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Volatile mem-elements can operate at locally active steady states thereby internally amplifying energy 
fluctuations. Such elements can display persistent dynamical response to a constant excitation when 
coupled to an appropriate passive network. While such persistent oscillations have been demonstrated 
for memristors, similar work for memcapacitors and meminductors is currently missing. With both 
elements now physically realized, their realistic models may be developed and investigated for local 
activity, and coupling networks which lead to persistent dynamics can be designed. This work reports 
the fabrication of a volatile meminductor mathematically shown to operate at the “edge-of-chaos” 
and presents experimental evidence of passive coupling resulting in persistent oscillatory behavior. 
The meminductor demonstrates quantifiable “contours of inversion (COI)” originating from state-
dependent inductance, thus highlighting that complexity cannot emerge without “mem”-behavior. 
Finally, the coupled meminductor system has been shown to emulate second order neuronal 
behaviors, thus experimentally affirming the potential of meminductors in neuromorphic computing 
applications.

Abbreviations
LA	� Local activity/ Locally active
LP	� Local passivity/ Locally passive
LU	� Locally unstable
LS	� Locally stable
EOC	� Edge of chaos
COI	� Contour of Inversion
LOI	� Line of Inversion
LHP (RHP)	� Left (Right) Half Plane of the complex s-plane
LED	� Light Emitting Diode
LDR	� Light Dependent Resistor

Inherently nonlinear, two-terminal circuit elements with state-dependent electrical properties are collectively 
described as “mem-elements”1,2 and have been widely researched over the past decade due to their in-memory-
computing capabilities and rich dynamical properties3–7. Unlike linear circuit elements, volatile memelements 
can generate a wide array of responses to constant excitations, ranging from desirable neuron-like dynamics8–10 
to unwanted oscillations resulting from amplification of ambient fluctuations11. Understanding the physical 
mechanisms behind the origin of each such response and developing mathematical models that allow circuit 
designers to predictably induce selective responses while suppressing undesirable dynamics is hence crucial to 
unlocking the true potential of memelements.

The first deliberate fabrication of a memelement only dates back 15 years to the physical realization of the 
memristor in 200812. The massive technological potential of memristors soon became evident resulting in huge 
volumes of work dedicated to fabrication of memristors and their deployment in novel memory and computing 
hardware13–16. An understanding that the revolutionary potential of memelements is not limited to memristors 
but is also shared by its siblings—the memcapacitor and the meminductor- led to their physical realizations in 
201917 and 202318respectively. However, with work on physical memelements almost exclusively confined to 
memristors over the past 15 years, memcapacitors and meminductors remain largely unexplored despite being 
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envisioned to possess superior energy efficiency owing to their inherent energy storage characteristics19. This 
work aims to bridge this gap by reporting a “locally active”20,21 meminductor emulating second order neuronal 
behavior thus demonstrating “persistent dynamical behavior”.

A memelement passively coupled to a judiciously chosen passive network and driven by an appropriate 
DC excitation may yield persistent dynamical behavior only when biased at a “locally active (LA)” steady 
state22,23. The range of possible dynamical behaviors is in turn determined by the “order of complexity” of the 
memelement (number of coupled state variables) and thus, depends on device configuration24. Higher degrees of 
complexity yield more complicated dynamics. Since complex electrical responses in seemingly simple elements 
are commonplace in biological systems, designs of LA memelements derive inspiration from, and are aimed at 
emulating, biological brains thus constituting neuromorphic hardware architectures25–31.

While LA is understood to be the cause of such complexity, search for LA in a memelement is not trivial 
and is currently lacking a universal framework32. To address this problem, the “color map” approach has been 
developed in recent works exploring complexity in memristors to identify bias conditions that enable inversion 
of fluctuations and thereby, LA33,34. This technique is expanded to meminductors in our work and is used to 
investigate an uncoupled volatile meminductor for LA. In this paper, Sect.  “Meminductor and local activity 
principle” is devoted to the fabrication of an uncoupled meminductor and investigation of its mathematical 
model for LA steady states using the color map approach. Section Persistent dynamics in a passively coupled 
EOC meminductor is dedicated to passively coupling the LA meminductor to a passive network to generate 
persistent dynamics and neuronal behaviors.

Meminductor and local activity principle
Introduction to a meminductor
A current (i(t)) sourced inductor whose instantaneous inductance ‘Linst’ depends on an internal state variable s(t) 
constitutes a meminductor35. Mathematically, this dependence is described by Linst=f1(s(t)), where ds/dt = f2(s, i). 
As shown in Fig. 1a, the constitutive relationship of a meminductor relates the input current i(t) to the output flux 
ϕ(t) as ϕ(t) = Linst*i(t). For a periodic, bipolar current excitation with zero mean, the state-dependent inductance 
results in the meminductor’s characteristic “pinched hysteresis” response in the ϕ vs. i plane as shown in the 
cartoon in Fig. 1b36.

Unlike a nonlinear inductor, the instantaneous inductance L(t) of a meminductor is multivalued in current 
i(t) due to its dependence on s(t). Hence, the phase difference between i(t) and L(t) is non-zero. This phase 
difference for an ideal meminductor is π/2, meaning that the instantaneous inductance monotonically decreases 
or increases as long as the polarity of the sourced current remains unchanged. This property was exploited in our 
recent report on the physical realization of the first deliberate meminductor18 by facilitating the interaction of 

Fig. 1.  Meminductor- introduction. (a) Symbol of a meminductor shown along with its constitutive state 
variables current (i) and flux (ϕ). (b) Characteristic pinched hysteresis curve of the meminductor in the ϕ vs. i 
plane. (c) Setup reported by the authors of this work in a previous publication on the physical realization of a 
continuum-memory meminductor. Magnetic poles on the winding are so set up that the winding moves to the 
right (left) during the negative (positive) half-cycle of input current thus monotonically decreasing (increasing) 
the inductance of the winding. (d) A volatile meminductor design employing a vertically oriented winding 
interacting with a neodymium permanent magnet. The winding moves under the influence of mutually 
opposing electromagnetic and gravitational forces. A ferromagnetic bar partially fills the core volume resulting 
in meminductance. (e) Relative magnetic permeability (µr) of the core volume of the winding modeled as a 
sigmoid function of its position, X.

 

Scientific Reports |        (2025) 15:40672 2| https://doi.org/10.1038/s41598-025-12529-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


two permanent magnets with an electromagnet as shown in Fig. 1c. State-dependence of inductance was realized 
by partially filling the electromagnet’s core volume by a ferromagnetic bar, resulting in a position-dependent 
inductance. This setup results in a nonvolatile meminductor with the position of the winding relative to the 
ferromagnetic core being the internal state variable influencing the inductance. Since every position of the 
winding along the length of the core constitutes a nonvolatile state, volatile steady states are inexistent and the 
meminductor realized in this previous work was hence described as a “continuum-memory meminductor”37.

However, as detailed later in Sect. Local activity in a meminductor, dynamical behavior may not emerge or 
persist in a passively coupled element unless it consists of volatile steady states38. Since the continuum-memory 
meminductor setup from our previous report consists exclusively of nonvolatile states, it is incapable of local 
activity. In this work, volatile steady states are induced by changing the horizontal orientation of the winding into 
a vertical orientation as shown in Fig. 1d such that the uncoupled meminductor is simultaneously influenced 
not only by an electromagnetic force but also a restorative gravitational force. The setup is so designed that a DC 
current sourced through the vertically oriented winding sets up magnetic poles on the winding which interact 
with a permanent magnet placed at the bottom to result in an upward force on the winding. The lower portion 
of the winding’s core volume is filled with a ferromagnetic material such that the inductance of the winding 
decreases as its position is raised. The system therefore has a state-dependent inductance, where the state variable 
is the position of the winding relative to the permanent magnet. The position-dependent relative permeability 
of the core can be modeled as a sigmoid function as shown in Fig. 1e. For every value of sourced DC current ‘I’, 
there exists an equilibrium point at a height ‘X’ above the permanent magnet where the upward electromagnetic 
force and downward gravitational force balance each other. Once this current is withdrawn, the winding always 
returns to the bottom thus always converging onto the same steady state values of the state variable (position, 
X = 0) and inductance. Hence, gravitational force acts as a restoring force that lends volatility to the meminductor. 
A detailed explanation of the emergence of meminductive fingerprints in such configurations and challenges 
involving experimental extraction of the hallmark pinched hysteresis curve in parasitic resistance dominated 
setups has been provided in our previous report18 and also included in the Supplementary Information section 
of this paper.

Local activity in a meminductor
Local activity (LA) and local passivity (LP) of a meminductor respectively refer to the element’s ability and 
inability to invert or amplify small fluctuations when biased at a steady state. Each steady state is also characterized 
by its stability: locally stable (LS) steady states attract neighboring trajectories while locally unstable (LU) steady 
states, repel. Together, LS vs. LU and LP vs. LA can provide a lot of insight into the network level dynamical 
behavior of a meminductor as described in this Sect39..

Consider a current-driven meminductor biased at the steady state (I, Φ, X) where input current fluctuations 
δi(t) result in state variable fluctuations δx(t) and output flux fluctuations δϕ(t). This meminductor is assured 
to be locally passive if the fluctuation energy δε is positive-definite for every t’ and δi(t), where t’>0 and δi(0) = 
δϕ(0) = δx(0) = 040,41.

	
δ ϵ (t′ ) ≜

ˆ t′

0
δ v (t) × δ i (t) dt ≥ 0 ⇐⇒ LP � (1)

This definition is mathematically rigorous and intuitively conveys the ability of an LA meminductor to 
invert fluctuations (δε < 0) but is not experimentally convenient. Hence, Leon Chua developed an equivalent 
quantitative set of conditions to test for LP, which can be adapted for a meminductor as follows42,43. An uncoupled 
meminductor with a locally linearized transfer function ζ (s) ≜ φ̂ (s)/ î (s)—where î (s) and φ̂ (s) denote 
the Laplace transforms of δi(t) and δϕ(t) respectively—is LA if any one of the two following mutually exclusive 
conditions holds:

	(A)	 ζ(s) has a pole of any order in the closed right half plane (closed RHP: ℜs ≥ 0) with the additional require-
ment that any simple poles on the imaginary axis have a non-positive-real (non-PR) residue or.

	(B)	 ζ(s) has all its poles in the open left half plane (open LHP: ℜs < 0) and maps at least some points on the 
imaginary axis (ℜs = 0), i.e., “pure sinusoids”, into the open left half plane (open LHP: ℜs < 0).

where ℜs is the real part of the complex angular frequency s. Condition (A) applies to LU systems since the 
presence of at least one pole in the closed RHP characterizes instability. Similarly, condition (B) applies to LS 
systems.

LU/LS and LP/LA are independent properties thus leading to four combinations: LU&LP, LU&LA, LS&LP, 
and LS&LA. Among these, LU&LP systems are characterized by simple poles on the imaginary axis with positive-
real (PR) residue and are non-physical. Hence, any physically realizable LU system (poles in the closed RHP) 
is also LA, i.e., LU ⇒ LA, and such systems belong to the LU&LA class. This idea is captured in condition (A). 
On the other hand, condition (B) explains that not all LA systems are LU, i.e., LA ⇏ LU, and that there can exist 
LS&LA meminductors. LA may emerge in an LS meminductor (poles in open LHP) if ζ(s) can map some pure 
sinusoids (i.e., some points on the imaginary axis) into the open LHP (ℜs < 0) where every point is characterized 
by a phase between π/2 and 3π/2. Since the output phase is closer to π than to 0 or 2π, the phase-shifted sinusoids 
are qualitatively closer to inverted versions of the original sinusoids than to their non-inverted versions. Thus, 
condition (B) captures the ability of an LS&LA meminductor to invert fluctuations at certain “real” frequencies 
and systems satisfying this condition are said to be biased at the “Edge of Chaos” (EOC)44. Conversely, condition 
(A) is written as LA\EOC (read as LA but not EOC) and such behavior is called strict or unstable LA34.
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For the emergence of dynamical patterns in physically realizable systems, LP systems are not of practical 
interest since Chua’s “no-complexity theorem” proves that any input fluctuations in networks composed 
exclusively of LP systems are damped. For the fluctuations to instead be inverted/amplified, LA is a necessary 
requirement and thus leads to the expression, “Local activity is the origin of complexity.“42 Further, LA may 
only manifest in volatile steady states38thus necessitating the design of a volatile meminductor as described in 
Sect. Introduction to a meminductor.

Small signal model of an uncoupled volatile meminductor
The flux of the meminductor shown in Fig. 1d can be expressed in terms of its state (position ‘x’) dependent 
inductance ‘L’ as

	 φ = L (x) i � (2)

 where the state-dependent inductance L can be rewritten in terms of the state-dependent relative permeability 
µr and a scaling factor ‘c’ as

	 L (x) = c µ r (x) .� (3)

For a winding with N turns, cross-sectional area A, and length l, the scaling factor ‘c’ is given by

	
c = N2A

l
.� (4)

On the other hand, the position-dependent relative permeability of the core can be modeled as a sigmoid 
function as shown in (5) where the parameter values have been chosen as µmax = 8, α = 250 m−1, and δ = 0.03 m 
to replicate experimental results.

	
µ r (x) = µ max − µ max − 1

1 + exp (−α (x − δ )) .� (5)

A second order differential equation for the state variable ‘x’ can be developed using Newton’s laws of motion by 
balancing the total upward and downward forces as

	
d2x

dt2 = 1
mT

(Fem − Fa − Fg)� (6)

 where mT is the total mass of the winding, and Fem, Fa, and Fg respectively denote the electromagnetic, drag, and 
gravitational forces.

The electromagnetic force Fem can be approximated as45

	
Fem = 3µ 0µ r

4π MdPMMdwinding

( 1
x4

)
� (7)

 where MdPM , Mdwinding  are the magnetic dipole moments of the permanent magnet and the winding 
respectively, and

	 Mdwinding = NAiw � (8)

 where iw is the winding current.
Hence,

	
Fem = K1 µ r (x)

(
i

x4

)
� (9)

 where

	
K1 = 3µ 0

4π MdPMNA.� (10)

Under the reasonable assumption that the winding moves slowly enough for the drag force Fa to be linearly 
proportional to the velocity of the winding, Fa can be expressed as

	
Fa = ka

dx

dt
� (11)

 where ‘ka’ is the air drag coefficient.
The gravitational force Fg acting on the winding can be calculated as

	 Fg = mTg � (12)

 where ‘g’ is the acceleration due to gravity. Hence, (6) can be rewritten as
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d2x

dt2 = K1

mT
µ r (x)

(
i

x4

)
− ka

mT

dx

dt
− g.� (13)

Based on the experimental setup and resulting calculations, the following parameter values have been used in 
generating results reported in this publication: mT = 2.6 × 10−3 kg, K1 = 7.6 × 10−6 kg m5 s−2 A−1, ka = 0.008 kg s−1, 
and g = 9.8 m s−2.

At a steady state (I, Φ, X), all the time derivatives reduce to zero. Hence, (14) gives the equilibrium condition

	
K1

mT
µ

I

X4 = g � (14)

 where,

	 µ ≜ µ r (x) |x=X .� (15)

Investigating this setup for any possibility of EOC operation using Chua’s quantitative conditions from 
Sect. Local activity in a meminductor requires linearizing this nonlinear model about the steady state (I, Φ, X) 
and evaluating the local dynamical response of the system to fluctuations of the input, output, and state variables. 
This can be done by considering fluctuations of i, ϕ, and x about (I, Φ, X)- respectively denoted as δi, δϕ, and δx 
(where (δi(t), δϕ(t), δx(t)) ≜((i(t)-I), (ϕ(t)-Φ), (x(t)-X)))- and evaluating their time evolution. From (2) and (3),

	
1
c

δ φ = µ r (x) |x=X δ i + Iδ µ r (x) � (16)

	
⇒ 1

c
δ φ = µ r (x) |x=X δ i + I

(
d

dx
µ r (x) |x=X δ x

)
.� (17)

From (15),

	
1
c

δ φ = µ δ i + Iµ ′ δ x� (18)

 where,

	
µ ′ ≜ d

dx
µ r (x) |x=X .� (19)

Similarly, from (13)

	

d2 (δ x)
dt2 + ka

mT

d (δ x)
dt

=
(

K1

mT

µ

X4

)
δ i +

(
K1I

mT

(
µ ′

X4 − 4µ

X5

))
δ x.� (20)

Meminductance in a winding originates from a non-zero phase difference between the input current and the 
state variable (i.e., position). Fluctuations in current therefore lead to phase-shifted fluctuations in position 
which in turn contribute to phase-shifted fluctuations in flux. Hence, according to (20), the total fluctuations in 
output flux have two components: an in-phase primary component from current fluctuations and a phase-shifted 
secondary component from phase-shifted position fluctuations. These phase-shifted secondary fluctuations 
hold the key to inverting the initial fluctuations and thereby, to lending LA to the element.

With the Laplace transforms of the fluctuations (δ i (t) , δ φ (t) , δ x (t)) respectively denoted by (̂
i (s) , φ̂ (s) , x̂ (s)

)
, and the reasonable assumption that the initial conditions of the fluctuations are all 

zero, Laplace transforms of (18) and (20) respectively yield (21) and (22).

	
1
c

φ̂ = µ î + µ ′ I x̂ � (21)

	
x̂ =

(
K1
mT

µ
X4

)
î

s2 + ka
mT

s −
(

K1I
mT

(
µ ′

X4 − 4µ
X5

)) .� (22)

Eliminating x̂ (s) ,

	

φ̂

î
= cµ + cµ ′

(
K1I

mT

µ

X4

) 1
s2 + ka

mT
s −

(
K1I
mT

(
µ ′

X4 − 4µ
X5

)) .� (23)

Combining this result with the equilibrium condition from (14) yields the small signal transfer function

	
ζ (s) ≜ φ̂

î
= cµ

s2 + ka
mT

s + 4g
X

s2 + ka
mT

s − g
(

µ ′

µ
− 4

X

) .� (24)
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EOC bias conditions in an uncoupled volatile meminductor
As described in Sect. Local activity in a meminductor, EOC bias conditions of a vertically oriented, DC current 
driven meminductor with a superimposed current fluctuation (δi) as shown in Fig. 2a may be investigated based 
on the locations of the poles and zeros of its linearized transfer function on the s-plane. The second order transfer 
function ζ(s) from (24) has a complex conjugate pair of zeros located at

	
sz = − ka

2mT
± 1

2

√(
ka

mT

)2
− 16g

X
.� (25)

 and a complex conjugate pair of poles located at

	
sp = − ka

2mT
± 1

2

√(
ka

mT

)2
− 16g

X
+ 4g

µ ′

µ
.� (26)

One pole-zero pair, (sp1, sz1), resides above the real axis and the other, (sp2, sz2), below. Since X is always positive, 
the real part of sz is always negative. On the other hand, for µr modeled as a sigmoid as shown in Fig. 2b, µ is 
always positive while µ’ is always non-positive, thus resulting in the real part of sp also being always negative. 
Since the real parts of both poles are negative, the system is always LS. Hence, any LA may only result from 
biasing the meminductor in the EOC regime. Such bias conditions may be evaluated by studying the system’s 

Fig. 2.  EOC bias conditions in an uncoupled volatile meminductor. (a) A volatile meminductor driven by a 
DC current I with a small sinusoidal current of peak amplitude δi superimposed. (b) Imaginary parts of the 
pole-zero pair located above the real axis, and relative permeability (µr) of the winding core shown as functions 
of the state variable, X. Transition region in the µr profile coincides with a separation of the pole and zero. 
(c) Pole-zero separation results in a Contour of Inversion (COI) in the complex s-plane. Color of each point 
represents the output phase of that point when transformed by the transfer function ζ(s) according to the 
colormap legend shown in the inset. Complex conjugate pole-zero pairs result in two contours of inversion 
symmetric about the real axis. Result shown for X = 3.28 cm. (d) Locations of the pole and zero (for the pole-
zero pair above the real axis) in the complex s-plane for different values of the state variable, X. X = 1 cm results 
in negligible pole-zero separation (d-1), while X = 2.2 cm shows a more pronounced separation resulting in 
a COI (d-2). Further increase in X results in the COI crossing the imaginary axis, thereby resulting in EOC. 
Size of COI increases with position until X = 3.28 cm (d-3) and then decreases, as shown for X = 4.21 cm (d-4) 
finally becoming negligible, shown for X = 5.5 cm (d-5). e) Small signal flux vs. current response shown for 
X = 1 cm (e-1), X = 2.2 cm (e-2), X = 3.28 cm (e-3), X = 4.21 cm (e-4), and X = 5.5 cm (e-5). (f–h) A locally stable 
volatile meminductor driven by a DC current I with a small step fluctuation of amplitude δi superimposed. 
When coupled to an external passive network, an EOC meminductor may result in persistent dynamics for 
certain couplings (g) and in decaying dynamics for other couplings (h). A meminductor not biased at the EOC 
always results in decaying dynamics.
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ability to invert fluctuations. Also, since 
(

ka
mT

)2 ≪ 16g
X  in the setup considered, the real parts of poles and 

zeros coincide for all practically relevant steady states. However, the imaginary parts of each pole-zero pair do 
not necessarily coincide as shown in Fig. 2b.

The imaginary parts of sp1 and sz1 are shown along with µr in Fig. 2b as functions of the winding’s position X. 
Since µ can be considered practically constant for winding positions X < 1 cm and X > 6.5 cm, µ’ ≃0, and the poles 
and zeros of ζ(s) annihilate each other resulting in a constant transfer function. However, for 1 cm < X < 6.5 cm, 
the small signal permeability is no longer constant and hence, µ’ ≠0, resulting in the pole-zero pairs separating 
from each other. In particular, from Fig. 2b, while the zero continues to move towards the real axis as X increases, 
the pole goes against the initial trend of moving towards the real axis and instead, briefly moves farther away. This 
results in an increasing pole-zero separation which peaks at X = 3.28 cm. The pole then returns to the original 
trend of moving towards the real axis with increasing X, thus gradually lowering the pole-zero separation and 
finally colliding with the zero around X = 6.5 cm.

In search for potential EOC bias conditions, it is of interest to track the phase shift induced by ζ(s) on each 
point on the complex s-plane for different winding positions, i.e., X. This can be visualized for each complex 
coordinate s = x + iy by evaluating its output phase <ζ(s) and representing this phase by the color of the 
corresponding point on the s-plane33. The colormap46,47 used in this work is shown in the inset of Fig. 2c and 
poles and zeros are indicated by the symbols ⊗ and ⊙ respectively. Figure 2c illustrates the two pole-zero pairs 
for X = 3.28 cm, with both pairs located in the open LHP and one pair each located above and below the real axis 
as previously described. Pole-zero separation leads to the emergence of a “Contour of Inversion” (COI)- shown 
as a black dashed circle- and for the setup being investigated, the emerging contour is a circle with the pole and 
the zero of each pole-zero pair as its diametric ends. The area enclosed by the COI is the collection of all points 
on the s-plane which have output phases between π/2 and 3π/2. Points along the diameter joining the pole and 
zero correspond to an output phase of π, and the line is hence termed the “Line of Inversion” (LOI). Figure 2d-1 
through 2(d-5) show the pole-zero separation and COI for different values of X.

As described in Sect. Local activity in a meminductor, an LS meminductor is said to be biased at the edge 
of chaos if there exist some points on the imaginary axis which are mapped by ζ(s) into the open LHP, i.e., with 
output phase in the range (π/2, 3π/2). Hence, the meminductor setup modeled here is EOC only for those 
values of X for which the COI intersects the imaginary axis at least once. Therefore, while the absence of a COI 
eliminates the possibility of EOC biasing (see Fig. 2d-1, d-5), the existence of COI alone does not guarantee 
EOC as shown for X = 2.2 cm (see Fig. 2d-2) but instead needs the COI to cross the imaginary axis as shown for 
X = 3.28 cm (see Fig. 2d-3) and X = 4.21 cm (see Fig. 2d-4). Overall, the COI crosses the imaginary axis in the 
range 2.21 cm < X < 5.08 cm thus encompassing the range of X where the meminductor is biased at the edge-of-
chaos. Any value of X outside this range results in a locally passive meminductor.

The emergence of a COI in the range 1 cm < X < 6.5 cm is a consequence of the element locally demonstrating 
a state-dependent inductance (i.e., µ’ ≠0) thus yielding a meminductor. Its response to a small sinusoidal current 
δi (chosen as 20 µApeak for illustration) superimposed on the DC current I is a multi-valued hysteretic lobe in the 
flux-current plane as shown in Fig. 2e-2, e-3, e-4. COI vanishing on either side of this range correlates with the 
permeability in a small signal model being a constant (i.e., µ’ ≃0) and the resulting state-independent inductance 
thus locally yielding a linear inductor. The flux vs current response of this linear inductor to a small sinusoidal 
current excitation about the DC current tends towards single-valued behavior as shown in Fig. 2e-1, e-5.

Points on the imaginary axis correspond to pure sinusoids, with the imaginary parts of the points representing 
the sinusoids’ respective angular frequencies ‘ω’. At X = 3.28 cm, since the COI is the largest, the widest range 
of fluctuations can result in EOC, with the frequencies of such fluctuations ranging between 35 rad-s−1 (i.e., 
5.57 Hz) and 48 rad-s−1 (i.e., 7.64 Hz). The lowest and highest frequencies that can result in EOC turn out to be 
30.3 rad-s−1 (i.e., 4.82 Hz) and 48 rad-s−1 (i.e., 7.64 Hz), respectively.

A passively coupled EOC biased meminductor as shown in Fig. 2f may result in either persistent dynamics or 
decaying dynamics depending on the passive network coupled to it. These cases at X = 3.28 cm are illustrated with 
cartoons in Fig. 2g, h respectively, with the amplified fluctuations in Fig. 2g shown to arbitrarily converge onto 
a stable oscillation with an amplitude of 0.2 mApeak for illustrative convenience. In a real setup, the oscillation 
amplitude depends on several factors including the properties of the coupling network, and depending on the 
order of complexity, persistent dynamics may manifest not just as periodic oscillations but also as other dynamical 
responses such as periodic bursts and chaotic oscillations. Designing a network of passive components which, 
when coupled to the volatile meminductor fabricated, yields persistent dynamics in a real-world experimental 
setup forms the bulk of Sect. Persistent dynamics in a passively coupled EOC meminductor.

It is useful to note two special cases of the EOC meminductor setup. The first is an ideal, non-physical scenario 
of zero air resistance, i.e., ka=0. In this case, both poles of the system land on the imaginary axis (simple poles 
with non-positive-real residue) thereby making the meminductor LA\EOC, i.e., the hypothetical system would 
be locally active for all steady states and results in persistent dynamics even when uncoupled. The second case is 
of replacing the meminductor by a nonlinear inductor, which may be theoretically achieved via a hypothetical 
inductor whose instantaneous inductance depends only on the instantaneous current flowing through the 
winding (i.e., φ = L (i) × i). In this case, following the same linearization procedure results in a constant 
transfer function for ζ(s) which physically corresponds to fluctuations resulting in transient decaying dynamics 
regardless of the choice of passive coupling. This result hence reiterates the necessity of components with state-
dependent electrical properties, i.e., mem-elements, for the possibility of EOC and any ensuing complexity.

Scientific Reports |        (2025) 15:40672 7| https://doi.org/10.1038/s41598-025-12529-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


EOC bias with positive differential inductance (PDL)
Noting that flux refers to the time integral of voltage in the generalized context of nonlinear electronics, φ̂

î
 may 

be rewritten as v̂

s î
, where v(t) is the voltage across the winding. Identifying that v̂

î
 is the small signal impedance 

“ Z” of the winding,

	
ζ (s) = 1

s
Z (s) .� (27)

Since multiplication by 1/s in the Laplace domain translates to integration in the time domain, ζ  is hereafter 
given the name “Impedance momentum” conforming to the norm of calling electrical variables like charge 
and flux (i.e., time integrals of current and voltage, respectively), current momentum and voltage momentum, 
respectively48.

The volatile meminductor modeled here has been shown to have a complex conjugate pair of poles (and 
zeros) and hence constitutes a “2-D mem-system”. This contrasts with one-pole-one-zero mem-systems, e.g., 
1-D electrothermal memristors, where the singular pole and zero of the impedance transfer function must both 
be purely real with the pole in the open LHP and the zero in the open RHP for EOC operation38,49. Since the pole 
and zero flip for the admittance transfer function (Y≜1/Z), Y(s) has its pole in the RHP and hence cannot result 
in EOC. Thus, the set of usable source variables is restricted to current in 1-D electrothermal memristors. Hence, 
LA steady states may only be accessed by sourcing current but not voltage. This restriction mathematically 
corresponds to voltage being a “well-defined” function of current but current being multi-valued in voltage thus 
resulting in a negative differential resistance (NDR) region on the DC V-I curve50,51.

However, in the case of two-pole-two-zero systems with real parts of all poles and zeros negative (like the 
meminductive setup described here), the transfer functions for both impedance momentum (ζ) and its inverse 
(ζ −1) may potentially result in the EOC regime since interchanging the poles and zeros would still place all the 
poles in the open LHP. Hence, neither current nor flux may be ruled out from the set of source variables that can 
bias the system in EOC. This implies that the meminductor must be well-defined in both current and flux (i.e., 
both variables must be single-valued functions of each other) and hence, must demonstrate positive differential 
inductance (PDL) in the entirety of its DC Φ-I curve. To verify this requirement in the current setup, rewrite the 
steady state Eq. (14) to yield

	
µ = g

mTX4

K1 I
.� (28)

Combining (28) with the steady state flux equation Φ = cµI,

	
Φ = cg

mT

K1
X4.� (29)

The differential inductance, dΦ/dI can be calculated by differentiating (29) with respect to I to give

	
dΦ

dI
= 4 Φ

X

dX

dI
.� (30)

Since Φ and X are always positive in the experimental setup and dX/dI > 0 (from (28)), dΦ/dI is always positive, 
thus confirming Positive Differential Inductance (PDL) for all allowable steady states (I, Φ, X) as shown in Fig. 
3a, b. Generalizing these findings to all memelements, these results confirm that a negative differential transfer 

Fig. 3.  EOC operation with exclusively positive differential inductance. (a) DC Φ-I curve of the meminductor. 
(b) Differential inductance shown as a function of the state variable X. Relative permeability µr also 
superimposed for reference.
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function (i.e., negative differential resistance in memristors, negative differential capacitance in memcapacitors, 
and negative differential inductance in meminductors) is not a prerequisite for edge-of-chaos operation and 
persistent dynamical behavior.

Equivalent circuit model with pseudo-elements
At the circuit level, modeling a virtual equivalent circuit yielding the same functional form as the transfer 
function ζ(s) is useful since any negative pseudo-elements in the equivalent circuit can hint towards locally active 
behavior and corroborate the results from Sect. EOC bias conditions in an uncoupled volatile meminductor. The 
caveat here is that such negative pseudo-elements can only point to the presence of potential LA in the system 
described by ζ(s) but can neither confirm it nor offer insights into its physical causes32. Also, such equivalent 
circuits are not unique and multiple such circuits can be conceived, all connected by the common feature that 
their transfer functions have the same functional form with at least one pseudo-element being negative.

Consider the transfer function ζ1(s) in (31), which is the same as ζ(s) from (24), except with the scaling factor 
cµ omitted for convenience.

	
ζ 1 (s) = 1 − r

s2 + ps + q + r
,� (31)

 where, p ≜ ka
mT

, q ≜ 4g
X , and r ≜ −g µ ′

µ . Here, p, q, and r end up being always non-negative since µ’ is non-
positive and all other terms are strictly positive.

From (27), it can be easily shown that the impedance momentum for a linear inductor is L, for a linear 
resistor, R/s, and for a linear capacitor, 1/Cs2, where R, L, and C are the resistance, inductance, and capacitance 
of the resistor, inductor, and capacitor, respectively. Hence, the impedance momentum transfer function for the 
virtual equivalent circuit shown in Fig. 4a is given by

	
ζ (s) = 1 +

(
1
C

)

s2 + s
(

1
RC

)
+

(
1

LC

) .� (32)

Comparing Eqs. (31) and (32), C = −1/r, R = −r/p, and L = −r/(q + r). As shown in Fig. 4b, since p, 
q, and r are all non-negative, L, C, and R are all non-positive, thus resulting in negative pseudo-elements and 
indicating potential LA in the system defined by (32). Also, it is to be noted that R, L, and C reduce to short 
circuits outside the meminductive range, i.e., for X < 1 cm or X > 6.5 cm where µ ′ = 0, thus reiterating the 
conclusion that LA cannot emerge if the inductance is locally state-independent. On the other hand, a negative 
pseudo-element- as found for 1 cm < X < 6.5 cm- cannot directly point to LA, or by extension, EOC, but can only 
point to the existence of a COI (Contour of Inversion). For example, this can be seen for X = 2.2 cm for which 
R, L, and C are all negative, but the meminductor is not EOC since the COI does not cross the imaginary axis 
(recall Fig. 2d).

To summarize, the emergence of a hysteretic lobe in the flux vs. current plane, the emergence of a COI in 
the s-plane, and the presence of negative pseudo-elements in the small-signal equivalent LCR circuit are all 
equivalent conditions. Therefore, satisfying any one of these conditions guarantees the other two. Importantly, 
these conditions can only hint towards the possibility of EOC operation but cannot guarantee it.

Persistent dynamics in a passively coupled EOC meminductor
Circuit design and realization
Achieving persistent oscillatory dynamics in an EOC-biased meminductor when connected to a network of 
passive circuit elements requires judicious choice of the LP coupling network. Motivated by Reenstra’s low 
frequency oscillator circuit21,52a current divider circuit as shown in Fig. 5a is identified as a candidate to realize a 
DC current driven, meminductor based, oscillator circuit, where the meminductor is connected in parallel with 
a passive component whose resistance Rp is designed to depend on the state variable of the meminductor (i.e., 

Fig. 4.  Virtual equivalent linear circuit. (a) Linear RLC circuit yielding the same transfer function as the 
small-signal model of the uncoupled volatile meminductor. (b) R, L, and C values extracted by comparing the 
transfer functions of the meminductor and the equivalent circuit plotted as functions of the state variable, X. R, 
L, and C are all negative within the meminductive range and reduce to short-circuits outside.
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Rp(X)). A variation in the meminductor branch current iw results in a variation in X which in turn triggers a 
change in Rp. For a given source current I0, a change in Rp in turn serves to alter both branch currents thus setting 
up a closed feedback loop and thereby, a potentially oscillatory mechanism. This design philosophy is shown in 
Fig. 5b and perpetual oscillatory behavior in this setup can be physically realized by careful choice of the parallel 
circuit constituents and the mechanism that couples X and Rp.

As shown in Fig. 5b, the parallel branch in this work comprises a light dependent resistor (LDR) whose 
resistance depends on the intensity of light illuminated on its surface. The meminductor branch has a yellow LED 
physically attached to, and electrically connected in series with, the winding. The LDR and LED are positioned 
such that the light from the LED illuminates the LDR only when the winding is raised by heights in the range 
2 cm < X < 5 cm. With shields to block off stray ambient light in place, the LDR has a “dark” resistance of over 150 
kΩ when not illuminated and “light” resistance as low as 5 kΩ when illuminated by an LED driven by a current 
of 30 mA and placed 3 cm away. To increase the active surface area of the LDR, two LDRs have been connected 
in parallel, thus resulting in a minimum resistance of ~ 2.5 kΩ. The maximum inductance of the winding (i.e., 
at X = 0) is 150 mH. Hence, at frequencies below 10 Hz, its instantaneous inductive reactance XL is less than 10 
Ω which is negligible in comparison with the series winding resistance of ~ 700 Ω. A 5 kΩ power resistor is also 
connected in series in the meminductor branch, which along with the winding resistance and the LED resistance 
(roughly 150 Ω and 100 Ω for a yellow LED at 10 mA and 25 mA, respectively) brings the total resistance of the 
branch to about 6 kΩ. The power resistor is only added to ensure that at least 50% of the sourced current flows 
through the LDR branch under maximum illumination when the LDR resistance reaches its minimum value 
of ~ 2.5 kΩ. The electrical circuit representation of the setup is shown in Fig. 5c and the experimental setup 
demonstrating the LED illuminating the LDR when the winding has been raised due to the meminductor branch 
current is shown in Fig. 5d.

Results and discussion
Figure 6a shows the electrical circuit representation of the described setup with the resulting current divider 
circuits for the cases of maximum and minimum illumination of the LDR highlighted. When the winding 
is at the bottom, the LDR not being illuminated results in maximum LDR resistance ‘RLDR’ thus resulting in 

Fig. 5.  Design of coupling network for persistent dynamics. (a, b) Design philosophy to setup a closed loop 
feedback mechanism shown as a block diagram (a) and as an electromechanical circuit (b). Meminductor 
branch current iw influences the state variable X which in turn influences the resistance of the parallel branch 
Rp. Change in Rp results in a change in iw thus repeating the cycle. The parallel branch is realized as a light-
dependent-resistor (LDR), whose resistance depends on the position of an LED attached to the winding thus 
coupling Rp to X. (c) Electrical circuit representation of the setup. (d) Picture of experimental setup showing 
the LDR being illuminated by the LED attached to the winding.
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maximum iw and thereby, maximum voltage drop and upward electromagnetic force. If the electromagnetic 
force is strong enough to overcome limiting friction between the winding and the shaft along which it moves, 
the winding moves upward in search of an equilibrium point where the electromagnetic and gravitational forces 
balance each other out. For most configurations, the winding, aided by air drag and friction (both static and 
dynamic), succeeds in finding such a stable equilibrium point. However, when the meminductor is biased at the 
edge of chaos, it is possible to destabilize equilibrium points over a range of values of X by carefully adjusting 
parameters such as the horizontal and vertical distances between the LED and LDR. Such adjustment ensures 
that when the winding reaches the previously sought equilibrium point, the LDR being illuminated lowers RLDR 
and thereby, iw. Hence, the winding no longer has the required electromagnetic force to stay at that height since 
some of its current has been routed through the LDR branch. Therefore, the winding loses height due to gravity 
and in this process, the LDR illumination is lowered. Thus, the winding once again draws more current and 
thereby experiences an increased electromagnetic force. This process can repeat perpetually, thus resulting in 
persistent oscillations as depicted in Fig. 6b for different slices of time during an oscillation cycle.

For such a carefully arranged configuration as shown in Fig. 6b, as the winding moves from position ① 
to position ②, the light emitted by the LED gradually illuminates larger cross-sections of the LDR, thereby 
progressively lowering its resistance. Hence, the meminductor current iw reaches its minimum at ②, which 
results in minimum voltage drop VT as shown in Fig. 6c, d for I0 = 27 mA. However, in spite of iw being at a 
minimum, the winding does not stop its upward motion at ②due to inertia of motion often carrying the winding 
beyond ② to ③. In this part of the winding’s journey, the LDR illumination gradually decreases thus resulting in 
a progressively higher LDR resistance. This translates to increasing iw and VT (see Fig. 6c, d). Once the upward 

Fig. 6.  Circuit setup and results. (a) Electrical circuit representation of the meminductor coupled to an LP 
network. The two border cases of no illumination and maximum illumination of the LDR highlighted in the 
insets. (b) Setup configuration shown for different timeslices during a single cycle, labelled ①–④. Instantaneous 
values of the LDR resistance and branch currents for each timeslice are shown in the inset of each panel. (c, 
d) Sourcing a constant current of 27 mA results in persistent oscillations due to a dynamically changing load. 
Oscillations in total voltage measured, VT (c) and individual branch currents, iw and iLDR (d) shown, along with 
timeslice labels, ①–④.
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inertial motion stops, the winding begins to lose height and as it returns from ③ to ①, it once again crosses a 
point of maximum LDR illumination at ④ which is physically the same location as ②. Hence, as the winding 
moves from ③ to ④, iw and VT decrease to their respective minima, and as the winding continues from ④ to ①, 
they increase again.

It is important to note that achieving a persistent oscillatory response requires the winding to pass through 
the maximum LDR illumination position. This can be achieved through a current ramp (Supplementary 
Video-1) that forces the winding to approach the maximum LDR illumination position with upward velocity. 
If the winding is simply placed in the maximum LDR illumination position, then a local minimum in overall 
energy allows a stable position to be achieved. However, this state can be physically perturbed (Supplementary 
Video-3), also resulting in a persistent oscillatory state.

Source current dependent parametric bifurcation
In the described setup, oscillations emerge only when the meminductor is biased at the edge of chaos which 
requires the winding position to be in the range 2.2  cm < X < 4.75  cm (see Sect.  EOC bias conditions in an 
uncoupled volatile meminductor). Accounting for the static and dynamic friction components between the core 
shaft and the winding, these positions typically correspond to meminductor branch currents in the range 15 
mA < iw < 30 mA. Hence, when the source current I0 results in values of iw outside this range, oscillatory behavior 
is not possible. For source currents resulting in values of iw within this desirable range, the very emergence of 
oscillations and the range of values of iw which result in said oscillations are both sensitively dependent on 
the setup parameters (LED-LDR spacing and orientation etc.). Subtle changes in these parameters translate 
to considerable changes in the profile, frequency, and amplitude of oscillations, with persistent oscillations 
themselves often changing into decaying dynamics by a mere nudge of the LDR position (see Supplementary 
Video-2). On the other hand, when the setup is left undisturbed (experimentally tested for a duration of 2 h), the 
oscillations have been found to not stop until the source current was turned off.

Figure 7 demonstrates astable, oscillatory behavior with the setup configured to result in oscillations in 
the range 27 mA < I0 < 30 mA. As I0 is gradually increased from 0 in a quasi-DC sweep, the measured voltage 
increases linearly with the source current as long as the winding remains stationary at the bottom. In this regime, 

Fig. 7.  Source-current dependent bifurcation. (a, b) Input currents I0 in the range 27 mA–30 mA destabilize 
steady states resulting in astable behavior and thereby, persistent oscillations. Steady states are stable on 
either side of this parametric range. Voltage oscillations in the astable region highlighted in (b). (c,d) Within 
the astable region, oscillation frequency increases as I0 increases. Frequency of oscillations as a function 
of I0 shown in (c) and time domain response for different values of I0 shown in (d). (e) Cartoons depicting 
second order neuronal properties, namely periodic action potential generation and spike number adaptation. 
Experimental results shown in (a–d) highlight the meminductor’s ability to mimic such neuronal activity when 
appropriately coupled, thereby showing evidence of its potential in neuromorphic hardware development.

 

Scientific Reports |        (2025) 15:40672 12| https://doi.org/10.1038/s41598-025-12529-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


since the system converges to a stable steady state for each I0, a steady state voltage emerges once the transients 
die out. Plotting this steady state voltage as a function of I0 hence results in a single-valued curve in the source-
current-dependent bifurcation plot as shown in Fig. 7a. However, once I0 reaches ~ 27 mA, the electromagnetic 
force is strong enough to overcome the limiting friction between the core shaft and the winding, and the winding 
abruptly jumps up and starts oscillating. In this regime, since the steady states have been destabilized, the system 
cannot converge to a steady state and the bifurcation plot for each I0 hence shows not a single data point but a 
continuum of voltage points in the range 58–144 V as highlighted in Fig. 7b. As the current is further increased, 
the oscillations grow both in amplitude and frequency and thus, the oscillation envelope in the bifurcation plot 
stretches to span the range 70–165 V at I0 = 30 mA. Once I0 crosses ~ 30 mA, the oscillations die down, and 
the bifurcation plot returns to being a single-valued curve since the winding converges to a stable steady state 
and remains stationary. Further increase in current results in linear increase in voltage, except for sporadic 
jumps, which appear whenever the electromagnetic force overcomes the limiting friction between the stationary 
winding and the core shaft, causing the winding to converge onto a new steady state at a greater height where the 
upward and downward forces balance each other out. See Supplementary Video-1 for an experimental recording 
of this behavior.

Oscillations occur simultaneously in mechanical, electrical, and optical domains in winding displacement, 
current and voltage signals, and optical intensity of the LED respectively. Figure 7c shows that the frequency of 
these oscillations in the oscillatory regime increases as the source current increases, and the range of frequencies 
observed, i.e., 4.75–7  Hz, is in agreement with the theoretical results of EOC analysis from Sect.  EOC bias 
conditions in an uncoupled volatile meminductor. Voltage oscillations shown in Fig. 7d for different source 
currents demonstrate the trend of increasing amplitude and frequency as I0 increases.

Neuromorphic computing potential of the LP-coupled EOC meminductor: mimicking 
neuronal behaviors
In the context of nonlinear dynamical systems, the order of complexity of a system is defined as the number 
of first order differential equations required to completely describe its dynamical behavior53. The order of 
complexity in turn determines the range of dynamical responses that the system can generate and hence, plays a 
crucial role in designing electrical devices for bio-inspired computing applications. Biological neurons have been 
shown to express over 20 different dynamical behaviors based on their stimulation and activation history54and 
hence, mimicking neuronal behavior begins with an understanding of the specific neuronal function desired to 
be emulated. While primitive functions like “Integrate-and-fire” only require first-order complexity, periodic 
generation of action potential and “spike number adaptation” require second-order complexity as shown in Fig. 
7e. Periodic bursts and chaotic oscillations require third order complexity, and hyperchaotic oscillations, fourth. 
Such dependence of dynamics on device complexity leads to application specific device configurations55–57.

The second order differential Eq. (13) describing the state function of an uncoupled volatile meminductor 
can be broken down into two first order differential equations as

	

[
ẋ
ẏ

]
=

[
y

K1
mT

µ (x)
(

i
x4

)
− ka

mT
y − g

]
,� (33)

where ẋ ≜ dx/dt. Hence, the uncoupled meminductor has a second-order complexity with its two state 
variables being displacement (x) and velocity (y ≜ ẋ). Since both the state variables are volatile, the meminductor 
can be used to mimic only neuronal properties but not synaptic properties since the latter requires at least one 
state variable to result in non-volatile memory. A constant current excitation resulting in persistent periodic 
oscillatory behavior in voltage as shown in each panel in Fig. 7d is similar to neurons generating a periodic action 
potential when stimulated by a DC voltage. Further, the panels also show that increasing the input DC current 
level increases the frequency of resulting voltage oscillations. This property mimics “spike number adaptation”, 
i.e., modulation of the frequency of action potential generation by varying the input stimulus level. Dynamical 
behavior corresponding to higher orders of complexity such as periodic bursts and chaotic oscillations may 
also be potentially realized by adding more state variables to the system either in the meminductor design or by 
connections to appropriate coupling networks.

Due to static friction between the winding and the shaft across which it moves, it is possible to bring the 
winding to rest at a steady state which has been destabilized by appropriate LP coupling (Supplementary Video-3). 
Once so biased at a steady state, the winding does not possess the ability to self-oscillate since infinitesimal input 
current fluctuations cannot produce a fluctuation in the electromagnetic force large enough to overcome the 
limiting friction. Hence, at a given steady state, there exists a minimum current/position fluctuation threshold 
above which the winding starts to oscillate due to fluctuations being amplified and below which the fluctuations 
are damped. Thus, the meminductive oscillator not only restricts the range of input currents I0 that can result in 
oscillations, but also implicitly adds a thresholding feature that limits fluctuation levels δi that are amplified about 
each I0. Such thresholding may once again be used to mimic neuronal firing behavior. Generating persistent 
dynamics by externally inducing position fluctuations has been recorded and presented in Supplementary 
Video-3.

Conclusions
It has been shown that a meminductor biased at the edge of chaos, when connected to an appropriate coupling 
network, can display persistent dynamical behaviors in response to a DC current input. The state variable range 
resulting in persistent dynamics when a volatile meminductor is connected to a passive network has been 
shown to agree with the range theoretically predicted using the uncoupled element’s small-signal linearized 
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model. Similarities in dynamic response of the meminductor oscillator to neuronal functions such as action 
potential generation and spike number adaptation have been discussed thus highlighting the potential for use 
of meminductors in bio-computing and neuromorphic applications. Also, the necessity of circuit elements with 
state-dependent electrical characteristics, i.e., mem-elements, for EOC bias possibility and resultant complexity 
has been discussed, thus reiterating the importance of memristors, memcapacitors, and meminductors in 
developing neuromorphic computing architectures.

For the sake of simplicity, static and dynamic friction between the winding and the core shaft have 
been omitted from the small-signal model in this work. However, given the importance of static friction in 
determining the minimum input fluctuation level that results in oscillations, it is necessary for future models 
to incorporate friction along with drag force to accurately predict the system’s self-oscillation capabilities and 
dynamical response. Design parameters for expanding EOC operation regime have been outlined and future 
work planned includes efforts to improve the meminductor design based on these strategies. The choice of the LP 
coupling network used in this work is by no means unique, and efforts to design coupling configurations more 
robust to parametric variations are currently being pursued. The results presented reinforce the concept that 
meminductors can mimic neuronal functionality, and development of nanoscale, high frequency meminductors 
that do not rely on macroscopic physical motion could have crucial applications in real neuromorphic hardware 
development.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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