

OPEN

The significance of adding posterior decompression to spine stabilization in metastatic spinal surgery: a multicenter prospective study

Hiroyuki Tominaga^{1,38✉}, Ichiro Kawamura¹, Hiromi Shimada^{1,2}, Hiromi Sasaki¹, Noboru Taniguchi¹, Yuki Shiratani³, Akinobu Suzuki⁴, Hidetomi Terai⁴, Takaki Shimizu⁵, Kenichiro Kakutani⁶, Yutaro Kanda⁶, Masayuki Ishihara⁷, Masaaki Paku⁷, Yohei Takahashi⁸, Toru Funayama⁹, Kousei Miura⁹, Eiki Shirasawa¹⁰, Hirokazu Inoue¹¹, Atsushi Kimura¹², Takuya Iimura¹³, Hiroshi Moridaira¹³, Hideaki Nakajima¹⁴, Shuji Watanabe¹⁴, Koji Akeda¹⁵, Norihiro Takegami¹⁵, Kazuo Nakanishi¹⁶, Hirokatsu Sawada¹⁷, Koji Matsumoto¹⁷, Masahiro Funaba¹⁸, Hidenori Suzuki¹⁸, Haruki Funao¹⁹, Tsutomu Oshigiri²⁰, Takashi Hirai²¹, Bungo Otsuki²², Kazu Kobayakawa²³, Koji Uotani²⁴, Hiroaki Manabe²⁵, Shinji Tanishima²⁶, Ko Hashimoto²⁷, Chizuo Iwai²⁸, Daisuke Yamabe²⁹, Akihiko Hiyama³⁰, Shoji Seki³¹, Yuta Goto³², Masashi Miyazaki³³, Kazuyuki Watanabe³⁴, Toshio Nakamae³⁵, Takashi Kaito³⁶, Hiroaki Nakashima³⁷, Narihito Nagoshi⁸, Satoshi Kato⁵, Shiro Imagama³⁷, Kota Watanabe⁸, Gen Inoue¹⁰ & Takeo Furuya³

The usefulness of spine stabilization for treating metastatic spinal tumors with tumor-induced instability has been reported. However, no reports have prospectively evaluated the effectiveness of adding posterior decompression to stabilization surgery for improving symptoms. This multicenter prospective study aimed to determine whether adding posterior decompression to spine stabilization surgery for metastatic spinal tumors affects postoperative outcomes and complications. A total of 263 patients who underwent spine stabilization with ($n=189$) or without ($n=74$) decompression were analyzed. Patient demographics, the Spinal Instability Neoplastic Score (SINS), and the Epidural Spinal Cord Compression (ESCC) score were recorded. The outcomes were assessed preoperatively and at 1 and 6 months postoperatively in terms of neurological status, the Barthel Index, the EQ-5D-5 L, and the visual analog scale (VAS). Decompression was primarily performed in patients with severe neurological deficits and high-grade ESCC. Both groups showed postoperative improvement. Propensity score matching was applied to adjust for baseline differences. After matching, there were no significant differences in functional improvement between the decompression and nondecompression groups, and the complication rates were comparable. In matched patients presenting primarily with spinal instability and pain, the addition of decompression did not appear to confer a significant functional benefit within 6 months postoperatively.

Keywords Metastatic spinal tumors, Spine stabilization, Decompression, Propensity score matching, Multicenter prospective study, The epidural spinal cord compression (ESCC) score

¹Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan. ²Department of Orthopaedic Surgery, Kagoshima City Hospital, 37-1 Kamiaratacho, Kagoshima 890-8760, Japan. ³Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. ⁴Department of Orthopaedic Surgery, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan. ⁵Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641, Japan. ⁶Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan. ⁷Department of Orthopaedic Surgery, Kansai Medical

University Hospital, 2- 5-1 Shinmachi, Hirakata 573-1010, Osaka, Japan. ⁸Department of Orthopaedic Surgery, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan. ⁹Department of Orthopaedic Surgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan. ¹⁰Department of Orthopaedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan. ¹¹Rehabilitation Center, Jichi Medical University Hospital, 3311-1 Yakushiji, Shimotuke 329-0498, Japan. ¹²Department of Orthopaedics, Jichi Medical University, 3311-1 Yakushiji, Shimotuke 329-0498, Japan. ¹³Department of Orthopaedic Surgery, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsugagun 321-0293, Tochigi, Japan. ¹⁴Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan. ¹⁵Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan. ¹⁶Department of Orthopaedic Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan. ¹⁷Department of Orthopaedic Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-kamimachi, Itabashi-ku, Tokyo 173-8610, Japan. ¹⁸Department of Orthopaedics Surgery, Yamaguchi University Graduate school of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan. ¹⁹Department of Orthopaedic Surgery, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba 286-8520, Japan. ²⁰Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, S1 W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan. ²¹Department of Orthopedic Surgery, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan. ²²Department of Orthopaedic Surgery, Kyoto University Hospital, 54 Kawaharamachi, Syogoin, Sakyo, Kyoto 606-8397, Japan. ²³Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. ²⁴Department of Orthopaedic Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. ²⁵Department of Orthopedics, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan. ²⁶Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan. ²⁷Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan. ²⁸Department of Orthopaedic Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan. ²⁹Department of Orthopaedic Surgery, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwan gun, Iwate 028-3609, Japan. ³⁰Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan. ³¹Department of Orthopaedic Surgery, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan. ³²Department of Orthopaedic Surgery, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan. ³³Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan. ³⁴Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan. ³⁵Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan. ³⁶Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. ³⁷Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Show-ku, Nagoya 466-8550, Japan. ³⁸Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan. email: hiro-tom@m2.kufm.kagoshima-u.ac.jp

Metastatic lesions in the spine commonly develop in advanced-stage cancer and have a substantial impact on patient morbidity and mortality¹. As metastatic spinal tumors become more prevalent in the aging population, managing these cases is increasingly complex and therefore calls for a multidisciplinary approach². Owing to advancements in medical technology, surgical intervention has become increasingly viable^{3,4}.

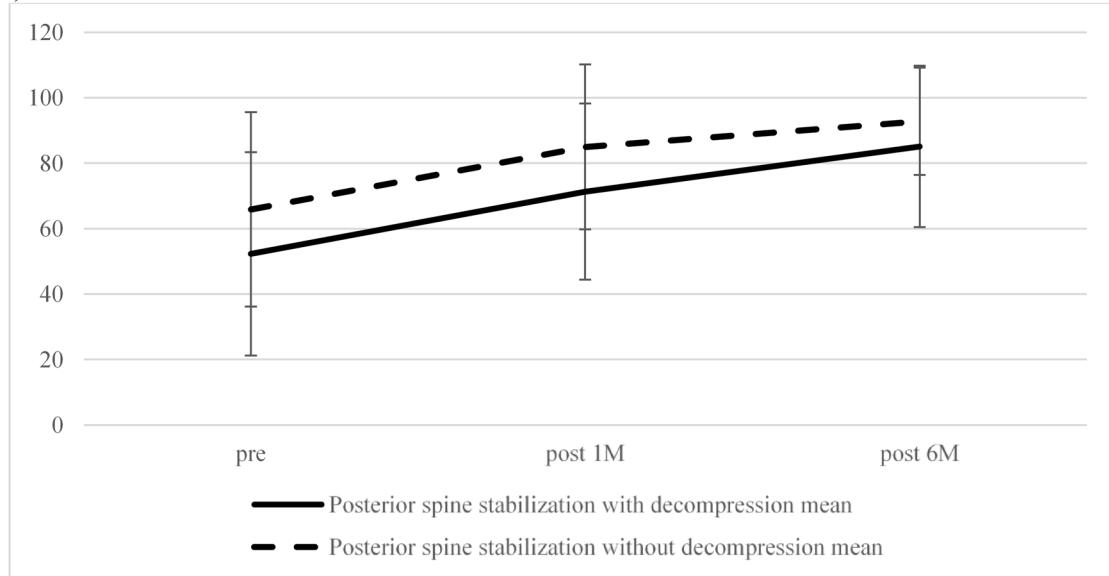
The efficacy of nerve decompression and postoperative radiotherapy for patients with metastatic spinal tumors and neurological symptoms has been reported⁵. On the other hand, the usefulness of spinal stabilization surgery for pain and neurological symptoms caused by instability due to tumor invasion into the spine has also been reported⁶⁻⁸. Adding posterior decompression to spinal stabilization surgery may improve neurological symptoms⁹ but if the tumor extends to the decompression site, it could lead to increased bleeding and prolonged surgery time. There have been no prospective studies comparing the postoperative results of spine stabilization surgery with and without decompression in patients with metastatic spinal tumors. This study aimed to prospectively investigate whether the addition of posterior decompression to spinal stabilization surgery for patients with metastatic spinal tumors affects postoperative outcomes and complications.

Results

Patient characteristics

The mean age was 66.6 years, with 170 males. A total of 111 patients were classified as Frankel A, B, or C, and 200 patients had grade 2 or 3 ESCC. Spine stabilization with decompression was performed on 189 patients, and no decompression was performed on 74 patients. When the spine stabilization with decompression group was compared with the spine stabilization without decompression group, the stabilization with decompression group presented significantly higher rates of severe neurological symptoms and severe dural compression by tumors (ESCC 2, 3: 167 cases, 88.4% vs. 33 cases, 44.6%, $P < 0.0001$; Frankel A, B, C: 100 cases, 52.9% vs. 11 cases, 14.9%, $P < 0.0001$; emergency surgery: 108 cases, 57.1% vs. 16 cases, 21.6%, $P < 0.0001$) (Table 1). The spine stabilization with decompression group had longer operation times (216.9 min vs. 163.8 min, $P < 0.0001$), and greater blood loss (416.3 g vs. 205.2 g, $P < 0.0001$).

Comparison of postoperative outcomes (before matching)


The preoperative Barthel index and EQ-5D-5 L score were lower in the decompression and stabilization group (52.3 vs. 65.9: $P < 0.005$, 0.31 vs. 0.40: $P < 0.05$) (Fig. 1). At one month postoperatively, the Barthel index differed

	Total, N=263	Posterior spine stabilization with decompression (N=189)	Posterior spine stabilization without decompression (N=74)	P
Age	66.6 (11.1)	67.1 (10.9)	65.3 (11.3)	0.26
Male n (%)	170 (64.6%)	124 (65.6%)	46 (62.2%)	0.67
Breast Ca n (%)	36 (13.7%)	26 (13.8%)	10 (13.5%)	0.99
Lung Ca n (%)	55 (20.9%)	39 (20.6%)	16 (21.6%)	0.87
Prostate Ca n (%)	30 (11.4%)	26 (13.8%)	4 (5.4%)	0.08
Kidney Ca n (%)	31 (11.8%)	17 (9.0%)	14 (18.9%)	<0.05
ESCC 0 n (%)	11 (4.2%)	3 (1.6%)	8 (10.8%)	<0.0001
ESCC 1a-c n (%)	52 (19.8%)	19 (10.1%)	33 (44.6%)	
ESCC2 n (%)	86 (32.7%)	63 (33.3%)	23 (31.1%)	
ESCC3 n (%)	114 (43.3%)	104 (55.0%)	10 (13.5%)	
ESCC≥ 2 n (%)	200 (76.0%)	167 (88.4%)	33 (44.6%)	
Height (cm)	161 (9.5)	161.3 (9.5)	161.4 (9.7)	0.87
Weight (kg)	57.7 (12.9)	57.7 (12.4)	57.7 (14.2)	0.81
Frankel A n (%)	10 (3.8%)	8 (4.2%)	2 (2.7%)	<0.0001
Frankel B n (%)	13 (4.9%)	11 (5.8%)	2 (2.7%)	
Frankel C n (%)	88 (33.5%)	81 (42.9%)	7 (9.5%)	
Frankel D n (%)	67 (25.5%)	51 (27.0%)	16 (21.6%)	
Frankel E n (%)	85 (32.3%)	38 (20.1%)	47 (63.5%)	
PS 3,4 n (%)	159 (60.5%)	121 (64.0%)	38 (51.4%)	0.07
Pre chemotherapy n (%)	95 (36.1%)	65 (34.4%)	30 (40.5%)	0.39
Post chemotherapy n (%)	149 (56.7%)	112 (59.3%)	37 (50.0%)	0.21
Pre radiation n (%)	72 (27.4%)	46 (24.3%)	26 (35.1%)	0.09
Post radiation n (%)	124 (47.1%)	86 (45.5%)	38 (51.4%)	0.41
Pre Molecular Targeted Therapy n (%)	42 (16.0%)	31 (16.4%)	11 (14.9%)	0.85
Post Molecular Targeted Therapy n (%)	68 (25.9%)	43 (22.8%)	25 (33.8%)	0.08
Pre bone therapy n (%)	62 (23.6%)	37 (19.6%)	25 (33.8%)	<0.05
Post bone therapy n (%)	146 (55.5%)	98 (51.9%)	48 (64.9%)	0.07
Pre opioid n (%)	95 (36.1%)	61 (32.3%)	34 (46.0%)	<0.05
Post opioid n (%)	113 (43.0%)	75 (39.7%)	38 (51.4%)	0.10
Tomita score	5.6 (2.4)	5.6 (2.4)	5.7 (2.5)	0.67
Revised Tokuhashi score	7.9 (3.1)	7.7 (3.1)	8.4 (3.1)	0.12
SINS	10.5 (3.0)	10.3 (3.1)	11.1 (2.6)	0.08
Charlson's comorbidity index	6.6 (1.4)	6.7 (1.5)	6.4 (1.2)	0.09
Cervical n (%)	39 (14.8%)	23 (12.2%)	16 (21.6%)	0.08
CT/T n (%)	160 (60.8%)	126 (66.7%)	34 (46.0%)	<0.01
TL/L/S n (%)	65 (24.7%)	41 (21.7%)	24 (32.4%)	0.08
Emergency n (%)	124 (47.1%)	108 (57.1%)	16 (21.6%)	<0.0001
Operation time (min)	202.0 (77.1)	216.9 (75.5)	163.8 (67.8)	<0.0001
Blood loss (g)	357.3 (362.8)	416.3 (388.6)	205.2 (225.1)	<0.0001
Complications during surgery n (%)	12 (4.6%)	12 (6.4%)	0 (0%)	<0.05
Perioperative Complications n (%)	43 (16.3%)	33 (17.6%)	10 (13.5%)	0.47
Reoperation n (%)	18 (6.9%)	14 (7.4%)	4 (5.6%)	0.79
Death n (%)	92 (35.0%)	63 (33.3%)	29 (39.2%)	0.39
survival days after operation (days)	292.6 (199.0)	294.9 (204.7)	286.6 (185.1)	0.87

Table 1. Demographic details (N=263). Mean (standard deviation) N (%). The bold values indicate statistically significant differences ($p<0.05$).

between the groups (71.3 vs. 85.0; $P<0.0001$), and there was a significant difference at six months (85.1 vs. 92.8, $P<0.05$). The trend of the Eq. 5D5L score was also similar to that of the Barthel index. Both indices significantly improved clinical symptoms postoperatively compared with preoperatively. A paired t test was performed on the Barthel index, Eq. 5D5L, VAS, and face scale, and significant improvements were observed in each parameter from before surgery to 1 month and 6 months after surgery (Supplementary Table 1). The degree of improvement, assessed by the change in the Barthel index, EQ-5D-5 L score, VAS score and face scale score from the preoperative value to the postoperative value (Δ), was not significantly different between the

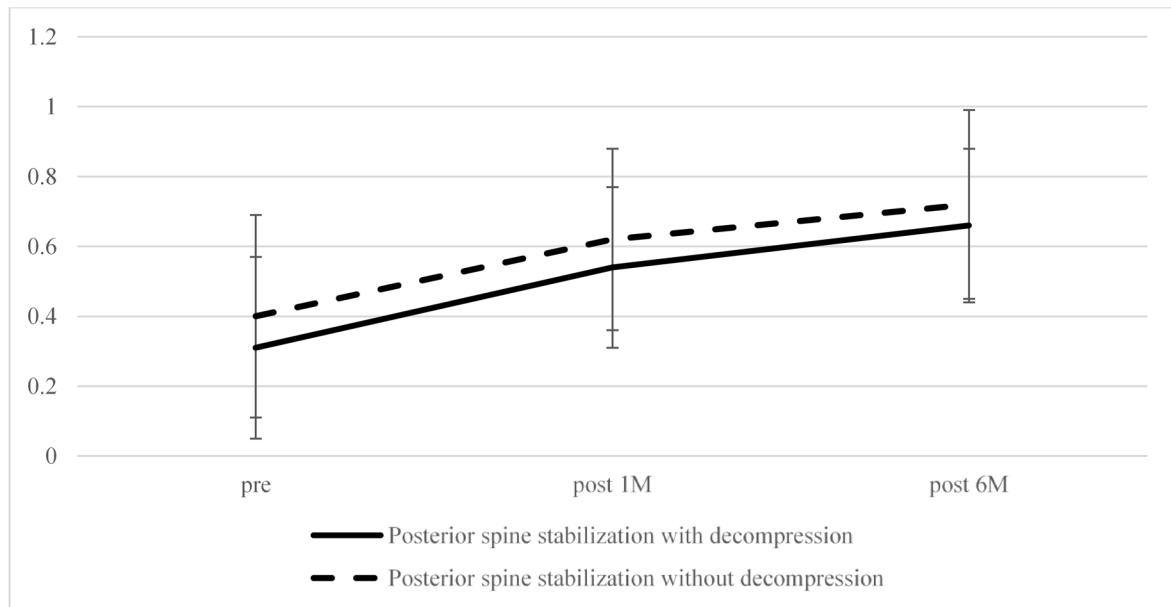
a) Barthel Index

	Barthel index (pre)	Barthel index (1 M)	Barthel index (6 M)
Posterior spine stabilization with decompression	52.3 (31.1)	71.3 (26.9)	85.1 (24.7)
Posterior spine stabilization without decompression	65.9 (29.7)	85.0 (25.2)	92.8 (16.4)
P	<0.005	<0.0001	<0.05

Fig. 1. Changes in the Barthel index (a), Eq5D5L (b), visual analog scale (c), and face scale (d) scores of the participants before propensity score matching at baseline. Two-group (i.e., decompression and without decompression) comparisons were made via the Wilcoxon test. The EQ-5D-5 L score and Barthel index were significantly lower in the spinal stabilization with decompression group than in the preoperative period and at 1 month after surgery. (a,b) In addition, while the symptoms of pain and numbness were more severe in the spinal stabilization with decompression group at 1 month after surgery, there was no difference between the two groups at 6 months after surgery. (c,d) The data are the means (SDs).

groups at one month and six months postoperatively (Table 2). A subgroup analysis was performed to compare functional outcomes between patients with and without severe preoperative neurological symptoms (ESCC 2–3 and/or Frankel A–C). Although the severe group had a significantly lower preoperative functional status, both groups exhibited comparable degrees of improvement at 6 months postoperatively (Supplementary Table 2). Intraoperative complications were significantly more common in the decompression and stabilization group (12 patients, 6.4%) than in the stabilization-only group (0 patients, 0%), whereas perioperative complications occurred in 33 patients (17.6%) and 10 patients (13.5%), respectively, with no significant difference (Table 1).

Intraoperative and perioperative complications were categorized by type and Clavien–Dindo grade¹⁰ (Supplementary Table 3). Most complications were low-grade and manageable, with no intraoperative events in the nondecompression group. There was no difference between the two groups in the amount of change in each parameter before and after surgery, but the Barthel index, EQ-5D-5 L score at baseline, was lower in the decompression group. The Kaplan–Meier survival curves revealed no significant difference in overall survival between the decompression and nondecompression groups (Log-rank test, $P=0.41$) (Supplementary Fig. 1).


Factors that lead to the choice of spinal fusion with decompression

Multivariate logistic regression analyses revealed that the factors for selected spine stabilization with decompression were ESCC (odds ratio 2.9 $P<0.0001$), Frankel A, B, and C (odds ratio 2.7 $P<0.005$) (Table 3).

Comparison of postoperative outcomes (after matching)

Using propensity score matching, we divided the patients into two groups: 51 patients in the spinal decompression and fusion group and 51 patients in the spinal fusion group (Table 4).

b) EQ-5D-5L

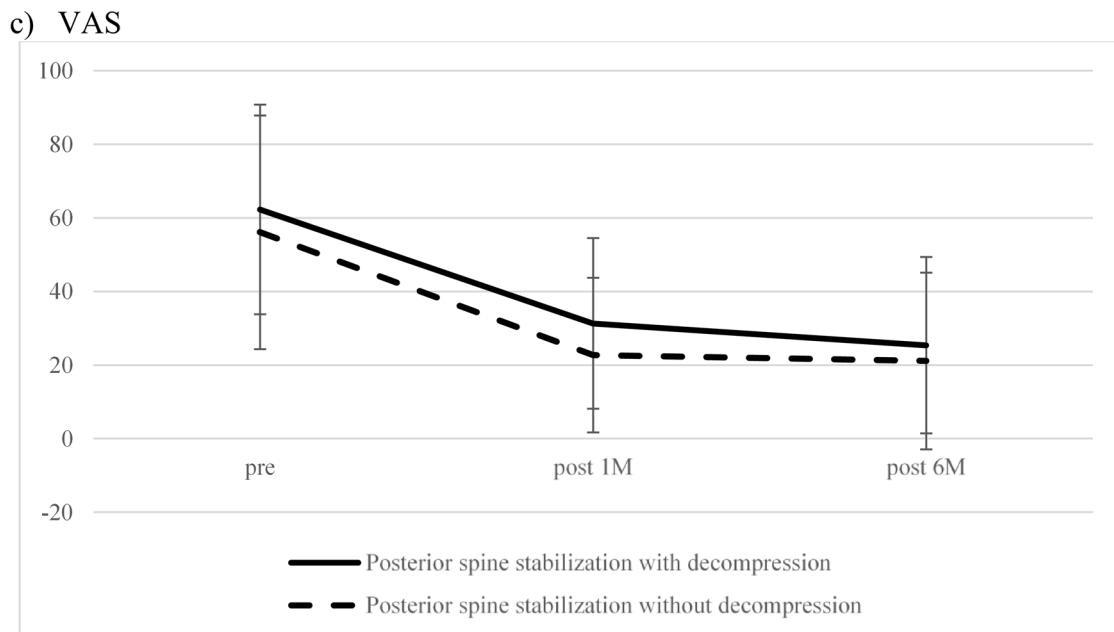

	EQ5D5L (pre)	EQ5D5L (1 M)	EQ5D5L (6 M)
Posterior spine stabilization with decompression	0.31 (0.26)	0.54 (0.23)	0.66 (0.22)
Posterior spine stabilization without decompression	0.40 (0.29)	0.62 (0.26)	0.72 (0.27)
P	<0.05	<0.05	0.05

Fig. 1. (continued)

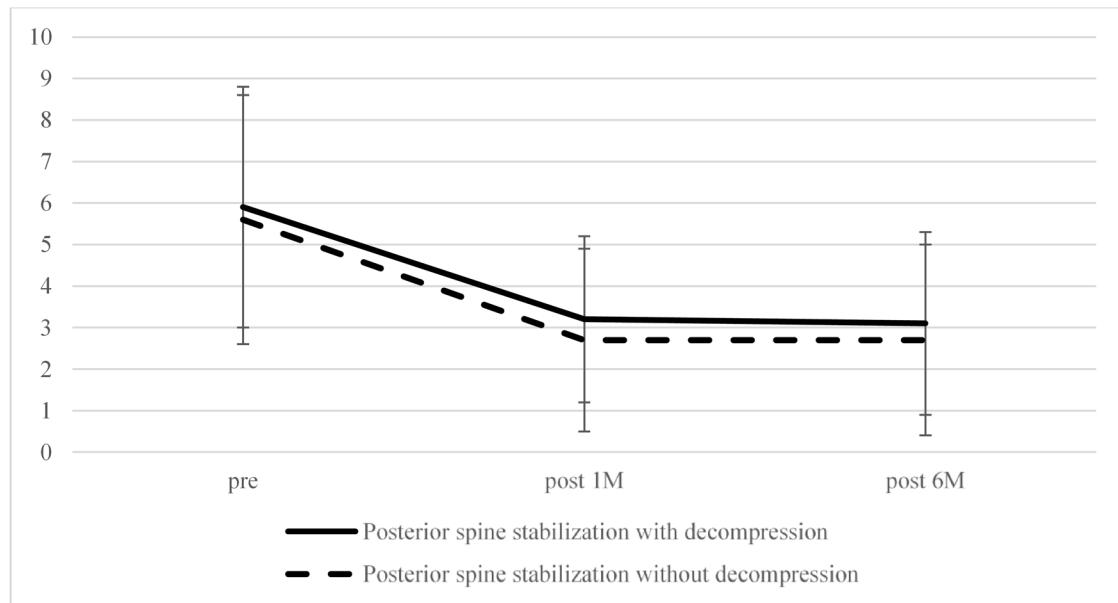
After matching, the spine stabilization with decompression group had longer operation times (229.8 min vs. 164.6 min, $P < 0.0001$) and greater blood loss (453.8 g vs. 198.3 g, $P < 0.0001$) (Table 4). The number of patients with intraoperative complications was 3 (5.9%) vs. 0 (0%), and the number of patients with perioperative complications was 9 (18.0%) vs. 5 (9.8%), with no significant difference between the groups (Table 4). When the postoperative results did not differ between the two groups in terms of the preoperative state, there were no significant differences in the Barthel index, EQ-5D-5 L score, or preoperative performance status at 1 and 6 months postoperatively (Fig. 2). The comparison between the two groups, with and without decompression, revealed the following mean changes from the preoperative period:

One month postoperatively, the mean change in the Barthel Index was 13.2 in the decompression group and 15.5 in the nondecompression group ($P = 0.25$). The change in EQ-5D-5 L was 0.19 vs. 0.18 ($P = 0.87$), that in VAS (visual analog scale) was 28.0 vs. 28.0 ($P = 0.88$), and that in the face scale was 2.8 vs. 2.2 ($P = 0.54$). At 6 months postsurgery, the mean change in the Barthel Index was 17.6 vs. 15.6 ($P = 0.92$), that in the EQ-5D-5 L was 0.24 vs. 0.22 ($P = 0.80$), that in the VAS was 45.4 vs. 32.8 ($P = 0.33$), and that in the Face Scale was 3.5 vs. 3.0 ($P = 0.86$).

These results indicate that there were no statistically significant differences in postoperative changes between the two groups at either 1 month or 6 months (Table 5).

	VAS (pre)	VAS (1 M)	VAS (6 M)
Posterior spine stabilization with decompression	62.3 (28.5)	31.3 (23.2)	25.4 (24.0)
Posterior spine stabilization without decompression	56.1 (31.8)	22.7 (21.0)	21.1 (24.0)
P	0.21	<0.01	0.24

Fig. 1. (continued)


Discussion

It is unclear whether decompression should be added to spine stabilization surgery for the treatment of metastatic spinal tumors. This is the first report to be analyzed via a multicenter prospective study. Spinal decompression has been reported to be useful in the treatment of metastatic tumors¹¹. On the other hand, spine stabilization surgery is a beneficial intervention for patients with metastatic spinal tumors and instability, offering significant pain relief, improved stability, and enhanced quality of life¹². The Spinal Instability Neoplastic Score (SINS) is a method of evaluating spinal instability caused by metastatic or primary spinal tumors, and when a score of 7 indicates suspected instability, spinal fixation surgery is often considered¹³.

Spinal instrumented fusion with decompression was effective in more severe cases of SINS¹⁴. In this study, the mean SINS score was 10.5 points, and many of the cases involved spinal instability. In cases where spinal instability is accompanied by a tumor that compresses the dural tube, spinal decompression and stabilization are often performed as effective treatments^{9,15–20}. However, few reports have considered whether decompression should be added to spine stabilization surgery. While the study does not directly compare spine stabilization with and without decompression, it highlights the benefits of minimally invasive techniques over conventional open surgery in terms of complications, blood loss, and hospital stay for patients with spinal metastases²¹. MIST without decompression has been reported to be advantageous for patients with mild paralysis, but decompression is necessary for patients with severe paralysis²².

The epidural spinal cord compression (ESCC) score is a scale that indicates the need for early treatment intervention in cases where there is spinal cord compression at scale 2 or 3 and paralysis is acutely worsening^{23,24}. In this study, there was a tendency to add decompression in cases where the ESCC score was high. Both spine stabilization with decompression and without decompression surgery improved ADL, QOL, pain, and numbness more than before surgery did at 1 month and 6 months after surgery. Both procedures are helpful in patients with metastatic spinal tumors. There was no significant difference in postoperative improvement between spine

d) Face scale

	Face scale (pre)	Face scale (1 M)	Face scale (6 M)
Posterior spine stabilization with decompression	5.9 (2.9)	3.2 (2.0)	3.1 (2.2)
Posterior spine stabilization without decompression	5.6 (3.0)	2.7 (2.2)	2.7 (2.3)
P	0.43	0.08	0.2

Two-group comparisons were performed via the Wilcoxon test at three time points:

preoperative, 1 month postoperative, and 6 months postoperative.

Mean (standard deviation)

Fig. 1. (continued)

	Total, N = 263	Posterior spine stabilization with decompression (N = 189)	Posterior spine stabilization without decompression (N = 74)	P
ΔBarthel Index	at 1month postoperatively	16.3 (23.8)	17.0 (25.5)	0.58
	at 6 months postoperatively	26.2 (30.7)	19.1 (26.0)	0.24
ΔEQ-5D-5 L	at 1month postoperatively	0.23 (0.23)	0.21 (0.26)	0.71
	at 6 months postoperatively	0.33 (0.26)	0.29 (0.33)	0.78
ΔVAS	at 1month postoperatively	31.0 (29.6)	31.0 (37.5)	0.79
	at 6 months postoperatively	38.0 (32.7)	36.4 (35.7)	0.95
ΔFace scale	at 1month postoperatively	2.7 (2.9)	2.4 (3.1)	0.65
	at 6 months postoperatively	3.2 (3.1)	3.1 (3.4)	0.96

Table 2. Comparison of preoperative-to-postoperative changes (Δ) between the two groups before propensity score matching. Mean (standard deviation). Two-group comparisons were made via the Wilcoxon test. No statistically significant differences were found for any of the scores.

Factor	Odds ratio	95%CI	P
ESCC	2.9	2.0–4.5	<0.0001
Frankel A, B,C	2.7	1.2–6.2	<0.05
Emergency	2.0	0.96–4.2	0.07
Age	1.0	0.98–1.0	0.85
Male	1.0	0.52–1.98	0.94

Table 3. Factors for which posterior decompression fixation is selected. The bold values indicate statistically significant differences ($p<0.05$).

stabilization with and without decompression. However, it is possible that in patients in whom the preoperative condition of patients with spinal decompression and stabilization was lower in terms of ADL and quality of life, the preoperative background was not consistent and the neurological symptoms were strong, so the addition of spinal decompression may not have made a difference in postoperative improvement.

Uei et al.²² reported that there was no difference in outcome between spinal stabilization with and without decompression in patients with mild neurological symptoms, but this was a single-center retrospective study and did not match the preoperative background. Therefore, we performed propensity score matching on the basis of the ESCC scale to match the preoperative background. A comparison of the two groups with matched preoperative data revealed that the Barthel index, Eq. 5D5L score, VAS score and face scale score were superior to the preoperative values. There was no significant difference in the degree of improvement between the two groups. There may be little significance in adding decompression to spinal fusion in patients with metastatic spinal tumors.

On the other hand, there are many postoperative complications, and the surgical indications need to be carefully determined according to the patient's general condition²⁵.

In this study, the operation time and amount of blood loss were greater for patients who underwent decompression and stabilization than for those who did not undergo decompression, but there was no significant difference in intraoperative or perioperative complications. These results were similar to those reported previously²³.

There are several limitations in this study. First, despite data being collected in a forward-looking manner, biases may persist due to incomplete records or missing information. Second, this was a multicenter study and not a randomized study. There are differences in the surgical indications between surgeons. Finally, in the postmatching review, many of the patients were Frankels D and E, and few patients had severe preoperative neurological conditions.

Despite these limitations, this sizeable prospective study allowed an assessment of the current surgical selection practices for spinal metastases in Japan, providing valuable insights and some guidance for managing these patients. On the basis of these results, in cases where tumor-rich blood vessels are expected to result in significant bleeding during resection^{26,27} decompression may not be necessary if neurological symptoms are mild.

Conclusions

Spine stabilization with decompression was selected in patients with severe preoperative neurological symptoms and high ESCC. There was no significant difference in clinical symptoms before and after surgery between the two groups. There was no advantage of adding decompression in patients with spinal instability at least 6 months after surgery. Despite severe spinal canal stenosis, patients with only mild neurological symptoms may achieve improvement with stabilization alone, without the need for posterior decompression.

Methods

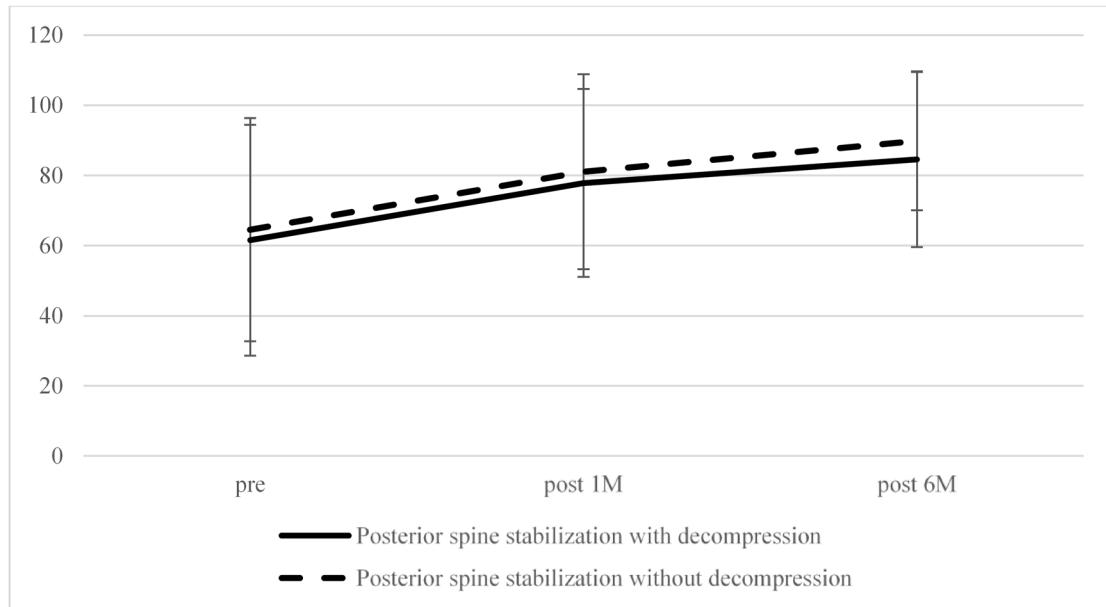
Study design and population

The Japan Association of Spine Surgeons with Ambition (JASA) conducted this multicenter prospective cohort study between October 2018 and March 2022. Patients scheduled for surgical treatment of metastatic spinal tumors, those aged ≥ 20 years, and those who provided consent to participate were included. Those aged < 20 years and those with difficulty completing the questionnaire were excluded. Patients who consented to this study and underwent surgical treatment for metastatic spinal tumors were included. A total of 413 patients from 35 facilities were registered, and 263 patients with complete data who underwent spinal stabilization with decompression and without decompression were analyzed. We compared the postoperative outcomes between the two groups. We also examined the factors that led to the selection of spinal fusion with decompression using multivariate logistic regression analysis. We again compared the postoperative outcomes between the two groups after the preoperative conditions were matched via propensity score matching.

Ethical considerations

This research protocol was approved by the ethics committee on clinical research of Kagoshima University (approval no. 180080). All participants provided written informed consent, and the study was conducted in accordance with the Declaration of Helsinki. The submitted manuscript does not contain any information about medical devices or drugs.

	Total, N=102	Posterior spine stabilization with decompression (N=51)	Posterior spine stabilization without decompression (N=51)	P
Age	66.7 (11.0)	66.2 (10.9)	67.4 (9.0)	0.69
Male n (%)	70 (68.6%)	36 (70.6%)	34 (66.7%)	0.83
Breast Ca n (%)	9 (8.8%)	4 (7.8%)	5 (9.8%)	0.99
Lung Ca n (%)	26 (25.5%)	15 (29.4%)	11 (21.6%)	0.50
Prostate Ca n (%)	9 (8.8%)	6 (11.8%)	3 (5.9%)	0.49
Kidney Ca n (%)	17 (16.7%)	7 (13.7%)	10 (19.6%)	0.60
ESCC 0 n (%)	4 (3.9%)	2 (3.9%)	2 (3.9%)	0.86
ESCC 1a-c n (%)	33 (32.4%)	15 (29.4%)	18 (35.3%)	
ESCC2 n (%)	47 (46.1%)	26 (51.0%)	21 (41.2%)	
ESCC3 n (%)	18 (17.7%)	8 (15.7%)	10 (19.6%)	
Height (cm)	161.4 (9.5)	162.0 (8.8)	161.6 (9.5)	0.67
Weight (kg)	57.7 (13.0)	58.6 (14.3)	57.5 (15.2)	0.70
Frankel B n (%)	3 (2.9%)	1 (2.0%)	2 (3.9%)	0.54
Frankel C n (%)	15 (14.7%)	8 (15.7%)	7 (13.7%)	
Frankel D n (%)	28 (27.5%)	17 (33.3%)	11 (21.6%)	
Frankel E n (%)	56 (54.9%)	25 (49.0%)	31 (60.8%)	
PS 3,4 n (%)	54 (53.0%)	28 (54.9%)	26 (51.0%)	0.84
Pre chemotherapy n (%)	41 (40.2%)	19 (37.3%)	22 (43.1%)	0.69
Post chemotherapy n (%)	58 (56.9%)	33 (64.7%)	25 (49.0%)	0.16
Pre radiation n (%)	29 (28.4%)	12 (23.5%)	17 (33.3%)	0.38
Post radiation n (%)	51 (50.0%)	25 (49.0%)	26 (51.0%)	0.99
Pre Molecular Targeted Therapy n (%)	26 (25.5%)	17 (33.3%)	9 (17.7%)	0.11
Post Molecular Targeted Therapy n (%)	37 (36.3%)	19 (37.3%)	18 (35.3%)	0.99
Pre bone therapy n (%)	31 (30.4%)	14 (27.5%)	17 (33.3%)	0.66
Post bone therapy n (%)	67 (65.7%)	32 (62.8%)	35 (68.6%)	0.68
Pre opioid n (%)	43 (42.2%)	20 (39.2%)	23 (45.1%)	0.69
Post opioid n (%)	49 (48.0%)	24 (47.1%)	25 (49.0%)	0.99
Tomita score	5.6 (2.4)	5.9 (2.4)	5.8 (2.6)	0.94
Revised Tokuhashi score	7.9 (3.1)	8.0 (3.5)	8.2 (3.2)	0.70
SINS	10.5 (3.0)	10.1 (2.9)	10.6 (2.5)	0.51
CCS	6.6 (1.4)	6.7 (1.0)	6.4 (1.2)	0.88
Cervical n (%)	17 (16.7%)	9 (17.7%)	8 (15.7%)	0.99
CT/T n (%)	58 (56.9%)	30 (58.8%)	28 (54.9%)	0.84
TL/L/S n (%)	28 (27.5%)	13 (25.5%)	15 (29.4%)	0.82
Emergency n (%)	26 (25.5%)	14 (27.5%)	12 (23.5%)	0.82
Operation time (min)	202.0 (76.9)	229.8 (85.4)	164.6 (72.6)	<0.0001
Blood loss (g)	347.4 (318.4)	453.8 (374.0)	198.3 (211.6)	<0.0001
Complications during surgery n (%)	3 (2.9%)	3 (5.9%)	0 (0%)	0.24
Perioperative Complications n (%)	14 (13.9%)	9 (18.0%)	5 (9.8%)	0.26
Reoperation n (%)	4 (4.0%)	2 (3.9%)	2 (3.9%)	0.99
Death n (%)	39 (38.2%)	18 (35.3%)	21 (41.2%)	0.68
survival days after operation (days)	291.2 (199.7)	307.8 (160.3)	273.5 (186.2)	0.29


Table 4. Demographic details (propensity score matching; $N=102$). Mean (standard deviation). The bold values indicate statistically significant differences ($p<0.05$).

Data collection

Data were extracted from the patients' medical records and entered into a standardized database.

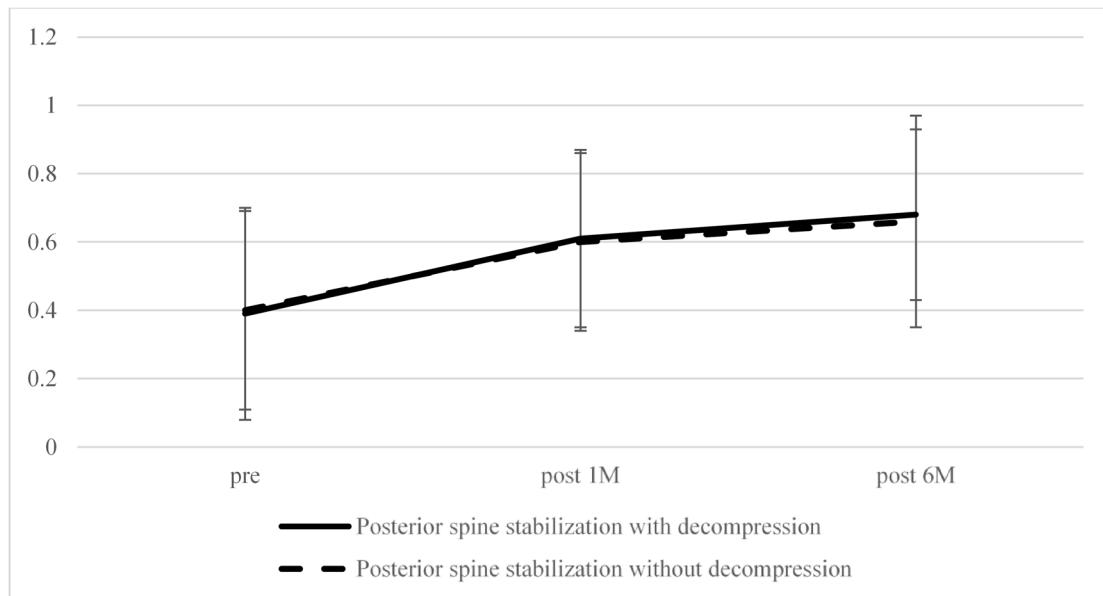
Patient backgrounds, such as age, sex, underlying disease, cancer type, cancer treatment, chemotherapy, radiation therapy, molecular targeted therapy, bone modifying agent (BMA) use, and opioid use, were evaluated, along with paralysis and neurological symptoms at surgical intervention, duration from symptom onset, and the Frankel classification. Prognostic scores, e.g., the Tomita score²⁸ the revised Tokuhashi score²⁹ and the Spinal Instability Neoplastic score¹³ were documented. The Spinal Instability Neoplastic Score (SINS)¹³ was used to indicate spinal instability, and the Epidural Spinal Cord Compression (ESCC) score³⁰ was used to assess tumor compression. Surgical factors such as operation time, blood loss, and intraoperative and postoperative complications were investigated, and outcomes were assessed preoperatively and at one month and six months

a) Barthel Index

	Barthel index (pre)	Barthel index (1 M)	Barthel index (6 M)
Posterior spine stabilization with decompression	61.5 (32.9)	77.8 (26.8)	84.5 (25.0)
Posterior spine stabilization without decompression	64.5 (31.8)	81.0 (27.8)	89.8 (19.8)
P	0.66	0.56	0.22

Fig. 2. Changes in the Barthel index (a), Eq5D5L (b), visual analog scale (c), and face scale (d) scores of participants after propensity score matching at baseline. When the changes over time were compared, there was no statistically significant difference in the Eq5D5L score, Barthel index, VAS score, or facial scale score between the spine stabilization with decompression and spine stabilization without decompression groups. The data are the means (SDs).

postoperatively using neurological findings, performance status, the Barthel Index, EQ-5D-5 L score, VAS score, and vitality index.


Interventions

Comprehensive records of each intervention were meticulously maintained, capturing the surgical objectives, scheduling, timing of the initial consultation, length of paralysis, and all relevant surgical details, including procedure type, duration, blood loss, and complications.

Outcome measures

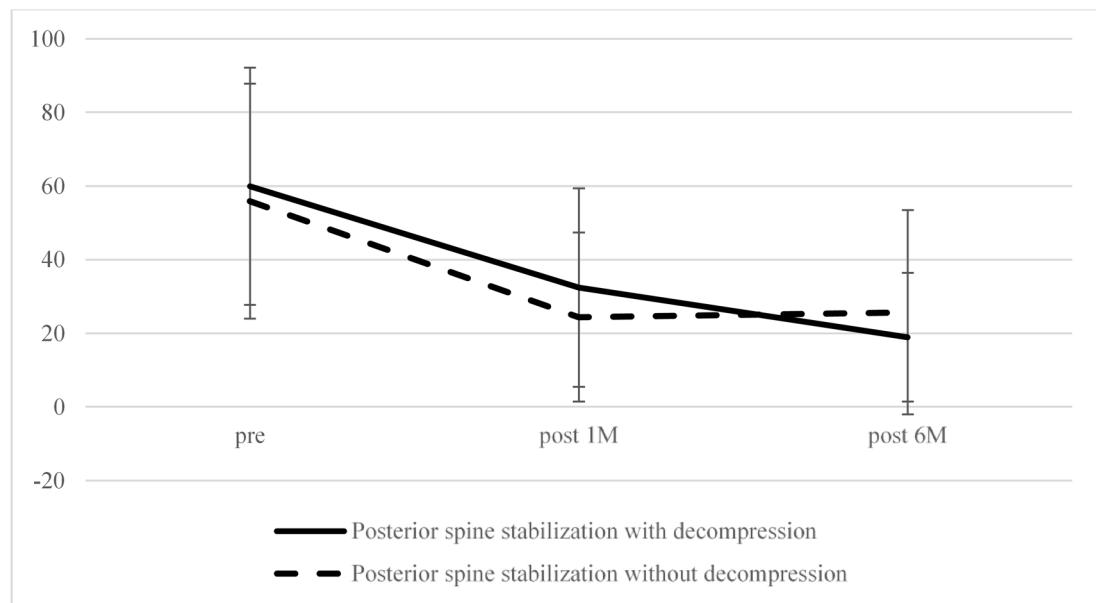
The parameters were compared between the two groups: the spine stabilization with decompression group and the spine stabilization without decompression group. The postoperative results were evaluated by assessing the change in each score over time, and the degree of improvement was evaluated by the difference in the score at each time point (e.g., the degree of improvement at 1 month postsurgery was Δ 1 month postsurgery score - presurgery score). After the factors that led to the choice of spine stabilization with decompression were evaluated via multivariate analysis, the preoperative conditions were matched using propensity score matching, and the postoperative results were evaluated again.

b) EQ-5D-5L

	EQ-5D-5L (pre)	EQ-5D-5L (1 M)	EQ-5D-5L (6 M)
Posterior spine stabilization with decompression	0.39 (0.31)	0.61 (0.26)	0.68 (0.25)
Posterior spine stabilization without decompression	0.40 (0.29)	0.60 (0.26)	0.66 (0.31)
P	0.77	0.85	0.82

Fig. 2. (continued)

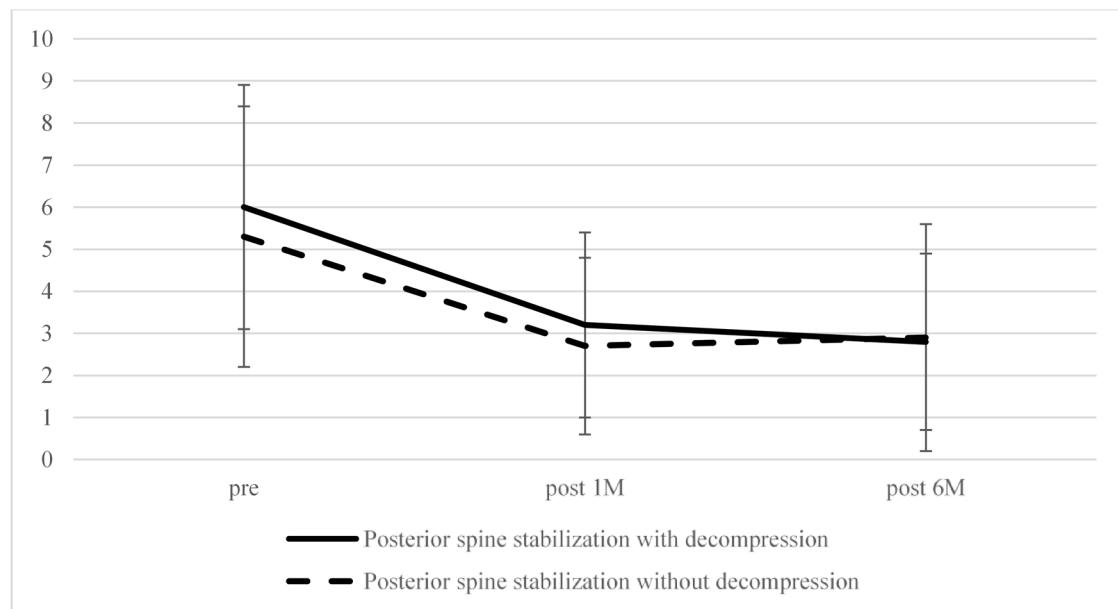
Grouping and baseline matching


To minimize confounding and selection bias when comparing postoperative outcomes, a propensity score (PS) matching analysis was performed between patients with metastatic spinal tumors who underwent spine stabilization with decompression and those who underwent spine stabilization without decompression. First, logistic regression was employed to estimate each participant's PS for undergoing spine stabilization with decompression. Age, sex, ESCC scale score, Frankel classification, and emergency operation at baseline were included in calculating the PS. PS matching was performed at a 1:1 ratio using the optimal matching technique to minimize the average absolute distance across all matched pairs. A greedy nearest-neighbor matching algorithm with a caliper width of 0.2 standard deviations of the logit of the PS was used. After matching, covariate balance was evaluated via standardized mean differences (SMDs), which were calculated as the difference in means divided by the pooled standard deviation. An SMD of less than 0.1 was considered indicative of adequate balance (Supplementary Table 4).

Statistical analysis

The data were analyzed using Wilcoxon and Fisher's exact tests to compare the two groups.

Continuous variables are expressed as the mean (standard deviation). Categorical variables are expressed as the number of participants and proportions (percentages). To evaluate the postoperative results, we evaluated the parameters before surgery, one month after surgery, and six months after surgery using a paired t tests. Finally, we used multivariate logistic regression analysis to identify the factors that led to the choice of spinal fusion surgery. After the preoperative conditions were matched via propensity score matching, we compared the surgical outcomes between the two groups. P values less than 0.05 were considered to indicate statistical significance. Kaplan–Meier survival analysis was conducted to compare overall survival between the decompression and nondecompression groups. The log-rank test was used to assess statistical significance. JMP software was used for the statistical analyses (version 18, SAS Institute, Cary, NC, USA).


c) VAS

	VAS (pre)	VAS (1 M)	VAS (6 M)
Posterior spine stabilization with decompression	59.9 (32.2)	32.4 (27.0)	18.9 (17.5)
Posterior spine stabilization without decompression	55.9 (31.9)	24.4 (23.0)	25.7 (27.8)
P	0.52	0.15	0.75

Fig. 2. (continued)

d) Face scale

	Face scale (pre)	Face scale (1 M)	Face scale (6 M)
Posterior spine stabilization with decompression	6.0 (2.9)	3.2 (2.2)	2.8 (2.1)
Posterior spine stabilization without decompression	5.3 (3.1)	2.7 (2.1)	2.9 (2.7)
P	0.32	0.33	0.84

Two-group comparisons were performed via the Wilcoxon test at three time points: preoperative, 1 month postoperative, and 6 months postoperative.

Mean (standard deviation)

Fig. 2. (continued)

	Total, N=102	Posterior spine stabilization with decompression (N=51)	Posterior spine stabilization without decompression (N=51)	P
ΔBarthel Index	At 1month postoperatively	13.2 (24.8)	15.5 (27.8)	0.25
	At 6 months postoperatively	17.6 (28.8)	15.6 (28.7)	0.92
ΔEQ-5D-5 L	At 1month postoperatively	0.19 (0.26)	0.18 (0.25)	0.87
	At 6 months postoperatively	0.24 (0.26)	0.22 (0.36)	0.80
ΔVAS	At 1month postoperatively	28.0 (29.5)	28.0 (38.6)	0.88
	At 6 months postoperatively	45.4 (27.2)	32.8 (37.2)	0.33
Δface scale	At 1month postoperatively	2.8 (3.3)	2.2 (3.1)	0.54
	At 6 months postoperatively	3.5 (2.9)	3.0 (3.6)	0.86

Table 5. Comparison of preoperative-to-postoperative changes (Δ) between the two groups after propensity score matching. Two-group comparisons were made via the Wilcoxon test. No statistically significant differences were found for any of the scores. Mean (standard deviation). Two-group comparisons were performed via the Wilcoxon test at three time points: preoperative, 1 month postoperative, and 6 months postoperative. Mean (standard deviation).

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 20 May 2025; Accepted: 17 July 2025

Published online: 29 July 2025

References

1. Sutcliffe, P. et al. A systematic review of evidence on malignant spinal metastases: natural history and technologies for identifying patients at high risk of vertebral fracture and spinal cord compression. *Health Technol. Assess.* **17**, 1–274 (2013).
2. Shakil, H. et al. Contemporary trends in the incidence and timing of spinal metastases: a population-based study. *Neurooncol Adv.* **6**, vdae051 (2024).
3. Le, R., Tran, J. D., Lizaso, M., Beheshti, R. & Moats, A. Surgical intervention vs. Radiation therapy: the shifting paradigm in treating metastatic spinal disease. *Cureus* **10**, e3406 (2018).
4. Hirota, R., Teramoto, A., Iesato, N., Chiba, M. & Yamashita, T. Ten-year trends in the treatment and intervention timing for patients with metastatic spinal tumors: a retrospective observational study. *J. Orthop. Surg. Res.* **18**, 26 (2023).
5. Patchell, R. A. et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. *Lancet* **366**, 643–648 (2005).
6. Pranata, R., Lim, M. A., Vania, R. & Mahadewa, T. G. B. Minimal invasive surgery instrumented fusion versus conventional open surgical instrumented fusion for the treatment of spinal metastases: a systematic review and meta-analysis. *World Neurosurg.* **148**, e264–e274 (2021).
7. Orenday-Barraza, J. M. et al. 10-year trends in the surgical management of patients with spinal metastases: a scoping review. *World Neurosurg.* **157**, 170–186e3 (2022).
8. Choi, D., Bilsky, M., Fehlings, M., Fisher, C. & Gokaslan, Z. Spine Oncology-Metastatic spine tumors. *Neurosurgery* **80**, S131–S137 (2017).
9. Lei, M., Yu, J., Yan, S., An, X. & Liu, Y. Clinical outcomes and risk factors in patients with cervical metastatic spinal cord compression after posterior decompressive and spinal stabilization surgery. *Ther. Clin. Risk Manag.* **15**, 119–127 (2019).
10. Dindo, D., Demartines, N. & Clavien, P. A. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. *Ann. Surg.* **240**, 205–213 (2004).
11. Bakar, D. et al. Decompression surgery for spinal metastases: a systematic review. *Neurosurg. Focus* **41**, E2 (2016).
12. Sugita, S., Hozumi, T., Yamakawa, K. & Goto, T. The significance of spinal fixation in palliative surgery for spinal metastases. *J. Clin. Neurosci.* **48**, 163–167 (2018).
13. Fisher, C. G. et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the spine oncology study group. *Spine (Phila Pa)* **35**, E1221–E1229 (2010).
14. Dakson, A., Leck, E., Brandman, D. M. & Christie, S. D. The clinical utility of the spinal instability neoplastic score (SINS) system in spinal epidural metastases: a retrospective study. *Spinal Cord* **58**, 892–899 (2020).
15. Sherman, R. M. & Waddell, J. P. Laminectomy for metastatic epidural spinal cord tumors. Posterior stabilization, radiotherapy, and preoperative assessment. *Clin. Orthop. Relat. Res.* **207**, 55–63 (1986).
16. Muhlbauer, M., Pfisterer, W., Eyb, R. & Knosp, E. Noncontiguous spinal metastases and Plasmacytomas should be operated on through a single posterior midline approach, and circumferential decompression should be performed with individualized reconstruction. *Acta Neurochir.* **142**, 1219–1230 (2000).
17. Walter, J., Reichart, R., Waschke, A., Kalf, R. & Ewald, C. Palliative considerations in the surgical treatment of spinal metastases: evaluation of posterolateral decompression combined with posterior instrumentation. *J. Cancer Res. Clin. Oncol.* **138**, 301–310 (2012).
18. Chong, S. et al. Single-stage posterior decompression and stabilization for metastasis of the thoracic spine: prognostic factors for functional outcome and patients' survival. *Spine J.* **12**, 1083–1092 (2012).
19. Lei, M. et al. Posterior decompression and spine stabilization for metastatic spinal cord compression in the cervical spine. A matched pair analysis. *Eur. J. Surg. Oncol.* **41**, 1691–1698 (2015).
20. Johnston, F. G., Uttley, D. & Marsh, H. T. Synchronous vertebral decompression and posterior stabilization in the treatment of spinal malignancy. *Neurosurgery* **25**, 872–876 (1989).
21. Hansen-Algenstaedt, N. et al. Comparison between minimally invasive surgery and conventional open surgery for patients with spinal metastasis: A prospective propensity Score-Matched study. *Spine (Phila Pa. 1976)* **42**, 789–797 (2017).
22. Uei, H. et al. Comparison between minimally invasive spine stabilization with and without posterior decompression for the management of spinal metastases: a retrospective cohort study. *J. Orthop. Surg. Res.* **13**, 87 (2018).
23. Uei, H., Tokuhashi, Y. & Maseda, M. Analysis of the relationship between the epidural spinal cord compression (ESCC) scale and paralysis caused by metastatic spine tumors. *Spine (Phila Pa. 1976)* **43**, E448–E455 (2018).

24. Lei, M. et al. New imaging characteristics for predicting postoperative neurologic status in patients with metastatic epidural spinal cord compression. A retrospective analysis of 81 cases. *Spine J.* **17**, 814–820 (2017).
25. Quraishi, N. A. et al. The surgical management of metastatic spinal tumors based on an epidural spinal cord compression (ESCC) scale. *Spine J.* **15**, 1738–1743 (2015).
26. Ishino, Y. et al. Intratumoral flow void diameter as a predictor of high intraoperative blood loss in palliative excisional surgery for metastatic spinal tumors. *Cancers (Basel)* **16**, 4124 (2024).
27. Murphy, J. et al. The use of the flow-void sign on MRI: highly sensitive sign in detecting bone metastases from renal cell carcinoma. *Skeletal Radiol.* **53**, 917–922 (2024).
28. Tomita, K. et al. Surgical strategy for spinal metastases. *Spine (Phila Pa. 1976)* **26**, 298–306 (2001).
29. Tokuhashi, Y., Matsuzaki, H., Oda, H., Oshima, M. & Ryu, J. A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. *Spine (Phila Pa. 1976)* **30**, 2186–2191 (2005).
30. Bilsky, M. H. et al. Reliability analysis of the epidural spinal cord compression scale. *J. Neurosurg. Spine* **13**, 324–328 (2010).

Acknowledgements

We would like to thank Dr. Kazuhide Inage for the secretariat. We express our gratitude to Dr. Katsumi Harimaya, Dr. Hideki Murakami, Dr. Yasuchika Aoki, Dr. Seiji Okada, and Dr. Kei Ando for their efforts in managing the Japan Association of Spine Surgeons with Ambition (JASA). Additionally, we thank all JASA members for their contributions to data collection. We recognize the assistance of ChatGPT-4o, an AI language model developed by OpenAI, in editing and proofreading the English content of this manuscript. However, the final version of the paper and full responsibility for its content remain solely with the human authors.

Author contributions

H. T. and N. T. led the drafting of this manuscript in collaboration with other authors. H. T., I.K., H. S., and H. Sa. participated in the data analysis. Y.S., A.S., H.Ter., T.S., K.K., Y.K., M.I., M.P., Y.T., T.F., K.M., E.S., H.I., A.K., T.I., H.M., H.N., S.W., K.A., N.Ta., K.N., H.Saw., K.Ma., M.F., H.Su., H.F., T.O., T.Hi., B.O., K.Ko., K.U., H.M., S.T., K.H., C.I., D.Y., A.H., S.S., Y.G., M.M., K.W., T.N., T.K., H.Nak., N.N., S.K., S.I., K.Wat., G.I. and T.Fu. contributed to the collection of the clinical data. All the authors have read and approved the final manuscript.

Declarations

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1038/s41598-025-12485-7>.

Correspondence and requests for materials should be addressed to H.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025