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Global population aging highlights the need to understand how the elderly perceive safety in urban 
public spaces. This study used image semantic segmentation to identify key visual elements from 
panoramic images. A dataset was created by combining manual scoring with deep learning to explore 
how pocket park environments impact older adults’ safety perceptions. Analyzing 497 images from 29 
pocket parks in Xiamen Island with LightGBM and SHAP tools, researchers identified visual elements 
that significantly affect seniors’ safety perceptions. The findings indicate: (1) Elderly environmental 
safety perceptions in the 29 surveyed parks on Xiamen Island were generally positive, yet safety scores 
varied markedly across parks. (2) Pedestrian area, car, wall, person, billboard, parterre, and vegetation 
were identified as the seven visual elements most impactful on elderly environmental safety 
perceptions. (3) Interactions among visual elements were observed, with vegetation exerting a notably 
regulatory effect on environmental safety perceptions, significantly enhancing the elderly’s perception 
of security. This study’s empirical analysis elucidates the influence of visual elements in pocket parks on 
elderly environmental safety perceptions, offering practical guidance for park planners to design more 
inclusive and secure green spaces for the elderly, with broad application potential.
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As the global aging process accelerates, the elderly population in urban areas is steadily rising. As a vulnerable yet 
critical demographic in urban environments, the elderly’s perception of environmental safety directly influences 
their willingness to engage in outdoor activities, mental health, and social participation. Creating public spaces 
that foster a sense of security, particularly blocks and green spaces tailored to the elderly’s unique needs, has 
emerged as a pressing issue in urban design and public health research.

In recent years, small-scale urban green spaces, including Pocket Parks, have gained increasing attention 
as effective interventions to enhance community livability. These green spaces, characterized by their compact 
size and strategic integration into dense urban environments, provide walkable and socially interactive natural 
spaces. Their accessibility and practicality make them particularly beneficial for elderly individuals with limited 
mobility. Pocket parks are small urban public spaces that began in the 1960s in New York to address the loss of 
green areas due to urban growth. The concept of “micro green space” was introduced to address these issues1. 
Pocket parks, usually under one hectare, can efficiently utilize space with smart design and layout2. Walking is 
crucial for the elderly’s health and is encouraged by pocket parks, which also foster social interaction. These 
parks’ impact on seniors’ walking routines is affected by factors such as ease of access, greenery, and safety3. 
However, whether such parks can truly enhance the elderly’s perception of environmental safety depends not 
only on their location and functional design but also on their visual spatial structure. Key factors include: Is the 
pedestrian area easily navigable? Are there obstructions or visual dead zones? Can individuals clearly observe 
the activities of others? These elements collectively determine whether elderly users perceive these spaces as safe.

Environmental safety perception refers to how safe individuals feel in a particular setting, affecting their 
likelihood to engage in outdoor activities and their mental health4. Studies have defined environmental safety 
perception, but it’s often confused with crime fearasafety. The research showed urban green space and plant 
diversity significantly improve elderly safety perception. A Chinese study found that urban greening is positively 
linked to residents’ mental health, especially in cities with varied architecture and socio-environmental aspects5. 
Environmental psychology and behavioral geography suggest that human emotional responses to the environment 
are rooted in the cognitive processing of visual and spatial cues. Environmental elements such as pedestrian 
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zones, vegetation, buildings, walls, and vehicles influence spatial characteristics like lines of sight, boundaries, 
occlusion, and openness, which in turn affect the perceived comprehensibility, controllability, and predictability 
of places, thereby influencing people’s sense of security. For instance, vegetation serves as a key environmental 
element: moderate greening enhances comfort and privacy, whereas excessive vegetation may impede visibility 
and induce anxiety. Notably, the configuration of visual elements does not operate independently but interacts 
to shape perception through their combined effects. Drawing from the aforementioned perspective, this study 
defines environmental safety perception as the anticipation of negative emotional responses, such as panic and 
anxiety, that arise in pedestrians due to interactions with the material environment in urban public spaces. This 
construct extends beyond mere fear of crime and encompasses both the physical safety of the environment itself 
and the behavioral activities of individuals within that context6,7.

Traditional approaches to assessing environmental perception primarily utilize questionnaire surveys and 
open-ended interviews8,9. Time and labor constraints make acquiring data challenging, but VR technology 
has enabled new research into quantifying human perception. However, the use of this approach is limited by 
a lack of specialized equipment10. Panoramic images offer a 360-degree, high-resolution view of urban areas, 
enhancing environmental analysis and perception. They provide a broader field of view and detailed insight, 
surpassing traditional equipment with limited vision11.

Machine learning analyzes large datasets to predict environmental patterns, aiding environmental monitoring 
and improvement. Stancato’s method combines GIS and image segmentation to evaluate urban greening 
from street level, focusing on the directionality of green visibility in cities12. Chen et al. used deep learning 
to combine street view image recognition with walkability assessment for the elderly with different mobility 
levels. Results show that higher levels of greenery positively affect walking perception in all elderly groups13. 
Zhang et al. proposed a new framework using machine learning and street view images to assess urban green 
space exposure14. Machine learning is frequently utilized to assess urban data and the impact of green spaces 
on mental health. However, the “black box” problem, where ML models lack interpretability, hampers trust 
and limits their use. The SHAP method, developed by Lundberg et al., uses Shapley values from game theory 
to explain the contribution of each feature to ML model outputs, thereby increasing transparency and trust15. 
SHAP method combines global and local interpretability, matching human intuition16.

Prior studies have primarily investigated the macro-level correlations between green spaces and safety, such as 
statistical relationships between greening rates, lighting levels, and mental health. However, limited research has 
systematically explored how microscopic visual elements influence the safety perception of elderly individuals at 
the street scene level. Furthermore, there is a notable absence of quantitative frameworks that integrate semantic 
segmentation and interpretable machine learning to analyze panoramic images in this context.

To address these gaps, this study focuses on the following central research questions: (1) How do elderly 
individuals assess the safety of pocket parks based on visual cues? (2) Which environmental elements serve as 
key variables influencing safety perception? (3) Do these variables exhibit interactive effects?

To answer these questions, this paper proposes a methodological framework that integrates computer 
vision and interpretable machine learning. First, panoramic images of 29 pocket parks on Xiamen Island were 
systematically collected. Deep semantic segmentation models (e.g., DeepLabv3+, SegFormer) were employed to 
detect seven types of key visual elements (e.g., pedestrian areas, vehicles, vegetation) within the images. Second, 
a dataset of elderly safety perception was constructed using paired contrast scoring. Finally, a predictive model 
was developed using LightGBM, and the global and local impacts of each visual element on safety perception 
were analyzed using the SHAP method.

This study achieves high-precision modeling of environmental cognition mechanisms from a methodological 
perspective and theoretically responds to the behavioral environment theory’s emphasis on the “perception–
spatial structure” coupling relationship. More importantly, the findings elucidate how visual elements 
synergistically enhance or diminish elderly individuals’ safety judgments of urban spaces, providing empirical 
support and actionable insights for the design of age-friendly environments.

Methods
Study area overview
Xiamen, a coastal city in southeast China. The city’s center, Xiamen Island (Fig. 1), is highly urbanized and 
densely populated, with Siming District as its core and Huli District having expansion potential. The municipal 
government focuses on infrastructure and public services to improve residents’ lives and stimulate economic 
growth. Xiamen Island, with its numerous pocket parks, is a prime location for urban park research, featuring 
accessible designs for the elderly. The island has 29 pocket parks, 19 in Siming and 10 in Huli District.

Data source and preprocessing
Panoramic image data collection
Road data was sourced from OpenStreetMap, checked for topology and geographic alignment, and divided 
at intersections. From the perspective of visual perception, a distance of approximately 20  m typically falls 
within the clear visual range of elderly individuals. This spatial proximity enables them to perceive critical 
environmental elements without requiring excessive head movement or locomotion. Collection points were 
strategically placed, with exclusions for segments under 5 m, one point midway for 5–10 m segments, and points 
every 20 m for longer ones. Points were distributed along pedestrian paths to cover the park’s terrain, considering 
the elderly’s preference for obstacle-free, level paths. Due to the fact that the areas of each pocket park vary, so 
do the numbers of internal roads. A total of 497 collection points were identified, and corresponding panoramic 
images were captured using the Insta360 × 4 camera.
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Environmental safety perception data of the elderly
This study focuses on the environmental safety perception of elderly individuals in pocket parks across Xiamen 
Island. Sample collection presented challenges due to the specific nature of the research. Between 2023 and 
2024, the research team collected data from 29 pocket parks on the island over a 15-month period, resulting in 
a total of 497 panoramic images. Subsequently, the Semantic Differential (SD) method was employed, with 88 
volunteers (44 males and 44 females, aged 60 and above) invited to subjectively evaluate all images on a 1–10 
scale. The sample included both retired elderly residents from local communities and active elderly individuals 
who frequently use the pocket parks, ensuring representativeness and reliability of the ratings. Prior to scoring, 
the research team established a unified scoring protocol: volunteers underwent comprehensive training 
to understand the scoring dimension of “environmental safety perception,” and standard image examples 
were provided to minimize comprehension-related score variability. The scoring process utilized a pairwise 
comparison method, presenting two images per round and recording the frequency of images rated as “more 
secure,” with scores derived indirectly as outlined in Eq. (1) to (3). To ensure consistency, each volunteer was 
required to evaluate all images, and inter-rater reliability was verified using Cronbach’s Alpha and Kendall’s 
tau-distance. Data exclusion criteria included incomplete scoring, extreme value ratings (e.g., all 1–10 s), and 
abnormal scoring times (e.g., less than 1 s per image on average).

Research methodology
The study focuses on three main points: (1) Identifying key variables in environmental security perception and 
creating an analytical framework; (2) Capturing images of pocket parks in test areas, analyzing visual aspects, 
and comparing safety perceptions; (3) Using the SHAP method to explore the model, identifying important 
visual elements affecting safety perception, and evaluating environmental safety. The results and discussion 
summarize the main findings and provide specific recommendations based on these insights. The study’s 
structure is illustrated in Fig. 2.

Selection of variables for elderly environmental safety perception model
Dependent variable: elderly environmental safety perception
This study uses environmental safety perception scores for analysis, which combine human evaluations with 
machine learning algorithms to analyze large datasets. It assigns two metrics to each Street View image: high 
safety perception probability (P) and low safety perception probability (N).

	 Pi = pi/(pi + ei + ni)� (1)

	 Ni = ni/(pi + ei + ni)� (2)

Where: P(i, higher) is the probability of image i being chosen as more secure; P(i, lower) is the probability of 
image i being chosen as less secure; N(i, selected) is the number of times image i is selected; N(i, not selected) is 
the number of times image i is not selected; N(i, equal) is the number of times image i is considered equal to the 
compared image. The safety perception score for Street View image i is calculated using Eqs. (1) and (2).

Fig. 1.  Study area (Map modified from Baidu Map Open Platform: ​h​t​t​p​s​:​/​/​m​a​p​.​b​a​i​d​u​.​c​o​m​/​@​1​3​1​5​1​0​6​7​,​2​8​1​0​3​1​
0​,​1​3​z​​​​​)​.​​​​
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We constructed a dataset based on manual evaluation results, comprising 10,000 sets of street view image 
comparison data, with 80% allocated for training and 20% reserved for testing. A ConvNeXt model, leveraging 
a Transformer-based architecture, was employed to train the scoring model. The training parameters were 
configured as follows: a learning rate of 0.001, the Adam optimizer, a batch size of 20, 120 training epochs, and 
the CrossEntropyLoss function as the loss metric. After training completion, the model underwent performance 
evaluation on the test set, yielding a classification accuracy of 89.2%, an R² value of 0.781, a mean absolute error 
(MAE) of 0.43, and a root mean square error (RMSE) of 0.59. These results demonstrate the model’s strong 
predictive capability and robustness. Finally, the trained model was utilized to automatically assess the safety 
perception of all panoramic images of Pocket Park, with safety perception scores calculated for each image using 
Eq. (3) (Fig. 3).

Fig. 3.  Scoring process for assessing the environmental security perception in panoramic images.

 

Fig. 2.  Technical route of research on the influence of visual elements on the environmental security 
perception of the elderly.
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Explanatory variable: elderly environmental safety perception
The study focuses on image semantic segmentation, a crucial aspect of computer vision that entails pixel-level 
classification (Fig. 4). This study employs a two-stage segmentation strategy to enhance the accuracy of spatial 
perception evaluation. Initially, the MIT ADE20K network model, with ConvNeXt as the backbone, was utilized 
to segment street view images. The model was pretrained on the ConvNeXt dataset, which comprises 25,574 
street view images (20,000 training images and 5,574 validation images annotated with 150 feature categories), 
using Baidu PaddleHub. However, its segmentation performance was moderate, achieving a mean Intersection 
over Union (mIoU) of 42.3% and a pixel accuracy of 80.1%. To further improve segmentation quality, a model 
trained on the Mapillary Vistas dataset (25,000 high-resolution street view images with 66 labels, including 37 
instance labels) using SegFormer as the backbone was implemented. The SegFormer model was trained on a 
high-performance computing environment (Ubuntu system with dual RTX4090 GPUs), achieving an mIoU 
of 54.7% and a pixel accuracy of 84.6% on the validation set. Compared to classic semantic segmentation 
models such as PSPNet (mIoU 43.3%, pixel accuracy 79.8%), SegFormer demonstrates superior segmentation 
performance and enhanced spatial detail capture capabilities. The “pedestrian areas” mentioned in this study 
refers to the hard-surfaced areas where the elderly can walk normally, including roads and sidewalks, etc., but 
excluding motor vehicle lanes. Training was conducted on an Ubuntu server equipped with two NVIDIA RTX 
4090 GPUs17,18. The model is capable of fulfilling the requirements of this study.

In order to reduce category redundancy and improve model efficiency, this study classified and merged 66 
categories from the Mapillary Vistas dataset based on the SegFormer model, mapping them into seven key visual 
feature categories: pedestrian area, car, wall, person, billboard, parterre, and vegetation. The category mapping 
standard is based on the following three points: ① semantic similarity (such as merging sidewalks and crosswalks 
into pedestrian areas); ② Functional role consistency (such as merging vehicle. * into car class); ③ Correlation 
with environmental safety perception (excluding non impact items such as traffic light). The merging mapping 
relationship is detailed in Table 1.

Model development and interpretive analysis
Construct an elderly environmental safety perception model utilizing LightGBM
This study employed the LightGBM (Light Gradient Boosting Machine) algorithm to investigate the correlation 
between environmental safety perception and visual elements19. LightGBM, an enhanced GBDT, accelerates 
training by focusing on significant gradient changes using GOSS, reducing dataset size while maintaining 
accuracy. It employs a leaf-wise growth strategy to minimize model error and improve accuracy, with tree depth 
regulation to avoid overfitting and ensure stability. This method offers rapid training, reduced memory usage, 
and superior accuracy, establishing it as a leading optimization technique.

This study employed LightGBM to construct an elderly environmental safety perception model. LightGBM 
is a Gradient Boosting Tree (GBDT)-based algorithm known for its efficiency, characterized by fast training and 
high accuracy. The model was configured with the following hyperparameters: a learning rate of 0.05, maximum 
tree depth of 7, number of leaves set to 31, L1 regularization coefficient of 0.1, L2 regularization coefficient of 
0.2, minimum data per leaf of 20, feature fraction and bagging fraction both set to 0.8, and bagging frequency 

Target category Mapped from the original categories of Mapillary Vistas Explanation of Merger Basis

Pedestrian area Sidewalk, crosswalk, curb Function: Pedestrian passage area

Car Car, bus, truck, trailer, caravan, on rails Motor vehicles category, possessing mobility and road-occupying attributes

Wall Wall, fence, guard rail Provide physical or visual boundaries

Person Person, rider Related directly to human activities

Billboard Billboard, signboard Facilities related to information display

Parterre Terrain, nature_object, flowerbed Related to environmental elements such as ground greening and flower beds

Vegetation Tree, bush, grass, hedge, shrubbery Green plant elements, which affect shading and spatial perception

Table 1.  Mapping relationship between mapillary vistas categories and seven key visual elements.

 

Fig. 4.  Quantification process of visual elements.
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of 5. To mitigate overfitting, 5-fold cross-validation was employed, and hyperparameters were optimized on the 
training set using grid search to identify the optimal configuration.

To evaluate the effectiveness of LightGBM, its performance was compared with Random Forest and XGBoost 
models under identical training/testing set partitions. LightGBM achieved R² = 0.823, MAE = 0.417, and 
RMSE = 0.545 on the testing set, outperforming Random Forest (R² = 0.765, MAE = 0.502) and XGBoost (R² 
= 0.796, MAE = 0.455). These results indicate that LightGBM demonstrates superior predictive accuracy and 
generalization capability in this research task, making it suitable for elucidating the mechanisms underlying 
elderly individuals’ perception of environmental safety.

Assessment of visual elements’ influence on elderly environmental safety perception
Shapley Additive exPlanations (SHAP) is a method based on cooperative game theory, which uses Shapley values 
to measure the impact of each feature on the predictive outcome of models20. SHAP evaluates how features affect 
predictions, indicating positive or negative impacts. It integrates both global and local model explanations. The 
study applied SHAP to analyze visual elements’ effect on perceived environmental safety and assigned SHAP 
values to clarify their roles.
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perceived value of environmental security after adding factor i. The SHAP value represents the total difference 
in safety perception scores among different scenes, considering the combined impact of various visual elements’ 
proportions.

Result
Spatial distribution and evaluation of elderly environmental safety perception
Elderly safety perceptions of 29 pocket parks on Xiamen Island were ranked (Fig. 5), indicating central and 
southwest areas have better ratings. Siming District’s elderly scored lower than Huli District’s, potentially due to 
older infrastructure and higher population density. Huli District, developed later with a modern urban design, 
has higher elderly environmental satisfaction. Some pocket parks face environmental safety issues, possibly 
linked to their location, surroundings, and visitor numbers. To assess the impact of these factors on safety 
perception, we analyzed safety scores from 497 photos in these parks.

Box plots show seniors’ safety perception scores for pocket parks vary from 4 to 8 (Fig. 6). Parks 11 and 20 
score above 7, while Parks 8 and 6 score below 5. Park 11 features benches and greenery, but Park 8’s proximity 
to traffic and lack of safety measures concern seniors. The median score indicates seniors generally perceive 
pocket park safety positively, though there are differences in scores. Outliers in Parks 2, 6, and 24 suggest varying 
safety perceptions. Park 16, despite a high score, has a low rating for its view due to safety issues. Parks with 
small interquartile ranges have consistent safety evaluations, while Parks 13, 16, 19, and 29, with larger ranges, 
show more variability. Park 29, with the largest fluctuation, is an open space near motorways lacking safety 
boundaries, which may affect seniors’ sense of security.

Analysis of influencing factors of elderly environmental safety perception
To ensure the absence of multicollinearity among independent variables, the study performed preliminary 
independent variable screening prior to model construction. First, the variance inflation factor (VIF) 
was calculated for each visual variable, and all results were found to be below 5, indicating no significant 
multicollinearity. Subsequently, a correlation matrix analysis was conducted on the extraction proportions of 
the seven visual elements, with results presented in Fig. 7. While moderate correlations exist between certain 
variables, the overall correlation structure is acceptable and does not compromise the stability or interpretability 
of the subsequent LightGBM model. Thus, the seven merged visual variables were selected as the final explanatory 
variables for model input, ensuring appropriate variable dimensionality and clarity of explanation. Figure  7 
shows a SHAP heat map that displays the impact of visual elements on SHAP values. The x-axis lists panoramic 
images, and the y-axis ranks elements by importance. Each cell indicates a SHAP value for a specific factor pair, 
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Fig. 6.  Box diagram of Elderly Environmental Safety Perception score in Xiamen Island Pocket Park.

 

Fig. 5.  Distribution of average scores reflecting the perception of Elderly Environmental Safety Perception in 
Xiamen Island’s pocket parks.
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with colors showing positive (red) or negative (blue) effects; intensity reflects the impact size, and white means 
little effect. The map indicates that pedestrian areas, cars, and walls are significant elements with strong effects. 
Pedestrian areas and cars consistently have a major impact, while billboards, vegetation, and motorcycles have 
varying effects, suggesting their influence changes with context.

Figure 8(a) shows how visual elements affect elderly safety perception in pocket parks. Shows a global feature 
importance ranking map, with a detailed explanation of the factor contribution results included. The graph on 
the left ranks factors by importance, with SHAP values indicating their impact. Wider, denser areas represent 
greater influence. Pedestrian areas and cars significantly affect elderly safety perception, with positive pedestrian 
areas enhancing safety and cars reducing it. Secondary factors like walls and vegetation also positively influence 
safety perception. Lower impact factors, such as fences and the sky, still contribute positively. Most pocket parks 
have walls, rich vegetation, but limited sky views. Grass and trees positively affect safety perception, while too 
many motorcycles, bicycles, and buildings can decrease it. The study identifies seven key visual elements for 
analysis through literature review, field research, and SHAP analysis.

Figures (b) to (h) in Fig. 8 illustrate the effect of visual element pairs on SHAP values. The X-axis indicates the 
visual element proportion in an image, while the Y-axis shows the SHAP value, reflecting the impact on elderly 
perception of environmental safety. Scatter plot colors represent the second visual element’s value, with blue for 
low and red for high, and point colors denote the interaction between elements.

Figure 8(b) indicates that when pedestrian areas are less than 10% of the image, negative SHAP values 
suggest a negative impact on elderly safety perception. As pedestrian areas increase to 10-25%, SHAP values turn 
positive, indicating improved safety perception. Beyond 30%, SHAP values stabilize, showing a saturation point 
for safety contribution. Higher vegetation correlates with higher SHAP values, enhancing the positive effect of 
pedestrian areas on safety perception, while low vegetation areas with negative SHAP values show a reduced 
safety perception effect. The enlargement of pedestrian areas signifies an enhancement in the walkability of 
pocket parks, with well-maintained and diverse walking facilities contributing to improved walkability in the 
area21. Narrow sidewalks negatively impact pedestrian perception, while wider sidewalks improve it22.

Figure 8(c) indicates that most pocket parks have low vehicular density, as shown by the concentration of 
car images within the 0–5% range. However, samples with over 5% car images reveal a strong negative effect 
on elderly environmental safety perception due to high vehicle density. Furthermore, low vehicle density and 
high vegetation coverage result in lower SHAP values, suggesting that vegetation does not significantly mitigate 
the negative impact of vehicle density on safety perception. Variability may arise from elderly concerns about 
traffic accidents and safety due to car flow near pocket parks23. Vehicle noise and emissions may harm the 
elderly’s health, reducing their comfort and security24,25. Parked vehicles can invade pedestrian areas, limiting 
the movement of the elderly and potentially causing accidents, reducing their environmental safety26.

Figure 8(d) shows that more pedestrians typically worsen seniors’ safety perception. A pedestrian density 
of 1-5% seems to improve safety perception, but beyond that, it declines. Vegetation generally enhances safety 

Fig. 7.  SHAP heat map of the overall impact of visual elements on Elderly Environmental Safety Perception.
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perception, especially at moderate pedestrian levels. However, at very high pedestrian densities, the benefit 
of vegetation is reduced, suggesting that pedestrian density has a stronger impact on safety perception. The 
regression is due to the lack of natural surveillance in the park when there’s little foot traffic, which may allow 
criminals to hide and make the elderly feel uneasy27. A large group of people can overwhelm the elderly, making 

Fig. 8.  SHAP feature dependency diagram. (a: The overall impact of visual elements on the perception of 
environmental safety in the elderly, b-h: The effect of pedestrian area-vegetation/ car-vegetation/ person-
vegetation/ wall-vegetation/ billboard-vegetation/ parterre-pedestrian area/ vegetation-pedestrian area on 
SHAP values )
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it difficult for them to understand their surroundings and potentially affecting their sense of safety28. High crowd 
density may lead to anxiety and restlessness in the elderly, adversely impacting their perception29.

Figure 8(e) shows that a wall image ratio under 5% results in dense data points and a shift to positive SHAP 
values, indicating that a low wall proportion may negatively affect environmental security perception due to 
less enclosure or privacy. When the ratio surpasses 10%, data points become sparse, SHAP values are mostly 
positive and volatile, suggesting increased safety perception but potential discomfort from spatial constraints. 
Low vegetation correlates with low wall ratios and negative SHAP values, indicating walls have a more negative 
impact on environmental security perception in areas with sparse vegetation. Conversely, high vegetation areas 
display a more uniform distribution of positive SHAP values, suggesting that walls enhance enclosure and safety 
in such environments. As the proportion of wall images increases, SHAP values transition towards positivity, 
suggesting that a moderate presence of walls can enhance the environmental security for the elderly, potentially 
due to the sense of boundary and protection that walls provide30.

Figure 8(f) indicates that billboards with image ratios below 2% can negatively affect elderly safety perception, 
as shown by negative SHAP values. Ratios between 2 and 4% lead to positive SHAP values, implying better safety. 
Above 4%, SHAP values are positive but varied, suggesting that higher ratios may improve perceived security. In 
areas with low vegetation and billboard ratios, billboards are linked to lower safety perception, as SHAP values 
are low and data points are dense. As vegetation increases, SHAP values tend to rise, especially when billboard 
ratios exceed 4%, and the scattered distribution suggests greater variability in billboard influence. This suggests 
a potentially controversial role for billboards26.

Figure 8(g) shows that when parterre images are less than 5% of the environment, SHAP values are negative, 
indicating they may restrict movement and harm the elderly’s sense of security. With 10% flower bed imagery, 
SHAP values become positive, indicating improved safety perception. Beyond 15%, positive SHAP values suggest 
that more flower beds enhance elderly safety. Sparse flower beds have a limited positive impact, but increasing 
them significantly improves safety perception. The scatter plot indicates the strongest negative impact at lower 
values. This implies that the effect of parterre on perceived security depends on its amount or quality, and both 
too much and too little can have a negative effect31,32.

Figure 8(h) shows that vegetation coverage below 20% negatively impacts elderly safety perception, while 
coverage between 20 and 50% has a neutral effect. Coverage of 50-60% maximizes safety perception, but 
above 60%, the effect lessens due to dense vegetation possibly blocking visibility. In areas with few pedestrians, 
vegetation has minimal effect, but in high pedestrian areas, moderate coverage (40-60%) positively affects safety 
perception. Research shows that more greenery improves older adults’ environmental safety perception33–35. 
Pedestrians find walking paths with trees more attractive and safer, highlighting the importance of quality 
infrastructure in perceived safety36. Pocket parks provide temporary benefits for seniors, but dense plants can 
obscure views and increase fall risks due to hidden hazards2.

Discussion
Methodology effectiveness and research framework summary
This study integrates multiple methods, including panoramic imagery, semantic segmentation, and interpretable 
machine learning, to establish a built environment assessment framework for quantifying elderly individuals’ 
perception of environmental safety. This integration demonstrates both innovative methodology and 
practical applicability. Unlike traditional subjective quantification methods reliant on questionnaires or field 
observations, we extract seven key visual elements from images using semantic segmentation and combine 
LightGBM and SHAP to quantify and interpret the nonlinear influence mechanisms of complex environmental 
elements. LightGBM excels in handling high-dimensional data and feature interactions, while SHAP provides 
granular interpretation of global and local feature influences. This integrated process of “perception modeling 
interpretation” enables systematic modeling from visual input to cognitive output.

The research framework is structured into four stages:

	1.	 Panoramic image acquisition and segmentation;
	2.	 Visual variable simplification and classification;
	3.	 Construction of a perception rating dataset;
	4.	 Explanatory machine learning modeling and interaction effects analysis (Fig. 2).

This framework is highly scalable and adaptable to diverse populations (e.g., children, women), scenarios (e.g., 
schools, park boundaries), or target variables (e.g., pleasure, anxiety). By adjusting perception measurement 
dimensions or training data, the framework can be rapidly adapted to new applications.

Correlation between vegetation regulation mechanisms and environmental behavior theory
This study identifies vegetation as a critical regulatory factor influencing elderly individuals’ perception of 
environmental safety, exhibiting significant nonlinear and interactive characteristics. These findings align with 
Environmental Behavior Theory. According to the Stimulus-Organism-Response (S-O-R) model, vegetation 
acts as an environmental stimulus that triggers cognitive processing of spatial safety and comfort through 
mechanisms such as visual occlusion, boundary creation, and natural association, ultimately influencing 
perceived safety levels. Moderate vegetation enhances accessibility, buffers noise, creates privacy, and improves 
security, while excessive vegetation may obstruct vision, reduce environmental predictability, and heighten 
uncertainty and anxiety.

Additionally, vegetation demonstrates buffering or enhancing effects in multi-factor interactions. For 
instance, increased greenery in high pedestrian density areas alleviates congestion, while appropriate green 
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barriers in densely populated urban areas mitigate traffic disturbances. This regulatory mechanism underscores 
that environmental factors do not act in isolation but collectively influence perception.

Scalability and cross-city application recommendations
While the current model demonstrates strong adaptability based on empirical evidence from Xiamen Island, its 
expansion to other cities requires strategic adjustments:

	(1)	 Localized Weight Adjustment: Visual structure, social culture, and safety experiences vary significantly 
across cities. For example, residents in first-tier cities may have higher security thresholds for “people” com-
pared to those in smaller cities. We recommend updating visual element importance weights using SHAP 
retraining or transfer learning when transferring the model.

	(2)	 Incorporation of Macro Urban Characteristics: Introduce macro variables such as urban density, road hier-
archy, and green coverage rates as external adjustment parameters to enhance adaptability to spatial heter-
ogeneity.

	(3)	 Bayesian Optimization for Local Tuning: Retrain the model with local samples and use Bayesian optimiza-
tion to adjust parameter combinations, improving convergence efficiency and generalization in new scenar-
ios.

	(4)	 Expansion to Multisensory Dimensions: Future work could integrate non-visual perception features (e.g., 
soundscapes, lighting environments) to enhance the comprehensiveness and adaptability of elderly percep-
tion models.

Limitations and future directions
While this study advances methodological integration and mechanism interpretation, limitations persist. First, 
the sample is restricted to Xiamen Island, and image acquisition methods are constrained by geographical and 
policy factors, limiting representativeness. Second, safety perception data rely on subjective ratings, which, 
despite consistency checks, remain influenced by individual experience. Third, the model lacks dynamic flow or 
behavior data, hindering comprehensive modeling of behavior-cognition feedback paths.

Future research should expand sampling to include diverse parks or urban areas, incorporate multimodal data 
(e.g., crowd tracking, semantic voice feedback), and conduct cross-cultural comparative experiments to analyze 
cultural influences on perceptual preferences. These steps will enhance the multi-contextual transferability of 
urban perception models.

Conclusion
This study uses LightGBM and SHAP frameworks to explore environmental security perceptions among the 
elderly and park police in Xiamen Island’s 29 pocket parks. Key findings are summarized:

	(1)	 Elderly residents on Xiamen Island rate the environmental safety of pocket parks positively, with Huli Dis-
trict leading in perceived security due to its modernization. Siming District, with its older infrastructure 
and denser population, has lower ratings. Park11 has the highest average score, and Park29 has the most 
varied scores. Parks 1, 2, 8, 17, 22, 24, 27, and 28 have the least variance, with Park8 scoring the lowest.

	(2)	 Pedestrian area and car density are the most influential factors in Elderly Environmental Safety Perception, 
with pedestrian area enhancing and car density diminishing the sense of security. Moderately influential 
factors such as wall, person, billboard, parterre, and vegetation also contribute to safety perceptions, albeit 
to a lesser extent.

	(3)	 The interaction among the seven visual elements suggests that a well-planned layout can optimize spatial 
functionality and enhance elderly environmental safety perception in pocket parks. Vegetation’s moder-
ating effect is most pronounced when combined with pedestrian areas, as both excessive and insufficient 
vegetation levels reduce this effect. While vegetation can mitigate the impact of negative factors like vehi-
cle density and crowding, it cannot completely neutralize them. The optimal range for specific elements 
includes a moderate proportion of pedestrian area (10-30%), vegetation (20-60%), and billboard (2-4%). 
Achieving a multi-factor dynamic balance is complex and requires a comprehensive consideration of the 
proportion and layout of various elements in planning for the best outcomes.

This study offers a framework to understand how visual element interactions affect environmental safety 
perceptions, offering actionable insights for urban planners and policymakers to design inclusive and safe urban 
green spaces for older adults.

Data availability
Data is provided within the manuscript or supplementary information files.Data supporting the results of this 
study can be released upon application to the Science and Technology Ethics Committee of Jimei University, 
who can be contacted at Email: 404822992@qq.com. The data are available from the corresponding author on 
reasonable request.
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