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The traditional methods for fabricating and evaluating wear properties are inherently time-
consuming and financially demanding. To address these challenges, machine learning (ML) has 
emerged as a potent approach in predicting the mechanical and tribological behavior of advanced 
materials, including Al-based composites. The primary aim of this study is to combine experimental 
methodologies with ML algorithms to accurately predict the wear and coefficient of friction for 
B4C-granite composites, thereby aiding in the design and manufacturing of materials with enhanced 
wear performance. The composites were synthesized using stir casting, and wear behaviour was 
experimentally evaluated under dry sliding conditions using a pin-on-disc tribometer, resulting in 
a dataset comprising 81 samples. The experiments revealed that wear loss increased with higher 
load and lower reinforcement percentage, reaching to 0.315 g at 2.5%, 30 N, 1.67 m/s and 1200 m, 
compared to minimum wear loss of 0.029 g at 7.5%, 10 N, 0.83 m/s and 600 m. Seven different 
supervised regression-based ML models were applied to accurately predict wear characteristics, 
with hyperparameter tuning conducted to ensure a robust comparative analysis. The developed 
model’s results were evaluated utilizing a number of statistical metrics to identify the most reliable 
algorithm for wear and COF prediction. These models training and validation has been performed 
using experimental data, demonstrated strong potential for predicting tribological behavior with high 
accuracy, thereby reducing the need for extensive physical testing. Among all the approaches, the 
Fuzzy logic model achieved the highest predictive performance with highest R2 of 0.9638 and lowest 
MAE of 0.0023 for wear loss and R2 value of 0.9833 and lowest MAE of 0.0059 for COF, respectively. 
In addition, the Pearson coefficient correlation map establishes that reinforcement percentage have 
strong negative correlation of (− 0.57) and (− 0.50) with wear loss and COF.
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Aluminium alloys are imperative materials in diverse industrial applications due to their excellent properties, 
including high strength-to-weight ratio, low density, good corrosion resistance, ductility, and thermal and 
electrical conductivity1. Their mechanical and tribological performance, however, may not be sufficient for 
certain demanding applications, requiring additional enhancement. To overcome these limitations, aluminium 
metal matrix composites (AMMCs) have been developed by reinforcing aluminium with materials such as 
ceramic particles, metallic inclusions, fibers, or whiskers2. These reinforcements fall into three main categories: 
synthetic ceramics, agro-waste, and industrial waste3. Synthetic ceramic reinforcements like Al2O3, SiC, B4C, 
TiC, SiO2 etc., have been extensively used to improve AMMCs’ mechanical performance4–10. Despite their 
benefits, they often raise production costs and increase weight. This has prompted interest in alternative 
reinforcements that are cost-effective, lightweight, and environmentally sustainable. Agro- and industrial wastes, 
including fly ash, red mud, rice husk ash, quarry dust, coconut shell ash, and bamboo leaf ash, are being explored 
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as viable, eco-friendly reinforcement materials3,11–13. Granite powder, a waste product from granite processing, 
is rich in silica and alumina (about 80–85 wt%) and is emerging as a potential reinforcement14,15. Boron carbide 
(B₄C), known for its exceptional hardness, low density (2.52 g/cm³), and chemical stability, remains a promising 
synthetic reinforcement15–18. However, further research is needed on combining synthetic and waste-based 
reinforcements in hybrid composites to develop sustainable, high-performance materials.

Over the past decade, the field of tribology has witnessed substantial progress through the integration 
of machine learning (ML) techniques for the prediction and evaluation of key tribological properties19. ML 
regression models have empowered researchers to analyse wear mechanisms and frictional behavior with greater 
accuracy and efficiency. Numerous studies have successfully leveraged ML techniques, particularly artificial 
neural networks (ANNs) and regression based models- to predict wear behaviour and COF11,20. Critical issues 
still exist in spite of these developments, such as the need for larger and more representative datasets, the lack 
of integration between data-driven modelling and physical understanding, and the restricted investigation of 
various ML techniques21,22. Several investigations have validated the efficiency of ML models in predicting 
tribological characteristics across a range of various materials21,23,24. For instance, Dhanunjay Kumar23 utilized 
DT, RF, and GBR to estimate the wear rate and COF of AZ91 composites reinforced with graphene and Al2O3. 
Similarly, Prakash Kumar11 predicted the wear measurement of Al alloy reinforced with ZrB₂ and fly ash using 
ANNs and multiple linear regression model, achieving high predictive accuracy, with ANN outputs closely 
aligning with experimental results. Sharma et al.20 adopted the Levenberg-Marquardt algorithm within an 
ANN framework to model the tribological behavior of rare earth oxide (REO)-Al 6061 hybrid composites, 
reporting a strong correlation coefficient (R = 0.987). Using response surface methodology (RSM), Sahu and 
Sahu24 modelled wear characteristics of aluminum 7075 composites reinforced with 8 wt% B₄C and 2 wt% fly 
ash, achieving a high coefficient of determination (R² = 0.9894). Additionally, Pujari et al.25 employed ANNs 
to predict the wear behavior of SiC nanoparticle-reinforced Al-7010 alloy, reaching a remarkable prediction 
accuracy of 99.663%. These studies established strong potential of ML in accurately predicting tribological 
features, while also emphasizing on the need for standardized methodologies to empower effective comparison.

In addition to ANNs, a range of other ML regression models have been investigated. For instance, Sauer 
et al.26 employed Gaussian Process Regression (GPR) to estimate the hardness of amorphous carbon coatings 
on ultra-high-molecular-weight polyethylene (UHMWPE) and revealed that GPR outperformed different 
competitive ML models in terms of prediction accuracy. Alagarsamy et al.27 employed the decision Tree (DT) 
algorithm to investigate the wear behavior of AA7075/ZnO composites, incorporating the Taguchi experimental 
design approach. Their findings revealed a strong correlation between the output-input features derived from 
the Taguchi method and the predictive capabilities of the DT model. Peng et al.28 combined convolutional neural 
networks (CNNs) approach integrating support vector machine (SVM) classifier to automate the identification 
and classification of wear particles. The hybrid method successfully reduced computational demands while 
improving the accuracy of classification. In another study, Prasanth et al.29 explored the effects of graphene and 
graphite on wear loss in AA7075-based hybrid composites using a range of ML models—including ANN, RF, 
and GBR—with GBR outperforming other models in prediction quality. Similarly, Bhaumik et al.30 designed a 
multi-additive lubricant and applied a fusion of ANN and genetic algorithms (GA) to optimize its tribological 
performance, yielding notable improvements.

Despite the abundance of available research, limited work has been done on the ML-based predictive modeling 
of tribological properties for aluminium alloy especially Al 6082-T651 reinforced with B4C and industrial waste 
granite powder. The present study seeks to fill this gap by applying several ML models—namely SVM, RF, KNN, 
ANN, DT, XGBoost, FL—to predict the wear characteristics of B₄C–granite-reinforced Al6082-T651 composites 
under varying dry sliding conditions. A pin-on-disc tribometer collected 81 data points throughout the dry 
sliding testing process. This study pursues to enhance the performance of materials and minimize experimental 
demands by incorporating ML-based predictive analytics. The approach is expected to support the development 
of high-performance, cost-efficient hybrid composites suitable for industrial use.

Fabrication and experimental methods
Fabrication process
The aluminium hybrid matrix composites were fabricated using the stir casting technique, a widely accepted 
and economical method for producing hybrid composites due to its ability to ensure uniform distribution 
of reinforcement particles. Three compositions were developed as listed in Table  1, in accordance with the 
specifications. The experimental setup included a control panel, mechanical stirrer, and a graphite crucible 
suitable for high-temperature processing. Initially, the base matrix alloy, Al6082-T651, and the reinforcing 
agents—boron carbide (B4C) and waste granite dust—were preheated separately at 240 °C for 1.5 h to remove 
moisture and enhance wettability. Following this, the preheated aluminium alloy was placed in a graphite crucible 
and heated to its melting point of approximately 560 ± 5 °C. Once fully molten, the pre-measured quantities of 

S.No
Al 6082-T6
(wt%)

B4C
(wt%)

Waste granite powder
(wt%) Designations

1 Bal 2.5 7.5 HC1

2 Bal 5 7.5 HC2

3 Bal 7.5 7.5 HC3

Table 1.  Designation and material composition of the synthesized hybrid composite.
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B4C and granite dust were added to the melt. To achieve uniform dispersion, the mixture was superheated to 
630 °C and mechanically stirred. The resulting molten composite was then poured into a preheated graphite 
mould of dimensions 140 × 90 × 10 mm³ and allowed to cool under ambient conditions for about 35 min. After 
solidification, the composite blocks were removed from the mould, cut to the desired dimensions using a power 
hacksaw, and subjected to finishing operations. The specimens were prepared for testing in strict accordance 
with ASTM standards.

Experimentation
 The dry sliding wear behavior of the fabricated samples was evaluated using a Pin-on-Disc tribometer (Magnum 
Engineers, Fig. 1) at the Tribology Laboratory, MNIT Jaipur. The preparation and testing of samples followed 
the ASTM G99-95 standard protocol. Wear experiments were performed under varying operational parameters, 
including applied loads of 10 N, 20 N, and 30 N; sliding distances of 600 m, 900 m, and 1200 m; and sliding 
velocities of 0.83 m/s, 1.25 m/s, and 1.67 m/s, as summarized in Table 2. A full factorial experimental layout 
(3⁴ design), shown in Table  3, was adopted to comprehensively investigate the effects of these parameters. 
The frictional force during each test was monitored, and the corresponding coefficient of friction (COF) 
was determined. To enhance the robustness and reproducibility of the data, each test scenario was repeated 
three times, with the mean values used for further analysis. The resulting dataset was utilized for training and 
validating the machine learning models, as elaborated in Sect. “Machine learning methodology”.

Machine learning methodology
This section outlines the application of regression analysis of different supervised machine learning (ML) 
models in predicting and analysing the correlation between input process variables and output tribological 
characteristics, i.e. wear and COF. The ML models were utilized for enlightening the influence of input parameters 
such as percentage reinforcement, normal load, velocity and sliding distance on target tribological features of 
developed composite formulations. Through efficient data analysis, regression models of supervised ML uncover 
non-trivial patterns and complex relationship among variables that may not be explained effectively through 
manual analysis. In addition, these supervised ML models when trained successfully with higher accuracy can 
predict and provide greater understandings of the correlation in input and output variables, thus outperforming 
conventional statistical techniques. In the realm of developing accurate ML models, three important steps are 
utilized for explaining the tribological features of prepared composite formulations. The critical steps are data 
acquisition, preprocessing and normalization, hyperparameter tuning and ML model selection. These steps are 
important in achieving enhanced ML model accuracy in predicting wear and COF and their effective evaluation. 
Figure 2 visualizes the steps of adopted methodology beginning from data collection to diverse analysis justifying 
the tribological performance and their analysis.

Factors Units Level-I Level-II Level-III

Reinforcement (R) % 2.5 5 7.5

Normal Load (L) N 10 20 30

Sliding Velocity (V) m/s 0.83 1.25 1.67

Sliding Distance (D) m 600 900 1200

Table 2.  Factors and their levels.

 

Fig. 1.  Pin-on-disc tribometer (a) complete experimental setup (b) top view, (c) close up view of pin and disc 
arrangement.
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Fig. 2.  Steps of adopted methodology.

 

Run
R
% L (N) V (m/s) D (m) Run

R
% L (N) V (m/s) D (m) Run

R
% L (N) V (m/s) D (m)

1 1 1 1 1 28 1 1 1 2 55 1 1 1 3

2 2 1 1 1 29 2 1 1 2 56 2 1 1 3

3 3 1 1 1 30 3 1 1 2 57 3 1 1 3

4 1 2 1 1 31 1 2 1 2 58 1 2 1 3

5 2 2 1 1 32 2 2 1 2 59 2 2 1 3

6 3 2 1 1 33 3 2 1 2 60 3 2 1 3

7 1 3 1 1 34 1 3 1 2 61 1 3 1 3

8 2 3 1 1 35 2 3 1 2 62 2 3 1 3

9 3 3 1 1 36 3 3 1 2 63 3 3 1 3

10 1 1 2 1 37 1 1 2 2 64 1 1 2 3

11 2 1 2 1 38 2 1 2 2 65 2 1 2 3

12 3 1 2 1 39 3 1 2 2 66 3 1 2 3

13 1 2 2 1 40 1 2 2 2 67 1 2 2 3

14 2 2 2 1 41 2 2 2 2 68 2 2 2 3

15 3 2 2 1 42 3 2 2 2 69 3 2 2 3

16 1 3 2 1 43 1 3 2 2 70 1 3 2 3

17 2 3 2 1 44 2 3 2 2 71 2 3 2 3

18 3 3 2 1 45 3 3 2 2 72 3 3 2 3

19 1 1 3 1 46 1 1 3 2 73 1 1 3 3

20 2 1 3 1 47 2 1 3 2 74 2 1 3 3

21 3 1 3 1 48 3 1 3 2 75 3 1 3 3

22 1 2 3 1 49 1 2 3 2 76 1 2 3 3

23 2 2 3 1 50 2 2 3 2 77 2 2 3 3

24 3 2 3 1 51 3 2 3 2 78 3 2 3 3

25 1 3 3 1 52 1 3 3 2 79 1 3 3 3

26 2 3 3 1 53 2 3 3 2 80 2 3 3 3

27 3 3 3 1 54 3 3 3 2 81 3 3 3 3

Table 3.  Experimental Plan.
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Data acquisition, preprocessing and normalization
The enriched features dataset provides a formidable base in accurate ML predictions of output features, effect of 
input parameters interaction and underlying correlation of input-output variables. In the same context, present 
research compiled input datasets as percentage reinforcement, normal load, velocity and sliding distance, from 
81 experimental trials on pin-on disc set-up and measured the target tribological features of wear and COF. 
The percentage weight reinforcement of B4C in Al6082-T651 matrix considered are 2.5%, 5.0% and 7.5%, while 
normal loads of 10 N, 20 N and 30 N are applied in tribological experimental trials. Similarly, the sliding velocity 
of 0.83 m/s, 1.25 m/s and 1.67 m/s with sliding distance of 600 m, 900 m and 1200 m are utilized for tribological 
characterization of hybrid Al6082-T651 composite in dry sliding environment. The selection of different weight% 
of B4C reinforcement, varying levels of normal load, sliding velocity and distance were selected based on their 
impact on wear and COF features of hybrid composites in literature. The resulting 81 datasets are arranged in 
columns with four input features and two output variables, thus providing important understanding of COF and 
wear behaviour of prepared hybrid composites.

The next step after data acquisition is pre-processing and normalization for realizing all datasets with different 
characteristics on same scale, which are decisive in attaining preferred conclusions and assists in reducing the 
variability. The pre-processing involves removal of duplicate data, filtering noisy or outliers, error minimization, 
adequate filling of missing values, etc. To this end, 81 experimental datasets was thoroughly assessed for any 
possibility of missing values, errors and inspected for any scaled values. Furthermore, the pre-processing data 
was sufficiently jumbled and then categorized into training (70%) and testing (30%) datasets as determined to 
conquer any remaining variability. The supervised ML model’s prediction accuracy was significantly influenced 
by testing datasets quality, while training data is critical in educating ML models about the complex correlation 
among diverse input and output features. Moreover, the process of data normalization involves transforming 
training and testing datasets input features considering different properties within interval of 0 and 1, which is 
realized with average of 0 and standard deviation of 1. The data normalization was performed utilizing Standard-
Scaler function of sklearn pre-processing library in python environment.

Machine learning techniques
The tribological features like COF and wear behaviour in composites have been precisely analysed and predicted 
utilizing various supervised ML techniques. Moreover, selecting an adequate ML model for prediction of 
output properties depends on input and output features correlation and nature of datasets. For instance, the 
linear correlation requires linear regression models while nonlinear regression models such as support vector 
regression and decision trees are required for explaining complex relationships. Figure 3(a) demonstrates the 
variation in tribological features i.e., wear and COF of hybrid composites based on different input parameters 
individually, which is efficient in realizing the linearity measure among both features. The scatter dots showed 
respective target feature value in relation to corresponding input parameters observations, while regression line 
based on scatter dots determines correlation between input and output variables. It is clearly evident that wear 
behaviour shows non-linearity in three out of four input parameters i.e., reinforcement weight%, normal load 
and sliding velocity. However, sliding distance only appears to display approximately linear performance with 
wear characteristics. Similarly, scatter plots and regression line variation of COF for specific input parameters 
are illustrated in Fig. 3(b). It is revealed that all the input parameters showcased non-linear relationship with 
target COF features, thus uncovering complex and non-linear correlation among input-output variables. Such 
complexity and non-linearity among input and output features demands techniques that can successfully resolve 
such correlations and explain the complications in decisive manner.

For further validating the need of non-linear techniques in prediction of tribological features, the multivariable 
linear least square regression (MLLSR) model was exercised for evaluating the wear behaviour and COF of 
hybrid Al6082-T651 composites. The MLLSR model predict the wear and COF features in terms of evaluation 

Fig. 3.  Scatter dots and regression line plot for (a) wear, and (b) COF.
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metrics like root mean square error (RMSE) and coefficient of determination (R2). Precisely, the MLLSR model 
successfully predicted wear behaviour and COF with their RMSE values as 0.2474 and 0.0447, while the R2 were 
attained as 0.6382 and 0.8121, respectively. Such small R2 values indicates that the model can explain only 63% 
and 81% of variability in the model in wear and COF prediction, respectively. Therefore, this also justifies the 
requirements of non-linear regression models for efficient prediction of tribological performance.

Keeping in mind the aforementioned discussions on inadequate prediction of MLLSR models in precisely 
predicting the tribological properties of hybrid composites, this work exercises seven different non-linear 
regression models like support vector machine (SVM), random forest (RF), K-Nearest Neighbors (KNN), 
artificial neural networks (ANN), decision trees (DT), extreme gradient boosting (XGBoost) and fuzzy logic 
(FL). These models were executed in python environment considering sklearn and seaborn libraries for 
regression modelling and visualization, respectively31. The seven models were explained in following sections 
showcasing their procedures and functioning in prediction of tribological characteristics.

Support vector machines (SVM)
Support vector machines are supervised soft computing approach introduced by Vapnik in 199832, which is 
based on statistical learning concept. Initially, the SVM theory was employed for classification and regression 
problems. The prime motivation of SVM utilizing in current work is to utilize kernel functions for establishing a 
hyperplane considering non-linear mapping in an infinite search space with defined margin for efficient regression 
model that best suited the given datasets. The nearest datasets of different classes (single input parameter and 
single output) within these hyperplanes are known as support vectors, which are utilized for maximizing the 
margin as shown in Fig. 4 and minimizing prediction error. The SVM procedure approximates data points and 
mapped non-linear relationships through generating optimal hyperplane and minimizing error margin ∥ ζ ∥ 
encompassing all data points. Let us consider two separate datasets represented by {(r1, s1) , . . . , (rn, sn)}, 
where ri ∈ V d described as dataset vector in d dimensional solution range and si ∈ {−1, 1} defined as 
output datasets. An optimal separator hyperplane function of SVM can be expressed as shown in Eq. (1).

	 y = v · ∅ (x) + l� (1)

where v ε Rn and l ε R, α  is represented as weight vector and considered normal to hyperplane function, 
while l is considered as bias. The SVM method utilizes ∅ (x) for mapping non-linear correlations through 
establishing optimal hyperplanes and minimizing the error margins ∥ v ∥ containing all data points of different 
classes. The expression for minimizing the error can be represented as shown in Eq. (2).

	

min. 1
2 ∥ v ∥2 + c

∑n

i=1 (ξ i + ξ ∗
i

subject to yi − f (x) ≤ ϵ + ξ i
f (x) − yi ≤ ε + ξ ∗

i

ξ i, ξ ∗
i ≥ 0� (2)

where c is considered as the regularization penalty factor, ξ i and ξ ∗
i  are slack parameters. The parameter ϵ  

indicates the size of margin and reveals the optimization efficiency. The important hyperparameters affecting 
SVM accuracy are c, ξ i and kernel basis function that transform the data into higher dimensional space. With 
proper selection of these hyperparameters, an accurate and reliable prediction of wear behaviour and COF can 

Fig. 4.  Support vector machine model visualization.
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be easily realized. The Lagrange’s function was utilized for solving the non-linear regression equation as shown 
in Eq. (3).

	
f (x) =

∑n

i=1
(φ i + φ ∗

j )k( xi, x∗
j ) + l� (3)

where k(xi, x∗
j ) denoted Kernel function. Some typically used kernel functions are linear, polynomial, sigmoid 

and radial basis function (RBF), of which RBF is most renowned and have exceptional performance in prediction 
of target features28–30. The RBF kernels can be expressed as shown in Eq. (4).

	 k
(
xi, x∗

j

)
= exp

(
−γ ∥ xi− ∥2)

� (4)

Random forest (RF)
The random forest model is one of the popular and powerful ML algorithms that employs a forest of decision 
trees and extracted features of training datasets for self-education and effective prediction33. The importance 
of RF models was tested in literature and proven its worth as an effective method in handling high dimension 
datasets and multivariate regression problems. In realm of constructing suitable RF models, several uncorrelated 
decision trees are constructed, making it like a forest, thus providing an adequate outcome considering input 
predictor features and different training datasets as shown in Fig. 5. The mean or majority results of such high 
number of decision trees provides a consistent and reliable outcome, yielding the accuracy in RF predictions. 
In a decision tree formation, internal nodes implemented trials on given input features, branches indicate the 
outcomes of those tests, and leaf nodes serve as the corresponding regression values as predictions. The number 
of decision trees and maximum tree depth in RF models have significant impact on prediction of results as 
higher decision trees may overfit the model, while lower decision trees may underfit the model. In addition, 
the selection of partial features from input variables or all input datasets features may also affect the solving 
of nonlinear regression problems. The RF model is significant in providing crucial understandings on input 
features affecting high dimension problems with multiple target variables.

K-Nearest neighbours (KNN)
The K-nearest neighbour (KNN) method is a widely recognized supervised ML model that has successfully 
addresses the challenges of non-linear regression and classification problems34. In KNN, the prediction for 
new datapoints outputs is performed utilizing K nearest neighbour data points in terms of mean distance 
measurements from training datasets and using their values to deduce the results for new datasets as shown 
in Fig. 6. The number of nearest neighbours is critical in adequate fitting and versatility of regression model, 
which can be carefully selected based on complexity of the problems and nature of datasets. The KNN algorithm 
measured distance between datasets using Euclidean distance formula and thus, can efficiently portray the non-
linear correlation among input and output variables without taking assistance from any hypotheses. Typically, 
with correct selection of number of neighbours and adequate distance measure, the effectiveness and robustness 

Fig. 5.  Random Forest model visualization.
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of KNN technique can be improved, however, k-cross validation and weighing schemes also empowers KNN for 
prediction in convex and high dimensional datasets.

Artificial neural network (ANN)
The ANN is a powerful and well-recognized ML model utilized in solving diverse non-linear problems by 
emulating human brain neurons working and their interconnected layers35. The most common example of ANN 
model is multilayer perceptron (MLP), which involves an input layer, definite hidden layers and one or more 
outcome layers as shown in Fig. 7. The input parameters are defined in input layer, while response variables are 
obtained at output layers attaching with hidden layers interconnected considering weights ( wijk) and biases 
( β ijk). The training of ANN model was typically executed employing back propagation method for minimizing 
mean square error, producing desirable outcomes, although these are insufficient in enhancing the accuracy of 
ANN prediction owing to local minima stagnation in hyperparameters solution spaces. In literature, the use 
of ANN models is eminent and have shown improved prediction performance for diverse composite features 
consisting of mechanical and tribological characteristics. Moreover, the efficiency of ANN models highly 
depends on internal parameters like activation function, number of neurons, weights, biases, number of epochs, 
etc. The optimal selection of these parameters governs the efficacy and consistency of ANN models in solving 
complex non-linear problems, which are troublesome to solve using conventional methods.

Fig. 7.  ANN model flow diagram.

 

Fig. 6.  K-Nearest Neighbors model visualization.
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Decision trees (DT) model
The decision tree (DT) theory deals with categorized tree-like subset of the input features (in this case 
reinforcement percentage, normal load, velocity and sliding distance). The prime motivation of this method 
comes from realizing efficient target features values in tackling multivariate non-linear problems. The DT 
concept is applicable in classification as well as regression tasks depending on whether the target feature is 
discrete or continuous. The DT consists of a single root node which is considered as top decision node having 
best predictor efficiency. The root node has different branches to decision (or internal) nodes and leaf nodes as 
shown in Fig. 8. Specific decision node has two or more branches with representing a test on features revealing 
yes or no as solution taking the branches to next leaf node or other internal nodes. The primary goal of DT 
models is to design an optimal partition of decision nodes with consistency considering minimum MSE or 
RMSE values. The outcome of DT model is greatly affected by its internal parameters such as minimum samples 
for a leaf node, maximum depth, etc., thus reducing the chances of overfitting of model.

Extreme gradient boosting (XGBoost) model
The extreme gradient boosting (XGBoost) algorithm is considered as a robust and powerful supervised ML model 
offering the strengths of high generalization capabilities and efficient prediction performance in classification 
and regression problems36. The XGBoost working procedure is based on decision trees, and each tree aims to 
minimize the error of its preceding tree. Therefore, transforming the weak learning tree into a strong learning 
tree by employing the residues of latter. Each generation of XGBoost model results in efficient predictions by 
minimizing the loss functions, which results from adding the individual outcomes of current learning tree 
and previous learning trees. In order to obtain best predictions by minimizing loss error to minimal, XGBoost 
iteratively grows along with pruning of decision trees, thus refining the predictions at specific leaf node. The loss 
function to be minimized is expressed in Eq. (2).

	
Lf =

∑n

i=1
l (xi, θ n (yi)) +

∑n

k=1
Ω (Ck)� (2)

where yi and xi are considered as input and output parameters, Ω  denoted regularization factor. The prediction 
accuracy of XGBoost models may be upgraded by adequately optimizing the value of its hyperparameters like 
child weight, max tree depth, learning rate and tree counts to be fitted.

Fuzzy logic (FL) inference system model
The theory of Fuzzy logic has been employed by past researchers in analysing and predicting diverse features 
of hybrid composites, proving it as a versatile and intelligent tool employed for decision making challenges 
and prediction of complex systems37. The concept of FL is very much applicable in applications where vague, 
uncertain or uncorrelated data existed. Figure 9 demonstrated the flow diagram of fuzzy logic with its critical 
components. The component of FL includes fuzzifier, inference system, rule base, de-fuzzifier. The fuzzifier 
transform real world values or crisp values into fuzzy sets (such as low (L), medium (M) and high (H)) utilizing 

Fig. 8.  Visualization of decision tree model.
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the power of membership functions. These set of fuzzy inputs are fed to fuzzy inference system for its processing 
using a definite set of if-then rules defined in rule base. The inference engine provides fuzzy outputs which are 
fed to de-fuzzifier block to convert it into crisp output values. The membership functions are critical in defining 
rule bases which maps fuzzy inputs to fuzzy responses, thus aids in enhancing the prediction consistency and 
accuracy of FL models. Some of commonly used membership functions are triangular, trapezoidal, gaussian, 
G-bell, etc. The present study employed gaussian membership functions based on lower RMSE value among 
different membership functions.

Hyperparameter selection for different ML models
The hyperparameters are notable parameters of a particular supervised ML model that controls the knowledge, 
learning efficiency and empowered the prediction efficacy of each regression technique. The process of 
hyperparameter tuning compels choosing best possible values of regression model’s internal parameters to boost 
its performance in handling higher dimension datasets. Before training of individual models, these parameters 
have to be defined considering problem scalability and complexity. In the current study, the hyperparameters 
of all seven models were selected based on n-fold cross validation and after evaluating their performance across 
various permutations and combinations. Considering the specific model’s satisfactory outcome, it is selected 
for execution on test datasets to get a fair estimate on new and unseen datasets. However, if the performance 
is unsatisfactory, the hyperparameter tuning process is continued and repeated with different permutations of 
parameters. The process of optimal hyperparameter selection proved to be a repetitive progression involving 
recurrent training and assessing numerous models till succeeding to obtain a reasonable outcome for wear and 
COF. Through such rigorous procedure, hyperparameters of all models are recorded and shown in Table 4.

Results and discussion
The aim of this research is to evaluate how individual factors affect the wear and COF in Al6082-T651 hybrid 
composites. This analysis is essential for determining a composite material capable of enduring varying applied 
loads, sliding velocities, and sliding distances. To achieve this, a full factorial experimental design was employed, 
comprising 81 trials that incorporate four variables—denoted as R, L, D, and V—each examined at three distinct 
levels. The results obtained from these experiments are presented in Table 5.

Influence of load
Figure 10 illustrates the correlation between the applied load and the resulting changes in both wear and COF for 
hybrid composite materials. To investigate these complex relationships, a series of tribological experiments were 
carried out at a constant sliding speed of 0.83 m/s, with sliding distances ranging from 600 m to 1200 m. The 
results indicate a consistent increase in wear loss across all composite samples as the applied load rises, while the 
COF shows a decreasing trend with increasing load. Among the tested composites, the sample contains maximum 
weight% of reinforcement (denoted as HC3) demonstrated the best resistance to wear. This improvement is 
attributed to the higher reinforcement level, which enhances the composite’s hardness and mechanical strength. 
Specifically, the HC3 composite recorded a 37.91% reduction in wear loss under a 30 N load compared to a 
10 N load at a sliding distance of 600 m (Fig. 10a). A similar trend was observed at a sliding distance of 1200 m, 
where HC3 showed a 9.75% improvement in wear resistance under the same loading conditions (Fig. 10e). The 
increased wear at higher loads can largely be attributed to intensified friction at the contact interface between the 
pin and disc, which accelerates material detachment from the pin surface. Moreover, all hybrid composites tested 
outperformed the base alloy in terms of wear resistance under identical load and sliding velocity conditions38. 
The observed rise in wear loss with increasing load across all specimens is primarily due to enhanced plastic 
deformation caused by the elevated stress levels38–40.

At lower applied loads, the contact between interacting surfaces is minimal, which typically results in 
reduced material loss due to wear in the fabricated samples. In contrast, as the load increases, the intensified 
surface interaction leads to greater wear and a noticeable decline in wear resistance41. However, during wear 
testing, the incorporation of reinforcement particles within the material played a crucial role in counteracting 
the effects of higher loads. These particles functioned as obstacles to deformation, thereby limiting plastic flow 
and substantially improving the material’s resistance to wear38,39,41.

The frictional behavior demonstrated a trend opposite to that of wear, with the COF declining as both the 
applied load and the reinforcement content increased. The maximum COF value of 0.278 was noted for the HC1 

Fig. 9.  Visualization of Fuzzy logic model and its components.
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sample under a 10 N load, whereas the minimum value, 0.17, was recorded for the HC3 sample under a 30 N 
load. This reduction in COF with higher applied loads and increased reinforcement content is mainly due to 
the thermal softening of the contact surface during sliding. At elevated loads, wear debris tends to accumulate 
between the sliding surfaces, forming a third-body layer that facilitates friction reduction. Furthermore, the 
higher temperatures generated under these conditions promote the degradation of surface asperities, leading 
to the formation of a lubricating layer that reduces shear stress between the pin and disc. This effect contributes 
significantly to the observed decrease in friction. A similar trend was reported by Zhao et al.41, who found 
that aluminum alloys reinforced with TiB2 showed a more pronounced decrease in COF compared to those 
reinforced with SiC particles20,42.

Influence of sliding velocity
Figure 11 presents the influence of sliding velocity on both wear loss and the COF in the hybrid composite 
samples. The tribological tests were carried out under varying loads ranging from 10 to 30  N and sliding 
velocities between 0.83 and 1.67 m/s, with a fixed sliding distance of 1200 m. As shown in Fig. 11, an increase 
in sliding velocity generally led to higher wear. For instance, the HC3 composite experienced a 10% reduction 
in wear at 10 N when the velocity increased from 0.83 m/s to 1.67 m/s. At a higher load of 30 N, wear reduction 
was even more significant—approximately 55%—when the velocity increased to 1.67 m/s under the same load 
conditions. This trend is likely due to shorter contact durations at higher speeds, which limit the time available 
for wear mechanisms to act. Additionally, the frictional interaction between the pin and disc generates heat, 
elevating their surface temperatures43,44. As indicated in Fig.  11, the COF tends to decrease with increasing 
sliding velocity. This decline is attributed to the development of a mechanically induced mixed layer at the 
pin-disc contact zone43, which acts as a lubricating film. At lower velocities, the roughness of the initial contact 
surfaces causes more pronounced mechanical interlocking, leading to higher friction. As the test progresses and 
wear smoothens these surfaces, the COF gradually decreases43,44.

Influence of sliding distance
Figure 12 presents the relationship between sliding distance and both wear loss and the coefficient of friction 
(COF) for the tested composites. The experiments were conducted at a constant sliding velocity of 0.83 m/s, 
with sliding distances ranging from 600 to 1200 m. The results indicate a clear trend: as the sliding distance 
increases, both wear loss and COF also rise. This effect becomes more significant under higher applied loads 
which may be attributed to the generation of thermal energy at the contact interface during abrasive wear. With 

Algorithms Parameters Value

SVM

C 100

Kernel function Rbf

γ 0.15

Epsilon 0.1

RF

No. of estimators 100

Max. depth 6

Min. samples split 3

Min. samples at leaf node 1

KNN

No. of neighbours 3

Weight func. ‘uniform’

Power parameter 2

ANN

Activation func. ‘relu’

Learning rate 0.01

Number of epochs 200

Optimizer ‘Adam’

No. of hidden layers 2

DT

Max. depth 7

Min. samples split 4

Min. samples at leaf node 2

Extreme gradient boosting

Booster type ‘dart’

Number of estimators 200

Max. depth 8

Min. samples split 4

γ 2

Fuzzy logic

Fuzzy inference system ‘mamdani’

Membership levels ‘L M H’ (3)

Membership functions ‘gaussian’

Table 4.  Hyperparameters settings of different models.
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increasing sliding distance, the accumulation of heat may lead to material softening, thereby weakening the 
bond between the reinforcement particles and the matrix. As a result, the particles are more easily displaced, 
accelerating wear. Furthermore, this behavior could be linked to the destabilization of the tribolayer at extended 
sliding distances. Comparable observations of increased wear with longer sliding distances have been reported in 
previous studies23,45. The rise in COF observed at greater sliding distances, as shown in Fig. 12, can be attributed 
to a greater number of asperity interactions. This enhances the presence of hard phases at the interface, thereby 
increasing the frictional force and, consequently, the coefficient of friction38,39,41,42.

Influence of reinforcement proportion
The integration of reinforcement within the matrix is known to play a crucial role in enhancing the mechanical 
strength of composite materials. Improved interfacial bonding between the reinforcing phase and the matrix 
leads to increased stiffness and mechanical resistance. As depicted in Fig. 13, the inclusion of reinforcement 
materials also contributes to a noticeable rise in the composite’s hardness, which in turn enhances its wear 

Run R% L (N) V (m/s) D (m)
Wear
(grams) COF Run R% L (N) V (m/s) D (m)

Wear
(grams) COF

1 2.5 10 0.83 600 0.0371 0.268 41 5 20 1.25 900 0.097 0.201

2 5 10 0.83 600 0.0361 0.268 42 7.5 20 1.25 900 0.052 0.166

3 7.5 10 0.83 600 0.029 0.229 43 2.5 30 1.25 900 0.217 0.209

4 2.5 20 0.83 600 0.0811 0.212 44 5 30 1.25 900 0.14 0.194

5 5 20 0.83 600 0.061 0.201 45 7.5 30 1.25 900 0.064 0.167

6 7.5 20 0.83 600 0.042 0.167 46 2.5 10 1.67 900 0.092 0.266

7 2.5 30 0.83 600 0.115 0.206 47 5 10 1.67 900 0.063 0.263

8 5 30 0.83 600 0.075 0.196 48 7.5 10 1.67 900 0.046 0.224

9 7.5 30 0.83 600 0.046 0.163 49 2.5 20 1.67 900 0.177 0.214

10 2.5 10 1.25 600 0.055 0.266 50 5 20 1.67 900 0.115 0.201

11 5 10 1.25 600 0.051 0.263 51 7.5 20 1.67 900 0.061 0.166

12 7.5 10 1.25 600 0.046 0.224 52 2.5 30 1.67 900 0.275 0.209

13 2.5 20 1.25 600 0.115 0.21 53 5 30 1.67 900 0.18 0.196

14 5 20 1.25 600 0.082 0.199 54 7.5 30 1.67 900 0.095 0.163

15 7.5 20 1.25 600 0.047 0.163 55 2.5 10 0.83 1200 0.052 0.278

16 2.5 30 1.25 600 0.178 0.206 56 5 10 0.83 1200 0.047 0.274

17 5 30 1.25 600 0.113 0.193 57 7.5 10 0.83 1200 0.041 0.234

18 7.5 30 1.25 600 0.048 0.161 58 2.5 20 0.83 1200 0.105 0.216

19 2.5 10 1.67 600 0.072 0.262 59 5 20 0.83 1200 0.08 0.206

20 5 10 1.67 600 0.054 0.26 60 7.5 20 0.83 1200 0.043 0.18

21 7.5 10 1.67 600 0.046 0.22 61 2.5 30 0.83 1200 0.185 0.214

22 2.5 20 1.67 600 0.146 0.208 62 5 30 0.83 1200 0.125 0.202

23 5 20 1.67 600 0.1001 0.196 63 7.5 30 0.83 1200 0.047 0.171

24 7.5 20 1.67 600 0.0511 0.161 64 2.5 10 1.25 1200 0.083 0.274

25 2.5 30 1.67 600 0.235 0.205 65 5 10 1.25 1200 0.058 0.266

26 5 30 1.67 600 0.147 0.19 66 7.5 10 1.25 1200 0.047 0.232

27 7.5 30 1.67 600 0.066 0.158 67 2.5 20 1.25 1200 0.165 0.214

28 2.5 10 0.83 900 0.0442 0.268 68 5 20 1.25 1200 0.105 0.206

29 5 10 0.83 900 0.045 0.27 69 7.5 20 1.25 1200 0.056 0.173

30 7.5 10 0.83 900 0.04 0.232 70 2.5 30 1.25 1200 0.255 0.214

31 2.5 20 0.83 900 0.1 0.213 71 5 30 1.25 1200 0.165 0.197

32 5 20 0.83 900 0.071 0.204 72 7.5 30 1.25 1200 0.081 0.172

33 7.5 20 0.83 900 0.042 0.176 73 2.5 10 1.67 1200 0.111 0.271

34 2.5 30 0.83 900 0.157 0.208 74 5 10 1.67 1200 0.065 0.265

35 5 30 0.83 900 0.097 0.199 75 7.5 10 1.67 1200 0.047 0.228

36 7.5 30 0.83 900 0.046 0.166 76 2.5 20 1.67 1200 0.215 0.217

37 2.5 10 1.25 900 0.07 0.268 77 5 20 1.67 1200 0.145 0.207

38 5 10 1.25 900 0.054 0.265 78 7.5 20 1.67 1200 0.072 0.173

39 7.5 10 1.25 900 0.046 0.227 79 2.5 30 1.67 1200 0.315 0.217

40 2.5 20 1.25 900 0.141 0.211 80 5 30 1.67 1200 0.21 0.206

81 7.5 30 1.67 1200 0.111 0.167

Table 5.  Observed results under different input conditions.
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resistance and reduces material loss due to wear. Among the tested samples, the HC3 composite exhibited the 
least wear, indicating superior performance. Moreover, the coefficient of friction (COF) was observed to decline 
with higher reinforcement content, as shown in Figs.  10, 11 and 12. This reduction in COF is likely due to 
the presence of hard reinforcement particles that reduce the effective contact area between the pin and disc 
surfaces. Further insights into the morphological aspects associated with this behavior are presented in Sect. 
“Conclusions”.

Fig. 10.  Influence of load on wear loss and COF under applied sliding distance of (a, b) 600 m, (c, d) 900 m, 
and (e, f) 1200 m.
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Surface morphology
Figure 14 display SEM micrographs taken from three different regions on the worn surfaces, illustrating the 
surface morphology in both severely and mildly worn areas of the hybrid composites. The experimental findings 
revealed that HC1 underwent the most significant wear under a load of 30 N, sliding velocity of 1.67 m/s, and 
a total sliding distance of 1200  m. In contrast, HC3 exhibited the least wear when tested at a lower load of 
10 N, velocity of 0.83 m/s, and distance of 600 m. Overall, the wear behavior of the composites was governed 

Fig. 11.  Influence of sliding velocity on wear loss and COF under applied loads of (a, b) 10 N, (c, d) 20 N, and 
(e, f) 30 N.
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by multiple mechanisms, including adhesion, abrasion, delamination, and oxidation38,39,41,42. The presence of 
parallel grooves, as seen in Fig. 14, suggests the occurrence of abrasive wear. Such grooves are typically formed 
when a hard counterface moves against a softer material, causing surface displacement and subsequent material 
removal in the form of well-defined tracks43. The surface of the pin also exhibited signs of oxidative wear, 
primarily due to the heat generated by friction during operation. Moreover, the accumulation of wear debris 
on the pin was attributed to plastic deformation. The emergence of layered structures and fine cracks, resulting 

Fig. 12.  Influence of sliding distance on wear loss and COF under applied loads of (a, b) 10 N, (c, d) 20 N, and 
(e, f) 30 N.
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from the detachment of wear particles, is a hallmark of delamination wear44,46,47. The observation of cracks and 
voids on the worn surfaces’ points to material delamination, a process characterized by surface deformation, 
the initiation of cracks, and their subsequent propagation. Evidence of ploughing and crater formation on these 
surfaces further suggests the occurrence of plastic deformation. Notably, the surface subjected to more severe 
wear (Fig. 14a-c) displayed wider grooves and more extensive ploughed areas than the surface experiencing 
lower wear (Fig. 14d-f). At a higher applied load (L = 30 N), both the depth and width of the grooves increased, 
indicating that abrasive wear becomes more dominant under elevated loading conditions. Additionally, the 
presence of oxygen on the worn surfaces supports the occurrence of oxidative wear, likely resulting from the 
thermal effects generated during the sliding motion that promote surface oxidation. The high concentration of 
reinforcements in HC3 led to increased frictional heat generation, which in turn intensified the oxidation of the 

Fig. 14.  SEM images of the worn surfaces of the HC1 (a–c) and HC3 (d–f) composites, captured at three 
distinct regions under 50,000x magnification.

 

Fig. 13.  Hardness of the hybrid composite.
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surface. This oxidation resulted in the formation of a protective oxide layer that minimized direct interaction 
between the abrasive sliding surfaces, thereby enhancing the composite’s wear resistance.

Evaluation of machine learning regression models
This section discusses the tribological behaviour analysis of hybrid Al6082-T651 composites exercising seven 
supervised ML models, which assists in determining the influence of input parameters on target features of 
wear and COF along with their correlation. The experimental trials and wear mechanism explained in previous 
sections have provided important insights in development of these prediction models with enhanced prediction 
capabilities for wear and COF under dry sliding conditions. The evaluation metrics considered for assessing the 
accuracy and consistency of developed ML models in prediction of COF and wear behaviour are mean square 
error (MSE), root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2) and 
mean absolute percentage error (MAPE). These evaluation measurements are critical in realizing how closer 
the developed supervised regression model’s outcomes are to the actual experimental values of target features of 
hybrid composites. The parameter MSE denotes mean of squared differences between the experimental and ML 
model’s predicted values, while RMSE defined as the square root of MSE output. The MAE represented as the 
mean of absolute difference between ML predicted and actual experimental values. Similarly, the value of MAPE 
defined the mean of absolute error in percentage terms. These four evaluation measurements provide average 
of difference in ML model’s predicted values with experimental values in different forms, with ascertaining 
model’s efficacy having lower values in this system of measurements. Contrast to these evaluation metrics where 
low values are desirable for goodness of fit, the R2 represents the degree to which the independent parameters 
successfully explained the variation in results of target features, i.e. wear and COF. Therefore, the higher value of 
R2 is desired (closer to 1) to justify the explanation of most of output variables in adequate comparison of all ML 
models results. The R2 measured value ranging from 0.9 to 1 revealed superior ML model having outstanding 
prediction characteristics, while lower than 0.9 is considered as moderate fit, which suggests the model inefficacy 
in explaining the output results. The results on these numerical metrics for wear and COF of hybrid Al6082-T651 
composites are recorded in Tables (6–7) for seven supervised ML models in this study.

Table 6 shown that the SVM realized a MSE value of 0.0002, quantifying the average of squared error for 
predicted and experimental wear, while overall RMSE obtained as 0.0138. The MAPE % is within acceptable 
limits of 7.39 for SVM model justifying its prediction efficacy. The MAE showcased that SVM predicted wear 
values on average deviate by 0.0007 from wear experimental values. In addition, the SVM have superior R2 
value of 0.9563 from most of the ML models, thus maintaining its efficacy in explaining almost 96% of variability 
in recommending accurate wear values. The RF model provides higher MSE and RMSE than SVM with 0.0031 
and 0.0558 showcasing more overall prediction deviation in wear values. The MAE for RF demonstrated is 
slightly higher than SVM with 0.0118 showing average prediction deviations in all wear values. The RF model 
achieved an R2 value of 0.8997, suggesting its inability to explain nearly 10% of variances in the results, thus 
realizing a lower accuracy in prediction. Also, KNN model obtained MSE and MAE values of 0.0018 and 0.0087, 
respectively, which is comparatively higher than the errors of SVM model. The MAPE of 13% is also at higher 
side, while R2 value of 0.8975 suggested a better explanation of results than RF regression models but inferior 
to SVM model. Similarly, ANN have performed superior to RF and KNN in terms of MSE and RMSE with 
values of 0.0004 and 0.0197, respectively, while MAE of ANN is nearly comparable with SVM demonstrating 
its efficacy in accurate prediction of wear of hybrid composites. The ANN model also exhibited remarkable 
performance with explaining all variability in results having accuracy of nearly 94.1%. Moreover, the DT model 
have lowest MSE, however its MAE and MAPE percentage values are worst 0.0218 and 23.55, which established 
that its prediction errors are on higher side and have average deviation of nearly 23% in each of wear values 
from experimental value. The same explanation can be realized by the worst R2 value of 0.6502, depicting the 
DT model can explain only 65% of variability in wear results. In contrast, XGBoost attained the lowest MSE 
value of 3.3659E-05 with MAE of 0.0084, demonstrating lower prediction errors in wear values. The MAPE has 
been under acceptable limits of 9.77%, exhibiting overall average error within tolerable range. The higher R2 
demonstrated its robustness and accuracy in explaining 94% of variability in wear results. Finally, the FL model 
exhibited significantly lower MSE, RMSE and MAE values of 0.0003, 0.0171 and 0.0023, which revealed lower 
prediction errors, thus highlighting greater accuracy. The average error in all wear predicted values are also at 
lowest level of 6.2247, while the R2 value of 0.9638 have outperformed all models in explaining the variance, only 
approximately 3% variance in results are not explained, thus revealing exceptional accuracy.

Figure 15 illustrated the predicted versus experimental (actual) wear plots using all seven developed 
ML regression models on test datasets. The corresponding values of R2 for specific models have also been 
included inside the individual plots. It is worth notable that FL model has demonstrated superior accuracy 
with remarkable R2 value of 0.9638, which confirms that FL model can successfully predict the wear behaviour 

Response Metrics MLR SVM RF KNN ANN DT XGBoost FL

Wear

MSE 0.0612 0.0002 0.0031 0.0018 0.0004 0.0604 3.3659E-05 0.0003

MAPE (%) 24.970 7.3900 14.5244 13.005 8.5735 23.557 9.7746 6.2247

RMSE 0.2474 0.0138 0.0558 0.0425 0.0197 0.2457 0.0058 0.0171

MAE 0.0165 0.0007 0.0118 0.0087 0.0007 0.0218 0.0084 0.0023

R2 0.6382 0.9563 0.8997 0.8975 0.9410 0.6502 0.9408 0.9638

Table 6.  ML models result on various metrics for wear.
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of hybrid composites with 96.38% accuracy on new datasets. The next best ML models are SVM, ANN and 
XGBoost with R2 value of 0.9563, 0.9410 and 0.9408, respectively, displaying equivalent prediction accuracy in 
prediction of wear. In contrast, the KNN model and RF model have also adequately performed, however, higher 
deviations in average error shows restriction in accurately predicting wear performance for non-linear and 
complex correlated datasets. Moreover, the performance of FL and SVM may be credited to its competence in 
tackling the challenges of complex correlation among input variables and target feature. The fuzzy logic utilized 

Fig. 15.  Predicted vs. experimental wear plot for (a) SVM, (b) RF, (c) KNN (d) ANN (e) DT (f) XGBoost (g) 
FL (h) MLR models.
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gaussian membership functions with three fuzzy levels for efficient transformation of crisp values into fuzzy 
sets, thus empowering prediction of wear through underlying rule base and allowing it to describe intricate 
correlation within the datasets. Similarly, SVM performance have been aided by its radial basis function and 
regularization parameter, that efficiently balances the margin width and explained the underlying variances in 
the complex correlated data. In contrast, RF and DT models were unable to capture the underlying patterns in 
the datasets, owing to their overfitting of models, non-optimal hyperparameters, complex outliers and dataset 
features the concisely contributed to low performance of these regression models in prediction of wear behaviour 
of hybrid composites.

Furthermore, for enhancing the consistency and validation of different ML models performance in prediction 
of wear behaviour, residual plots are exercised and displayed in Fig. 16(a-g). The residuals are defined as the 
deviation of predicted wear values from actual experimental values, which are utilized as diagnostic plots in 
confirming the qualitative performance and accuracy information of the developed ML models. Each residual 
plot is combination of four sub-plots for analysis and better comparison of ML models. Figure 16 (a) displayed 
first plot depicting no trend and residuals are uniformly distributed around zero line, while the second plot 
showed histogram of standardized residuals. The histogram suggested that residuals have roughly uniform 
distribution with very few outliers confirming the residual distributions in first plot. The third plot demonstrated 
that all residuals are align closer to 45° inclined line with one outlier, thus verifying normal distribution. All 
coefficients in autocorrelation function (ACF) plot comes within the 95% confidence interval, implying the non-
existence of autocorrelation and demonstrated that model successfully identified and explained all relationships 
among datasets.

Figure16 (b) showed that residuals are randomly distributed, and no patterns are visible, which showed 
there’s no problem of heteroscedasticity. However, there are few outliers which are confirmed by histogram 
plot of standardized residuals. In addition, the histogram of residuals confirms right side skewness indicating 
deviation from normality. The third plot demonstrated that all residuals are align closer to 45° inclined line with 
few outliers, thus drift from normal distribution specifically top ultimate values. The final plot of RF residual 
showcased all coefficients have low autocorrelation except for one, thus showing limitations of RF models in 
accurate prediction of wear and non-competence in explaining underlying complexity. Figure 16 (c) depicted 
KNN diagnostic residual plots with no evident trends or patterns in the residuals. The histograms are more 
normally distributed than RF results, while some of the residuals are outliers specifically at extreme bottom in 
Q-Q plot. In addition, all the coefficients have low autocorrelation and fall within the confidence interval. The 
aforementioned results for residuals depict KNN’s goodness of fit. However, low R2 value of 0.8975 revealed 
that KNN is unable to handle the underlying complexity and variability in wear datasets having non-linear 
relationship with input variables. This can be due to comparatively lower data for training to restrict KNN to 
understand the hidden complexity and correlation between input-output features. Figure 16 (d) depicted ANN 
residual plots indicating good fit with no decisive pattern of residuals. The histogram of residuals is equally 
distributed and centred around zero suggesting an approximate normal distribution. The Q-Q plot suggested 
residuals are falling on inclined line with one outlier at extreme top. The low autocorrelation coefficients revealed 
independence of residuals. It is worth noting that DT showed worst residual performance with standardized 
residual histogram shown non-uniform variation of residuals which does not follow normal distribution. 
The first plot of DT model (see Fig. 16 (e)) demonstrates several outliers and are not symmetrical to zero line 
confirmed by the unbalanced histogram residuals. This suggests an inconsistent relationship between residuals 
and predicted values. Moreover, the Q-Q plot and ACF plot confirms significant variances in residuals with 
deviations from normal distribution and high autocorrelation. Such low performance of DT may be attributed 
to inability in explaining correlation between input parameters and target features. Also, the minimal R2 of the 
DT model implies its restricted capacity to clarify substantial variance deviation. The inherent problem of DT 
model is its probable overfitting which can influence DT model’s inadequate performance in acquiring and 
describing the fundamental relationships in the datasets. The XGBoost model have also shown that variance is 
uniform, and no specific patterns is evident with one or two outliers (see Fig. 16 (f)). The residuals are roughly 
normally distributed all residual align with centre line and only one data shown significant deviation. As shown 
in ACF, the model showed one autocorrelation coefficients are outside the confidence interval. Finally, the FL 
model showed uniform distribution of residuals supported by uniformly distributed histogram distribution plot 
(see Fig. 16(g)). The residuals data are closely aligning with zero line revealing homoscedastic residuals with no 
specific trend. All residuals are also aligning with incline line, while ACF plot shows autocorrelation coefficients 
are falling within confidence range. Such improved performance in residual plots support the efficiency of the 
FL model in successfully analysing the inherent relationships and dependencies in the datasets. Furthermore, the 
best R2 of 0.9638 specifies that the FL model justifies a meaningful explanation of complex variability present in 
the datasets. Therefore, the FL model can be deemed appropriate for additional assessment or prediction.

Additionally, Table 7 presents result on diverse evaluation metrics for COF considering seven ML models. 
The MSE and RMSE for SVM regression model is 0.0197, exhibiting minimum overall error among the models. 
The MAE of 0.0073 units represent average deviation in COF prediction values. Moreover, the higher values 
of R2 demonstrated enhanced capability of SVM model in explaining 94.1% of variance in COF results. The 
RF and KNN models depicted average and overall squared difference in predicted and experimental values as 
0.0006 and 0.0245, 0.0013 and 0.0361, respectively, which is lowest in all models for COF results. Similarly, the 
mean deviation in prediction values, i.e., MAE measured as 0.0112 and 0.0098 units, revealing higher prediction 
deviation throughout COF results in these models, which is higher than SVM models. However, the R2 value 
of 0.9749 and 0.8933 illustrates reasonable accuracy in prediction and explaining the variation in results by RF 
and KNN models. The ANN model attained lower MAE than SVM, RF, KNN, thus showcasing lower prediction 
deviations in COF prediction results. Similarly, the RMSE of 0.0199 revealed comparable in overall mean square 
error with SVM. One of the highest R2 of 0.9803 reveals that ANN comprehensively explained more than 98% 
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COF variance and less than 2% remained unexplained. The DT model surprisingly performed superior to RF 
and KNN models with lower MAE and RMSE values of 0.0091 and 0.0238, showing lower prediction error, 
however prediction deviation is higher than SVM and ANN models. The greater R2 value of 0.9521 indicated that 
it can explain more than 95% variance in COF outcome. The XGBoost models also improved its performance 
in prediction of COF features through comparatively lower MAE value of 0.0082 and RMSE of 0.0224, thus 
showing minimum overall error in its prediction capacity. Further, the MAPE % has also revealed lower average 
prediction deviation 1,48%, while considerably high R2 value of 0.9744 representing that the model effectively 
explain nearly 97.44% of the COF variance. Finally, fuzzy logic model demonstrates lowest MAE value of 0.0059 
and combined lower MSE value of 0.0004, indicating that FL model has low average error deviation and lower 

Fig. 16.  Residual plots for different ML models in prediction of wear.
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prediction errors for COF in comparison to all other competitive models. The lowest MAPE percentage and 
highest R2 value of 0.9833 revealed that FL consistently explained all the variances in the COF output. Such 
outcomes indicate that the FL model is dependable and efficient in catching the original relationships and 
correlations in the COF feature data.

Figure 17 explained the predicted versus experimental wear plots for all seven regression models on COF test 
datasets. It is noteworthy that FL model has demonstrated superior accuracy with incredible R2 value of 0.9833, 
which approves that FL model can successfully predict the COF outcome of hybrid composites with approximately 
98.33% accuracy on new datasets and can explain nearly 99% variance in results. The FL model is followed by 
ANN and XGBoost with R2 value of 0.9803 and 0.9744, respectively, exhibiting comparable prediction accuracy 
in prediction of COF. It is worth noting that DT and SVM models have also shown significant performance 

Fig. 16.  (continued)

Response Metrics MLR SVM RF KNN ANN DT XGBoost FL

COF

MSE 0.0020 0.0004 0.0006 0.0013 0.0004 0.0005 0.0005 0.0004

MAPE (%) 8.986 5.4900 7.9705 7.3408 1.4600 1.4976 1.4889 1.4597

RMSE 0.0447 0.0197 0.0245 0.0361 0.0199 0.0238 0.0224 0.0201

MAE 0.0124 0.0073 0.0112 0.0098 0.0063 0.0091 0.0082 0.0059

R2 0.8121 0.9410 0.8949 0.8933 0.9803 0.9521 0.9744 0.9833

Table 7.  ML models result on various metrics for COF.
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in explaining variation in COF results with R2 value of 0.9521 and 0.9410. Although, the KNN and RF model 
have performed adequately, however, their higher deviations in average error concerns restrictions in accurately 
predicting wear performance for non-linear and complex correlated datasets.

Furthermore, for validating the reliability and efficiency of different ML models performance in prediction of 
coefficient of friction, residual plots are employed, and results are depicted in Fig. 18. The residuals are defined 
as the deviation of predicted COF from experimental values, which are utilized as diagnostic plots in confirming 

Fig. 17.  Predicted vs. experimental COF plot for (a) SVM, (b) RF, (c) KNN (d) ANN (e) DT (f) XGBoost (g) 
FL (h) MLR models.
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the qualitative performance and accuracy information of the developed ML models. Figure 18 (a) displayed 
SVM residual plots depicting most of the residuals towards negative side, which revealed that developed SVM 
model overfits the target feature. The histogram residual plot exhibited skewness towards right side, which is also 
confirmed by Q-Q plot with several outliers. However, the correlation coefficients are within confidence interval. 
Although, the residual plots showed significant weakness in term of residual behaviour, however, the higher R2 
value depicted better predictions of COF. Similarly, the RF and KNN showed similar residual behaviour uniform 
and random variance depicting no trend of data, thus confirming assumptions of regression models. The 
histogram residuals not following normal distribution for both the models specifically KNN showing right hand 
skewness, thus not conforming to regression assumptions. The third plot demonstrated that all residuals are align 
closer to 45° inclined line with one outlier, thus verifying normal distribution. All coefficients in autocorrelation 

Fig. 18.  Residual plots for different ML models in prediction of COF.
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function (ACF) plot comes within the 95% confidence interval, implying the non-existence of autocorrelation 
and demonstrated that model successfully identified and explained all relationships among datasets. The ANN 
and DT models plot depicts scattered residuals in their scatter plots denoting random variance in prediction of 
COF and homoscedasticity, while the histogram residuals, though somewhat showcased satisfactory in fulfilling 
the regression assumptions. The ACF plot revealing residuals coefficients fall under confidence interval as desired. 
Finally, the XGBoost and FL models demonstrated superior residual behaviour as shown in residual plots. The 
standardized residual data of FL is normally distributed with homoscedasticity behaviour and no trend, showing 
all the residual near to zero line. The histograms are normally distributed with Q-Q plot revealing upgraded 
performance by FL in comparison to XGBoost models (showing few outliers). At last, the autocorrelation is low 
depicting better performance for FL in explaining various dependencies and non-linear relationship between 
multiple input parameters and COF, thus revealing its outperformance in comparison to other ML models in 
understanding the underlying features and correlation.

Figure 19 demonstrated the feature importance plot for wear and COF, revealing the most important input 
parameters rank wise affecting target features. From Fig. 19 (a) and Fig. 19 (c), it is clearly evident that wear 
behaviour is mostly influenced by reinforcement percentage of B4C in Al6082-T651 hybrid composites followed 
by normal load and sliding velocity. The addition of reinforcement materials improves the hardness of the hybrid 
composite, which contributes to upgrade the wear resistance capabilities in composite, thereby reducing the 
wear loss. The sliding distance is the least influential parameter affecting wear loss. Similarly, Fig. 19 (b) and 
Fig.  19 (d) revealed that applied load is most influential factor outperforming other input parameters in its 
impact on COF value. The other influential parameter is reinforcement percentage of B4C affecting the COF 
followed by sliding distance. The sliding velocity shows no effect on COF, ranking last among input variables.

Fig. 18.  (continued)

 

Scientific Reports |        (2025) 15:27160 24| https://doi.org/10.1038/s41598-025-12603-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Figure 20 further visually depicted Pearson correlation coefficient map showcasing the quantitative correlation 
between input parameters and response variables of wear and COF. The Pearson correlation coefficient was 
typically employed for determining intensity and direction of non-decreasing or non-increasing correlation 
between different variables owing to the non-linearity of the datasets. The diverse colours in the map revealed 
the variation in positive and negative correlations from + 1 to −1. The coefficients near to + 1 indicate greater 
and positive relationship between corresponding features, while values near to −1 suggests inverse relationship 
among features. The increase in input parameters displays strong decreasing trend of target features. In Fig. 20 
(a), it was evident from coefficient value of − 0.57 that with increasing reinforcement percentage, the value of wear 
loss decreases strongly. The addition of reinforcement materials enhances the hardness of the hybrid composite, 
which contributes to better wear resistance, thus lowering the wear loss. In contrast, with increasing the value 
of applied load, the wear loss shows strong positive correlation. It is evident that with lower value of applied 
load wear resistance can be enhanced significantly. In contrast, a coefficient of 0.35 between sliding velocity and 
wear loss indicates a moderate positive correlation, implying that higher sliding velocity increases wear loss. 
Similarly, sliding distance and wear loss have correlation coefficient of 0.21, implying weak positive correlation. 
This behaviour suggested that with increase in sliding distance, the heat generated intensified, causing softening 
of the test material, thus have slight tendency of enhancing wear loss.

Similarly, the COF metrics decreases with increasing reinforcement percentage, depicting a moderate 
negative correlation with correlation coefficient of − 0.50 (see Fig. 20 (b)). This behaviour may be attributed to 
presence of strong reinforcement particles that restrict the contact area between the pin and disc surfaces, thus 
enhancing friction between surfaces. Likewise, the normal load and COF have strong negative correlation with 
each other having coefficient as − 0.75, which suggests that with application of normal load, the friction between 
surface decreases significantly. This behaviour can be attributed to the accumulation of wear debris between 
contact surfaces contributes to this reduction in COF. Further, with 0.1 as correlation coefficient, there is a weak 
positive relation between sliding distance and COF, while sliding velocity has very wear negative correlation with 
COF. Such comprehensive assessment assists in recognizing how different input features are correlated to wear 

Fig. 19.  Wear and COF input parameters importance.
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loss and COF, providing enhanced estimation and optimization of target features based on these underlying 
relationships.

Figure 21 depicted the violin plot for prediction of wear loss and COF of hybrid composites using different 
ML models, suggesting the concentration of residuals along bell-shape curve. The width of violin plot depicts 
the probability density of datasets. The symmetry in violin plot of FL model for wear loss, which suggested even 
distribution of data on both sides of median and enhanced prediction accuracy of model. The SVM model also 
have even distribution of datasets thus providing comparable violin plot with FL. Similarly, the FL model’s violin 
plot suggested more concentrated datasets, revealing better prediction accuracy of COF as shown in Fig. 22. 
Similarly, SVM, ANN and XGBoost performed very well in prediction of COF and have the capability to explain 
underlying correlation in input datasets with target features. The RF and KNN models performed worst with 
larger density of residual over a larger area depicting non-uniform distribution, thus not able to understand the 
non-linear relationship among input-output variables. Further, fuzzy logic models emerged as powerful tool to 
accurately predict the dependencies and underlying correlation, therefore, employed for analyse the interaction 
effect in the terms of three dimensional surface plots.

Figure 23 shows the surface plots depicting input parameters interaction effects on target features of wear loss 
and COF, which are created using MATLAB R2021a software. Figure 23 (a) shows that with higher reinforcement 
percentage of B4C in hybrid composites along with lowest normal load results in minimum wear loss. Figure 23 
(b) illustrated that higher reinforcement of B4C with lower values of sliding velocity resulted in lowering the 
wear loss and enhancing the wear resistance capabilities of hybrid composites. Similarly, lower sliding distance 

Fig. 21.  Violin plot for wear loss.

 

Fig. 20.  Pearson correlation heat map for (a) Wear loss (b) COF.
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of 600 m and highest reinforcement percentage results in enhancing the wear resistance behaviour in composite 
material as clearly seen in Fig. 23 (c). Figures 23 (d-e-f) suggested lower combination of normal load, velocity 
and normal load, sliding distance resulted in improved wear resistance performance of hybrid composite 
samples. Similarly, the COF values are reduced considering higher reinforcement percentage and load as shown 
in Fig. 23 (g). In contrast, Figs. 23 (h-i) shown that for all the values of sliding distance and velocity, the higher 
reinforcement of B4C in hybrid composites provided reduced COF values. Similar trend can be seen in Figs. 23 
(j-l), where higher load values with any values of sliding distance and velocity results in minimizing the COF 
performance.

Conclusions
In this study, Al-based composites reinforced with boron carbide (B4C) and waste granite powder were successfully 
developed using a stir casting technique. The composites were synthesized with varying B4C weight% (2.5, 5, 
and 7.5). A comprehensive investigation was carried out to assess the hardness, dry sliding wear behavior, and 
underlying wear mechanisms of the fabricated materials. Additionally, supervised machine learning regression 
models were employed to predict the wear and coefficient of friction (COF) of the composites. Based on the 
experimental findings, the following conclusions were drawn:

•	 The results clearly indicate that COF consistently decreased with increasing applied load, while the wear 
loss progressively increases across all composite samples. Notably, among all composites, the HC3 variant—
characterized by a higher reinforcement content—exhibited superior wear resistance, attributed to increased 
mechanical strength and enhanced hardness provided by the greater reinforcement concentration.

•	 The study revealed that wear loss increases with sliding velocity. Among the tested materials, the HC3 com-
posite demonstrated superior wear resistance, exhibiting a reduction in wear by 10% under a 10 N load and 
by 55% under a 30 N load at elevated velocities. This improved performance is attributed to the shorter con-
tact duration, which, despite the presence of frictional heating, limits material degradation. Additionally, the 
formation of a mechanically mixed layer contributed to lowering surface interlocking and friction, thereby 
reducing the coefficient of friction (COF).

•	 Both wear loss and COF increased with longer sliding distances, particularly under higher applied loads. 
This behavior is primarily attributed to thermal softening and the weakening of the bond between the rein-
forcement and the matrix, instability of the tribo-layer, which leads to greater surface interactions and higher 
friction.

•	 Scanning Electron Microscope (SEM) analysis revealed distinct wear mechanisms across the tested surfac-
es. The most severely worn region (G1) exhibited significant ploughing, crater development, and evidence 
of delamination, whereas the surface of HC3 showed considerably fewer wear features. The investigation 
demonstrated a clear correlation between applied load and both material loss and groove depth, with HC1 
under a 30 N load experiencing the greatest wear. In contrast, HC3 displayed minimal degradation, primarily 
due to its higher content of reinforcing material. Additionally, the presence of an oxide layer on HC3’s sur-
face—formed as a result of friction-induced heating—was found to be instrumental in limiting direct contact 
between the surfaces, thereby enhancing its resistance to wear.

•	 The fuzzy logic model demonstrated superior predictive accuracy for wear loss, outperforming six compet-
itive machine learning models with an R2 of 0.9638 and a mean absolute error of 0.0023. Based on compre-
hensive analysis and several residual assumptions, its demonstrated strong performance in explaining the 
inherent correlations, complexities and structures in the given datasets.

Fig. 22.  Violin plot for COF.
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•	 Similarly, for precise prediction of COF, the fuzzy logic model again emerges with remarkable performance 
outclassing other compared ML models with obtaining highest R2 value of 0.9833 and lowest MAE of 0.0059. 
In addition, conforming to different residual hypotheses, the FL models successfully analysed and predict the 
underlying correlation and patterns in prediction of COF.

•	 The reinforcement percentage of B4C was established as the extremely important input parameter followed 
by normal load in affecting the wear loss of hybrid composites, which was clearly evident from feature im-
portance plot and its outcome. Moreover, the normal load emerges as best performing parameter influencing 
COF followed by reinforcement percentage.

•	 The analysis of Pearson coefficient correlation demonstrates that reinforcement percentage have strong neg-
ative correlation of (− 0.57) and (− 0.50) with wear loss and COF. Similarly, load have positive correlation of 

Fig. 23.  Surface interaction plots for wear loss (a-f) and COF (g-l).
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(0.57) with wear loss, however strong negative correlation (− 0.75) with COF. The sliding distance and velocity 
are positively correlated with wear behaviour while have insignificant effect on COF.

Future work should focus on expanding the dataset to address data limitations. Therefore, techniques such as 
synthetic data generation and transfer learning may be explored. Additionally, integrating hybrid models and 
uncertainty quantification could enhance both accuracy and practical applicability in tribological systems.

.
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