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Automated detection of
Parkinson’s disease using improved
linknet-ghostnet model based on
handwriting images
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Parkinson’s disease (PD), is a neural disorder that damages movement control, which is reflected by
different non-motor and motor symptoms. PD is caused by the weakening of neurons that produce
dopamine in the brain, and it includes symptoms like bradykinesia (delay in movements), stiffness,
and tremors. People frequently suffer from loss of motor skills when the illness worsens, which

has a big influence on everyday tasks like writing. Micrographia is a disorder marked by very tiny,
cramped handwriting and is one of the symptoms of PD. As a reflection of the disease’s wider motor
impairments, patients may observe that their handwriting gets harder to read and control. Detecting
Parkinson’s disease via handwriting images is one of the major research areas in the medical field. This
research proposes an automated PD detection approach with handwriting images using an improved
hybrid classification model. Primarily, a modified Wiener filter is employed for pre-processing the
handwriting image. Then, modified PHOG, Deep features and Shape features are extracted. Finally,
detection is performed using hybrid Improved LinkNet and Ghostnet models, termed (ILN-GNet),
whose outcomes indicate if the individual is healthy or affected. From the analysis, a higher precision
of 0.99 is achieved by the ILN-GNet, while existing methods attained low precision. Thus, these
innovations significantly enhance early diagnosis and monitoring, enabling timely interventions
before the disease progresses. Moreover, the proposed approach can contribute to remote healthcare
solutions, by providing a scalable, and efficient tool for PD diagnosis.
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Abbreviations

A-LSTM Attention-based long short-term memory
BN Batch normalization

Conv Convolution

CC-Net Continuous convolution network
CNN Convolutional neural networks
DT Decision trees

DL Deep learning

DBS Deep brain stimulation

DCNN Deep convolutional neural network
DNN Deep neural networks

DSS Decision support systems

ELU Exponential linear unit

FCL Fully connected layer

FGS Fuzzy genetic systems

FC Fuzzy classifier

GNet Ghostnet

GA Genetic algorithms

GBM Ghost bottleneck module

GSA Grid search algorithm

ILN-GNet Improved linknet and ghostnET
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KNN K-nearest neighbor

LR Logistic regression

LS-SVRv Least squares support vector regression

MDSCM Multisize depth wise separable convolution module
ML Machine learning

NB Naive bayes

PSD Power spectral density

PHOG Pyramid histogram of oriented gradients

PCA Principal component analysis

PD Parkinson’s disease

QMFOFS-HCNN

Quantum mayfly optimization-based feature subset selection with hybrid convolutional
neural network

QMO Quantum mayfly optimization

RF Random forest

SD Standard deviation

SvC Support vector classification

TL Transfer learning

D Training data

UPDRS Unified parkinson’s disease rating scale

WF Wiener filter

WAP-BN Weighted average pooling-batch normalization

Parkinson’s disease is a progressive neurological disorder that affects movement, gradually worsening over
time. Key symptoms include resting tremors (involuntary shaking, often in the hands), bradykinesia (slowness
of movement), and postural instability (poor balance and coordination), all of which impair fine motor skills
and daily activities'. The main symptom of PD, a chronic and complicated neurological disorder, is movement.
Although the precise origin of PD is unknown, it most likely results from a confluence of environmental variables
such as pesticides, solvents, and air pollution with hereditary factors>. PD is caused by the slow degeneration
of certain brain neurons that generate the neurotransmitter dopamine. Dopamine is essential for controlling
coordination and movement*-. PD patients have a variety of symptoms as their dopamine levels drop. The
major signs of this condition are tremor, sluggish movement, rigidity of limb and volatility of body position”S.
The presence of such a sign could definitely influence the standard of handwriting, which is a complicated
activity, which includes motor, sensory and cognitive skills. Since Parkinson’s disease severely affects fine motor
control, it often causes noticeable tremors that appear as shakiness in patients’ drawings or handwriting’®. As a
result, analyzing these motor irregularities in handwriting or sketches serves as a valuable indicator for detecting
PD and constitutes the base for diagnosis of the condition at its earliest stages when the severity of typical signs
is minor'%-!2. Thus, changes in handwriting can be a symptom of PD.

Numerous neurodegenerative diseases that affect brain functions, like PD, have a notable impact on writing
abilities!>"!4. People with PD have demonstrated evidence of micrography or dysgraphia that could be utilized
as indicators to determine the possibility or severity of the disease!>~1”. Handwriting analysis is, therefore widely
acknowledged as an efficient and reasonably priced approach to real-time Parkinson’s disease identification. Data
about handwriting can be collected offline or online. The offline approach uses a scanner to record handwritten
material on paper®!®1°.

Using online handwriting to identify PD presents several obstacles and hurdles. The diversity of handwriting
impairments is one of the main obstacles. In actuality, each person is affected by PD in various ways and
the handwriting deficits that PD sufferers experience can differ greatly’®?2. Micrographia, or excessively
tiny handwriting, is a condition that certain individuals may have. Other patients may have changes in their
handwriting’s speed, pressure, or fluency. It is challenging to develop reliable handwriting characteristics for PD
identification because of this diversity?.

A variety of diagnosis methods are required for the detection and treatment of PD, and not every healthcare
facility is prepared to perform all of them. Spiral and wave diagrams are effective tools for evaluating motor skills
and tremor patterns in Parkinson’s patients, offering both qualitative and quantitative insights into fine motor
control'. The accessibility of diagnostic equipment and treatment processes might vary based on the level of
resources and specialization of the healthcare facility. Certain medical facilities or neurology clinics may be the
only ones with the specific knowledge and tools needed for some treatments, particularly aggressive ones like
DBS surgery*>**. There is an urgent need for an efficient method that offers dependable, accurate PD detection.
Such an approach would contribute to increasing the wellness and standard of patient life?.

The usage of ML methods for health data has led to DSS creation that aids medical experts in accurate
decision-making. Common ML methods like KNN, RE NB and SVM are deployed for PD detection. In
particular, the development of the aforementioned techniques led to create CNN-assisted CAD models for
several medical applications. CNN can learn features from the provided images, which is in contrast to hand-
crafted techniques®. However, they do not work well with larger datasets and struggle to handle varied data
types?. With the introduction of DL techniques like CNN and DNN, the detection of PD severity became
more precise. It was discovered that CNN is more accurate than existing methods?”?%. While pooling layers in
CNNs are effective for typical image recognition tasks, they can lead to the loss of fine-grained features essential
for classifying spiral drawings in Parkinson’s disease. This presents a limitation in applying standard CNN
architectures in medical handwriting analysis?®. These drawbacks encourage the development of a novel PD
detection strategy in this study. Utilizing the complementing advantages of modified WF-based preprocessing
and modified PHOG-based feature extraction, appropriate patterns are substantially preserved for accurate
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identification. Additionally, combining the improved LinkNet and GhostNet models contributes to the robust
detection of PD in contrast to the existing methods.
The presented PD detection approach involves the contributions beneath.

 Proposing a modified WF for preprocessing the handwriting image using the new pixel value for the original
image with the noisy image and the original image with the filtered image using the proposed Gaussian filter-
ing, which significantly reduces the noise while preserving the edges. This results in enhancing the quality of
the image for effective feature extraction.

« Employing the modified PHOG-based feature descriptor using the improved entropy for gradient computa-
tion. This improved feature effectively captures features at different resolution levels minimizes the influences
of higher frequency noise and allows the model to better detect fine-grained distortions.

« Proposing a new hybrid DL model that integrates the improved LinkNet and GhostNet models for detecting
PD. Leverages the capturing of multi-scale context information of the improved LinkNet and the efficient
feature generation of GhostNet, leading to a well-balanced model in terms of accuracy and efficiency.

« Employing an improved LinkNet model for detection, in which the enhancements made in its architecture
specifically additional layers such as WAP-BN and the MDSCM layer. This improved architecture enhances
the model’s ability to learn complex spatial and channel-wise relationships and contributes to more accurate,
and robust PD detection.

The reviews on PD detection are specified in Section “Literature review”. The proposed PD detection is in Section
“Proposed model for Parkinson’s disease detection”. Modified WF and modified features are given under Section
“Pre-processing via modified wiener filtering” and Section “Feature extraction” Improved LinkNet and Ghostnet
are explained in Section “Hybrid classifiers for PD detection: Improved linknet and ghostnet”. Section “Results
and discussions” and Section “Conclusions” elucidated the results and conclusion.

Literature review

Related works

In 2023, Naz et al.* utilized 3 renowned PD data sets to study the issue of early PD detection using handwriting
and drawing activities. The task was believed to be very challenging as there were few handwriting examples
available, and the symptoms of PD might vary greatly. Various data augmentation approaches were used to
increase the dataset size to accomplish better PD detection. Following that, many DCNN architectures were
implemented and trained; each one’s distinct structure and layout allowed it to extract distinct prominent
characteristics and aspects of the input data. Following the experimental evaluation of each CNN’s performance,
the most promising feature vectors were chosen, and several early fusion techniques were used before the
final classification. An ensemble of feature vectors from multiple models demonstrated significantly better
generalization than a single model’s freeze vector. However, a limitation of the study is the exclusive use of the
SVM classifier; despite its strong performance, other machine learning classifiers should also be explored and
evaluated.

An effective DL model that helped with early PD identification was proposed by Abdullah et al.>! in 2023. The
suggested model made a substantial contribution by choosing the best characteristics, which resulted in excellent
performance accuracy. The KNN approach was used in GA to optimize features. The suggested innovative model
leads to reduced loss and increased detection accuracy. The classification using optimized features is performed
with KNN, which is computationally efficient. However, the model’s heavy reliance on feature optimization
could limit its scalability and potentially affect its robustness.

Kamble et al.*? suggested a thorough scrutiny of the spirals formed by PD patients in 2021. For this,
mathematical models were used to extract kinematic characteristics created for 25 individuals and 15 healthier
ones. Using feature design and four ML classifiers, LR, C-SVC, KNN classifier, and ensemble model REF, the results
showed a classification accuracy of almost 91% in distinguishing PD patients from healthy ones. Moreover, the
model effectively identifies key kinematic features for early PD detection without complex processing. However,
its reliance on a limited dataset and computational framework restricts its ability to support more comprehensive
PD diagnosis.

In 2023, Konstantin et al.** has introduced an FC approach that consisted of 3 stages: constructing the
structure, picking the useful features, and parameter optimization. It was advised to use 32 variations of
the approach using various metaheuristic algorithms. To diagnose PD, experiments were carried out. The
handwriting of 40 persons, including 25 PS sufferers, was included in Parkinson’s HW. The handwriting exercises
involved creating meanders and spirals. The handwriting of 75 persons, including 37 PD patients, was included
in PaHaW. The advantages of certain realization variations in terms of prediction accuracy and interpretability
were demonstrated by statistical comparisons of efficiency with other accessible classifiers, DT, and FGS.
Additionally, the incorporation of a fuzzy handwriting classifier avoids the necessity of computing resources and
has faster inference processing. However, there is a need for additional ML algorithms for model deployment
and monitoring.

Zhu et al.” has investigated several spiraling hand drawing characteristics of PD in 2022 and created an
alternative diagnosis system based on hand drawings. First, the visual information of hand drawings accurately
depicted the drawing features of individuals with PD. Second, an "Archimedes spiral hand drawing dataset"
was created that was independent of the application scenario and could capture the image’s spacing, shape, and
tremor features. The CC-Net was used for lowering the pooling layer. Moreover, CC-Net outperforms traditional
networks in feature extraction and classification accuracy, while ensuring stable performance. However,
more spiral data and multi-classification experiments across different tremor diseases are needed for further
improvement.
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In 2024, Hossein et al.?® has created a new technique for identifying PD with UPDRS by combining fuzzy
clustering and LS-SVR. PCA and feature selection were employed to address the multicollinearity problems
in the data. This study demonstrated how the suggested approach enhanced prediction through thorough
assessments with existing techniques. Moreover, the PCA + FCM + LS-SVR achieve maximum precision across
the test sets for Total-UPDRS and Motor-UPDRS, according to comparison results with other prediction
techniques. However, using machine learning optimization techniques and adaptive heuristic search algorithms
is essential to further improving the approach.

A general approach for diagnosing PD utilizing handwritten images and/or voice cues was developed by
Yousif et al.** in 2023. To diagnose PD, eight pre-trained CNN were used. 16 feature-extracting techniques
were used to numerically extract features for the speech signals, which were then input into four distinct ML
algorithms that were adjusted via the GSA. The segmentation of varying durations of speech signals was the basis
for the novel feature extraction method used for the voice dataset. Finally, the outcomes of the experiments were
gathered and documented. The incorporation of a novel feature extraction algorithm significantly enhanced
detection performance. However, its main limitation is the lack of comprehensive datasets, as no publicly
available PD dataset includes both handwriting and voice data from the same patients.

To enhance PD detection and classification, Mansour et al.* presented a novel method in 2024 called
QMFOFS-HCNN. The purpose of QMFOFS-HCNN was to solve the dimensionality problem and find the
best feature subsets. It combined a QMO strategy for choosing features with CNN with an A-LSTM for PD
recognition and classification. The Nadam optimizer was also used to optimize the selection of hyperparameters.
Experimental validation utilizing benchmark datasets gave impressive findings. These numerical results
highlighted how DL greatly improved the accuracy of early PD identification. It contributes to medical diagnostics
by providing an effective PD detection and classification tool. The performance assessment was carried out on
benchmark datasets. Nevertheless, more validation using a wider range of datasets may be necessary to ensure
the technique’s practical applicability.

In 2024, Xuechao Wang et al.*® has proposed a hybrid deep learning approach that effectively combined the
strengths of both LSTM and CNN for the diagnosis of Parkinson’s disease. Specifically, the LSTM component
was utilized to capture time-varying features, while a CNN-based module, implemented using one-dimensional
convolution, was employed to maintain low computational complexity. During data preprocessing, the forward
difference algorithm was applied to extract Parkinson’s disease-related features such as resting tremor from the
geometric characteristics of handwriting signals, thereby improving diagnostic accuracy with minimal processing
time. Finally, the model incorporated an inference strategy that included a majority voting mechanism, resulting
in highly efficient CPU inference performance. Nonetheless, a major limitation of the study lay in the small
dataset size, which could potentially limit the generalizability of the findings.

In 2024, Abderrazak Benchabane et al.! introduced an innovative method for Parkinson’s disease detection
utilizing deep convolutional neural networks built upon the AlexNet architecture. Their approach centered
on analyzing hand-drawn images from affected or potentially affected individuals, extracting features from
these drawings for classification purposes. By merging features from two distinct types of hand drawings, the
detection accuracy was notably enhanced. Nevertheless, further improvements could be achieved by exploring
alternative CNN architectures, incorporating additional features, and refining the ensemble techniques used in
the classification process.

Problem statement

PD is a progressive neurological disorder with early symptoms often reflected in handwriting. Early detection
is vital, but current methods face several limitations such as limited dataset diversity, model robustness, and
generalizability. For instance, Naz et al. (2023)*° used ensemble DCNNs with data augmentation but highlighted
challenges due to few handwriting examples and reflected the necessity of ML classifiers. Moreover, Kamble et al.
(2021)3? extracted kinematic features from spiral drawings, yet their study was limited by sample size. Abdullah
et al. (2023)*! achieved high accuracy using genetic algorithms and KNN but noted potential scalability issues.
Additionally, Konstantin et al. (2023)** applied fuzzy clustering and metaheuristic optimization but emphasized
the need for diverse ML integration. Zhu et al. (2022)* and Benchabane et al. (2024)! used CNN-based methods,
like CC-Net and AlexNet, showing high accuracy but requiring more varied data and better feature extraction
methods. Yousif et al. (2023)3* explored both handwriting and voice data but faced limitations due to the lack
of datasets with both modalities from the same subjects. Mansour et al. (2024)% introduced QMFOFS-HCNN
for feature selection and classification, yet the approach needs further validation on diverse datasets. Xuechao
Wang et al. (2024)%¢ proposed a hybrid CNN-LSTM model, but its effectiveness is limited by a small dataset.
To overcome these limitations, this research proposes an automated PD detection method using handwriting
images. The majority of the current methods face challenges with limited datasets. To address these issues, the
proposed model is validated using two datasets, namely the HandPD Dataset and Meander HandPD images
in the HandPD dataset. By employing augmentation techniques like rotation, translation and shearing, the
dimension of datasets gets increased sufficiently, which addresses the issues of limited sample size. Specifically,
the incorporation of a modified Wiener filter for pre-processing and extracts modified PHOG, deep, and shape
features. A hybrid model combining Improved LinkNet and GhostNet (ILN-GNet) for final classification, which
significantly enhanced the detection performance. Therefore, this proposed framework aims to deliver high
detection accuracy, improved generalization, and computational efficiency, which enables the proposed system
to be well-positioned for deployment in practical clinical settings, potentially supporting early diagnosis.

Proposed model for Parkinson’s disease detection
A clinical assessment of PD is made difficult due to the absence of very accurate biomarkers. The most widely
used scale for evaluating both non-motor and motor symptoms of PD is the UPDRS. This scale allows doctors to

Scientific Reports |

(2025) 15:30731 | https://doi.org/10.1038/s41598-025-12636-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

evaluate the severity of motor signs in PD patients without the requirement for specialized equipment. Another
issue is that the doctor’s subjective awareness has a significant impact on how this scale is evaluated. Numerous
motion capture tools, including electromyography, laser displacement, accelerometers, and sensors, are available
to better measure quantified tremors. Nevertheless, with the resumption of the pandemic, a simple PD screening
system suitable for iPads or mobile phones would assist early identification and earlier evaluation of suspicious
persons and benefit enhanced diagnosis for the patient. Many researchers have conducted significant studies
on computer-aided technology in an effort to achieve an easier and more precise diagnosis of PD. However, the
accuracy of PD detection remains a question. To enhance the accuracy and efficiency of the PD detection, a novel
DL-based model is proposed in this research. This approach encompasses three key stages such as preprocessing,
feature extraction and PD detection phases. The overall architecture of the proposed PD detection approach is
shown in Fig. 1. Initially, the research begins with the preprocessing, where, the modified WF is proposed and
applied to the input image to reduce noise within the image and preserve the important details for detection,
leading to enhanced image quality. Subsequently, several pertinent features, including modified PHOG, Deep
features and Shape features are obtained from the preprocessed image, which would offer valuable information
for precise detection. Lastly, a hybrid detection model that combines the Ghostnet and Improved LinkNet
models is suggested and receives the derived features as input. A more reliable and robust detection is provided
by the beneficial characteristics of both models. The final detection outcomes are determined by averaging the
intermediate scores from both classifiers.

Pre-processing via modified wiener filtering

Image pre-processing involves varied methods for improving the quality of digital images, and it helps to extract
pertinent information before images are further examined and processed by ML algorithms. Here, we take into
consideration the input handwriting image HI that has undergone pre-processing using the modified WF
method.

Input handwritten image

l Feature Extraction
Pre-processing using T pE e Shape
PHOG features

modified Wiener filter >

features /'

Deep features
(VGG16, ResNet)

Hybrid classification for PD |
detection

Improved
LinkNet
Ghost net

Detected
outcomes on PD

Averaged

Healthy Patient
Fig.1. Overall Architecture of the PD detection model.
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Conventional WF method:

Calculate the PSD of noise and the original image, HI.

A mask is applied to the noise image pixel.

Determine local variance (02) and mean (p).

Compute the new pixel value using noise power and variance, and mean.
The steps 2 to 4 are repeated for all noise image pixels.

AR S

Although WF reduces random noise in images, it poses certain limits. If noise PSD is erroneously computed, the
existing WF might over-smooth the image or fail to eliminate the noise adequately.

While lessening the noise, it might smooth out significant details, which results in a loss of image information.
Therefore, to overcome these issues, a modified WF is introduced in this work. Specifically, the incorporation
of the new pixel computation for the original image with noise image and the original image with the filtered
image using the proposed Gaussian filter helps to preserve the multiplicative relationships in pixel intensity
values, which often better represent natural textures and subtle handwriting variations. Also, this combination
not only reduces noise within the image but also significantly enhances the image quality for subsequent feature
extraction processes.

Modified WF method:
The modified WF comprises two steps for computing the new pixel value.

a) Original image with noise image.
b) Original image with filtered image.

Original image with noise image: 1. Calculate the PSD of noise and the original image, HI.
2. A mask is applied to the noise image pixel.
3. Arrange the intensity of all pixels that fall under the mask.
4. Compute the median and allot it to the middle pixel of the mask.
5. Compute local variance (02) and mean (p). The mean is computed based on the geometric mean as

revealed in Eq. (1), here, p and ¢ signifies the row and column of image H I, k and j signifies the count of the
row and column. The variance is computed as revealed in Eq. (2).

k. Ypq
u=< 11 H](PMZ)) W

p=1,9=1
1 2
o’ = (HI (p.q) — p) (2)
Pq

Original image with filtered image: 1. Enhance the brightness of the original handwriting image HI.
2. An improved Gaussian filter is applied. The conventional Gaussian filter is formulated as in Eq. (3), where,

cand r refers to pixels.
1 A+
GFer = — -
’ 2702 xp ( 202 3

The proposed Gaussian filter is formulated as in Eq. (4).

2 2

1 24r? c24r?2—202 - (C tr /202)

2mo? exp | — 202 + 2706 -€

GF = 4)
\/c2 + 72 — 2g2e(*+?)

3. Evaluate the median (Me) and variance (02) and mean (p) for the filtered image.

4. Evaluate the novel value @ (p, q) of pixel for the original image with the filtered image and noisy image as
shown in Eq. (5). Here, u signifies noise variance.

2 2
Qpq = {medJr % (HI (p,q) — med)} +
(o)~ ®
medy + ~———— (HI (p,q) — p)
C)
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5. The steps of the original with noise and the original with filtered image are repeated for all noise image pixels.
The pre-processed image is indicated by g7 77.
Thus, the modified WF is capable of removing the noise, whereas the edges are preserved. In addition,
the modified WF reduces the distortions. The modified WF could conserve edges and significant details and
effectively lessen the noise.

Feature extraction

In image processing, feature extraction is crucial. Digital images can have factors like motion, shapes, or edges
that are detected during feature extraction. Following their identification, the data may be processed to carry out
several image analysis tasks. The distinctive features listed below are obtained from this study:

Modified PHOG features
Shape features
Deep features (VGG 16 and ResNet)

The combination of modified PHOG features, shape features, and deep features from VGG16 and ResNet creates
a comprehensive, multi-layered feature set that significantly improves the accuracy of PD detection. The modified
PHOG features capture information across different spatial resolutions, enhancing gradient calculations by
reducing the impact of high-frequency noise and emphasizing significant gradient variations. Meanwhile, the
shape features provide crucial global geometric insights, that are key for distinguishing PD-related handwriting
abnormalities. The deep features extracted from VGG16 and ResNet offer robust hierarchical representations,
enabling the model to detect intricate and abstract patterns. Together, these diverse and complementary features
enhance the model’s ability to detect PD with greater precision and ensure more reliable detection.

Modified PHOG features

The PHOG model®” splits the image, HI? at various resolutions to districts depending upon spatial
pyramid matching. The doubling of divisions in the axis direction is repeated by splitting HI” into
fine spatial grids. In PHOG, the derivative mask is deployed in the vertical and horizontal directions of
HI? to calculate the gradient. Especially, this model requires gray level image filtering for kernels like,

1
Kx =[-101] and Ky = | 0 | and the derivatives of X and Y are achieved with convolution operations

-1
namely Ux = HI? x Kx and Uy = HI? x Ky. The orientation and magnitude of the gradient are assessed
as in Eq. (6) and (7).

Uo = arctan % (6)
Uc=+/(U%+U2) (7)

While traditional PHOG features are good at explaining the image’s spatial information, they primarily focus
on local gradient details and are unable to effectively capture global context details without additional features.
Also, the conventional PHOG is based solely on gradient orientation and magnitude, which makes it highly
sensitive to noise and artifacts. This leads to poor capturing of non-linear distortions, as it assumes relatively
stable gradient behavior. In order to address these shortcomings, a modified PHOG feature is proposed based on
the incorporation of improved entropy in the gradient operation, which allows for focusing on high-information
regions. Additionally, the modified PHOG is more resilient to noise and slight distortions, ensuring clearer and
more trustworthy feature maps and improving the precision of PD identification.

Modified PHOG: As per modified PHOG, the gradient operation is modelled depending upon improved
entropy as shown in Eq. (8) and (9).

Ux =HI’*Kx +1IE (8)
Uy =HI"«Ky + IE 9)

1. Computation of improved entropy for each gradient image:

Evaluate the improved entropy of the horizontal gradient image Ux.
Evaluate the improved entropy of the vertical gradient image Uy-.
The conventional Shannon entropy is given in Eq. (10).
k
En=—"P(HI?)log, P (HI) (10)
i=1

The improved Shannon entropy used in modified PHOG for gradient computation is given in Eq. (11). In
Eq. (11), | M| signifies the cardinality of the focal component M, © signifies the FOD.
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2. Comparing the improved entropy values:

After evaluating the improved entropy of Ux, the threshold should be set as the mean of entropy.

Higher entropy in Ux denotes a high difference in the horizontal edge, while higher entropy in Uy denotes a
high difference in the vertical edge. If entropy is similar in both gradients, it denotes that edge info is distrib-
uted evenly in both orientations.

Select the high entropy value that sums with Ux and Uy. Here, the gradient entropy quantifies how much
difference persists in every gradient image.

Now, by summing the higher entropy value to the gradient mean, the gradient containing the more direction-
al info can be enhanced.

The modified PHOG features denoted by PHOG™ captivates features at varied spatial resolution levels. It
further improves the accuracy of gradient computation by lessening the influence of higher-frequency noise and
highlighting remarkable gradient disparities. Thus, compared to existing PHOG, the modified PHOG features
aid in gathering fine details needed for PD detection.

Shape features

Shape features SF* are extracted in this proposed work to improve the understanding of object geometry
in the image, H I”. Features like area, epsilon, hull and perimeter are specifically taken into account. Epsilon
assesses the shape’s intricacies and imperfections to determine how closely a component’s shape resembles its
usual form. The perimeter establishes the overall length of the border, while the area determines the item’s size.
The convex hull provides the lowest convex border that may surround the shape. When combined, these form
elements are essential for image evaluation and retrieval because they enable accurate object comparison and
characterisation based on geometric aspects.

Deep features
Deep features (DF’) are obtained from H I” by applying the ResNet and VGG 16 models, are considered in the
suggested study for PD identification.

ResNet: The ResNet model incorporates residual connections that allow the network to go deeper without
suffering from the vanishing gradient problem. This enables ResNet to capture more complex and abstract
visual representations by learning deeper hierarchical features for precise detection. Convolutional, pooling,
normalizing, and FCL are all included in the ResNet-50 model®. By obtaining residual functions that allow
the network to gather a wide range of attributes from input images, including both specific low-level and high-
level data, residual blocks facilitate optimization. Features are extracted using convolutional layers, filtered using
residual blocks, the spatial extent is reduced using max pooling, and non-linearity is addressed using ReLU.
These specific attributes are then used by the final FCL to categorize the image.

VGG 16: 1t* is a DCNN architecture noted for its simplicity and efficacy in image classification. VGG16
is known for its deep, uniform architecture, this design enables the model to learn hierarchical features at
multiple levels, from basic edges and textures at lower layers to complex, high-level patterns at deeper layers.
This characteristic allows the model to capture both fine details crucial for accurate detection. Its architecture
comprises 16 weight layers: 13 con layers and 3 FCL grouped into five conv blocks. To enable VGG-16 to acquire
hierarchical features from simple edges to intricate patterns, each block reduces spatial dimensions by using max
pooling and raises the filter count from 64 to 512. To capture micro features, the network uses tiny 3 x 3 filters
in conv layers. In VGG16, the input moves via a sequence of conv layers and max pooling layers. The flattened
feature maps are categorized by FCLs, and the learning process is enhanced by the non-linearity added by the
ReLU activation.

The final feature F' f = [PH OGM + SF + DF] isan inclusive grouping of modified PHOG, deep features

and shape features. This varied set of features permits robust detection by capturing thorough information from
several aspects of H .

Hybrid classifiers for PD detection: Improved LinkNet and Ghostnet

The features (F'f) are subjected to hybrid classifiers such as improved LinkNet and GhostNet for identifying
the PD. Rather than the application of single classifiers, the application of hybrid classifiers will result in better
outcomes. Integrating the improved LinkNet and GhostNet models in the proposed ILN-GNet framework offers
a powerful synergy that enhances the accuracy, efficiency, and robustness of PD detection. The improved LinkNet
excels in detailed spatial feature extraction and multi-scale context learning through its advanced encoder-
decoder structure, and modules like MDSCM and WAP-BN, making it highly effective at capturing subtle
handwriting variations. On the other hand, GhostNet contributes lightweight, high-efficiency feature extraction
by generating more feature maps through simple linear operations, significantly reducing computational
complexity without sacrificing performance. Combining the improved LinkNet with GhostNet models offers
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an efficient and compact representation of learning, and effectively distinguishing PD-affected handwriting. The
performance of improved LinkNet and GhostNet is examined using “HandPD Dataset!! and Meander HandPD
images in the HandPD dataset*?”. The HandPD Dataset detects the individual as “healthy or patient”

GhostNet

The features F'f are subjected to the GNet architecture for the detection of PD. However, the traditional deep
models may provide high accuracy but often come with large numbers of parameters and heavy computational
demands. In contrast, the GhostNet model strikes a balance by maintaining competitive accuracy while
drastically reducing computational costs. Hence this model has been employed in this research for detection.
GNet*® comprises a novel Ghost module that uses low-cost operations to produce additional feature maps. This
novel NN efficiently generates more feature maps with fewer variables and computations. The implementation of
this module consists of two parts. Using a conventional convolutional computation, GNet first generates feature
maps with fewer channels. Next, it uses a straightforward procedure to generate more feature maps. Finally, it
combines several feature maps to produce a new output. The GBM in GNet is separated into two categories based
on stride. Two Ghost modules make up the GBM design when stride= 1, which is described using conventional
residuals. To add more channels, the initial module serves as an extension layer. In order to link the outputs
and inputs of these two Ghost modules, the second module first decreases the number of channels to match the
shortest path. When stride =2, the GBM has the conventional bottleneck structure’s layout, and when stride=1,
it keeps its structural features. The ReLU nonactivation operation and BN are used by the subsequent layers
following the second Ghost module. The final result from GNet is displayed as Gn°.

Improved LinkNet

The features F'f are employed in the LinkNet classifier for PD detection. 3 encoder and decoder components
make up the LinkNet architecture**. They both often carry out ReLu activations, BNs, and convolution. While
the BN helps to standardize training and attain a high rate of convergence, the Conv layer is utilized to detect
spatial patterns. The normalized output is then sent into the Leaky ReLU for training the complex features and
the average pooling layer to reduce the spatial dimensions. Similarly, encoder block 2 applies Conv, BN, average
pooling, and mix pooling layers to encoder block 1 to enhance the accuracy of PD detection. The results of
encoder block 2 are then sent to encoder block 3, which includes a conv layer and BN.

Even while ordinary LinkNet generates fine-detected outputs, the recurrent striding and pooling techniques
utilized in LinkNet lower feature resolution. This makes it possible that some information will be lost. Therefore,
to prevail over such problems, we introduce an improved LinkNet model for PD detection. Thereby, an improved
LinkNet architecture is proposed with varied modifications in its structure. The proposed LinkNet architecture
includes extra layers such as mixed pooling, average pooling, encoder 1 followed by conv, BN, Leaky ReLU,
encoder 2 followed by conv, BN, ELU, encoder 3 followed by conv, BN, swish, decoder 1, 2 and 3 followed
by WAP-BN layers. Particularly, the MDSCM layer is included in the improved LinkNet architecture. This
improved architecture enables the model to learn complex, non-linear handwriting patterns more effectively.
The use of mixed and average pooling improves feature preservation by balancing edge detection and texture
retention, while the decoder stages incorporate WAP-BN to enhance reconstruction accuracy and training
stability. Notably, the integration of the MDSCM allows efficient multi-scale feature extraction with reduced
computational cost, making the model both lightweight and powerful. Overall, these structural improvements
enhance the model’s ability to capture subtle variations in handwriting, leading to more accurate and robust PD
detection.

MDSCM layer: The MDSCM layer includes 3 Gabor filters, 3 conv layers with strides 3x3,5x5and 7x7, 3
BN layers and 3 encoders. Each Gabor filter output is connected to the Conv layer with each stride. The output
from the conv layer is passed as input to the BN layer. The output from the BN layer and each encoder block is
XOR-ed, and the outputs are concatenated to get the final output. The MDSCM architecture is shown in Fig. 2.

Proposed WAP-BN computation: The conventional BN is modelled as in Eq. (12), where, Z; denotes the
decoder output,dp represent the mean value of Z;, € refers to a constant deployed for numerical constancy.

5 Zi—0p

Zi = —F—— 12
oL +e (12)

However, for better stabilization of parameters, instead of the existing BN, we propose weighted average pooling-
based BN in the modified LinkNet design.

The proposed WAP-BN is modelled as in Eq. (13), where, S signifies weighted average pooling® that is
formulated as given in Eq. (14).

WAP — BN — (Zi%Sy5)— (0B % Sy)

(13)

1
SJ:(l_’Y)EZAi (14)

In Eq. (14), 7y is set as 1, B refers to a parameter, A; refers to the feature value at the position 7 inside the pooling
arear;.
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The improved LinkNet model is highly useful for utilizing global data at different scales. When compared
to the current LinkNet model, the modifications made to the upgraded LinkNet model reduce processing costs
and preserve aggregate multi-scale context information. Additionally, improved LinkNet speeds up training and
makes the procedure much more efficient. Figure 3 shows an architecture of the improved LinkNet.

The final improved link output is signified by 7 1,5,°.

The outcomes from improved LinkNet (I Ln°) and GhostNet (Gn®) are subjected to mean and final PD-
detected outcomes are attained as “healthy or patient”

Fig.2. Architecture of Suggested MDSCM module.

Results and discussion

Simulation procedure

The ILN-GNet model developed for PD detection was implemented using Python. Additionally, to run the
simulation, we employed a system that had a 11th Gen Intel(R) Core (TM) i5-1135g7 CPU operating at 2.40 GHz
and 2.42 GHz and 16.0 GB (15.7 GB usable) of RAM. An x 64-based CPU running a 64-bit operating system
was the system type. The valuation was done for ILN-GNet over LinkNet, GhostNet, GoogleNet, AlexNet!,
EfficientNet, CNN°, Ensemble!?, LSTM-CNN?>® and XGBoost*. The study data was attained using HandPD
Dataset (dataset 1)*! and Meander_HandPD images in HandPD dataset (dataset 2)*2.
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Fig.3. Proposed improved LinkNet Architecture.

Dataset description

HandPD dataset (dataset 1)

The HandPD dataset consists of handwritten tests from two groups of people: the (i) Healthy Group and the (ii)
Patient Group, which is made up of people with Parkinson’s disease (PD). Of the 92 participants in the sample, 74
are patients (patients group) and 18 are healthy (Healthy group). A synopsis of each group can be found below:

Healthy Group: There were six men and twelve women, representing ages 19 to 79 (average age:
44.22+16.53 years). Two of those people are left-handed, and sixteen are right-handed.

The patient group consisted of 15 females and 59 males, aged 38 to 78 (average age: 58.75+7.51 years).
Of those people, 69 are right-handed and 5 are left-handed. Consequently, the entire dataset consists of 736
images labeled in two groups: 72 images in the healthy group and 296 images in the patient group. This results
in a dataset including 368 images from each drawing, such as meanders and spirals. After the application of
augmentation techniques such as rotation, translation and shearing, the total number of images was increased to
1240, which were distributed into the healthy group has 648 images and the patient group has 592 images. The

Scientific Reports|  (2025) 15:30731 | https://doi.org/10.1038/s41598-025-12636-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

(a) (b)
(a) (b)

Fig.4. Sample for PD detection using handwriting images for dataset 1 (a) sample 1 (b) sample 2 and (c)
sample 3.

(c)

Fig.5. Sample for PD detection using handwriting images for dataset 2 (a) sample 1 (b) sample 2 and (c)
sample 3.

images are labeled as follows: ID_EXAM-ID_IMAGE.jpg, in which ID_EXAM stands for the exam’s identifier,
and ID_IMAGE denotes the number of the image of that exam”.

Meander_HandPD images in HandPD dataset (dataset 2)

Handwritten samples from two groups such as a Healthy Group and a Patient Group, consisting of people with
PD diagnoses make up the HandPD dataset. These samples of handwriting were acquired at Sdo Paulo State
University’s Botucatu Medical School in Brazil. Participants were instructed to complete a form containing
four spiral patterns and four meander patterns. These sections were later cropped from the forms and saved as
individual JPEG images. The dataset contained 368 images, categorized into two classes: MeanderControl (72
images), and MeanderPatients (296 images). To expand the dataset, data augmentation techniques (rotation,
translation and shearing) were applied, increasing the total number of images to 1,240. Post-augmentation,
the distribution included 648 images for MeanderControl and 592 images for MeanderPatients. The samples
of handwriting images for PD detection for Dataset 1 and Dataset 2 are shown in Fig. 4 and Fig. 5 respectively.

Pre-processing analysis
The study of the modified WF used to pre-process the handwriting images using Dataset 1 and Dataset 2. For
accurate detection, the handwriting images utilized for PD detection should have a high resolution. The visual
representation of the conventional WE, Gaussian filter, median filters, modified WF for datasets 1 and 2 are
illustrated in Fig. 6 and Fig. 7 respectively.

Table 1. illustrates the preprocessing analysis in terms of PSNR and SSIM metrics regarding datasets 1 and
2. After preprocessing, PSNR is frequently used to assess an image’s quality. Greater PSNR values show that
there is reduced noise and distortion from the filter, bringing the processed image closer to the original. SSIM,
on the other hand, takes into account structural details like texture, contrast, and brightness when determining
an image’s perceived quality. The model successfully maintains the structural details when the SSIM value is
high. The model can detect the PD more precisely when higher PSNR and SSIM are achieved. The PSNR and
SSIM attained using modified WF are high, around 32.97 and 0.946, respectively. On the other hand, extant WE,
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Fig.6. Sample for PD detection using handwriting images (a) Original image (b) Traditional wiener filter (c)
Gaussian filter (d) Median filter and (e) Improved Wiener filter for dataset 1.

Gaussian and median filters attain lower PSNR and SSIM values. Using dataset 2, the Improved Wiener filter
achieved a greater value on PSNR, about 33.450, meanwhile Conventional Wiener filter = 30.540, the Gaussian
filter=23.640 and the Median filter =26.480. Additionally, the Improved Wiener filter acquired better values
on SSIM, about 0.957, in contrast to the traditional methods. Therefore, the enhancements carried out in the
improved WF offer high PSNR and SSIM, which translate directly into better input quality for the hybrid ILN-
GNet model. As a result, the ILN-GNet model can more effectively distinguish between healthy and PD-affected
individuals, leading to improved detection accuracy.

Performance analysis

Figures 8, 9, and 10 illustrates the performance comparison of ILN-GNet over the conventional method using
dataset 1. As per the outcomes, ILN-GNet for PD detection attains better precision than LinkNet, GhostNet,
GoogleNet, AlexNet, EfficientNet, CNN*’, Ensemble!?, LSTM-CNN?* and XGBoost?. The ILN-GNet model
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Fig.7. Sample for PD detection using handwriting images (a) Original image (b) Traditional wiener filter (c)
Gaussian filter (d) Median filter and (e) Improved Wiener filter for dataset 2.

Dataset 1 Dataset 2

Methods PSNR (dB) | SSIM | Methods PSNR (dB) | SSIM
Traditional Wiener filter | 29.560 0.906 | Conventional Wiener filter | 30.540 0.917
Gaussian filter 25.120 0.857 | Gaussian filter 23.640 0.826
Median filter 27.860 0.876 | Median filter 26.480 0.857
Improved Wiener filter | 32.970 0.946 | Improved Wiener filter 33.450 0.957

Table 1. Pre-processing Analysis for Datasets 1 and 2.
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Fig.8. Performance of PD detection with handwriting images using ILN-GNet over traditional method on (a)
Precision, (b) Sensitivity, (c) Accuracy, (d) Specificity using dataset 1.

achieved a higher precision of 0.99 at TD =90%, where LinkNet, GhostNet, GoogleNet, AlexNet, EfficientNet,
CNN?*’, Ensemble!2, LSTM-CNN?¢ and XGBoost*® got minimal precision values. Here, hybrid classifiers such
as improved LinkNet and GhostNet are used for identifying the PD. Several modifications to structures are
suggested for the improved LinkNet architecture. The improved LinkNet model includes the MDSCM layer
in particular. Furthermore, rather than using BN layers, the decoder uses WAP-BN layers. Comparing the
improved LinkNet model to the conventional, the modifications made reduce processing costs and preserve
aggregate multi-scale context information. The negative measure, FDR using ILN-GNet for PD detection is less
than 0.02, while LinkNet, GhostNet, GoogleNet, AlexNet, EfficientNet, CNN*°, Ensemble!2, LSTM-CNN?® and
XGBoost* attain high FDR values. Likewise, the neutral and positive metrics using ILN-GNet for PD detection
are high, while, negative metrics using ILN-GNet attain low values. Therefore, faster training and more process
effectiveness are achieved by the combination of improved LinkNet and Ghostnet.

Additionally, the performance comparison of the proposed ILN-GNet model over the existing methods such
as LinkNet, GhostNet, GoogleNet, AlexNet, EfficientNet, CNN*°, Ensemble!?, LSTM-CNN?® and XGBoost*®
using dataset 2 is shown in Fig. 11, Fig. 12 and Fig. 13, respectively. The proposed ILN-GNet model achieved a
greater specificity of 0.974 at 80% of training data, which surpasses the results of the traditional methods such
as the LinkNet (0.0.950), GhostNet (0.847), GoogleNet (0.853), AlexNet (0.873), EfficientNet (0.804), CNN3°
(0.849), Ensemble!? (0.762), LSTM-CNN?* (0.861) and XGBoost® (0.752). Moreover, the suggested ILN-
GNet model scored minimal ratings of FNR and FPR across different splits of training data, demonstrating a
lower probability of misclassification. Additionally, the suggested ILN-GNet model acquired greater values on
F-measure and MCC about 0.961 and 0.974 respectively, in contrast, the existing methods offer lower values on
these measures. Therefore, improvements over the conventional methods are largely due to the preprocessing
method based on the modified WE, feature extraction based on the modified PHOG, and the integration of the
improved LinkNet and GhostNet architecture.
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Fig.9. Performance of PD detection with handwriting images using ILN-GNet over traditional method on (a)
F measure, (b) MCC, (c) NPV for dataset 1.

Ablation analysis

The ablation study employing ILN-GNet for PD identification for datasets 1 and 2, respectively, is displayed
in Tables 2 and 3. The performance of ILN-GNet is examined over ILN-GNet with conventional LinkNet,
ILN-GNet with conventional LinkNet and Ghostnet, ILN-GNet with conventional PHOG, ILN-GNet with
conventional WE ILN-GNet without feature extraction, Model without MDSCM and Model without WAP-BN.
In Table 2, ILN-GNet shows a high accuracy of 0.964, while ILN-GNet with standard LinkNet is 0.931, ILN-GNet
with conventional LinkNet and Ghostnet is 0.952, ILN-GNet with standard PHOG is 0.903, ILN-GNet with
conventional WF is 0.863, ILN-GNet without extraction of feature is 0.923, Model without MDSCM is 0.893 and
Model without WAP-BN is 0.908, displays less accuracy values on dataset 1. In contrast to conventional WE, the
modified WF preserves the edges while effectively removing the noise. The enhanced PHOG characteristics aid
in gathering the precise details needed for PD identification by increasing the accuracy of gradient magnitude
estimation and lessening the effect of higher-frequency noise. Additionally, the changes made to the enhanced
LinkNet reduced computation costs and captured aggregate multi-scale context information as compared to the
original LinkNet. Particularly, the FDR using ILN-GNet is less than 0.035, while ILN-GNet with conventional
LinkNet, ILN-GNet with conventional LinkNet and Ghostnet, ILN-GNet with conventional PHOG, ILN-GNet
with conventional WF, ILN-GNet without feature extraction, Model without MDSCM and Model without WAP-
BN scores less FDR values.

On observing results in Table 3, the suggested ILN-GNet model’s sensitivity for Dataset 2 is 0.974, which is
higher than that of the models with Standard LinkNet (0.948), with Standard LinkNet and GhostNet (0.948), with
Standard PHOG (0.896), with Standard WF (0.878), without feature extraction (0.904), with MDSCM (0.891),
and with WAP-BN (0.898). With an accuracy of 0.952, the ILN-GNet model has a strong overall detection
capability. Notably, the absence of Modified PHOG and Modified WF results in significant accuracy drops
to 0.891 and 0.851, respectively. Similarly, the removal of MDSCM and WAP-BN modules causes consistent
declines across all performance metrics, emphasizing their importance in enhancing feature representation and
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Fig.10. Performance of PD detection with handwriting images using ILN-GNet over traditional method on
(a) FNR, (b) FDR and (c) FPR for dataset 1.

classification robustness. These findings underscore the critical role of the Modified Wiener Filter, Modified
PHOG-based features, and the enhanced LinkNet architecture incorporating MDSCM and WAP-BN layers in
achieving improved detection performance for Parkinson’s Disease.

Statistical analysis

Tables 4 and 5 detail the statistical analysis in terms of accuracy utilizing ILN-GNet-based PD detection for
datasets 1 and 2 respectively. The study displays the improvement of ILN-GNet over LinkNet, GhostNet,
GoogleNet, AlexNet, EfficientNet, CNN*°, Ensemble!?, LSTM-CNN?*® and XGBoost*. For detecting PD, this
work employs improved LinkNet and GhostNet classifiers. Utilizing global information at different scales is
greatly aided by the enhanced LinkNet architecture that has been suggested with several structural changes.
Furthermore, the improved LinkNet accelerates training and greatly improves operational efficiency. In Table
4, the ILN-GNet reached a higher accuracy of 0.984 for the maximum statistical metric, whereas, LinkNet,
GhostNet, GoogleNet, AlexNet, EfficientNet, CNN*°, Ensemble!2, LSTM-CNN?*¢ and XGBoost*® reach lesser
accuracies of 0.952, 0.863, 0.903, 0.927, 0.806, 0.871, 0.847, 0.944 and 0.855 respectively. Similarly, a high
accuracy of 0.950 is gained for the mean case by ILN-GNet, while LinkNet, GhostNet, GoogleNet, AlexNet,
EfficientNet, CNN** and Ensemble!? attain lower accuracies. The suggested ILN-GNet model outperformed the
existing methods, such as XGBoost (0.760), LSTM-CNN (0.861), LinkNet (0.911), GhostNet (0.821), GoogleNet
(0.861), AlexNet (0.880), EfficientNet (0.760), CNN (0.831), and Ensemble model (0.800), as shown by the
results in Table 5 for dataset 2. Additionally, when compared to traditional methods, ILN-GNet demonstrated
improved classification accuracy with a maximum efficiency value of 0.976. These results demonstrate that
the enhancements introduced namely the modified Wiener Filter for preprocessing, modified PHOG-based
feature extraction, and the hybrid integration of improved LinkNet with GhostNet collectively contribute to the
significant improvement in detection accuracy over traditional methods.

Scientific Reports |

(2025) 15:30731 | https://doi.org/10.1038/s41598-025-12636-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

o [ R 0
oo} = : 0.95 S S Rt
———————— -7 L | 7 r i
= -7 0.90
£ 0.90 - ’ - — 9 e __ P
2 1 -~ =" > R | e R
2 F—— 2= B 0851 —= = — et =
'S 0.85 - ¥' Tk = G o e > S R B i T e
g A = € 0.0 A =2 SIS i
.......... ¥ 7z
Q. 0.80 | st AT Al s g v PR e
¥ = = — =
SR s . 0.75 T — = —=
0.75 —= o — == == G S — — e
== i de e 0.70 — ==
60 70 80 20 60 70 80 20
Training Data (%) Training Data (%)
=4 XGBoost —< GoogleNet --A-- CNN —¢ XGBoost —< GoogleNet ..A-- CNN
LSTM-CNN  —e-- AlexNet Ensemble LSTM-CNN - AlexNet Ensemble
=»: LinkNet —&-. EfficientNet —e-: ILN-GNet -p»- LinkNet —-. EfficientNet —e-- ILN-GNet
—¥ GhostNet —¥ GhostNet
(a) (b)
R )
o5} +—— =T »
_____ dom=- PR 0.95
>o0.90f T~ = - === >
oo T T | Boaso
£ o8s] dmmz====" R R S
5 0.85 === SS PrE =
(¥} | e :.1;_ -_— o 0.85
E(J ........... __{}— - g
0.80 = ps— n 0.80 e .
—— STl SO A G i oot
o el Swi <
0.75 — 0.75 == . — — ~o
— = — =%
>~ ]
60 70 80 90
Training Data (%) 60 70 80 90
-4+ XGBoost —< GoogleNet ~-A-+ CNN Training Data (%)
LSTM-CNN  —e-- AlexNet Ensemble —¢ XGBoost —< GoogleNet --A-+ CNN
=>- LinkNet —-. EfficientNet —e-: ILN-GNet LSTM-CNN  —e-- AlexNet Ensemble
=¥ GhostNet =»- LinkNet —«-. EfficientNet —e-: ILN-GNet

—¥ GhostNet

(c) (d)

Fig.11. Performance of PD detection with handwriting images using ILN-GNet over traditional method on
(a) Precision, (b) Sensitivity, (c) Accuracy, (d) Specificity for dataset 2.

ROC analysis

Figure 14 and Fig. 15 express the ROC analysis for varied TD, such as 60, 70, 80 and 90 using datasets 1 and 2
respectively. It is observed that for all TDs, the proposed ILN-GNet attains high TPR values when compared to
others. Particularly, the proposed ILN-GNet attains a high TPR of 1.0 for all TDs when FPR is 1.0 for dataset 1.
The AUC values for the proposed ILN-GNet are 0.92, 0.93, 0.96 and 0.98 for TDs 60, 70, 80 and 90, respectively.
Thus, the ROC plot shows the performance of the proposed ILN-GNet over LinkNet, GhostNet, GoogleNet,
AlexNet, EfficientNet, CNN*, Ensemble'?, LSTM-CNN?* and XGBoost*® models with high TPR values. For
dataset 2, at 70% of training data, the ILN-GNet model scored better values on TPR about 0.96 and FNR
about 0.1. The AUC value of the ILN-GNet method is 0.98. the findings show that the suggested ILN-GNet
model scored higher TPR demonstrating fewer false negatives and lower FPR scores, suggesting that the model
contributes to minimal misclassified cases. These results demonstrate the suggested ILN-GNet model precisely
classified the healthy and patients in contrast to the existing methods.

Confusion matrix

The confusion matrix given in Fig. 16 aids in evaluating the classification efficiency of the DL model for datasets
1 and 2. It distinguishes the predicted output by DL from the actual targeted values. The confusion matrix
contains the values of TP, FP, FN and TN. Using the proposed ILN-GNet for PD detection at 80% TD exhibits
TP=129, FP=5, FN=4 and TN =110, respectively. This indicates that five healthy individuals’ handwriting was
incorrectly classified as PD-affected. This suggests that the model may be overly sensitive to certain handwriting
characteristics that are shared between healthy and PD samples. Using dataset 2, the ILN-GNet model achieved
TP=124 and FN=3, which indicates that the PD-affected individuals were incorrectly classified as healthy.
Overall, the ILN-GNet model efficiently detects the healthy and patient classes.

Analysis of computational time
Computational time analysis is the process of determining how long a model will take to complete a task. It
is a crucial performance indicator that assesses the efficacy of the model. The proposed ILN-GNet model’s
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Fig.12. Performance of PD detection with handwriting images using ILN-GNet over traditional method on
(a) F measure, (b) MCC, (c) NPV for dataset 2.

computational time comparison with existing methods, such as EfficientNet, Ensemble, CNN, LSTM-CNN,
LinkNet, XGBoost, GhostNet, GoogleNet, and AlexNet utilizing datasets 1 and 2, is shown in Table 6. As a result,
the suggested ILN-GNet method demonstrates superior efficiency in terms of processing speed. ILN-GNet
recorded minimal computational times of 63.748 s on Dataset 1 and 62.355 s on Dataset 2, outperforming all
other compared models. In contrast, the LSTM-CNN required significantly more time, with 128.650 s for dataset
1 and 125.650 s for dataset 2, and LinkNet took 107.111 s on dataset 1 and 106.452 s on dataset 2. Even relatively
lightweight architectures such as GhostNet, GoogleNet, and EfficientNet demonstrated higher computation
times compared to ILN-GNet, with GhostNet being the closest in efficiency at 74.134 s and 73.658 s, still slower.
Traditional models like XGBoost also lag behind, requiring over 100 s on both datasets. These results confirm
that ILN-GNet not only delivers high precision, as previously shown but also maintains a low computational
burden, making it highly suitable for real-time PD detection applications.

Analysis of cross-validation

An important machine learning technique is cross-validation, which tests a model on several dataset subsets to
assess its generalizability and resilience. This study evaluates the effectiveness of the proposed ILN-GNet model
using two datasets, Dataset 1 and Dataset 2. The cross-validation results of the ILN-GNet model for these datasets
are presented in Table 7 and Table 8, respectively. The model’s efficiency is validated using standard measures
such as speciﬁcity, accuracy, sensitivity, precision, MCC, NPV, F-measure, FNR, and FPR. For Dataset 1 (trained
on Dataset 1 and tested on Dataset 2), the ILN-GNet model achieved an accuracy of 0.951 and a precision of
0.914, demonstrating its high reliability in distinguishing between healthy and affected individuals. Similarly,
the model performed even better in several areas for Dataset 2 (trained on Dataset 2 and tested on Dataset 1),
obtaining a sensitivity of 0.970 and an NPV of 0.969, demonstrating a significant capacity to accurately detect
true positive and true negative cases. Furthermore, the model maintained low error rates, with an FNR of 0.030
and FPR of 0.030, signifying a minimal rate of missed or incorrect predictions. These cross-validation results

Scientific Reports |

(2025) 15:30731

| https://doi.org/10.1038/s41598-025-12636-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

—— e s S S et
0.25 S e ot = —
.J:___
.20 Hnm T T o
T ........... =~
¢0.15 = _l NETT
s : o $--- TS !
- _~~..~r\';-~________‘.\\ EREr Y 0.10 - _ ~§-~‘:>'\__—_
- ~ . - % - L.
0.10 Sey == ~_ e s e s o ~\.
~ . ——— .
0.05 Bt S 0.05 ==
I D oot e £ § i
60 70 80 90 60 70 80 90
Training Data (%) Training Data (%)
—4¢- XGBoost —< GoogleNet --A-+ CNN =4 XGBoost —<— GoogleNet --A-- CNN
LSTM-CNN  -e: AlexNet Ensemble LSTM-CNN  —e-: AlexNet Ensemble
=»- LinkNet —-. EfficientNet —e-- ILN-GNet =»>- LinkNet —«-. EfficientNet —e-- ILN-GNet
=¥ GhostNet —¥ GhostNet
(a) (b)
R
0.25 — =T = e
S
0.20 o
E 0.15 e
TR

0.10

[ S e A .
0.05 e :
i
60 70 80 90
Training Data (%)
-4+ XGBoost —<— GoogleNet --A-+ CNN
LSTM-CNN —o-: AlexNet Ensemble
=p»- LinkNet —-. EfficientNet —e-- ILN-GNet
—¥ GhostNet

(©)

Fig.13. Performance of PD detection with handwriting images using ILN-GNet over traditional method for
(a) FNR, (b) FDR and (c) FPR for dataset 2.

Model with Model

Model with | conventional | Model with Model without without

conventional | LinkNet and | conventional | Model with Feature Model without | WAP-
Metrics ILN-GNet | LinkNet Ghostnet PHOG conventional WF | Extraction MDSCM BN
Accuracy | 96.40% 93.10% 95.20% 90.30% 86.30% 92.30% 89.30% 90.80%
Sensitivity | 95.70% 92.20% 95.70% 89.60% 84.30% 93.90% 89.10% 91.50%
Specificity | 97.00% 94.00% 94.70% 91.00% 88.00% 91.00% 89.50% 90.20%
Precision | 96.50% 93.00% 94.00% 89.60% 85.80% 90.00% 87.90% 89.00%
F-measure | 96.10% 92.60% 94.80% 89.60% 85.10% 91.90% 88.50% 90.20%
MCC 92.70% 86.20% 90.30% 80.50% 72.40% 84.70% 78.60% 81.60%
NPV 96.30% 93.30% 96.20% 91.00% 86.70% 94.50% 90.60% 92.60%
FPR 3.00% 6.00% 5.30% 9.00% 12.00% 9.00% 10.50% 9.80%
FNR 4.30% 7.80% 4.30% 10.40% 15.70% 6.10% 10.90% 8.50%
FDR 3.50% 7.00% 6.00% 10.40% 14.20% 10.00% 12.10% 11.00%

Table 2. Ablation study on ILN-GNet for PD Detection using Dataset 1.
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Model with Model

Model with | conventional | Model with Model without without

conventional | LinkNet and | conventional | Model with Feature Model without | WAP-
Metrics ILN-GNet | LinkNet Ghostnet PHOG conventional WF | Extraction MDSCM BN
Accuracy | 95.20% 92.30% 94.40% 89.10% 85.10% 91.10% 88.10% 89.60%
Sensitivity | 97.40% 94.80% 94.80% 89.60% 87.80% 90.40% 89.10% 89.80%
Specificity | 93.20% 90.20% 94.00% 88.70% 82.70% 91.70% 87.20% 89.50%
Precision | 92.60% 89.30% 93.20% 87.30% 81.50% 90.40% 85.90% 88.20%
F-measure | 94.90% 92.00% 94.00% 88.40% 84.50% 90.40% 87.50% 89.00%
MCC 90.40% 84.80% 88.70% 78.20% 70.40% 82.20% 76.30% 79.20%
NPV 97.60% 95.20% 95.40% 90.80% 88.70% 91.70% 90.20% 91.00%
FPR 6.80% 9.80% 6.00% 11.30% 17.30% 8.30% 12.80% 10.50%
FNR 2.60% 5.20% 5.20% 10.40% 12.20% 9.60% 10.90% 10.20%
FDR 7.40% 10.70% 6.80% 12.70% 18.60% 9.60% 14.10% 11.80%

Table 3. Ablation study on ILN-GNet for PD Detection using Dataset 2.

Methods Mean | Minimum | Median | SD | Maximum
XGBoost 0.824 | 0.796 0.823 0.024 | 0.855
LSTM-CNN | 0.912 | 0.883 0911 0.024 | 0.944
LinkNet 0.919 | 0.891 0.916 0.024 | 0.952
GhostNet 0.829 | 0.800 0.827 0.025 | 0.863
GoogleNet 0.870 | 0.841 0.868 0.025 | 0.903
AlexNet 0.891 | 0.861 0.887 0.026 | 0.927
EfficientNet | 0.770 | 0.742 0.766 0.026 | 0.806
CNN 0.839 | 0.810 0.837 0.024 | 0.871
Ensemble 0.810 | 0.780 0.806 0.026 | 0.847
PROP 0.950 | 0.921 0.947 0.025 | 0.984

Table 4. Statistical study of PD detection with handwriting images using ILN-GNet over traditional methods
for dataset 1.

Methods Mean | Minimum | Median | Std-Dev | Maximum
XGBoost 0.760 | 0.732 0.759 0.022 0.790
LSTM-CNN | 0.861 | 0.831 0.859 0.024 0.895
LinkNet 0911 |0.881 0.909 0.024 0.944
GhostNet 0.821 | 0.790 0.819 0.024 0.855
GoogleNet 0.861 | 0.831 0.859 0.024 0.895
AlexNet 0.880 | 0.851 0.878 0.023 0.911
EfficientNet | 0.760 | 0.732 0.759 0.022 0.790
CNN 0.831 | 0.800 0.830 0.024 0.863
Ensemble 0.800 | 0.770 0.799 0.023 0.831
ILN-GNet 0.942 | 0911 0.940 0.024 0.976

Table 5. Statistical study of PD detection with handwriting images using ILN-GNet over traditional methods
for dataset 2.

show that the proposed ILN-GNet model performs better in PD identification and has good generalizability and
reliability across two datasets.

Analysis of statistical test
The results of the statistical test establish if the suggested ILN-GNet model’s improvements over traditional
techniques are statistically significant. The T-test, Friedman, and Wilcoxon tests were used in this study to
evaluate the ILN-GNet model’s performance against the results of traditional techniques.

The Wilcoxon test results, which compare the efficiency of the suggested ILN-GNet model to other approaches
across two datasets, are shown in Table 9. A p-value less than 0.1 indicates statistical significance, suggesting
a significant performance difference between ILN-GNet and the respective models. For Dataset 1, ILN-GNet
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Fig.14. ROC analysis for TD (a) 60%, (b) 70%, (c) 80% and (d) 90% for dataset 1.

demonstrates statistically significant improvements over XGBoost, LSTM-CNN, LinkNet, GhostNet, GoogleNet,
AlexNet, EfficientNet, and Ensemble, with p-values consistently below 0.1, except for CNN (p-value=0.100),
which shows no significant difference. On Dataset 2, ILN-GNet outperforms most models, including XGBoost,
LSTM-CNN, GoogleNet, AlexNet, and EfficientNet, with p-values ranging from 0.004 to 0.082, indicating clear
statistical significance. The Wilcoxon test highlights ILN-GNet’s superior performance across both datasets, with
the model’s architecture leading to more accurate and robust PD detection, particularly in comparison to models
like CNN and LinkNet, which show no significant advantage over ILN-GNet. Overall, the results suggest that the
hybrid design of ILN-GNet is highly effective for PD detection tasks.

The Friedman test results are shown in Table 10, which contrasts the suggested ILN-GNet model’s performance
with that of several alternative models for Datasets 1 and 2. A p-value less than 0.1 indicates statistical significance,
suggesting a significant performance difference between ILN-GNet and the respective models. For Dataset
1, ILN-GNet shows statistically significant improvements over LSTM-CNN (p-value=0.037), EfficientNet
(p-value=0.022), XGBoost (p-value=0.082), LinkNet (p-value=0.061), and GoogleNet (p-value=0.072)
approach significance. For Dataset 2, ILN-GNet outperforms XGBoost (p-value=0.005), EfficientNet
(p-value=0.002), and AlexNet (p-value=0.008), showing stronger statistical significance. Other models like
LSTM-CNN (p-value=0.078), GoogleNet (p-value=0.037), and Ensemble (p-value=0.083) show some level
of significance. Models such as CNN, and LinkNet do not show significant performance differences from ILN-
GNet on either dataset. Overall, the Friedman test confirms that ILN-GNet consistently demonstrates superior
performance, particularly on Dataset 2, underscoring its effectiveness in detecting Parkinson’s Disease across
different model comparisons.

The T-test results comparing the efficiency of the suggested ILN-GNet model with several different
models across Datasets 1 and 2 are shown in Table 11. A p-value less than 0.1 indicates statistical significance,
suggesting a significant performance difference between ILN-GNet and the respective models. For Dataset
1, ILN-GNet shows statistically significant superiority over EfficientNet (p-value=0.045) and XGBoost
(p-value =0.080), as both p-values are below 0.1, indicating a meaningful performance gap. Models like LSTM-
CNN (p-value=0.070), GoogleNet (p-value=0.080), and Ensemble (p-value=0.070) also show a significant
difference, although the performance gap is smaller. Other models such as LinkNet (p-value =0.080), GhostNet
(p-value=0.090), AlexNet (p-value=0.090), and CNN (p-value=0.100) show no significant performance
difference, with p-values approaching 0.1. For Dataset 2, ILN-GNet shows statistically significant improvement
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Dataset 1 Dataset 2
Methods Computational Time (s) | Computational Time (s)
XGBoost 105.680 103.587
LSTM-CNN | 128.650 125.650
LinkNet 107.111 106.452
GhostNet 74.134 73.658
GoogleNet 88.958 85.649
AlexNet 85.521 83.652
EfficientNet 84.165 86.568
CNN 96.555 97.688
Ensemble 101.466 102.697
ILN-GNet 63.748 62.355

Table 6. Analysis of computational time for datasets 1 and 2.

Measures | Training with Dataset 1 and Testing with Dataset 2 | Training with Dataset 2 and Testing with Dataset1
Accuracy | 95.10% 95.20%
Sensitivity | 96.40% 96.50%
Specificity | 92.10% 92.20%
Precision | 91.40% 91.50%
F-measure | 93.70% 93.80%
MCC 90.20% 90.40%
NPV 96.20% 96.40%
FPR 7.90% 7.80%
FNR 3.60% 3.50%
FDR 8.60% 8.50%

Table 7. Analysis of Cross-validation for Dataset 1.

Measures | Training with Dataset 1 and Testing with Dataset 2 | Training with Dataset 2 and Testing with Dataset1
Accuracy | 94.80% 94.90%
Sensitivity | 96.90% 97.00%
Specificity | 92.50% 92.60%
Precision | 91.30% 91.30%
F-measure | 93.30% 93.40%
MCC 89.20% 89.30%
NPV 96.80% 96.90%
FPR 7.50% 7.40%
FNR 3.10% 3.00%
FDR 8.70% 8.70%

Table 8. Analysis of Cross-validation for Dataset 2.

over EfficientNet (p-value=0.016), XGBoost (p-value=0.025), and AlexNet (p-value=0.045), with all these
models having p-values below 0.1, indicating that ILN-GNet performs better. GoogleNet (p-value=0.061) also
shows a significant difference, though not as strong as the previous models. In contrast, models like LSTM-
CNN (p-value=0.080), Ensemble (p-value=0.080), and CNN (p-value=0.080) have p-values near 0.1, which
indicate marginal but not conclusive differences in performance. Overall, the T-test results show that ILN-GNet
significantly outperforms several models on both datasets.

Conclusion

This research developed a novel PD detection approach with handwriting images using an improved hybrid
classification model. The handwriting image was pre-processed primarily using modified WE. Next, deep
features, shape features, and modified PHOG were obtained. Lastly, a hybrid ILN-GNet framework was used for
detection, and its average indicated whether the person was affected or healthy. Additionally, the effectiveness of
the proposed ILN-GNet model is contrasted with conventional techniques like EfficientNet, LinkNet, GhostNet,
GoogleNet, and AlexNet as well as cutting-edge models like CNN and Ensemble. Thus, at 90% of training data,
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Dataset 1 Dataset 2
ILN-GNet model Vs | Wilcoxon p-value | Wilcoxon p-value
XGBoost 0.065 0.008
LSTM-CNN 0.032 0.062
LinkNet 0.048 0.100
GhostNet 0.082 0.082
GoogleNet 0.056 0.032
AlexNet 0.076 0.011
EfficientNet 0.022 0.004
CNN 0.100 0.065
Ensemble 0.051 0.067

Table 9. Analysis of Wilcoxon test using datasets 1 and 2.

Dataset 1 Dataset 2
ILN-GNet model Vs | Fried p-value | Fried p-value
XGBoost 0.082 0.005
LSTM-CNN 0.037 0.078
LinkNet 0.061 0.100
GhostNet 0.095 0.095
GoogleNet 0.072 0.037
AlexNet 0.091 0.008
EfficientNet 0.022 0.002
CNN 0.100 0.082
Ensemble 0.065 0.083

Table 10. Analysis of Friedman test for Dataset 1 and Dataset 2.

Dataset 1 | Dataset 2
ILN-GNet model Vs | T-test T-test
XGBoost 0.080 0.025
LSTM-CNN 0.070 0.08
LinkNet 0.080 0.1
GhostNet 0.090 0.09
GoogleNet 0.080 0.061
AlexNet 0.090 0.045
EfficientNet 0.045 0.016
CNN 0.100 0.08
Ensemble 0.070 0.08

Table 11. Analysis of T-test for datasets 1 and 2.

the proposed ILN-GNet model had a higher accuracy of 0.982, while LinkNet, GhostNet, GoogleNet, AlexNet,
EfficientNet, CNN, and Ensemble had an accuracy of 0.921, 0.864, 0.916, and 0.827, respectively. The F-measure
and MCC of the suggested ILN-GNet model were higher, at 0.966 and 0.971, respectively. The incorporation
of the modified wiener filter, the extraction of improved PHOG along the retrieval of deep features and shape
features contribute to enhanced detection. Additionally, the Improved LinkNet architecture is proposed with
structural modifications using an MDSCM layer and integrated with GhostNet. The resulting hybrid model
demonstrates significantly better performance compared to existing methods.

Despite the promising results, this study has several limitations. The performance of the modified Wiener
filter used in pre-processing is critical; improper tuning may lead to the loss of important handwriting features.
Furthermore, the combination of Improved LinkNet with GhostNet raises the model’s overall complexity even
though it might improve classification accuracy. In order to improve the model’s performance even more, future
studies will concentrate on resolving these issues. Future research would examine improving preprocessing
methods to lower false positives. Only the most pertinent features are chosen, which helps keep the framework
from overfitting to unimportant data and increases the model’s overall accuracy by concentrating on the most
significant patterns. For this purpose, optimal feature selection techniques could be explored in future studies.
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Moreover, future studies will explore alternative ML classifiers and fusion strategies such as weighted fusion to
assess and improve the overall performance of the model. Furthermore, recognizing that PD has no cure but
that early intervention can significantly alleviate symptoms, our future work’s aim is to integrate the proposed
approach into the healthcare environment with the support of medical professionals and to enhance the model
to assess symptom severity and eventually provide personalized treatment suggestions such as medication
options, physical therapy, or speech therapy, based on patient data.

Data availability

The data underlying this article are available in the Kaggle repository named as HandPD dataset, at https://ww
w.kaggle.com/datasets/claytonteybauru/spiral-handpd/data and theMeander_HandPD images in HandPD dat
aset at https://wwwp.fc.unesp.br/ ~ papa/pub/datasets/Handpd/dataset, at https://www.kaggle.com/datasets/cla
ytonteybauru/spiral-handpd/data and theMeander_HandPD images in HandPD dataset athttps://wwwp.fc.une
sp.br/~papa/pub/datasets/Handpd/
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