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Edge-of-chaos operation
and persistent dynamics for
neuromorphic meminductor
computing

Abhiram Dinavahi™ & H. Rusty Harris™*

Volatile mem-elements can operate at locally active steady states thereby internally amplifying energy
fluctuations. Such elements can display persistent dynamical response to a constant excitation when
coupled to an appropriate passive network. While such persistent oscillations have been demonstrated
for memristors, similar work for memcapacitors and meminductors is currently missing. With both
elements now physically realized, their realistic models may be developed and investigated for local
activity, and coupling networks which lead to persistent dynamics can be designed. This work reports
the fabrication of a volatile meminductor mathematically shown to operate at the “edge-of-chaos”
and presents experimental evidence of passive coupling resulting in persistent oscillatory behavior.
The meminductor demonstrates quantifiable “contours of inversion (COI)” originating from state-
dependent inductance, thus highlighting that complexity cannot emerge without *mem”-behavior.
Finally, the coupled meminductor system has been shown to emulate second order neuronal
behaviors, thus experimentally affirming the potential of meminductors in neuromorphic computing
applications.

Abbreviations

LA Local activity/ Locally active
LP Local passivity/ Locally passive
LU Locally unstable

LS Locally stable

EOC Edge of chaos

COI Contour of Inversion

LOI Line of Inversion

LHP (RHP)  Left (Right) Half Plane of the complex s-plane
LED Light Emitting Diode

LDR Light Dependent Resistor

Inherently nonlinear, two-terminal circuit elements with state-dependent electrical properties are collectively
described as “mem-elements”!? and have been widely researched over the past decade due to their in-memory-
computing capabilities and rich dynamical properties®=’. Unlike linear circuit elements, volatile memelements
can generate a wide array of responses to constant excitations, ranging from desirable neuron-like dynamics®-1°
to unwanted oscillations resulting from amplification of ambient fluctuations'!. Understanding the physical
mechanisms behind the origin of each such response and developing mathematical models that allow circuit
designers to predictably induce selective responses while suppressing undesirable dynamics is hence crucial to
unlocking the true potential of memelements.

The first deliberate fabrication of a memelement only dates back 15 years to the physical realization of the
memristor in 2008'2. The massive technological potential of memristors soon became evident resulting in huge
volumes of work dedicated to fabrication of memristors and their deployment in novel memory and computing
hardware!*~'¢. An understanding that the revolutionary potential of memelements is not limited to memristors
but is also shared by its siblings—the memcapacitor and the meminductor- led to their physical realizations in
2019'7 and 2023'8respectively. However, with work on physical memelements almost exclusively confined to
memristors over the past 15 years, memcapacitors and meminductors remain largely unexplored despite being

Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77840, USA.
*email: abhiram@tamu.edy; rusty.harris@tamu.edu

Scientific Reports|  (2025) 15:40672 | https://doi.org/10.1038/s41598-025-12529-y nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-12529-y&domain=pdf&date_stamp=2025-11-14

www.nature.com/scientificreports/

envisioned to possess superior energy efficiency owing to their inherent energy storage characteristics!®. This
work aims to bridge this gap by reporting a “locally active”?*?! meminductor emulating second order neuronal
behavior thus demonstrating “persistent dynamical behavior”.

A memelement passively coupled to a judiciously chosen passive network and driven by an appropriate
DC excitation may yield persistent dynamical behavior only when biased at a “locally active (LA)” steady
state?>?, The range of possible dynamical behaviors is in turn determined by the “order of complexity” of the
memelement (number of coupled state variables) and thus, depends on device configuration?’. Higher degrees of
complexity yield more complicated dynamics. Since complex electrical responses in seemingly simple elements
are commonplace in biological systems, designs of LA memelements derive inspiration from, and are aimed at
emulating, biological brains thus constituting neuromorphic hardware architectures?®=!.

While LA is understood to be the cause of such complexity, search for LA in a memelement is not trivial
and is currently lacking a universal framework™. To address this problem, the “color map” approach has been
developed in recent works exploring complexity in memristors to identify bias conditions that enable inversion
of fluctuations and thereby, LA3>**. This technique is expanded to meminductors in our work and is used to
investigate an uncoupled volatile meminductor for LA. In this paper, Sect. “Meminductor and local activity
principle” is devoted to the fabrication of an uncoupled meminductor and investigation of its mathematical
model for LA steady states using the color map approach. Section Persistent dynamics in a passively coupled
EOC meminductor is dedicated to passively coupling the LA meminductor to a passive network to generate
persistent dynamics and neuronal behaviors.

Meminductor and local activity principle

Introduction to a meminductor

A current (i(t)) sourced inductor whose instantaneous inductance ‘L, depends on an internal state variable s(t)
constitutes a meminductor®”. Mathematically, this dependence is described by L, =f,(s(t)), where ds/dt=£,(s, i).
As shown in Fig. 1a, the constitutive relationship of a meminductor relates the input current i(¢) to the output flux
@(t) as p(t)=L,,,*i(t). For a periodic, bipolar current excitation with zero mean, the state-dependent inductance
results in the meminductor’s characteristic “pinched hysteresis” response in the ¢ vs. i plane as shown in the
cartoon in Fig. 1b%.

Unlike a nonlinear inductor, the instantaneous inductance L(t) of a meminductor is multivalued in current
i(t) due to its dependence on s(t). Hence, the phase difference between i(¢) and L(t) is non-zero. This phase
difference for an ideal meminductor is 71/2, meaning that the instantaneous inductance monotonically decreases
or increases as long as the polarity of the sourced current remains unchanged. This property was exploited in our
recent report on the physical realization of the first deliberate meminductor'® by facilitating the interaction of
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Fig. 1. Meminductor- introduction. (a) Symbol of a meminductor shown along with its constitutive state
variables current (i) and flux (¢). (b) Characteristic pinched hysteresis curve of the meminductor in the ¢ vs. i
plane. (c) Setup reported by the authors of this work in a previous publication on the physical realization of a
continuum-memory meminductor. Magnetic poles on the winding are so set up that the winding moves to the
right (left) during the negative (positive) half-cycle of input current thus monotonically decreasing (increasing)
the inductance of the winding. (d) A volatile meminductor design employing a vertically oriented winding
interacting with a neodymium permanent magnet. The winding moves under the influence of mutually
opposing electromagnetic and gravitational forces. A ferromagnetic bar partially fills the core volume resulting
in meminductance. (e) Relative magnetic permeability (1) of the core volume of the winding modeled as a
sigmoid function of its position, X.
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two permanent magnets with an electromagnet as shown in Fig. 1c. State-dependence of inductance was realized
by partially filling the electromagnet’s core volume by a ferromagnetic bar, resulting in a position-dependent
inductance. This setup results in a nonvolatile meminductor with the position of the winding relative to the
ferromagnetic core being the internal state variable influencing the inductance. Since every position of the
winding along the length of the core constitutes a nonvolatile state, volatile steady states are inexistent and the
meminductor realized in this previous work was hence described as a “continuum-memory meminductor”.

However, as detailed later in Sect. Local activity in a meminductor, dynamical behavior may not emerge or
persist in a passively coupled element unless it consists of volatile steady states®®. Since the continuum-memory
meminductor setup from our previous report consists exclusively of nonvolatile states, it is incapable of local
activity. In this work, volatile steady states are induced by changing the horizontal orientation of the winding into
a vertical orientation as shown in Fig. 1d such that the uncoupled meminductor is simultaneously influenced
not only by an electromagnetic force but also a restorative gravitational force. The setup is so designed thata DC
current sourced through the vertically oriented winding sets up magnetic poles on the winding which interact
with a permanent magnet placed at the bottom to result in an upward force on the winding. The lower portion
of the winding’s core volume is filled with a ferromagnetic material such that the inductance of the winding
decreases as its position is raised. The system therefore has a state-dependent inductance, where the state variable
is the position of the winding relative to the permanent magnet. The position-dependent relative permeability
of the core can be modeled as a sigmoid function as shown in Fig. le. For every value of sourced DC current ‘T,
there exists an equilibrium point at a height ‘X” above the permanent magnet where the upward electromagnetic
force and downward gravitational force balance each other. Once this current is withdrawn, the winding always
returns to the bottom thus always converging onto the same steady state values of the state variable (position,
X=0) and inductance. Hence, gravitational force acts as a restoring force that lends volatility to the meminductor.
A detailed explanation of the emergence of meminductive fingerprints in such configurations and challenges
involving experimental extraction of the hallmark pinched hysteresis curve in parasitic resistance dominated
setups has been provided in our previous report!® and also included in the Supplementary Information section
of this paper.

Local activity in a meminductor

Local activity (LA) and local passivity (LP) of a meminductor respectively refer to the element’s ability and
inability to invert or amplify small fluctuations when biased at a steady state. Each steady state is also characterized
by its stability: locally stable (LS) steady states attract neighboring trajectories while locally unstable (LU) steady
states, repel. Together, LS vs. LU and LP vs. LA can provide a lot of insight into the network level dynamical
behavior of a meminductor as described in this Sect™..

Consider a current-driven meminductor biased at the steady state (I, @, X) where input current fluctuations
8i(t) result in state variable fluctuations dx(¢) and output flux fluctuations d¢(t). This meminductor is assured
to be locally passive if the fluctuation energy d¢ is positive-definite for every ¢’ and §i(t), where #>0 and 6i(0) =
3¢(0) = 6x(0) =0%041,

6e(t/)é//6v(t)>< di(t)dt> 0 < LP 1)
0

This definition is mathematically rigorous and intuitively conveys the ability of an LA meminductor to
invert fluctuations (8¢ <0) but is not experimentally convenient. Hence, Leon Chua developed an equivalent
quantitative set of conditions to test for LP, which can be adapted for a meminductor as follows*>**. An uncoupled
meminductor with a locally linearized transfer function { (s) 2 (% (s)/i (s)—where i(s) and © (s) denote
the Laplace transforms of §i(¢) and d¢(2) respectively—is LA if any one of the two following mutually exclusive
conditions holds:

(A) {(s) has a pole of any order in the closed right half plane (closed RHP: Rs>0) with the additional require-
ment that any simple poles on the imaginary axis have a non-positive-real (non-PR) residue or.

(B) {(s) has all its poles in the open left half plane (open LHP: Rs<0) and maps at least some points on the
imaginary axis (Rs=0), i.e., “pure sinusoids’, into the open left half plane (open LHP: Rs<0).

where Rs is the real part of the complex angular frequency s. Condition (A) applies to LU systems since the
presence of at least one pole in the closed RHP characterizes instability. Similarly, condition (B) applies to LS
systems.

LU/LS and LP/LA are independent properties thus leading to four combinations: LU&KLP, LU&LA, LS&LP,
and LS&LA. Among these, LU&LP systems are characterized by simple poles on the imaginary axis with positive-
real (PR) residue and are non-physical. Hence, any physically realizable LU system (poles in the closed RHP)
is also LA, i.e., LU = LA, and such systems belong to the LU&LA class. This idea is captured in condition (A).
On the other hand, condition (B) explains that not all LA systems are LU, i.e., LA 7 LU, and that there can exist
LS&LA meminductors. LA may emerge in an LS meminductor (poles in open LHP) if {(s) can map some pure
sinusoids (i.e., some points on the imaginary axis) into the open LHP (Rs < 0) where every point is characterized
by a phase between 11/2 and 37/2. Since the output phase is closer to 7 than to 0 or 27, the phase-shifted sinusoids
are qualitatively closer to inverted versions of the original sinusoids than to their non-inverted versions. Thus,
condition (B) captures the ability of an LS&LA meminductor to invert fluctuations at certain “real” frequencies
and systems satisfying this condition are said to be biased at the “Edge of Chaos” (EOC)*. Conversely, condition
(A) is written as LA\EOC (read as LA but not EOC) and such behavior is called strict or unstable LA,
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For the emergence of dynamical patterns in physically realizable systems, LP systems are not of practical
interest since Chua’s “no-complexity theorem” proves that any input fluctuations in networks composed
exclusively of LP systems are damped. For the fluctuations to instead be inverted/amplified, LA is a necessary
requirement and thus leads to the expression, “Local activity is the origin of complexity.“*? Further, LA may
only manifest in volatile steady states**thus necessitating the design of a volatile meminductor as described in
Sect. Introduction to a meminductor.

Small signal model of an uncoupled volatile meminductor

The flux of the meminductor shown in Fig. 1d can be expressed in terms of its state (position x’) dependent
inductance ‘L’ as

p =L(z) @

where the state-dependent inductance L can be rewritten in terms of the state-dependent relative permeability
p, and a scaling factor °c’ as

L) =cp, (). 3

For a winding with N turns, cross-sectional area A, and length J, the scaling factor ‘¢’ is given by

_ N?A

; (4)

C

On the other hand, the position-dependent relative permeability of the core can be modeled as a sigmoid
function as shown in (5) where the parameter values have been chosen as Pray =8> @ =250 m~!, and §=0.03 m
to replicate experimental results.

/u’maxil
l+exp(—a (z—9))

/’t r (x) = M max - (5)

A second order differential equation for the state variable ‘x’ can be developed using Newton’s laws of motion by
balancing the total upward and downward forces as
d*z 1

Pl _F, - 6
dt2 mT (Fem Fa Fg) ( )

where m, is the total mass of the winding, and F, , F,, and F, respectively denote the electromagnetic, drag, and
gravitational forces.
The electromagnetic force F,  can be approximated as*®

3:“’ Olu’ T 1
Fem = T//[dPMjfdwinding (?) (7)

where Aapy, Ma
respectively, and

are the magnetic dipole moments of the permanent magnet and the winding

winding

%dwinding = NAiy (8)

where i is the winding current.

Hence,
7
Fom = K1 1, (2) (F) ©
where
K= Mo 4 NA. (10)
47_[ PM

Under the reasonable assumption that the winding moves slowly enough for the drag force F, to be linearly
proportional to the velocity of the winding, F, can be expressed as

dx
Fy=ka— 11
: 7 (11)

where ‘k " is the air drag coefficient.
The gravitational force F, acting on the winding can be calculated as

Fy =mrg (12)

where ‘g’ is the acceleration due to gravity. Hence, (6) can be rewritten as
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P K i ka dz
— . L ar . 13
dt? mTM (@) (x“) mt dt g (13)

Based on the experimental setup and resulting calculations, the following parameter values have been used in
generating results reported in this publication: m, = 2.6 x107 kg, K, =7.6x 10" kgm’ s A™!, k_=0.008 kg s,
and g=9.8 ms™2

At a steady state (I, @, X), all the time derivatives reduce to zero. Hence, (14) gives the equilibrium condition

K; 1
— 14
T”X“ g (14)

where,

poE (@) [ox- (15)
Investigating this setup for any possibility of EOC operation using Chua’s quantitative conditions from
Sect. Local activity in a meminductor requires linearizing this nonlinear model about the steady state (I, @, X)
and evaluating the local dynamical response of the system to fluctuations of the input, output, and state variables.
This can be done by considering fluctuations of i, ¢, and x about (I, @, X)- respectively denoted as i, §¢, and dx
(where (8i(t), 8¢ (1), 8x(t)) 2((i(t)-I), (¢(1)-D), (x(t)-X)))- and evaluating their time evolution. From (2) and (3),

1 .
10 =1 @) |y i+ I p, (@) (16)
= Yo — @) 5'+1(ﬁ7 () Loox 57) (17)
c ® —,LLr x =X ? dxp’r T =X T).
From (15),
%&pzuéi—i—lu'&x (18)
where,
d
pE @) 1)

Similarly, from (13)
d>(6z)  ka d(6z) (K1 p . Kil (p'  4u
e = (rxa) 0+ (G U~ ¥5) )0 (20)

Meminductance in a winding originates from a non-zero phase difference between the input current and the
state variable (i.e., position). Fluctuations in current therefore lead to phase-shifted fluctuations in position
which in turn contribute to phase-shifted fluctuations in flux. Hence, according to (20), the total fluctuations in
output flux have two components: an in-phase primary component from current fluctuations and a phase-shifted
secondary component from phase-shifted position fluctuations. These phase-shifted secondary fluctuations
hold the key to inverting the initial fluctuations and thereby, to lending LA to the element.

With the Laplace transforms of the fluctuations (di(t),0 ¢ (t),0 x(t)) respectively denoted by
(i\ (s), @ (s), E(s)), and the reasonable assumption that the initial conditions of the fluctuations are all

zero, Laplace transforms of (18) and (20) respectively yield (21) and (22).

1. ~ ~
“G=pitplT @)
TR
I~ (x %)
T = ; - (22)
s+ s = (G (5 = 3))
Eliminating 7 (s),
9/0\ ’ I p 1
= =cp +ep ( 7) ; 23
A mr X4 52+ k’LS (% (f;( _;1{;/:5)) ( )
Combining this result with the equilibrium condition from (14) yields the small signal transfer function
~ 2 ka g
ST+ s+ ¢
(2L =p——p— (24)
v 4 oas =g (- %)
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EOC bias conditions in an uncoupled volatile meminductor

As described in Sect. Local activity in a meminductor, EOC bias conditions of a vertically oriented, DC current
driven meminductor with a superimposed current fluctuation (&) as shown in Fig. 2a may be investigated based
on the locations of the poles and zeros of its linearized transfer function on the s-plane. The second order transfer
function {(s) from (24) has a complex conjugate pair of zeros located at

k 1 ka \2 16g
= —— =) - == (25)
5 2mT :t 2 (mT) X

and a complex conjugate pair of poles located at

2 ’
. il\/(ka) —@Hg%. (26)

- 2mT 2 mT X

One pole-zero pair, (s v 521), resides above the real axis and the other, (spz, szz), below. Since X is always positive,
the real part of s, is afways negative. On the other hand, for 4 modeled as a sigmoid as shown in Fig. 2b, y is
always positive while y’ is always non-positive, thus resulting in the real part of s_ also being always negative.
Since the real parts of both poles are negative, the system is always LS. Hence, any LA may only result from
biasing the meminductor in the EOC regime. Such bias conditions may be evaluated by studying the system’s
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Fig. 2. EOC bias conditions in an uncoupled volatile meminductor. (a) A volatile meminductor driven by a
DC current I with a small sinusoidal current of peak amplitude §i superimposed. (b) Imaginary parts of the
pole-zero pair located above the real axis, and relative permeability () of the winding core shown as functions
of the state variable, X. Transition region in the u_profile coincides with a separation of the pole and zero.

(c) Pole-zero separation results in a Contour of Inversion (COI) in the complex s-plane. Color of each point
represents the output phase of that point when transformed by the transfer function {(s) according to the
colormap legend shown in the inset. Complex conjugate pole-zero pairs result in two contours of inversion
symmetric about the real axis. Result shown for X=3.28 cm. (d) Locations of the pole and zero (for the pole-
zero pair above the real axis) in the complex s-plane for different values of the state variable, X. X=1 cm results
in negligible pole-zero separation (d-1), while X=2.2 cm shows a more pronounced separation resulting in

a COI (d-2). Further increase in X results in the COI crossing the imaginary axis, thereby resulting in EOC.
Size of COI increases with position until X=3.28 cm (d-3) and then decreases, as shown for X=4.21 cm (d-4)
finally becoming negligible, shown for X=5.5 cm (d-5). ) Small signal flux vs. current response shown for
X=1cm (e-1), X=2.2 cm (e-2), X=3.28 cm (e-3), X=4.21 cm (e-4), and X=5.5 cm (e-5). (f-h) A locally stable
volatile meminductor driven by a DC current I with a small step fluctuation of amplitude §i superimposed.
When coupled to an external passive network, an EOC meminductor may result in persistent dynamics for
certain couplings (g) and in decaying dynamics for other couplings (h). A meminductor not biased at the EOC
always results in decaying dynamics.
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.\ 2
ability to invert fluctuations. Also, since (%) < % in the setup considered, the real parts of poles and

zeros coincide for all practically relevant steady states. However, the imaginary parts of each pole-zero pair do
not necessarily coincide as shown in Fig. 2b.

The imaginary parts of s |, and s, are shown along with y_in Fig. 2b as functions of the winding’s position X.
Since p can be considered practically constant for winding positions X < 1 cm and X > 6.5 cm, y° ~0, and the poles
and zeros of {(s) annihilate each other resulting in a constant transfer function. However, for 1 cm<X<6.5 cm,
the small signal permeability is no longer constant and hence, 4’ #0, resulting in the pole-zero pairs separating
from each other. In particular, from Fig. 2b, while the zero continues to move towards the real axis as X increases,
the pole goes against the initial trend of moving towards the real axis and instead, briefly moves farther away. This
results in an increasing pole-zero separation which peaks at X=3.28 cm. The pole then returns to the original
trend of moving towards the real axis with increasing X, thus gradually lowering the pole-zero separation and
finally colliding with the zero around X=6.5 cm.

In search for potential EOC bias conditions, it is of interest to track the phase shift induced by {(s) on each
point on the complex s-plane for different winding positions, i.e., X. This can be visualized for each complex
coordinate s=x+iy by evaluating its output phase <((s) and representing this phase by the color of the
corresponding point on the s-plane®. The colormap*®*” used in this work is shown in the inset of Fig. 2c and
poles and zeros are indicated by the symbols @ and © respectively. Figure 2c illustrates the two pole-zero pairs
for X=3.28 cm, with both pairs located in the open LHP and one pair each located above and below the real axis
as previously described. Pole-zero separation leads to the emergence of a “Contour of Inversion” (COI)- shown
as a black dashed circle- and for the setup being investigated, the emerging contour is a circle with the pole and
the zero of each pole-zero pair as its diametric ends. The area enclosed by the COI is the collection of all points
on the s-plane which have output phases between /2 and 37/2. Points along the diameter joining the pole and
zero correspond to an output phase of 7, and the line is hence termed the “Line of Inversion” (LOI). Figure 2d-1
through 2(d-5) show the pole-zero separation and COI for different values of X.

As described in Sect. Local activity in a meminductor, an LS meminductor is said to be biased at the edge
of chaos if there exist some points on the imaginary axis which are mapped by {(s) into the open LHP, i.e., with
output phase in the range (1/2, 3n/2). Hence, the meminductor setup modeled here is EOC only for those
values of X for which the COI intersects the imaginary axis at least once. Therefore, while the absence of a COI
eliminates the possibility of EOC biasing (see Fig. 2d-1, d-5), the existence of COI alone does not guarantee
EOC as shown for X=2.2 cm (see Fig. 2d-2) but instead needs the COI to cross the imaginary axis as shown for
X=3.28 cm (see Fig. 2d-3) and X=4.21 cm (see Fig. 2d-4). Overall, the COI crosses the imaginary axis in the
range 2.21 cm <X <5.08 cm thus encompassing the range of X where the meminductor is biased at the edge-of-
chaos. Any value of X outside this range results in a locally passive meminductor.

The emergence of a COI in the range 1 cm <X <6.5 cm is a consequence of the element locally demonstrating
a state-dependent inductance (i.e., ¢’ #0) thus yielding a meminductor. Its response to a small sinusoidal current
8i (chosen as 20 pApeak for illustration) superimposed on the DC current I is a multi-valued hysteretic lobe in the
flux-current plane as shown in Fig. 2e-2, e-3, e-4. COI vanishing on either side of this range correlates with the
permeability in a small signal model being a constant (i.e., 4’ ~0) and the resulting state-independent inductance
thus locally yielding a linear inductor. The flux vs current response of this linear inductor to a small sinusoidal
current excitation about the DC current tends towards single-valued behavior as shown in Fig. 2e-1, e-5.

Points on the imaginary axis correspond to pure sinusoids, with the imaginary parts of the points representing
the sinusoids’ respective angular frequencies ‘w’ At X=3.28 cm, since the COI is the largest, the widest range
of fluctuations can result in EOC, with the frequencies of such fluctuations ranging between 35 rad-s7! (ie.,
5.57 Hz) and 48 rad-s™! (i.e., 7.64 Hz). The lowest and highest frequencies that can result in EOC turn out to be
30.3 rad-s™! (i.e., 4.82 Hz) and 48 rad-s~! (i.e., 7.64 Hz), respectively.

A passively coupled EOC biased meminductor as shown in Fig. 2f may result in either persistent dynamics or
decaying dynamics depending on the passive network coupled to it. These cases at X = 3.28 cm are illustrated with
cartoons in Fig. 2g, h respectively, with the amplified fluctuations in Fig. 2g shown to arbitrarily converge onto
a stable oscillation with an amplitude of 0.2 mA, for illustrative convenience. In a real setup, the oscillation
amplitude depends on several factors including the properties of the coupling network, and depending on the
order of complexity, persistent dynamics may manifest not just as periodic oscillations but also as other dynamical
responses such as periodic bursts and chaotic oscillations. Designing a network of passive components which,
when coupled to the volatile meminductor fabricated, yields persistent dynamics in a real-world experimental
setup forms the bulk of Sect. Persistent dynamics in a passively coupled EOC meminductor.

It is useful to note two special cases of the EOC meminductor setup. The first is an ideal, non-physical scenario
of zero air resistance, i.e., k,=0. In this case, both poles of the system land on the imaginary axis (simple poles
with non-positive-real residue) thereby making the meminductor LA\EOG, i.e., the hypothetical system would
be locally active for all steady states and results in persistent dynamics even when uncoupled. The second case is
of replacing the meminductor by a nonlinear inductor, which may be theoretically achieved via a hypothetical
inductor whose instantaneous inductance depends only on the instantaneous current flowing through the
winding (ie, ¢ = L (i) X 4). In this case, following the same linearization procedure results in a constant
transfer function for {(s) which physically corresponds to fluctuations resulting in transient decaying dynamics
regardless of the choice of passive coupling. This result hence reiterates the necessity of components with state-
dependent electrical properties, i.e., mem-elements, for the possibility of EOC and any ensuing complexity.
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EOC bias with positive differential inductance (PDL)

Noting that flux refers to the time integral of voltage in the generalized context of nonlinear electronics,

sH6)

may
~ ~

be rewritten as —<, where () is the voltage across the winding. Identifying that X is the small signal impedance
K2

S

“Z” of the winding,

¢ (s)=1z(s). 27)

S

Since multiplication by 1/s in the Laplace domain translates to integration in the time domain, ¢ is hereafter
given the name “Impedance momentum” conforming to the norm of calling electrical variables like charge
and flux (i.e., time integrals of current and voltage, respectively), current momentum and voltage momentum,
respectively*®.

The volatile meminductor modeled here has been shown to have a complex conjugate pair of poles (and
zeros) and hence constitutes a “2-D mem-system”. This contrasts with one-pole-one-zero mem-systems, e.g.,
1-D electrothermal memristors, where the singular pole and zero of the impedance transfer function must both
be purely real with the pole in the open LHP and the zero in the open RHP for EOC operation®*°. Since the pole
and zero flip for the admittance transfer function (Y21/Z), Y(s) has its pole in the RHP and hence cannot result
in EOC. Thus, the set of usable source variables is restricted to current in 1-D electrothermal memristors. Hence,
LA steady states may only be accessed by sourcing current but not voltage. This restriction mathematically
corresponds to voltage being a “well-defined” function of current but current being multi-valued in voltage thus
resulting in a negative differential resistance (NDR) region on the DC V-I curve®®°!.

However, in the case of two-pole-two-zero systems with real parts of all poles and zeros negative (like the
meminductive setup described here), the transfer functions for both impedance momentum ({) and its inverse
(¢ ") may potentially result in the EOC regime since interchanging the poles and zeros would still place all the
poles in the open LHP. Hence, neither current nor flux may be ruled out from the set of source variables that can
bias the system in EOC. This implies that the meminductor must be well-defined in both current and flux (i.e.,
both variables must be single-valued functions of each other) and hence, must demonstrate positive differential
inductance (PDL) in the entirety of its DC @-I curve. To verify this requirement in the current setup, rewrite the
steady state Eq. (14) to yield

b= gm;fi L (28)
Combining (28) with the steady state flux equation @ =cul,
b = cg%X 4 (29)
The differential inductance, d®/dI can be calculated by differentiating (29) with respect to I to give
e _ 4@ dX (30)
drI X dI

Since @ and X are always positive in the experimental setup and dX/dI>0 (from (28)), d®/dI is always positive,
thus confirming Positive Differential Inductance (PDL) for all allowable steady states (I, @, X) as shown in Fig.
3a, b. Generalizing these findings to all memelements, these results confirm that a negative differential transfer
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Fig. 3. EOC operation with exclusively positive differential inductance. (a) DC @-I curve of the meminductor.
(b) Differential inductance shown as a function of the state variable X. Relative permeability y_also
superimposed for reference.
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function (i.e., negative differential resistance in memristors, negative differential capacitance in memcapacitors,
and negative differential inductance in meminductors) is not a prerequisite for edge-of-chaos operation and
persistent dynamical behavior.

Equivalent circuit model with pseudo-elements
At the circuit level, modeling a virtual equivalent circuit yielding the same functional form as the transfer
function {(s) is useful since any negative pseudo-elements in the equivalent circuit can hint towards locally active
behavior and corroborate the results from Sect. EOC bias conditions in an uncoupled volatile meminductor. The
caveat here is that such negative pseudo-elements can only point to the presence of potential LA in the system
described by ((s) but can neither confirm it nor offer insights into its physical causes®2. Also, such equivalent
circuits are not unique and multiple such circuits can be conceived, all connected by the common feature that
their transfer functions have the same functional form with at least one pseudo-element being negative.
Consider the transfer function {,(s) in (31), which is the same as ((s) from (24), except with the scaling factor
cy omitted for convenience.

r

R [ S
Cl(s) 82+ps+q—|—7"’

(31

Ak A 4 N ! . . . .
where, p = 2, g = $,and r = —g' . Here, p, g, and r end up being always non-negative since 4’ is non-

positive and all other terms are strictly positive.

From (27), it can be easily shown that the impedance momentum for a linear inductor is L, for a linear
resistor, R/s, and for a linear capacitor, 1/Cs?, where R, L, and C are the resistance, inductance, and capacitance
of the resistor, inductor, and capacitor, respectively. Hence, the impedance momentum transfer function for the
virtual equivalent circuit shown in Fig. 4a is given by

N
T () + ()

Comparing Egs. (31) and (32), C = —1/r, R= —r/p,and L = —r/(q+ 7). As shown in Fig. 4b, since p,
¢, and r are all non-negative, L, C, and R are all non-positive, thus resulting in negative pseudo-elements and
indicating potential LA in the system defined by (32). Also, it is to be noted that R, L, and C reduce to short
circuits outside the meminductive range, i.e., for X<1 cm or X>6.5 cm where p " =0, thus reiterating the
conclusion that LA cannot emerge if the inductance is locally state-independent. On the other hand, a negative
pseudo-element- as found for 1 cm <X < 6.5 cm- cannot directly point to LA, or by extension, EOC, but can only
point to the existence of a COI (Contour of Inversion). For example, this can be seen for X=2.2 cm for which
R, L, and C are all negative, but the meminductor is not EOC since the COI does not cross the imaginary axis
(recall Fig. 2d).

To summarize, the emergence of a hysteretic lobe in the flux vs. current plane, the emergence of a COI in
the s-plane, and the presence of negative pseudo-elements in the small-signal equivalent LCR circuit are all
equivalent conditions. Therefore, satisfying any one of these conditions guarantees the other two. Importantly,
these conditions can only hint towards the possibility of EOC operation but cannot guarantee it.

C(s)=1+ (32)

Persistent dynamics in a passively coupled EOC meminductor

Circuit design and realization

Achieving persistent oscillatory dynamics in an EOC-biased meminductor when connected to a network of
passive circuit elements requires judicious choice of the LP coupling network. Motivated by Reenstra’s low
frequency oscillator circuit*"*%a current divider circuit as shown in Fig. 5a is identified as a candidate to realize a
DC current driven, meminductor based, oscillator circuit, where the meminductor is connected in parallel with
a passive component whose resistance R, is designed to depend on the state variable of the meminductor (i.e.,

5i(t) 1H ;\0 - 0.0 AO T T T T g T g T
S Ll 7| g
+ ¢ 4| & —R(@
R L C -e%o --0.3 }-250 | —L ((H)) .
5¢(t) S _ - - —CFY

_1200 __0A6 L _500 & 1 " 1 rt 1 " 1 L 1
1 3 4
b X (cm)

Fig. 4. Virtual equivalent linear circuit. (a) Linear RLC circuit yielding the same transfer function as the
small-signal model of the uncoupled volatile meminductor. (b) R, L, and C values extracted by comparing the
transfer functions of the meminductor and the equivalent circuit plotted as functions of the state variable, X. R,
L, and C are all negative within the meminductive range and reduce to short-circuits outside.
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Fig. 5. Design of coupling network for persistent dynamics. (a, b) Design philosophy to setup a closed loop
feedback mechanism shown as a block diagram (a) and as an electromechanical circuit (b). Meminductor
branch current i influences the state variable X which in turn influences the resistance of the parallel branch
R, Change in R results in a change in i thus repeating the cycle. The parallel branch is realized as a light-
dependent-resistor (LDR), whose resistance depends on the position of an LED attached to the winding thus
coupling R_to X. (c) Electrical circuit representation of the setup. (d) Picture of experimental setup showing
the LDR being illuminated by the LED attached to the winding.

R (X)). A variation in the meminductor branch current i results in a variation in X which in turn triggers a
cﬁange in R . For a given source current I, a changein R in 1 turn serves to alter both branch currents thus setting
up a closed feedback loop and thereby, a potentially oscillatory mechanism. This design philosophy is shown in
Fig. 5b and perpetual oscillatory behavior in this setup can be physically realized by careful choice of the parallel
circuit constituents and the mechanism that couples X and R .

As shown in Fig. 5b, the parallel branch in this work comprises a light dependent resistor (LDR) whose
resistance depends on the intensity of light illuminated on its surface. The meminductor branch has a yellow LED
physically attached to, and electrically connected in series with, the winding. The LDR and LED are positioned
such that the light from the LED illuminates the LDR only when the winding is raised by heights in the range
2 cm < X <5 cm. With shields to block off stray ambient light in place, the LDR has a “dark” resistance of over 150
kQ when not illuminated and “light” resistance as low as 5 kQ when illuminated by an LED driven by a current
of 30 mA and placed 3 cm away. To increase the active surface area of the LDR, two LDRs have been connected
in parallel, thus resulting in a minimum resistance of ~2.5 k(). The maximum inductance of the winding (i.e.,
at X=0) is 150 mH. Hence, at frequencies below 10 Hz, its instantaneous inductive reactance X; is less than 10
Q which is negligible in comparison with the series winding resistance of ~700 Q. A 5 kQ) power resistor is also
connected in series in the meminductor branch, which along with the winding resistance and the LED resistance
(roughly 150 Q and 100 Q) for a yellow LED at 10 mA and 25 mA, respectively) brings the total resistance of the
branch to about 6 kQ. The power resistor is only added to ensure that at least 50% of the sourced current flows
through the LDR branch under maximum illumination when the LDR resistance reaches its minimum value
of ~2.5 kQ. The electrical circuit representation of the setup is shown in Fig. 5c¢ and the experimental setup
demonstrating the LED illuminating the LDR when the winding has been raised due to the meminductor branch
current is shown in Fig. 5d.

Results and discussion

Figure 6a shows the electrical circuit representation of the described setup with the resulting current divider
circuits for the cases of maximum and minimum illumination of the LDR highlighted. When the winding
is at the bottom, the LDR not being illuminated results in maximum LDR resistance ‘R, ;" thus resulting in
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Fig. 6. Circuit setup and results. (a) Electrical circuit representation of the meminductor coupled to an LP
network. The two border cases of no illumination and maximum illumination of the LDR highlighted in the
insets. (b) Setup configuration shown for different timeslices during a single cycle, labelled ®-®. Instantaneous
values of the LDR resistance and branch currents for each timeslice are shown in the inset of each panel. (c,

d) Sourcing a constant current of 27 mA results in persistent oscillations due to a dynamically changing load.
Oscillations in total voltage measured, V.. (c) and individual branch currents, i and i, (d) shown, along with

LDR
timeslice labels, O-®.

maximum i and thereby, maximum voltage drop and upward electromagnetic force. If the electromagnetic
force is strong enough to overcome limiting friction between the winding and the shaft along which it moves,
the winding moves upward in search of an equilibrium point where the electromagnetic and gravitational forces
balance each other out. For most configurations, the winding, aided by air drag and friction (both static and
dynamic), succeeds in finding such a stable equilibrium point. However, when the meminductor is biased at the
edge of chaos, it is possible to destabilize equilibrium points over a range of values of X by carefully adjusting
parameters such as the horizontal and vertical distances between the LED and LDR. Such adjustment ensures
that when the winding reaches the previously sought equilibrium point, the LDR being illuminated lowers R,
and thereby, i . Hence, the winding no longer has the required electromagnetic force to stay at that height since
some of its current has been routed through the LDR branch. Therefore, the winding loses height due to gravity
and in this process, the LDR illumination is lowered. Thus, the winding once again draws more current and
thereby experiences an increased electromagnetic force. This process can repeat perpetually, thus resulting in
persistent oscillations as depicted in Fig. 6b for different slices of time during an oscillation cycle.

For such a carefully arranged configuration as shown in Fig. 6b, as the winding moves from position @
to position @, the light emitted by the LED gradually illuminates larger cross-sections of the LDR, thereby
progressively lowering its resistance. Hence, the meminductor current i  reaches its minimum at @, which
results in minimum voltage drop V. as shown in Fig. 6¢, d for I,=27 mA. However, in spite of i being at a
minimum, the winding does not stop its upward motion at @due to inertia of motion often carrying the winding
beyond @ to ®@. In this part of the winding’s journey, the LDR illumination gradually decreases thus resulting in
a progressively higher LDR resistance. This translates to increasing i, and V. (see Fig. 6¢c, d). Once the upward
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Fig. 7. Source-current dependent bifurcation. (a, b) Input currents I in the range 27 mA-30 mA destabilize
steady states resulting in astable behavior and thereby, persistent oscillations. Steady states are stable on

either side of this parametric range. Voltage oscillations in the astable region highlighted in (b). (¢,d) Within
the astable region, oscillation frequency increases as I increases. Frequency of oscillations as a function

of I shown in (c) and time domain response for different values of I, shown in (d). (e) Cartoons depicting
second order neuronal properties, namely periodic action potential generation and spike number adaptation.
Experimental results shown in (a-d) highlight the meminductor’s ability to mimic such neuronal activity when
appropriately coupled, thereby showing evidence of its potential in neuromorphic hardware development.

inertial motion stops, the winding begins to lose height and as it returns from ® to @, it once again crosses a
point of maximum LDR illumination at ® which is physically the same location as @. Hence, as the winding
moves from @ to @, i and V. decrease to their respective minima, and as the winding continues from @ to @,
they increase again.

It is important to note that achieving a persistent oscillatory response requires the winding to pass through
the maximum LDR illumination position. This can be achieved through a current ramp (Supplementary
Video-1) that forces the winding to approach the maximum LDR illumination position with upward velocity.
If the winding is simply placed in the maximum LDR illumination position, then a local minimum in overall
energy allows a stable position to be achieved. However, this state can be physically perturbed (Supplementary
Video-3), also resulting in a persistent oscillatory state.

Source current dependent parametric bifurcation
In the described setup, oscillations emerge only when the meminductor is biased at the edge of chaos which
requires the winding position to be in the range 2.2 cm<X<4.75 cm (see Sect. EOC bias conditions in an
uncoupled volatile meminductor). Accounting for the static and dynamic friction components between the core
shaft and the winding, these positions typically correspond to meminductor branch currents in the range 15
mA <i_ <30 mA. Hence, when the source current I, results in values of i outside this range, oscillatory behavior
is not possible. For source currents resulting in values of i  within this desirable range, the very emergence of
oscillations and the range of values of i , which result in said oscillations are both sensitively dependent on
the setup parameters (LED-LDR spacing and orientation etc.). Subtle changes in these parameters translate
to considerable changes in the profile, frequency, and amplitude of oscillations, with persistent oscillations
themselves often changing into decaying dynamics by a mere nudge of the LDR position (see Supplementary
Video-2). On the other hand, when the setup is left undisturbed (experimentally tested for a duration of 2 h), the
oscillations have been found to not stop until the source current was turned off.

Figure 7 demonstrates astable, oscillatory behavior with the setup configured to result in oscillations in
the range 27 mA < <30 mA. As I is gradually increased from 0 in a quasi-DC sweep, the measured voltage
increases linearly with the source current as long as the winding remains stationary at the bottom. In this regime,
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since the system converges to a stable steady state for each I, a steady state voltage emerges once the transients
die out. Plotting this steady state voltage as a function of I, hence results in a single-valued curve in the source-
current-dependent bifurcation plot as shown in Fig. 7a. However, once I, reaches ~ 27 mA, the electromagnetic
force is strong enough to overcome the limiting friction between the core shaft and the winding, and the winding
abruptly jumps up and starts oscillating. In this regime, since the steady states have been destabilized, the system
cannot converge to a steady state and the bifurcation plot for each I, hence shows not a single data point but a
continuum of voltage points in the range 58-144 V as highlighted in Fig. 7b. As the current is further increased,
the oscillations grow both in amplitude and frequency and thus, the oscillation envelope in the bifurcation plot
stretches to span the range 70-165 V at 1,=30 mA. Once I crosses~30 mA, the oscillations die down, and
the bifurcation plot returns to being a single-valued curve since the winding converges to a stable steady state
and remains stationary. Further increase in current results in linear increase in voltage, except for sporadic
jumps, which appear whenever the electromagnetic force overcomes the limiting friction between the stationary
winding and the core shaft, causing the winding to converge onto a new steady state at a greater height where the
upward and downward forces balance each other out. See Supplementary Video-1 for an experimental recording
of this behavior.

Oscillations occur simultaneously in mechanical, electrical, and optical domains in winding displacement,
current and voltage signals, and optical intensity of the LED respectively. Figure 7c shows that the frequency of
these oscillations in the oscillatory regime increases as the source current increases, and the range of frequencies
observed, i.e., 4.75-7 Hz, is in agreement with the theoretical results of EOC analysis from Sect. EOC bias
conditions in an uncoupled volatile meminductor. Voltage oscillations shown in Fig. 7d for different source
currents demonstrate the trend of increasing amplitude and frequency as I, increases.

Neuromorphic computing potential of the LP-coupled EOC meminductor: mimicking
neuronal behaviors
In the context of nonlinear dynamical systems, the order of complexity of a system is defined as the number
of first order differential equations required to completely describe its dynamical behavior®®. The order of
complexity in turn determines the range of dynamical responses that the system can generate and hence, plays a
crucial role in designing electrical devices for bio-inspired computing applications. Biological neurons have been
shown to express over 20 different dynamical behaviors based on their stimulation and activation history>*and
hence, mimicking neuronal behavior begins with an understanding of the specific neuronal function desired to
be emulated. While primitive functions like “Integrate-and-fire” only require first-order complexity, periodic
generation of action potential and “spike number adaptation” require second-order complexity as shown in Fig.
7e. Periodic bursts and chaotic oscillations require third order complexity, and hyperchaotic oscillations, fourth.
Such dependence of dynamics on device complexity leads to application specific device configurations®~>".
The second order differential Eq. (13) describing the state function of an uncoupled volatile meminductor
can be broken down into two first order differential equations as

[m:[ﬁu(m)(ﬁ)—ﬁ;y—g ; (33)

where @ 2 dx/dt. Hence, the uncoupled meminductor has a second-order complexity with its two state
variables being displacement (x) and velocity (y £ ). Since both the state variables are volatile, the meminductor
can be used to mimic only neuronal properties but not synaptic properties since the latter requires at least one
state variable to result in non-volatile memory. A constant current excitation resulting in persistent periodic
oscillatory behavior in voltage as shown in each panel in Fig. 7d is similar to neurons generating a periodic action
potential when stimulated by a DC voltage. Further, the panels also show that increasing the input DC current
level increases the frequency of resulting voltage oscillations. This property mimics “spike number adaptation’,
i.e., modulation of the frequency of action potential generation by varying the input stimulus level. Dynamical
behavior corresponding to higher orders of complexity such as periodic bursts and chaotic oscillations may
also be potentially realized by adding more state variables to the system either in the meminductor design or by
connections to appropriate coupling networks.

Due to static friction between the winding and the shaft across which it moves, it is possible to bring the
winding to rest at a steady state which has been destabilized by appropriate LP coupling (Supplementary Video-3).
Once so biased at a steady state, the winding does not possess the ability to self-oscillate since infinitesimal input
current fluctuations cannot produce a fluctuation in the electromagnetic force large enough to overcome the
limiting friction. Hence, at a given steady state, there exists a minimum current/position fluctuation threshold
above which the winding starts to oscillate due to fluctuations being amplified and below which the fluctuations
are damped. Thus, the meminductive oscillator not only restricts the range of input currents I, that can result in
oscillations, but also implicitly adds a thresholding feature that limits fluctuation levels i that are amplified about
each I. Such thresholding may once again be used to mimic neuronal firing behavior. Generating persistent
dynamics by externally inducing position fluctuations has been recorded and presented in Supplementary
Video-3.

Conclusions

It has been shown that a meminductor biased at the edge of chaos, when connected to an appropriate coupling
network, can display persistent dynamical behaviors in response to a DC current input. The state variable range
resulting in persistent dynamics when a volatile meminductor is connected to a passive network has been
shown to agree with the range theoretically predicted using the uncoupled element’s small-signal linearized
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model. Similarities in dynamic response of the meminductor oscillator to neuronal functions such as action
potential generation and spike number adaptation have been discussed thus highlighting the potential for use
of meminductors in bio-computing and neuromorphic applications. Also, the necessity of circuit elements with
state-dependent electrical characteristics, i.e., mem-elements, for EOC bias possibility and resultant complexity
has been discussed, thus reiterating the importance of memristors, memcapacitors, and meminductors in
developing neuromorphic computing architectures.

For the sake of simplicity, static and dynamic friction between the winding and the core shaft have
been omitted from the small-signal model in this work. However, given the importance of static friction in
determining the minimum input fluctuation level that results in oscillations, it is necessary for future models
to incorporate friction along with drag force to accurately predict the system’s self-oscillation capabilities and
dynamical response. Design parameters for expanding EOC operation regime have been outlined and future
work planned includes efforts to improve the meminductor design based on these strategies. The choice of the LP
coupling network used in this work is by no means unique, and efforts to design coupling configurations more
robust to parametric variations are currently being pursued. The results presented reinforce the concept that
meminductors can mimic neuronal functionality, and development of nanoscale, high frequency meminductors
that do not rely on macroscopic physical motion could have crucial applications in real neuromorphic hardware
development.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on
reasonable request.
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