
Network 
(B-DNN)

97% agreement with 
actual field data

The B-DNN model outperformed CNN and RNN models in 
predicting the effective stimulated reservoir volume (SRV) after 
hydraulic fracturing, with high accuracy and efficiency. The 
model was less time-consuming compared to CNN and RNN.

Table 1.  Includes a collection of articles on the application of ML methods in optimizing and predicting the 
performance of HF operations. It examines the methods and results obtained from each of these articles.
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Ceasing fluid injection and flowback of fracturing fluid
In this final stage, the injection of fluid is halted, and the fracturing fluid that was pumped into the wellbore 
during the operation begins to flow back to the surface. This fluid, typically containing water, chemicals, and 
spent proppants, is returned to the surface and removed from the well. The flowback of the fracturing fluid 
indicates that the fractures have been successfully opened and the proppants are in place, allowing for the natural 
flow of hydrocarbons from the reservoir into the wellbore. After this stage, the well is now ready for hydrocarbon 
production, which can occur through natural flow or enhanced recovery methods such as pumping or gas 
pressure assistance.

The PKN model (Perkins-Kern-Nordgren) is a fundamental model for describing hydraulic fracturing in oil 
and gas formations. This model is specifically developed to describe long and narrow fractures in reservoirs with 
limited thickness and is based on simplified assumptions about fluid flow and fracture geometry. In this model, 
the fracture propagates either horizontally or vertically within a homogeneous formation, with the fracture 
width (opening), length, and height being the primary parameters under investigation.

The PKN (Perkins-Kern-Nordgren) model for hydraulic fracturing in the oil industry is described as follows. 
Using the provided parameters, the equation takes the following form:

	 σ = C : ϵ� (1)

	 ∇ σ + ρ g = ρ ü� (2)

The Cauchy stress tensor (σ), linear strain tensor (ε), and elastic tensor (C) are determined by the Poisson’s ratio 
(ν). Additionally, local rock density (ρ), gravity acceleration (g), and displacement (u) are also considered as 
significant factors influencing rock deformation.

	
w = (1 − v)

G

√
(h2 − 4z2)(p − σ 0)� (3)

h represents the fracture height, z denotes the vertical coordinate, p stands for fluid pressure, and σ0 denotes the 
ambient stress.

	
q = − w3

12µ

dp

ds
� (4)

For fluid flow in a two-dimensional hydraulic fracture, Poiseuille’s law is expressed as follows: Here, q represents 
the flow rate, w denotes the fracture width, µ is the viscosity of the fracturing fluid, p stands for fluid pressure, 
and s is the local coordinate aligned with the tangential direction to the fracture path.

	
∂ p

∂ x
= − 64µ q

π w3
maxh

� (5)

The pressure gradient in the direction of fracture propagation is calculated for laminar flow in an elliptical tube 
according to the classic solution for laminar flow. Here, wmax represents the fracture width at the center.

	
∂ A

∂ t
+ ∂ q

∂ x
+ qL = 0� (6)

The continuity equation for fluid flow, where A represents the cross-sectional area of the fracture.
For a clearer understanding of hydraulic fracturing performance, refer to Fig.  2. Figure  2a presents a 

schematic side view of the geological layers within a hydrocarbon reservoir. This view illustrates the stratigraphy 
of the subsurface, the drilled well path, and the vertical extent of the fractures, allowing for a better perception of 
fracture depth and their propagation across different formations. It provides valuable insights into how fractures 
interact with the surrounding rock layers at various depths.

In contrast, Fig.  2b offers a closer and more detailed frontal view of the formation where the hydraulic 
fracturing process has taken place. This perspective highlights the specific zone of fracturing and focuses on 
the mechanics of fracture propagation. It illustrates the high-pressure injection of fracturing fluid and the 
placement of proppants (fracture-holding particles) within the created fractures. These details help engineers 
and researchers analyze fracture development, stability, and their impact on enhancing reservoir permeability.

Together, these two illustrations complement each other by offering dual perspectives—one from the side 
and one from the front—providing a complete visual representation of the hydraulic fracturing process and its 
effects on the subsurface formation. They serve as essential tools for simulating, understanding, and optimizing 
fracture design in real-world reservoir operations.

Methodology
Peculiarities of the applied machine learning methods
The machine learning framework developed in this study exhibits several distinctive features that set it apart 
from conventional approaches applied in HF analysis. First and foremost, a large-scale dataset comprising 16,000 
data records was utilized, which is significantly larger than the datasets used in many previous studies. This 
extensive dataset enhances the robustness and generalizability of the models, allowing them to better capture the 
underlying patterns and interactions among HF parameters.
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Secondly, the study integrates comprehensive statistical analysis—including metrics such as mean, variance, 
skewness, kurtosis, quartiles, and data visualization via box plots and violin plots—to better understand the 
distribution and variability of the input variables. Such detailed preprocessing is often overlooked in many data-
driven HF studies, yet it plays a crucial role in improving model accuracy and interpretation.

Another unique aspect of the proposed methodology is the evaluation of model performance across multiple 
train/test ratios, ranging from 0.1 to 0.9. This systematic approach provides a deeper understanding of how 
data availability affects model performance and stability. The analysis of R2 values across these splits, supported 
by multiple independent runs for each model, offers insights into the consistency and reliability of different 
algorithms under varying data constraints.

Furthermore, the models were developed using domain-specific parameters such as fracture height, fracture 
length, fluid viscosity, and injection time, which are directly derived from the governing physical equations of 
HF. This integration of physics-based variables into ML models enhances their relevance to real-world operations 
and bridges the gap between data-driven techniques and conventional engineering understanding.

Finally, by comparing three well-established algorithms—RF, NN, and SVM—under identical conditions, 
the study provides a fair and comprehensive evaluation of model capabilities, with RF demonstrating superior 
performance in terms of accuracy and error minimization.

Data preprocessing
In this study, the data were initially plotted using analytical formulas, and the assumptions considered for 
modeling were outlined. The data were then analyzed to examine patterns and key features. Subsequently, 
using the MATLAB programming language libraries — a common tool in engineering and computer science 
— the SVM, NN, and RF methods were implemented, and the datasets were analyzed, organized, and sorted 
using Microsoft Excel. These algorithms are among the most widely used ML techniques for prediction and 
data analysis. Using these algorithms, the R2 value was calculated, which serves as a metric for evaluating the 
accuracy of prediction models. The dataset comprised 16,000 data points with 4 input variables. Table 2 presents 
the statistical insights related to the dataset and its distribution.

The required statistical information is also presented in Table 2.
In this paper, several key parameters for analyzing fractures in the HF process are examined. These 

parameters are each represented by a specific symbol: µ  (mu) denotes the viscosity of the fracturing fluid (in 
centipoise), h represents the crack height, t indicates the injection time, and X  corresponds to the crack length. 
Understanding and accurately measuring these variables are crucial for interpreting the study’s results, as well 
as for developing predictive models and strategies. This is particularly important in HF, where the interaction 
between fluid flow and fracture propagation has a significant impact on the process outcomes.

The data obtained were calculated using Eqs. 1–6. Subsequently, machine learning methods were applied to 
analyze the data with the corresponding inputs. The data range is also presented in Table 2; Fig. 3.

The provided table presents a statistical analysis of the HF process, aimed at evaluating its performance. This 
analysis includes various statistical parameters such as maximum, minimum, range, median, first quartile (Q1), 
third quartile (Q3), mean, variance, and skewness.

The median, as a significant statistical measure, divides the dataset into two equal parts, with half of the data 
points are below the median and the other half are above it. This measure is particularly valuable in analyzing 
datasets containing outliers, as it is minimally affected by extreme values. To calculate the median, the data must 
first be arranged in ascending order. If the number of data points is odd, the median corresponds to the middle 
value. Conversely, if the number of data points is even, the median is calculated as the average of the two middle 
values.

	
Median

{
x( n+1

2 ) F or an odd EquationNumber of data points n
x( n

2 )+x( n
2 +1)

2 F or an even EquationNumber of data points n
� (7)

Quartiles are statistical measures that divide a dataset into four equal parts. The Q1 marks the value below which 
25% of the data points are located, indicating that the remaining 75% lie above it. Conversely, the Q3 identifies 

µ h X t

Max 999.798 983.890 1997.659 179.998

Min 50.437 262.659 1.305 30.020

Range 949.361 721.231 1996.354 149.978

Median 532.754 631.755 982.796 105.561

Q1 287.926 445.490 500.247 65.847

Q3 772.414 811.492 1492.191 143.102

Mean 528.955 629.039 987.441 104.876

Variance 76222.545 43514.210 330749.001 1935.455

Skewness − 0.020 − 0.033 0.002 − 0.009

Kurtosis − 1.200 − 1.208 − 1.184 − 1.234

Table 2.  Data statistics.
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the value below which 75% of the data points fall, with 25% positioned above it. Quartiles play a crucial role 
in Box Plots, as they help visualize the distribution and concentration of data, offering valuable insights into its 
range and potential outliers.

The mean, a measure of central tendency, represents the average of a dataset. It is determined by adding all 
the data points together and dividing the sum by the total number of observations. However, the mean is highly 
sensitive to outliers, which can distort its accuracy. As a result, in datasets with high variability or extreme values, 
the median or quartiles may serve as more reliable indicators of central tendency.

	
Mean = 1

n

∑
n
i=1Xi� (8)

Variance measures the degree to which data points deviate from the mean. A high variance reflects a wide 
distribution, indicating that the data points are spread out significantly from the mean. On the other hand, a low 
variance indicates that the data points are closely concentrated around the mean. Variance is a valuable tool in 
statistical analysis, as it quantifies the level of variability within a dataset and offers a deeper understanding of its 
distribution and characteristics.

	
P opulation V ariance : σ 2 = 1

n

∑
n
i=1(Xi − µ )2� (9)

	
Sample V ariance : s2 = 1

n − 1
∑

n
i=1(Xi−

−
X)

2
� (10)

Skewness quantifies the asymmetry in a dataset’s distribution. A positive skewness indicates that the distribution 
extends towards higher values, with a larger concentration of lower values and a few extreme high values. In 
contrast, negative skewness suggests the distribution is elongated towards lower values, characterized by more 
high values and a few extreme low values. Analyzing skewness is crucial for understanding data distribution, as 
it reveals tendencies towards a particular direction, thereby influencing statistical interpretations and decision-
making processes.

	
Skewness = n

(n − 1)(n − 2)
∑

n
i=1

(
Xi−

−
X

s

)3

� (11)

Each of these parameters, with their unique characteristics, plays a crucial role in describing and analyzing 
datasets, providing valuable insights into their distribution, variability, and asymmetry. The collected data 
have been carefully analyzed, and the parameters related to the HF process have been separately plotted from 
a statistical perspective. The analyses are visually presented using Box Plots and Violin Plots (Fig. 3), which 
illustrate a range of statistical indicators, including the median, Q1, Q3, mean, variance, skewness, as well as the 
maximum and minimum values.

Fig. 3.  Box-plot and Violin Plots of HF parameters.
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Based on Fig. 3, it can be concluded that:
In this study, the descriptive statistics for four critical variables related to HF are analyzed: viscosity of the 

fracturing fluid (µ), height of the fracture (h), length of the fracture (X), and injection time (t). These statistics 
help in understanding the data distribution, variability, and behavior. The maximum and minimum values 
for these parameters indicate significant variability, with viscosity ( µ ) showing a wide range, from 50.437 
to 999.798, and fracture length (X) ranging from 1.305 to 1997.659. The range for fracture height ( h) is also 
substantial, while injection time (t) has a more moderate spread.

The median, Q1, and Q3 values provide further insights into the data distribution. For µ , the median is 
532.754, with Q1 at 287.926 and Q3 at 772.414, indicating a moderate spread in viscosity values. Similar patterns 
are observed for h, X , and t, with Q1 and Q3 values suggesting varying degrees of spread in the data. The mean 
values for all parameters are close to their respective medians, indicating relatively symmetric distributions, with 
viscosity, fracture height, and length values being close to the average.

Variance analysis shows that viscosity ( µ ) has the highest variance, reflecting its significant role in the 
variability of the HF process. The fracture height ( h) and length ( X) also exhibit considerable variance, 
indicating high variability in fracture dimensions. In contrast, injection time ( t) has the lowest variance, 
suggesting more consistency in the injection process.

Skewness and kurtosis analyses show that viscosity and fracture height data are slightly negatively skewed, 
with values slightly concentrated toward the higher end. Fracture length and injection time distributions are 
nearly symmetric. The kurtosis values for all parameters are negative, indicating platykurtic distributions, which 
suggests fewer extreme outliers compared to normal distributions.

Figure 4 presents the correlation matrix among five variables—W, µ, h, X, and t—both numerically and 
graphically. The values within the matrix represent the Pearson correlation coefficients between each pair of 
variables, ranging from − 1 to + 1. Coefficients close to + 1 indicate a strong positive correlation, those near 
− 1 signify a strong negative correlation, and values around zero suggest no significant linear relationship. 
The color scheme, ranging from blue (negative correlation) to red (positive correlation), further facilitates the 
interpretation of these relationships. The results reveal that the strongest positive correlation occurs between 
variables W and X, with a coefficient of 0.66. In contrast, other variable pairs such as h and µ, h and X, as well as t 
with the remaining variables, exhibit very weak or negligible linear correlations. This analysis plays a crucial role 
in identifying influential variables and enhancing the understanding of their interrelationships.

Machine learning methods
Neural network
Neural networks (NN) are one of the ML algorithms inspired by the structure and functioning of the human 
brain. These networks consist of interconnected nodes (neurons) that process data in layers. NNs are highly 
effective in solving complex problems in areas such as image recognition, natural language processing, and 
prediction.

A typical neural network consists of three types of layers:

•	 Input Layer: Receives the input data.
•	 Hidden Layers: Perform computations and feature extraction.
•	 Output Layer: Provides the prediction or final result.

Fig. 4.  Correlation plot.
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Each node in a layer is connected to nodes in the next layer via weighted connections. During training, these 
weights are adjusted to minimize the error between predictions and actual outputs (see Fig. 5).

Equations and Evaluation Metrics of NN.

	(1)	 Activation functions

Each neuron processes input values by applying an activation function, which determines whether the neuron 
should be activated. Common activation functions include:

•	 Sigmoid:

	
f (x) = 1

1 + e−x
� (12)

Used for binary outputs, compressing values between 0 and 1.

•	 ReLU (Rectified Linear Unit):

	 f (x) = max(0, x)� (13)

Commonly used in hidden layers for faster convergence.

•	 SoftMax:

	
f (xi) = exi

∑ N

j=1exi
� (14)

Used in multi-class classification problems.

Fig. 5.  NN algorithm.
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	(2)	 Forward propagation

During forward propagation, data flows from the input layer through hidden layers to the output layer. At each 
neuron, the weighted sum of inputs is calculated, followed by the application of an activation function:

	
z =

∑
n
i=1wixi + b� (15)

	 a = f (z)� (16)

Here, wi are the weights, xi are inputs, b is the bias term, z is the weighted sum, and a is the activated output.

	(3)	 Cross-Entropy loss (for classification)

	
L = − 1

n

∑
n
i=1

∑
C
j=1yij logŷij � (17)

Where y is the true label and ŷ is the predicted probability.

	(4)	 Backward propagation and optimization

Backward propagation adjusts the weights to minimize the loss function using optimization algorithms like 
Gradient Descent. The gradients of the loss function with respect to the weights are computed using the chain 
rule of calculus.

The weight update formula is:

	
w(t+1) = w(t) − η

∂ L

∂ w
� (18)

Where η is the learning rate, L is the loss, and w are the weights.

Random forest
RF is a ML algorithm based on the ensemble learning technique, which combines multiple decision trees to 
improve model accuracy and reduce the risk of overfitting. It is applicable to both classification and regression 
tasks and leverages two primary techniques: Bootstrap Aggregation (Bagging) and Random Feature Selection.

Fig. 6.  RF Algorithm.
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In the Bagging method, multiple subsets of training data are randomly generated with replacement. Each 
decision tree is trained on one of these subsets, reducing the variance of the model. In the Random Feature 
Selection method, at each node of the tree, only a random subset of features is considered for decision-making. 
This approach reduces the correlation between trees and enhances the final model’s accuracy.

The final prediction in RF is made using majority voting for classification tasks and by calculating the mean 
output of all trees for regression tasks. This combination results in a highly accurate model that is resilient to 
small variations in data. Furthermore, RF is highly resistant to overfitting due to its use of random data subsets 
and feature limitations (see Fig. 6).

Equations and Evaluation Metrics of RF.

	(1)	 Entropy (for classification)

	
H (S) = −

∑
C
i=1pilog2 (pi)� (19)

Where C  is the number of classes, and pi is the probability of each class.

	(2)	 Gini index (for classification)

	
G (S) = 1 −

∑
C
i=1p2

i � (20)

	(3)	 Prediction Aggregation:

•	 For classification:

	 ŷ = Mode {h1 (x) , h2 (x) , . . . , hk (x)}� (21)

•	 For regression:

	
ŷ = 1

k

∑
k
i=1hi (x)� (22)

Where hi (x) is the prediction of the i − th tree, and k is the number of trees.
The implementation of the RF algorithm involves three main steps. The first step is generating random 

samples using Bootstrap. In this process, multiple random subsets are created from the original training dataset 
through sampling with replacement. These subsets serve as the training data for individual decision trees, 
ensuring diversity and reducing overfitting in the overall model.

The second step involves building decision trees. Each subset is used to construct a unique decision tree. 
At each node within the tree, a random subset of features is selected, rather than considering all features. This 
ensures further randomness and reduces correlation among the trees. To determine the optimal decision-making 
criteria at each node, metrics such as Entropy or Gini Index are used to measure the impurity or information 
gain.

The final step is aggregating the outputs of the trees. For classification tasks, the final prediction is based on 
a majority voting system, where the class predicted by the majority of trees becomes the output. For regression 
tasks, the final prediction is calculated by taking the mean of the outputs from all the decision trees. This 
aggregation method ensures a robust and accurate final prediction, leveraging the diversity of the ensemble.

Support vector machine
SVM is a supervised ML algorithm used for both classification and regression tasks. It aims to find the best 
hyperplane that separates the data while maximizing the margin between the classes. The hyperplane serves as 
the boundary that separates data points belonging to different classes. In two-dimensional space, the hyperplane 
is a line, while in three-dimensional space, it becomes a plane. The general equation of the hyperplane is as 
follows:

	 w · x + b = 0� (23)

Here, w represents the weight vector, x denotes the feature vector, and b is the bias term. The margin is the 
distance between the hyperplane and the nearest data points from each class, known as support vectors. The 
objective of SVM is to maximize this margin, which enhances the model’s generalization capability.

To address non-linear problems, SVM employs kernel functions. These functions map the data into higher-
dimensional spaces where it becomes linearly separable. Common kernels include the linear kernel, polynomial 
kernel, and radial basis function (RBF) kernel. Their equations are as follows:

•	 Linear Kernel:

	 K (xi, xj) = xi · xj � (24)

•	 Polynomial Kernel:
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	 K (xi, xj) = (xi · xj + C)d� (25)

•	 Radial Basis Function (RBF) Kernel:

	 K (xi, xj) = exp
(
−γ ∥(xi − xj∥2)

� (26)

In cases where the data is not perfectly separable, SVM uses the concept of a soft margin. This allows some data 
points to be misclassified. A regularization parameter, C , controls the trade-off between maximizing the margin 
and minimizing classification errors.

The optimization problem in SVM to find the optimal hyperplane is defined as:

	
min

1
2 ∥w∥2� (27)

Subject to:

	 yi (w · xi + b) ≥ 1 for all i� (28)

For non-separable data, slack variables ( ξ i) are introduced, and the optimization problem is modified as follows:

	
min

1
2∥w∥2 + C

∑
n
i=1ξ i� (29)

This problem is typically solved using its dual form, where the objective function becomes:

	
max

∑
n
i=1α i − 1

2
∑

n
i=1

∑
n
j=1α iα jyiyjK(xi, xj)� (30)

Subject to:

	
0 ≤ α i ≥ C and

∑
n
i=1α iyi = 0� (31)

The decision function for a new sample xis given by:

	
f (x) = sign

(∑
n
i=1α iyiK (xi, x) + b

)
� (32)

In various studies, the use of machine learning algorithms for predicting the characteristics of oil and gas 
reservoirs, especially in the hydraulic fracturing process, has been explored. For instance, in 2022, Kamali et 
al.70 utilized machine learning models to predict permeability in carbonate reservoirs and simulated the GMDH 
model as the most accurate one. Additionally, in 2024 the study by Feng et al.,71 the CNN model demonstrated 
the best performance in predicting groundwater levels, which could similarly predict fluid behavior in hydraulic 
fracturing reservoirs. In 2021, Barjouei et al.72 applied deep learning algorithms to predict liquid flow rates 
through oil wells, showing that deep learning models outperformed other models in terms of accuracy. These 
studies highlight the potential of machine learning algorithms, particularly deep learning models, in predicting 
reservoir characteristics and optimizing the hydraulic fracturing process.

In their 2023 study, Ghorbani et al.73 used similar algorithms like RF and SVM for predicting coronary 
artery disease, identifying the RF model as the most accurate. The use of machine learning algorithms like RF 
for predicting complex reservoir features can improve the accuracy of predictions in processes related to oil and 
gas extraction, such as hydraulic fracturing. These studies demonstrate that advanced machine learning models, 
especially in complex environments like carbonate and oil reservoirs, can serve as valuable tools for predicting 
and optimizing production processes.

Results and discussion
Data division into training and testing sets
At the beginning of this study, all collected input parameters were carefully analyzed and reviewed. Subsequently, 
the input parameters, including µ , h, X , and t, were selected for performing computations using ML algorithms 
in MATLAB software. The input data were then divided into two separate sets, namely training and testing 
datasets, to evaluate the performance of the algorithms. The proposed algorithms for HF were executed based 
on different ratios of training to testing data, and the accuracy of each method was calculated and presented in 
graphical form.

The random selection of input data based on these ratios can significantly affect the final accuracy of the 
algorithms. Accordingly, each method was evaluated through 10 independent runs, and the average R2 values 
obtained from these runs were reported as the final results. This approach provides a precise assessment of the 
performance and accuracy of each algorithm.

Table 3 reports the final R² values for each layer within the range of 0.1 to 0.9. These values are independently 
calculated for each ML method and are presented for the test, train, and test/train data sets. In fact, based on the 
results in the test/train rows, the optimal models can be selected.
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Fig. 7.  Performance of each ML method for different Train/Test ration (HF).

 

R2-NN R2-RF R2-SVM

Test

10% 0.5624 0.5513 0.5450

20% 0.8629 0.8526 0.8495

30% 0.9630 0.9592 0.9573

40% 0.9628 0.9630 0.9622

50% 0.9632 0.9655 0.9653

60% 0.9632 0.9675 0.9686

70% 0.9631 0.9734 0.9735

80% 0.9631 0.9770 0.9761

90% 0.9634 0.9768 0.9779

Train

90% 0.5738 0.5890 0.5779

80% 0.8723 0.8874 0.8761

70% 0.9711 0.9849 0.9771

60% 0.9687 0.9860 0.9773

50% 0.9686 0.9842 0.9794

40% 0.9676 0.9848 0.9796

30% 0.9666 0.9850 0.9793

20% 0.9662 0.9838 0.9801

10% 0.9647 0.9817 0.9810

Test/Train

10–90% 0.5681 0.5698 0.5612

20–80% 0.8676 0.8698 0.7627

30–70% 0.9670 0.9720 0.9672

40–60% 0.9657 0.9745 0.9697

50–50% 0.9659 0.9748 0.9723

60–40% 0.9654 0.9761 0.9741

70–30% 0.9649 0.9792 0.9764

80–20% 0.9647 0.9804 0.9781

90–10% 0.9641 0.9792 0.9795

Table 3.  Final R2 values for each layer across ML Methods.
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The optimal performance of each ML method is presented in graphical form in Fig. 7. which includes both 
training and testing data. This figure provides a clear visual representation of how each method performs under 
different conditions. By examining the graphical data, it becomes evident which methods are more reliable and 
effective in achieving accurate predictions, allowing for a more in-depth understanding of their performance 
across various datasets. The comparison between training and testing data also allows for the assessment of 
overfitting or underfitting, which is crucial for determining the generalizability of the models.

To conduct a more precise and comprehensive evaluation of the algorithms’ performance, the ranges 
considered in the figure were narrowed to enable more accurate and focused analyses (See Fig. 8). By refining 
the scope of the data, the results can be better interpreted, allowing for a deeper understanding of the algorithms’ 
behavior. Specifically, the Train/Test ratio was set within a range of 0.3 to 0.9, which provided a balance between 
training and testing data that is essential for assessing the models’ generalization capabilities. Additionally, the 
R-squared values were confined to the range of 0.95 to 0.99 to ensure that the analysis focused on the most 
accurate models, thus eliminating any results that might indicate poor model fit or excessive variance.

These adjustments were crucial in facilitating a more detailed and refined analysis of the performance 
metrics. By narrowing the focus to these specific ranges, it became easier to discern patterns and trends in the 
data that would have otherwise been obscured by broader ranges. This allowed for the identification of the 
optimal conditions under which each method performed best, making the evaluation process more insightful.

Based on the results presented in Fig.  8, the R2 values further corroborate the relationship between the 
algorithms’ accuracy and the conditions of the training-to-testing data ratio. The findings reveal that each 
algorithm has an ideal ratio that maximizes its predictive power. Specifically, for the NN, the highest accuracy 
was achieved with a training-to-testing ratio of 0.7, while the RF performed best at a ratio of 0.8, and the SVM 
reached its peak performance at a ratio of 0.9. These observations underscore the sensitivity of each algorithm’s 
performance to the ratio of training to testing data, emphasizing the importance of fine-tuning this parameter 
during the modeling process. By optimizing this aspect, it is possible to enhance the overall performance of the 
models, ensuring that they are not only accurate but also robust across different datasets.

Subsequently, the R2 values for each ML method will be examined in greater detail, providing a comprehensive 
analysis of their performance.

Performance of each method in the training and testing phases
The results obtained from the regression analyses and R2 values are presented in graphical charts, where the 
data from the training (Train) and testing (Test) sets are shown simultaneously. These charts clearly display 
the model’s fit to the data, with the final R2 value accurately depicted. This method is particularly useful for 
evaluating the model’s accuracy and performance in predicting test data, and it also facilitates the comparison of 
the model’s performance across the training and testing datasets.

Figure 9 presents the obtained R2 values from HF.
Table  4 presents the regression equations for predicting the output based on a specific input variable. 

These equations have been extracted using various ML methods, with the goal of modeling and simulating 
the mathematical relationships between input and output variables. In this study, these equations have been 
specifically designed for analyzing and predicting the behavior of different systems. Through these methods, 
high-accuracy models have been developed to establish the relationship between inputs and outputs, which can 

Fig. 8.  Performance of each ML method for different Train/Test ratios with limitations.
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Fig. 9.   Regression of Different ML Methods for HF.
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NN RF SVM

Test Train Test Train Test Train

MAD 7.162 6.933 6.366 5.878 6.588 5.384

RMSE 14.706 13.437 11.929 10.48 13.162 10.581

Table 6.  Plotted error values of ML methods.

 

Algorithm Parameter Default Value Description

Random Forest (RF)

Method Bag Bagging method used to construct the ensemble

NumLearningCycles 100 Number of decision trees

Learners Tree Type of base learner

MinLeafSize 1 Minimum number of observations per leaf

Support Vector Machine (SVM)

KernelFunction linear Type of kernel function

BoxConstraint (C) 1 Penalty parameter of the error term

KernelScale auto Automatically scaled kernel

Standardize false No data standardization applied

Neural Network (NN)

HiddenLayerSize 10 Number of neurons in the hidden layer

Training Function trainlm Levenberg–Marquardt backpropagation

Performance Function mse Mean squared error loss function

Epochs 1000 Maximum number of training iterations

Goal 0 Training goal; 0 means continue until other stopping criteria are met

Table 5.  Control parameters of RF, SVM, and NN algorithms used in MATLAB.

 

Equations

NN
Test Output ~ = 0.84*Target + 4.6

Train Output ~ = 0.86*Target + 3.6

RF
Test Output ~ = 0.97*Target + 1.4

Train Output ~ = 0.97*Target + 1.3

SVM
Test Output ~ = 0.91*Target + 4.2

Train Output ~ = 0.9*Target + 4

Table 4.  The regression equations for each of the ML methods.

 

Fig. 10.  The mean absolute error of simulation, correlation, and ML of HF for the validation data.
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be effectively used in decision-making and process optimization. To ensure transparency and reproducibility, 
the default control parameters used for each machine learning algorithm in MATLAB are presented in Table 5.

Statistical criteria in measuring the accuracy of machine learning methods
In conclusion, the accuracy and performance of each method presented in this article have been compared 
using statistical metrics such as the correlation coefficient and the mean relative error. The following equations 
outline the calculation methods for these statistical parameters. Table 6 presents the performance values for each 
method.

The RMSE is a key statistical measure used to evaluate the effectiveness of predictive models. RMSE measures 
the difference between predicted values and actual values, providing an indication of the model’s accuracy. It is 
typically used to assess model performance by calculating the average squared error. The RMSE value ranges 
from zero to infinity, with values closer to zero indicating higher model accuracy.

	
RMSE =

√
1
n

∑
n
i=1(yi − ŷi)2� (33)

The Mean Absolute Deviation (MAD) is a measure used to assess the accuracy of prediction models by averaging 
the absolute differences between the actual and predicted values. A lower MAD value signifies higher model 
accuracy, and a MAD of zero indicates perfect alignment between the model’s predictions and the real data. This 
metric is especially valuable for comparing the performance of different models and optimizing them.

	
MAD = 1

n

∑
n
i=1 |yi − ŷi|� (34)

In this equation, yi denotes the actual value for sample i, while ŷi represents the predicted value for the same 
sample.  indicates the total number of samples. This formula considers both positive and negative errors as 
absolute values, meaning all errors are treated as positive, which helps minimize the effect of large errors.

R2 is a statistical measure used to evaluate the effectiveness of prediction models, often serving as a reliable 
criterion for model assessment. Also known as the coefficient of determination, R2 quantifies the proportion of 
variation in the dependent variable that can be explained by the independent variables in the model’s predicted 
results.

A high R2 value, close to 1, indicates that the model has successfully accounted for most of the variation in 
the dependent variable, resulting in highly accurate predictions. On the other hand, a low R2 value, approaching 
0, suggests that the model has not effectively captured the variations in the dependent variable, leading to 
significant discrepancies between the predicted and actual values.

	
R2 = 1 −

∑
N
i=1(yP red

i − yexp
i )2

∑
N
i=1(yP red

i − average(yexp
i ))2 � (35)

Table  6 presents the error values for each ML method, providing a precise numerical comparison of the 
performance of each model. This table offers key information that allows for a quantitative evaluation of the 
accuracy of the predictions made by each method. In contrast, Fig. 10 graphically displays the errors for RMSE 
and MAD, which are particularly useful for directly comparing the performance of the methods. This graphical 
representation clearly illustrates the differences in the predictive accuracy of each model, helping to better 
understand the deviations between predicted and actual values. By using these two-error metrics, RMSE and 
MAD, it becomes easier to evaluate the performance of each method against the test data, allowing for a clearer 
comparison.

Table 7 presents the results of the best method (RF) for predicting the HF characteristics. This table reports 

various metrics for evaluating the model’s accuracy, including the following:

•	  R2: The coefficient of determination, which indicates the degree of fit between the model and the actual data. 
For the RF method, it is 0.9804, reflecting the high accuracy of the model.

•	  MAD: The mean absolute deviation, reported as 6.366 for the test data and 5.878 for the training data.
•	  RMSE: The root mean squared error, which is 11.929 for the test data and 10.48 for the training data.

These values indicate the excellent performance of the RF method in prediction, particularly given the high R2 
value and relatively low errors for MAD, and RMSE.

To validate the performance of the machine learning algorithms, the results obtained from the hydraulic 
failure evaluation using these algorithms were sent to the laboratory method for comparison. The goal was to 
conduct a precise and comprehensive comparison to determine which of the algorithms best aligns with the 

Best Method R2 MAD (Test) MAD (Train) RMSE (Test) RMSE (Train)

RF 0.9804 6.366 5.878 11.929 10.48

Table 7.  Best results for each of the HF.
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experimental method. Specifically, the comparison focused on the level of agreement between each algorithm’s 
predictions and the real laboratory data. By employing various evaluation metrics and carefully examining the 
differences between predicted values and actual observations, the results from each algorithm were continuously 
compared with the laboratory data. Ultimately, it was observed that the RF method demonstrated the best 
performance in aligning with the laboratory data, providing predictions that closely matched the real results. 

Fig. 11.  Comparison of algorithms with laboratory results.
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This finding confirms that, as mentioned throughout the article, RF is one of the most effective algorithms in this 
context and exhibits the best response compared to the other methods. These results highlight the importance 
of selecting the right algorithm for modeling and prediction, especially when high accuracy and close alignment 
with experimental data are required (See Fig. 11).

Table 8 Summarizes the main limitations identified in the current study. Although the developed machine 
learning models demonstrated high predictive accuracy for estimating HF depth, several challenges remain. 
These include the dependency on field-specific data, limited generalization across other geological settings, and 
the absence of uncertainty quantification in the predictive outputs. Additionally, the model’s performance May 
be influenced by the quality and completeness of the input features, and the lack of real-time validation restricts 
its immediate field applicability. Acknowledging these limitations provides transparency in model evaluation 
and highlights important directions for future research and improvement.

Conclusions
This study presented a comprehensive and data-driven machine learning (ML) framework for evaluating and 
predicting the performance of hydraulic fracturing (HF) operations. By integrating three widely used ML 
algorithms—Random Forest (RF), Support Vector Machine (SVM), and Neural Networks (NN)—and applying 
them to a large-scale dataset comprising 16,000 records, the study successfully addressed the limitations 
of traditional physics-based models in capturing the complex and nonlinear relationships among fracturing 
parameters.

Among the tested models, the RF algorithm demonstrated the best overall performance with a coefficient of 
determination (R2) of 0.9804, a Mean Absolute Deviation (MAD) of 6.366 (test) and 5.878 (train), and a Root 
Mean Square Error (RMSE) of 11.929 (test) and 10.48 (train). These metrics underscore the robustness and 
predictive accuracy of the RF model in modeling subsurface behavior and fracture geometry.

	(1)	 Large-Scale Dataset Usage: The use of a 16,000-point dataset, significantly larger than those used in previ-
ous research, improved model training and allowed for better generalization to unseen data.

	(2)	 Advanced Statistical Characterization: The input parameters were statistically analyzed using box plots, 
violin plots, and descriptive statistics (mean, variance, skewness, kurtosis, quartiles). This detailed analysis 
supported the understanding of variable distributions and ensured improved model reliability.

	(3)	 Systematic Evaluation Across Train/Test Splits: The study uniquely examined model performance over var-
ying train/test ratios (from 0.1 to 0.9), revealing how data availability influences accuracy and enabling the 
identification of optimal training conditions for each algorithm.

	(4)	 Physics-Informed Feature Selection: Unlike purely data-driven models, the selected features were grounded 
in physical principles of HF—such as fracture height, injection time, crack length, and fluid viscosity—link-
ing machine learning models to engineering relevance.

	(5)	 Comparative Model Evaluation: All three ML algorithms were evaluated under identical conditions to en-
sure fairness in comparison. RF consistently outperformed NN and SVM, particularly in lower error rates 
and higher R² values, highlighting its suitability for HF prediction tasks.

The outcomes of this study present a scalable and transferable ML-based framework that can support field 
engineers and decision-makers in optimizing HF designs. By reducing prediction error and computational 
costs, the proposed models—especially RF—can be integrated into real-time systems for hydraulic fracturing 
optimization in heterogeneous reservoirs. However, the study also acknowledges several limitations, such as 
the lack of real-time validation, dependency on dataset quality, and generalization constraints across different 
geological settings.

Future research may focus on expanding the dataset to include additional geological and operational 
parameters, incorporating uncertainty quantification (e.g., confidence intervals), and deploying the models in 
real-time field scenarios to validate their practical performance.

Limitation Description

Data dependency The model is trained and validated on a specific dataset, which may not represent all geological conditions or reservoir types.

Limited generalization The model may not perform well when applied to other regions or datasets not included in the training process.

Small or imbalanced dataset If the dataset is small or imbalanced (e.g., few high-depth vs. many low-depth cases), the model may produce biased results.

Feature selection bias Some important geological or operational variables might be missing, leading to incomplete modeling of the HF process.

Model interpretability Some ML models (e.g., ensemble or deep learning models) are difficult to interpret, which limits their acceptance by domain experts.

Overfitting The model may perform well on the training data but poorly on unseen data, especially if regularization or validation was insufficient.

Lack of uncertainty quantification Predictions are deterministic and do not include confidence intervals or uncertainty estimates.

Assumption of data quality The model assumes that input data is accurate and free from noise, which may not reflect field reality.

No real-time validation The model was not validated in real-time or in real field applications, so its practical performance is unknown.

Computational cost Some models may require significant computational resources for training and tuning.

Lack of sensitivity analysis The influence of input parameters on the output is not fully explored or quantified.

Temporal static assumption The model assumes static relationships, while subsurface properties or operational parameters may change over time.

Table 8.  Limitations of the present Study.
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In conclusion, this work not only highlights the power of machine learning in hydraulic fracturing prediction 
but also demonstrates how intelligent modeling, when combined with domain knowledge and statistical rigor, 
can pave the way for data-driven reservoir engineering and more efficient hydrocarbon recovery strategies.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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