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Parkinson’s disease (PD), is a neural disorder that damages movement control, which is reflected by 
different non-motor and motor symptoms. PD is caused by the weakening of neurons that produce 
dopamine in the brain, and it includes symptoms like bradykinesia (delay in movements), stiffness, 
and tremors. People frequently suffer from loss of motor skills when the illness worsens, which 
has a big influence on everyday tasks like writing. Micrographia is a disorder marked by very tiny, 
cramped handwriting and is one of the symptoms of PD. As a reflection of the disease’s wider motor 
impairments, patients may observe that their handwriting gets harder to read and control. Detecting 
Parkinson’s disease via handwriting images is one of the major research areas in the medical field. This 
research proposes an automated PD detection approach with handwriting images using an improved 
hybrid classification model. Primarily, a modified Wiener filter is employed for pre-processing the 
handwriting image. Then, modified PHOG, Deep features and Shape features are extracted. Finally, 
detection is performed using hybrid Improved LinkNet and Ghostnet models, termed (ILN-GNet), 
whose outcomes indicate if the individual is healthy or affected. From the analysis, a higher precision 
of 0.99 is achieved by the ILN-GNet, while existing methods attained low precision. Thus, these 
innovations significantly enhance early diagnosis and monitoring, enabling timely interventions 
before the disease progresses. Moreover, the proposed approach can contribute to remote healthcare 
solutions, by providing a scalable, and efficient tool for PD diagnosis.
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A-LSTM	� Attention-based long short-term memory
BN	� Batch normalization
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DBS	� Deep brain stimulation
DCNN	� Deep convolutional neural network
DNN	� Deep neural networks
DSS	� Decision support systems
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GBM	� Ghost bottleneck module
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ILN-GNet	� Improved linknet and ghostnET
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KNN	� K-nearest neighbor
LR	� Logistic regression
LS-SVR v	� Least squares support vector regression
MDSCM	� Multisize depth wise separable convolution module
ML	� Machine learning
NB	� Naïve bayes
PSD	� Power spectral density
PHOG	� Pyramid histogram of oriented gradients
PCA	� Principal component analysis
PD	� Parkinson’s disease
QMFOFS-HCNN	� Quantum mayfly optimization-based feature subset selection with hybrid convolutional 

neural network
QMO	� Quantum mayfly optimization
RF	� Random forest
SD	� Standard deviation
SVC	� Support vector classification
TL	� Transfer learning
TD	� Training data
UPDRS	� Unified parkinson’s disease rating scale
WF	� Wiener filter
WAP-BN	� Weighted average pooling-batch normalization

Parkinson’s disease is a progressive neurological disorder that affects movement, gradually worsening over 
time. Key symptoms include resting tremors (involuntary shaking, often in the hands), bradykinesia (slowness 
of movement), and postural instability (poor balance and coordination), all of which impair fine motor skills 
and daily activities1. The main symptom of PD, a chronic and complicated neurological disorder, is movement. 
Although the precise origin of PD is unknown, it most likely results from a confluence of environmental variables 
such as pesticides, solvents, and air pollution with hereditary factors2,3. PD is caused by the slow degeneration 
of certain brain neurons that generate the neurotransmitter dopamine. Dopamine is essential for controlling 
coordination and movement4–6. PD patients have a variety of symptoms as their dopamine levels drop. The 
major signs of this condition are tremor, sluggish movement, rigidity of limb and volatility of body position7,8. 
The presence of such a sign could definitely influence the standard of handwriting, which is a complicated 
activity, which includes motor, sensory and cognitive skills. Since Parkinson’s disease severely affects fine motor 
control, it often causes noticeable tremors that appear as shakiness in patients’ drawings or handwriting9. As a 
result, analyzing these motor irregularities in handwriting or sketches serves as a valuable indicator for detecting 
PD and constitutes the base for diagnosis of the condition at its earliest stages when the severity of typical signs 
is minor10–12. Thus, changes in handwriting can be a symptom of PD.

Numerous neurodegenerative diseases that affect brain functions, like PD, have a notable impact on writing 
abilities12–14. People with PD have demonstrated evidence of micrography or dysgraphia that could be utilized 
as indicators to determine the possibility or severity of the disease15–17. Handwriting analysis is, therefore widely 
acknowledged as an efficient and reasonably priced approach to real-time Parkinson’s disease identification. Data 
about handwriting can be collected offline or online. The offline approach uses a scanner to record handwritten 
material on paper2,18,19.

Using online handwriting to identify PD presents several obstacles and hurdles. The diversity of handwriting 
impairments is one of the main obstacles. In actuality, each person is affected by PD in various ways and 
the handwriting deficits that PD sufferers experience can differ greatly20–22. Micrographia, or excessively 
tiny handwriting, is a condition that certain individuals may have. Other patients may have changes in their 
handwriting’s speed, pressure, or fluency. It is challenging to develop reliable handwriting characteristics for PD 
identification because of this diversity2.

A variety of diagnosis methods are required for the detection and treatment of PD, and not every healthcare 
facility is prepared to perform all of them. Spiral and wave diagrams are effective tools for evaluating motor skills 
and tremor patterns in Parkinson’s patients, offering both qualitative and quantitative insights into fine motor 
control1. The accessibility of diagnostic equipment and treatment processes might vary based on the level of 
resources and specialization of the healthcare facility. Certain medical facilities or neurology clinics may be the 
only ones with the specific knowledge and tools needed for some treatments, particularly aggressive ones like 
DBS surgery23,24. There is an urgent need for an efficient method that offers dependable, accurate PD detection. 
Such an approach would contribute to increasing the wellness and standard of patient life2.

The usage of ML methods for health data has led to DSS creation that aids medical experts in accurate 
decision-making. Common ML methods like KNN, RF, NB and SVM are deployed for PD detection. In 
particular, the development of the aforementioned techniques led to create CNN-assisted CAD models for 
several medical applications. CNN can learn features from the provided images, which is in contrast to hand-
crafted techniques25. However, they do not work well with larger datasets and struggle to handle varied data 
types26. With the introduction of DL techniques like CNN and DNN, the detection of PD severity became 
more precise. It was discovered that CNN is more accurate than existing methods27,28. While pooling layers in 
CNNs are effective for typical image recognition tasks, they can lead to the loss of fine-grained features essential 
for classifying spiral drawings in Parkinson’s disease. This presents a limitation in applying standard CNN 
architectures in medical handwriting analysis29. These drawbacks encourage the development of a novel PD 
detection strategy in this study. Utilizing the complementing advantages of modified WF-based preprocessing 
and modified PHOG-based feature extraction, appropriate patterns are substantially preserved for accurate 
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identification. Additionally, combining the improved LinkNet and GhostNet models contributes to the robust 
detection of PD in contrast to the existing methods.

The presented PD detection approach involves the contributions beneath.

•	 Proposing a modified WF for preprocessing the handwriting image using the new pixel value for the original 
image with the noisy image and the original image with the filtered image using the proposed Gaussian filter-
ing, which significantly reduces the noise while preserving the edges. This results in enhancing the quality of 
the image for effective feature extraction.

•	 Employing the modified PHOG-based feature descriptor using the improved entropy for gradient computa-
tion. This improved feature effectively captures features at different resolution levels minimizes the influences 
of higher frequency noise and allows the model to better detect fine-grained distortions.

•	 Proposing a new hybrid DL model that integrates the improved LinkNet and GhostNet models for detecting 
PD. Leverages the capturing of multi-scale context information of the improved LinkNet and the efficient 
feature generation of GhostNet, leading to a well-balanced model in terms of accuracy and efficiency.

•	 Employing an improved LinkNet model for detection, in which the enhancements made in its architecture 
specifically additional layers such as WAP-BN and the MDSCM layer. This improved architecture enhances 
the model’s ability to learn complex spatial and channel-wise relationships and contributes to more accurate, 
and robust PD detection.

The reviews on PD detection are specified in Section “Literature review”. The proposed PD detection is in Section 
“Proposed model for Parkinson’s disease detection”. Modified WF and modified features are given under Section 
“Pre-processing via modified wiener filtering” and Section “Feature extraction” Improved LinkNet and Ghostnet 
are explained in Section “Hybrid classifiers for PD detection: Improved linknet and ghostnet”. Section “Results 
and discussions” and Section “Conclusions” elucidated the results and conclusion.

Literature review
Related works
In 2023, Naz et al.30 utilized 3 renowned PD data sets to study the issue of early PD detection using handwriting 
and drawing activities. The task was believed to be very challenging as there were few handwriting examples 
available, and the symptoms of PD might vary greatly. Various data augmentation approaches were used to 
increase the dataset size to accomplish better PD detection. Following that, many DCNN architectures were 
implemented and trained; each one’s distinct structure and layout allowed it to extract distinct prominent 
characteristics and aspects of the input data. Following the experimental evaluation of each CNN’s performance, 
the most promising feature vectors were chosen, and several early fusion techniques were used before the 
final classification. An ensemble of feature vectors from multiple models demonstrated significantly better 
generalization than a single model’s freeze vector. However, a limitation of the study is the exclusive use of the 
SVM classifier; despite its strong performance, other machine learning classifiers should also be explored and 
evaluated.

An effective DL model that helped with early PD identification was proposed by Abdullah et al.31 in 2023. The 
suggested model made a substantial contribution by choosing the best characteristics, which resulted in excellent 
performance accuracy. The KNN approach was used in GA to optimize features. The suggested innovative model 
leads to reduced loss and increased detection accuracy. The classification using optimized features is performed 
with KNN, which is computationally efficient. However, the model’s heavy reliance on feature optimization 
could limit its scalability and potentially affect its robustness.

Kamble et al.32 suggested a thorough scrutiny of the spirals formed by PD patients in 2021. For this, 
mathematical models were used to extract kinematic characteristics created for 25 individuals and 15 healthier 
ones. Using feature design and four ML classifiers, LR, C-SVC, KNN classifier, and ensemble model RF, the results 
showed a classification accuracy of almost 91% in distinguishing PD patients from healthy ones. Moreover, the 
model effectively identifies key kinematic features for early PD detection without complex processing. However, 
its reliance on a limited dataset and computational framework restricts its ability to support more comprehensive 
PD diagnosis.

In 2023, Konstantin et al.33 has introduced an FC approach that consisted of 3 stages: constructing the 
structure, picking the useful features, and parameter optimization. It was advised to use 32 variations of 
the approach using various metaheuristic algorithms. To diagnose PD, experiments were carried out. The 
handwriting of 40 persons, including 25 PS sufferers, was included in Parkinson’s HW. The handwriting exercises 
involved creating meanders and spirals. The handwriting of 75 persons, including 37 PD patients, was included 
in PaHaW. The advantages of certain realization variations in terms of prediction accuracy and interpretability 
were demonstrated by statistical comparisons of efficiency with other accessible classifiers, DT, and FGS. 
Additionally, the incorporation of a fuzzy handwriting classifier avoids the necessity of computing resources and 
has faster inference processing. However, there is a need for additional ML algorithms for model deployment 
and monitoring.

Zhu et al.29 has investigated several spiraling hand drawing characteristics of PD in 2022 and created an 
alternative diagnosis system based on hand drawings. First, the visual information of hand drawings accurately 
depicted the drawing features of individuals with PD. Second, an "Archimedes spiral hand drawing dataset" 
was created that was independent of the application scenario and could capture the image’s spacing, shape, and 
tremor features. The CC-Net was used for lowering the pooling layer. Moreover, CC-Net outperforms traditional 
networks in feature extraction and classification accuracy, while ensuring stable performance. However, 
more spiral data and multi-classification experiments across different tremor diseases are needed for further 
improvement.
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In 2024, Hossein et al.26 has created a new technique for identifying PD with UPDRS by combining fuzzy 
clustering and LS-SVR. PCA and feature selection were employed to address the multicollinearity problems 
in the data. This study demonstrated how the suggested approach enhanced prediction through thorough 
assessments with existing techniques. Moreover, the PCA + FCM + LS-SVR achieve maximum precision across 
the test sets for Total-UPDRS and Motor-UPDRS, according to comparison results with other prediction 
techniques. However, using machine learning optimization techniques and adaptive heuristic search algorithms 
is essential to further improving the approach.

A general approach for diagnosing PD utilizing handwritten images and/or voice cues was developed by 
Yousif et al.34 in 2023. To diagnose PD, eight pre-trained CNN were used. 16 feature-extracting techniques 
were used to numerically extract features for the speech signals, which were then input into four distinct ML 
algorithms that were adjusted via the GSA. The segmentation of varying durations of speech signals was the basis 
for the novel feature extraction method used for the voice dataset. Finally, the outcomes of the experiments were 
gathered and documented. The incorporation of a novel feature extraction algorithm significantly enhanced 
detection performance. However, its main limitation is the lack of comprehensive datasets, as no publicly 
available PD dataset includes both handwriting and voice data from the same patients.

To enhance PD detection and classification, Mansour et al.35 presented a novel method in 2024 called 
QMFOFS-HCNN. The purpose of QMFOFS-HCNN was to solve the dimensionality problem and find the 
best feature subsets. It combined a QMO strategy for choosing features with CNN with an A-LSTM for PD 
recognition and classification. The Nadam optimizer was also used to optimize the selection of hyperparameters. 
Experimental validation utilizing benchmark datasets gave impressive findings. These numerical results 
highlighted how DL greatly improved the accuracy of early PD identification. It contributes to medical diagnostics 
by providing an effective PD detection and classification tool. The performance assessment was carried out on 
benchmark datasets. Nevertheless, more validation using a wider range of datasets may be necessary to ensure 
the technique’s practical applicability.

In 2024, Xuechao Wang et al.36 has proposed a hybrid deep learning approach that effectively combined the 
strengths of both LSTM and CNN for the diagnosis of Parkinson’s disease. Specifically, the LSTM component 
was utilized to capture time-varying features, while a CNN-based module, implemented using one-dimensional 
convolution, was employed to maintain low computational complexity. During data preprocessing, the forward 
difference algorithm was applied to extract Parkinson’s disease-related features such as resting tremor from the 
geometric characteristics of handwriting signals, thereby improving diagnostic accuracy with minimal processing 
time. Finally, the model incorporated an inference strategy that included a majority voting mechanism, resulting 
in highly efficient CPU inference performance. Nonetheless, a major limitation of the study lay in the small 
dataset size, which could potentially limit the generalizability of the findings.

In 2024, Abderrazak Benchabane et al.1 introduced an innovative method for Parkinson’s disease detection 
utilizing deep convolutional neural networks built upon the AlexNet architecture. Their approach centered 
on analyzing hand-drawn images from affected or potentially affected individuals, extracting features from 
these drawings for classification purposes. By merging features from two distinct types of hand drawings, the 
detection accuracy was notably enhanced. Nevertheless, further improvements could be achieved by exploring 
alternative CNN architectures, incorporating additional features, and refining the ensemble techniques used in 
the classification process.

Problem statement
PD is a progressive neurological disorder with early symptoms often reflected in handwriting. Early detection 
is vital, but current methods face several limitations such as limited dataset diversity, model robustness, and 
generalizability. For instance, Naz et al. (2023)30 used ensemble DCNNs with data augmentation but highlighted 
challenges due to few handwriting examples and reflected the necessity of ML classifiers. Moreover, Kamble et al. 
(2021)32 extracted kinematic features from spiral drawings, yet their study was limited by sample size. Abdullah 
et al. (2023)31 achieved high accuracy using genetic algorithms and KNN but noted potential scalability issues. 
Additionally, Konstantin et al. (2023)33 applied fuzzy clustering and metaheuristic optimization but emphasized 
the need for diverse ML integration. Zhu et al. (2022)29 and Benchabane et al. (2024)1 used CNN-based methods, 
like CC-Net and AlexNet, showing high accuracy but requiring more varied data and better feature extraction 
methods. Yousif et al. (2023)34 explored both handwriting and voice data but faced limitations due to the lack 
of datasets with both modalities from the same subjects. Mansour et al. (2024)35 introduced QMFOFS-HCNN 
for feature selection and classification, yet the approach needs further validation on diverse datasets. Xuechao 
Wang et al. (2024)36 proposed a hybrid CNN-LSTM model, but its effectiveness is limited by a small dataset. 
To overcome these limitations, this research proposes an automated PD detection method using handwriting 
images. The majority of the current methods face challenges with limited datasets. To address these issues, the 
proposed model is validated using two datasets, namely the HandPD Dataset and Meander HandPD images 
in the HandPD dataset. By employing augmentation techniques like rotation, translation and shearing, the 
dimension of datasets gets increased sufficiently, which addresses the issues of limited sample size. Specifically, 
the incorporation of a modified Wiener filter for pre-processing and extracts modified PHOG, deep, and shape 
features. A hybrid model combining Improved LinkNet and GhostNet (ILN-GNet) for final classification, which 
significantly enhanced the detection performance. Therefore, this proposed framework aims to deliver high 
detection accuracy, improved generalization, and computational efficiency, which enables the proposed system 
to be well-positioned for deployment in practical clinical settings, potentially supporting early diagnosis.

Proposed model for Parkinson’s disease detection
A clinical assessment of PD is made difficult due to the absence of very accurate biomarkers. The most widely 
used scale for evaluating both non-motor and motor symptoms of PD is the UPDRS. This scale allows doctors to 
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evaluate the severity of motor signs in PD patients without the requirement for specialized equipment. Another 
issue is that the doctor’s subjective awareness has a significant impact on how this scale is evaluated. Numerous 
motion capture tools, including electromyography, laser displacement, accelerometers, and sensors, are available 
to better measure quantified tremors. Nevertheless, with the resumption of the pandemic, a simple PD screening 
system suitable for iPads or mobile phones would assist early identification and earlier evaluation of suspicious 
persons and benefit enhanced diagnosis for the patient. Many researchers have conducted significant studies 
on computer-aided technology in an effort to achieve an easier and more precise diagnosis of PD. However, the 
accuracy of PD detection remains a question. To enhance the accuracy and efficiency of the PD detection, a novel 
DL-based model is proposed in this research. This approach encompasses three key stages such as preprocessing, 
feature extraction and PD detection phases. The overall architecture of the proposed PD detection approach is 
shown in Fig. 1. Initially, the research begins with the preprocessing, where, the modified WF is proposed and 
applied to the input image to reduce noise within the image and preserve the important details for detection, 
leading to enhanced image quality. Subsequently, several pertinent features, including modified PHOG, Deep 
features and Shape features are obtained from the preprocessed image, which would offer valuable information 
for precise detection. Lastly, a hybrid detection model that combines the Ghostnet and Improved LinkNet 
models is suggested and receives the derived features as input. A more reliable and robust detection is provided 
by the beneficial characteristics of both models. The final detection outcomes are determined by averaging the 
intermediate scores from both classifiers.

Pre-processing via modified wiener filtering
Image pre-processing involves varied methods for improving the quality of digital images, and it helps to extract 
pertinent information before images are further examined and processed by ML algorithms. Here, we take into 
consideration the input handwriting image HI  that has undergone pre-processing using the modified WF 
method.

Fig.1.  Overall Architecture of the PD detection model.
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Conventional WF method:

	1.	 Calculate the PSD of noise and the original image, HI .
	2.	 A mask is applied to the noise image pixel.
	3.	 Determine local variance 

(
σ2)

 and mean (ρ).
	4.	 Compute the new pixel value using noise power and variance, and mean.
	5.	 The steps 2 to 4 are repeated for all noise image pixels.

Although WF reduces random noise in images, it poses certain limits. If noise PSD is erroneously computed, the 
existing WF might over-smooth the image or fail to eliminate the noise adequately.

While lessening the noise, it might smooth out significant details, which results in a loss of image information. 
Therefore, to overcome these issues, a modified WF is introduced in this work. Specifically, the incorporation 
of the new pixel computation for the original image with noise image and the original image with the filtered 
image using the proposed Gaussian filter helps to preserve the multiplicative relationships in pixel intensity 
values, which often better represent natural textures and subtle handwriting variations. Also, this combination 
not only reduces noise within the image but also significantly enhances the image quality for subsequent feature 
extraction processes.

Modified WF method:
The modified WF comprises two steps for computing the new pixel value.

	a)	 Original image with noise image.
	b)	 Original image with filtered image.

Original image with noise image:  1. Calculate the PSD of noise and the original image, HI .
2. A mask is applied to the noise image pixel.
3. Arrange the intensity of all pixels that fall under the mask.
4. Compute the median and allot it to the middle pixel of the mask.
5. Compute local variance 

(
σ2)

 and mean (ρ). The mean is computed based on the geometric mean as 
revealed in Eq. (1), here, p and q signifies the row and column of image HI , k and j signifies the count of the 
row and column. The variance is computed as revealed in Eq. (2).

	
µ =

(
k,j∏

p=1,q=1

HI (p, q)

)1/pq
� (1)

	
σ2 =

(
1
pq

HI (p, q) − ρ

)2

� (2)

Original image with filtered image:  1. Enhance the brightness of the original handwriting image HI .
2. An improved Gaussian filter is applied. The conventional Gaussian filter is formulated as in Eq. (3), where, 

c and r refers to pixels.

	
GFc,r = 1

2πσ2 exp
(

− c2 + r2

2σ2

)
� (3)

The proposed Gaussian filter is formulated as in Eq. (4).

	

GF Im
c,r =




1
2πσ2 exp

(
− c2+r2

2σ2

)
+


 c2+r2−2σ2

2πσ6 .e
−

(
c2 + r2

/2σ2
)


√

c2 + r2 − 2σ2e−(c2+r2)




� (4)

3. Evaluate the median (Me) and variance 
(
σ2)

 and mean (ρ) for the filtered image.
4. Evaluate the novel value Q (p, q) of pixel for the original image with the filtered image and noisy image as 

shown in Eq. (5). Here, u signifies noise variance.

	

Q (p, q) =
[

med + σ2 − u2

σ2 (HI (p, q) − med)
]

+
[

med1 +
(
σ2)′ − u2

(σ2)′ (HI (p, q) − ρ)

] � (5)
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5. The steps of the original with noise and the original with filtered image are repeated for all noise image pixels.
The pre-processed image is indicated by HIp.
Thus, the modified WF is capable of removing the noise, whereas the edges are preserved. In addition, 

the modified WF reduces the distortions. The modified WF could conserve edges and significant details and 
effectively lessen the noise.

Feature extraction
In image processing, feature extraction is crucial. Digital images can have factors like motion, shapes, or edges 
that are detected during feature extraction. Following their identification, the data may be processed to carry out 
several image analysis tasks. The distinctive features listed below are obtained from this study:

Modified PHOG features
Shape features
Deep features (VGG 16 and ResNet)

The combination of modified PHOG features, shape features, and deep features from VGG16 and ResNet creates 
a comprehensive, multi-layered feature set that significantly improves the accuracy of PD detection. The modified 
PHOG features capture information across different spatial resolutions, enhancing gradient calculations by 
reducing the impact of high-frequency noise and emphasizing significant gradient variations. Meanwhile, the 
shape features provide crucial global geometric insights, that are key for distinguishing PD-related handwriting 
abnormalities. The deep features extracted from VGG16 and ResNet offer robust hierarchical representations, 
enabling the model to detect intricate and abstract patterns. Together, these diverse and complementary features 
enhance the model’s ability to detect PD with greater precision and ensure more reliable detection.

Modified PHOG features
The PHOG model37 splits the image, HIp  at various resolutions to districts depending upon spatial 
pyramid matching. The doubling of divisions in the axis direction is repeated by splitting HIp into 
fine spatial grids. In PHOG, the derivative mask is deployed in the vertical and horizontal directions of 
HIp to calculate the gradient. Especially, this model requires gray level image filtering for kernels like, 

KX = [−1 0 1] and KY =

[ 1
0
−1

]
 and the derivatives of X and Y are achieved with convolution operations 

namely UX = HIp ∗ KX and UY = HIp ∗ KY . The orientation and magnitude of the gradient are assessed 
as in Eq. (6) and (7).

	
UO = arctan UY

UX
� (6)

	 UG =
√

(U2
X + U2

Y )� (7)

While traditional PHOG features are good at explaining the image’s spatial information, they primarily focus 
on local gradient details and are unable to effectively capture global context details without additional features. 
Also, the conventional PHOG is based solely on gradient orientation and magnitude, which makes it highly 
sensitive to noise and artifacts. This leads to poor capturing of non-linear distortions, as it assumes relatively 
stable gradient behavior. In order to address these shortcomings, a modified PHOG feature is proposed based on 
the incorporation of improved entropy in the gradient operation, which allows for focusing on high-information 
regions. Additionally, the modified PHOG is more resilient to noise and slight distortions, ensuring clearer and 
more trustworthy feature maps and improving the precision of PD identification.

Modified PHOG: As per modified PHOG, the gradient operation is modelled depending upon improved 
entropy as shown in Eq. (8) and (9).

	 UX = HIp ∗ KX + IE� (8)

	 UY = HIp ∗ KY + IE� (9)

1. Computation of improved entropy for each gradient image:

Evaluate the improved entropy of the horizontal gradient image UX .
Evaluate the improved entropy of the vertical gradient image UY .

The conventional Shannon entropy is given in Eq. (10).

	
En = −

k∑
i=1

P (HIp
i ) logb P (HIp

i )� (10)

The improved Shannon entropy used in modified PHOG for gradient computation is given in Eq.  (11). In 
Eq. (11), |M | signifies the cardinality of the focal component M ,  Θ signifies the FOD.
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EnIm =


−

∑
M⊆Θ

a (M) log2
a (M) + 2|M| − 1

P (HIp
i ) logb P (HIp

i )+
∑

M⊆Θ

a (M) log2
(
2|M| − 1

)




[ ∑
M⊆Θ

a (M) log2 a (M) + 1
1+e−(log2 a(M))

]
� (11)

2. Comparing the improved entropy values:

After evaluating the improved entropy of UX , the threshold should be set as the mean of entropy.
Higher entropy in UX  denotes a high difference in the horizontal edge, while higher entropy in UY  denotes a 
high difference in the vertical edge. If entropy is similar in both gradients, it denotes that edge info is distrib-
uted evenly in both orientations.
Select the high entropy value that sums with UX  and UY . Here, the gradient entropy quantifies how much 
difference persists in every gradient image.
Now, by summing the higher entropy value to the gradient mean, the gradient containing the more direction-
al info can be enhanced.

The modified PHOG features denoted by P HOGM  captivates features at varied spatial resolution levels. It 
further improves the accuracy of gradient computation by lessening the influence of higher-frequency noise and 
highlighting remarkable gradient disparities. Thus, compared to existing PHOG, the modified PHOG features 
aid in gathering fine details needed for PD detection.

Shape features
Shape features SF 38  are extracted in this proposed work to improve the understanding of object geometry 
in the image, HIp. Features like area, epsilon, hull and perimeter are specifically taken into account. Epsilon 
assesses the shape’s intricacies and imperfections to determine how closely a component’s shape resembles its 
usual form. The perimeter establishes the overall length of the border, while the area determines the item’s size. 
The convex hull provides the lowest convex border that may surround the shape. When combined, these form 
elements are essential for image evaluation and retrieval because they enable accurate object comparison and 
characterisation based on geometric aspects.

Deep features
Deep features (DF ) are obtained from HIp by applying the ResNet and VGG 16 models, are considered in the 
suggested study for PD identification.

ResNet: The ResNet model incorporates residual connections that allow the network to go deeper without 
suffering from the vanishing gradient problem. This enables ResNet to capture more complex and abstract 
visual representations by learning deeper hierarchical features for precise detection. Convolutional, pooling, 
normalizing, and FCL are all included in the ResNet-50 model39. By obtaining residual functions that allow 
the network to gather a wide range of attributes from input images, including both specific low-level and high-
level data, residual blocks facilitate optimization. Features are extracted using convolutional layers, filtered using 
residual blocks, the spatial extent is reduced using max pooling, and non-linearity is addressed using ReLU. 
These specific attributes are then used by the final FCL to categorize the image.

VGG 16: It40 is a DCNN architecture noted for its simplicity and efficacy in image classification. VGG16 
is known for its deep, uniform architecture, this design enables the model to learn hierarchical features at 
multiple levels, from basic edges and textures at lower layers to complex, high-level patterns at deeper layers. 
This characteristic allows the model to capture both fine details crucial for accurate detection. Its architecture 
comprises 16 weight layers: 13 con layers and 3 FCL grouped into five conv blocks. To enable VGG-16 to acquire 
hierarchical features from simple edges to intricate patterns, each block reduces spatial dimensions by using max 
pooling and raises the filter count from 64 to 512. To capture micro features, the network uses tiny 3 × 3 filters 
in conv layers. In VGG16, the input moves via a sequence of conv layers and max pooling layers. The flattened 
feature maps are categorized by FCLs, and the learning process is enhanced by the non-linearity added by the 
ReLU activation.

The final feature F f =
[
P HOGM + SF + DF

]
 is an inclusive grouping of modified PHOG, deep features 

and shape features. This varied set of features permits robust detection by capturing thorough information from 
several aspects of HIp.

Hybrid classifiers for PD detection: Improved LinkNet and Ghostnet
The features (F f) are subjected to hybrid classifiers such as improved LinkNet and GhostNet for identifying 
the PD. Rather than the application of single classifiers, the application of hybrid classifiers will result in better 
outcomes. Integrating the improved LinkNet and GhostNet models in the proposed ILN-GNet framework offers 
a powerful synergy that enhances the accuracy, efficiency, and robustness of PD detection. The improved LinkNet 
excels in detailed spatial feature extraction and multi-scale context learning through its advanced encoder-
decoder structure, and modules like MDSCM and WAP-BN, making it highly effective at capturing subtle 
handwriting variations. On the other hand, GhostNet contributes lightweight, high-efficiency feature extraction 
by generating more feature maps through simple linear operations, significantly reducing computational 
complexity without sacrificing performance. Combining the improved LinkNet with GhostNet models offers 
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an efficient and compact representation of learning, and effectively distinguishing PD-affected handwriting. The 
performance of improved LinkNet and GhostNet is examined using “HandPD Dataset41 and Meander HandPD 
images in the HandPD dataset42”. The HandPD Dataset detects the individual as “healthy or patient”.

GhostNet
The features F f  are subjected to the GNet architecture for the detection of PD. However, the traditional deep 
models may provide high accuracy but often come with large numbers of parameters and heavy computational 
demands. In contrast, the GhostNet model strikes a balance by maintaining competitive accuracy while 
drastically reducing computational costs. Hence this model has been employed in this research for detection. 
GNet43 comprises a novel Ghost module that uses low-cost operations to produce additional feature maps. This 
novel NN efficiently generates more feature maps with fewer variables and computations. The implementation of 
this module consists of two parts. Using a conventional convolutional computation, GNet first generates feature 
maps with fewer channels. Next, it uses a straightforward procedure to generate more feature maps. Finally, it 
combines several feature maps to produce a new output. The GBM in GNet is separated into two categories based 
on stride. Two Ghost modules make up the GBM design when stride = 1, which is described using conventional 
residuals. To add more channels, the initial module serves as an extension layer. In order to link the outputs 
and inputs of these two Ghost modules, the second module first decreases the number of channels to match the 
shortest path. When stride = 2, the GBM has the conventional bottleneck structure’s layout, and when stride = 1, 
it keeps its structural features. The ReLU nonactivation operation and BN are used by the subsequent layers 
following the second Ghost module. The final result from GNet is displayed as Gno.

Improved LinkNet
The features F f  are employed in the LinkNet classifier for PD detection. 3 encoder and decoder components 
make up the LinkNet architecture44. They both often carry out ReLu activations, BNs, and convolution. While 
the BN helps to standardize training and attain a high rate of convergence, the Conv layer is utilized to detect 
spatial patterns. The normalized output is then sent into the Leaky ReLU for training the complex features and 
the average pooling layer to reduce the spatial dimensions. Similarly, encoder block 2 applies Conv, BN, average 
pooling, and mix pooling layers to encoder block 1 to enhance the accuracy of PD detection. The results of 
encoder block 2 are then sent to encoder block 3, which includes a conv layer and BN.

Even while ordinary LinkNet generates fine-detected outputs, the recurrent striding and pooling techniques 
utilized in LinkNet lower feature resolution. This makes it possible that some information will be lost. Therefore, 
to prevail over such problems, we introduce an improved LinkNet model for PD detection. Thereby, an improved 
LinkNet architecture is proposed with varied modifications in its structure. The proposed LinkNet architecture 
includes extra layers such as mixed pooling, average pooling, encoder 1 followed by conv, BN, Leaky ReLU, 
encoder 2 followed by conv, BN, ELU, encoder 3 followed by conv, BN, swish, decoder 1, 2 and 3 followed 
by WAP-BN layers. Particularly, the MDSCM layer is included in the improved LinkNet architecture. This 
improved architecture enables the model to learn complex, non-linear handwriting patterns more effectively. 
The use of mixed and average pooling improves feature preservation by balancing edge detection and texture 
retention, while the decoder stages incorporate WAP-BN to enhance reconstruction accuracy and training 
stability. Notably, the integration of the MDSCM allows efficient multi-scale feature extraction with reduced 
computational cost, making the model both lightweight and powerful. Overall, these structural improvements 
enhance the model’s ability to capture subtle variations in handwriting, leading to more accurate and robust PD 
detection.

MDSCM layer: The MDSCM layer includes 3 Gabor filters, 3 conv layers with strides 3 × 3, 5 × 5 and 7 × 7, 3 
BN layers and 3 encoders. Each Gabor filter output is connected to the Conv layer with each stride. The output 
from the conv layer is passed as input to the BN layer. The output from the BN layer and each encoder block is 
XOR-ed, and the outputs are concatenated to get the final output. The MDSCM architecture is shown in Fig. 2.

Proposed WAP-BN computation: The conventional BN is modelled as in Eq. (12), where, Zi denotes the 
decoder output,δB  represent the mean value of Zi, ε refers to a constant deployed for numerical constancy.

	
Ẑi = Zi − δB√

σ2
B + ε

� (12)

However, for better stabilization of parameters, instead of the existing BN, we propose weighted average pooling-
based BN in the modified LinkNet design.

The proposed WAP-BN is modelled as in Eq. (13), where, SJ  signifies weighted average pooling45 that is 
formulated as given in Eq. (14).

	

W AP − BN = (Zi ∗ SJ ) − (δB ∗ SJ )√[
σ2

B + 1(
1+e−(SJ )

)
]

+ ε
� (13)

	
SJ = (1 − γ) 1

rJ

∑
i∈rJ

Ai� (14)

In Eq. (14), γ is set as 1, B refers to a parameter, Ai refers to the feature value at the position i inside the pooling 
area rJ .
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The improved LinkNet model is highly useful for utilizing global data at different scales. When compared 
to the current LinkNet model, the modifications made to the upgraded LinkNet model reduce processing costs 
and preserve aggregate multi-scale context information. Additionally, improved LinkNet speeds up training and 
makes the procedure much more efficient. Figure 3 shows an architecture of the improved LinkNet.

The final improved link output is signified by ILno.
The outcomes from improved LinkNet (ILno) and GhostNet (Gno) are subjected to mean and final PD-

detected outcomes are attained as “healthy or patient”.

Results and discussion
Simulation procedure
The ILN-GNet model developed for PD detection was implemented using Python. Additionally, to run the 
simulation, we employed a system that had a 11th Gen Intel(R) Core (TM) i5-1135g7 CPU operating at 2.40 GHz 
and 2.42 GHz and 16.0 GB (15.7 GB usable) of RAM. An × 64-based CPU running a 64-bit operating system 
was the system type. The valuation was done for ILN-GNet over LinkNet, GhostNet, GoogleNet, AlexNet1, 
EfficientNet, CNN30, Ensemble12, LSTM-CNN36 and XGBoost46. The study data was attained using HandPD 
Dataset (dataset 1)41 and Meander_HandPD images in HandPD dataset (dataset 2)42.

Gabor filter Conv 3×3 BN

Encoder 1

Gabor filter Conv 5×5 BN

Encoder 1

Gabor filter Conv 7×7 BN

Encoder 1

C

I
n
p
u
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Fig.2.  Architecture of Suggested MDSCM module.
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Dataset description
HandPD dataset (dataset 1)
The HandPD dataset consists of handwritten tests from two groups of people: the (i) Healthy Group and the (ii) 
Patient Group, which is made up of people with Parkinson’s disease (PD). Of the 92 participants in the sample, 74 
are patients (patients group) and 18 are healthy (Healthy group). A synopsis of each group can be found below:

Healthy Group: There were six men and twelve women, representing ages 19 to 79 (average age: 
44.22 ± 16.53 years). Two of those people are left-handed, and sixteen are right-handed.

The patient group consisted of 15 females and 59 males, aged 38 to 78 (average age: 58.75 ± 7.51  years). 
Of those people, 69 are right-handed and 5 are left-handed. Consequently, the entire dataset consists of 736 
images labeled in two groups: 72 images in the healthy group and 296 images in the patient group. This results 
in a dataset including 368 images from each drawing, such as meanders and spirals. After the application of 
augmentation techniques such as rotation, translation and shearing, the total number of images was increased to 
1240, which were distributed into the healthy group has 648 images and the patient group has 592 images. The 
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Fig.3.  Proposed improved LinkNet Architecture.
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images are labeled as follows: ID_EXAM-ID_IMAGE.jpg, in which ID_EXAM stands for the exam’s identifier, 
and ID_IMAGE denotes the number of the image of that exam”.

Meander_HandPD images in HandPD dataset (dataset 2)
Handwritten samples from two groups such as a Healthy Group and a Patient Group, consisting of people with 
PD diagnoses make up the HandPD dataset. These samples of handwriting were acquired at São Paulo State 
University’s Botucatu Medical School in Brazil. Participants were instructed to complete a form containing 
four spiral patterns and four meander patterns. These sections were later cropped from the forms and saved as 
individual JPEG images. The dataset contained 368 images, categorized into two classes: MeanderControl (72 
images), and MeanderPatients (296 images). To expand the dataset, data augmentation techniques (rotation, 
translation and shearing) were applied, increasing the total number of images to 1,240. Post-augmentation, 
the distribution included 648 images for MeanderControl and 592 images for MeanderPatients. The samples 
of handwriting images for PD detection for Dataset 1 and Dataset 2 are shown in Fig. 4 and Fig. 5 respectively.

Pre-processing analysis
The study of the modified WF used to pre-process the handwriting images using Dataset 1 and Dataset 2. For 
accurate detection, the handwriting images utilized for PD detection should have a high resolution. The visual 
representation of the conventional WF, Gaussian filter, median filters, modified WF for datasets 1 and 2 are 
illustrated in Fig. 6 and Fig. 7 respectively.

Table 1. illustrates the preprocessing analysis in terms of PSNR and SSIM metrics regarding datasets 1 and 
2. After preprocessing, PSNR is frequently used to assess an image’s quality. Greater PSNR values show that 
there is reduced noise and distortion from the filter, bringing the processed image closer to the original. SSIM, 
on the other hand, takes into account structural details like texture, contrast, and brightness when determining 
an image’s perceived quality. The model successfully maintains the structural details when the SSIM value is 
high. The model can detect the PD more precisely when higher PSNR and SSIM are achieved. The PSNR and 
SSIM attained using modified WF are high, around 32.97 and 0.946, respectively. On the other hand, extant WF, 

(a) (b) (c)

Fig.5.  Sample for PD detection using handwriting images for dataset 2 (a) sample 1 (b) sample 2 and (c) 
sample 3.

 

(a) (b) (c)

Fig.4.  Sample for PD detection using handwriting images for dataset 1 (a) sample 1 (b) sample 2 and (c) 
sample 3.
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Gaussian and median filters attain lower PSNR and SSIM values. Using dataset 2, the Improved Wiener filter 
achieved a greater value on PSNR, about 33.450, meanwhile Conventional Wiener filter = 30.540, the Gaussian 
filter = 23.640 and the Median filter = 26.480. Additionally, the Improved Wiener filter acquired better values 
on SSIM, about 0.957, in contrast to the traditional methods. Therefore, the enhancements carried out in the 
improved WF offer high PSNR and SSIM, which translate directly into better input quality for the hybrid ILN-
GNet model. As a result, the ILN-GNet model can more effectively distinguish between healthy and PD-affected 
individuals, leading to improved detection accuracy.

Performance analysis
Figures 8, 9, and 10 illustrates the performance comparison of ILN-GNet over the conventional method using 
dataset 1. As per the outcomes, ILN-GNet for PD detection attains better precision than LinkNet, GhostNet, 
GoogleNet, AlexNet, EfficientNet, CNN30, Ensemble12, LSTM-CNN36 and XGBoost46. The ILN-GNet model 

(a) Original 

image

(b) Conventional 

wiener filter

(c) Gaussian 

filter

(d) Median filter

(e) Improved 

Wiener filter

Fig.6.  Sample for PD detection using handwriting images (a) Original image (b) Traditional wiener filter (c) 
Gaussian filter (d) Median filter and (e) Improved Wiener filter for dataset 1.
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Dataset 1 Dataset 2

Methods PSNR (dB) SSIM Methods PSNR (dB) SSIM

Traditional Wiener filter 29.560 0.906 Conventional Wiener filter 30.540 0.917

Gaussian filter 25.120 0.857 Gaussian filter 23.640 0.826

Median filter 27.860 0.876 Median filter 26.480 0.857

Improved Wiener filter 32.970 0.946 Improved Wiener filter 33.450 0.957

Table 1.  Pre-processing Analysis for Datasets 1 and 2.

 

(a) Original 
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Fig.7.  Sample for PD detection using handwriting images (a) Original image (b) Traditional wiener filter (c) 
Gaussian filter (d) Median filter and (e) Improved Wiener filter for dataset 2.
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achieved a higher precision of 0.99 at TD = 90%, where LinkNet, GhostNet, GoogleNet, AlexNet, EfficientNet, 
CNN30, Ensemble12, LSTM-CNN36 and XGBoost46 got minimal precision values. Here, hybrid classifiers such 
as improved LinkNet and GhostNet are used for identifying the PD. Several modifications to structures are 
suggested for the improved LinkNet architecture. The improved LinkNet model includes the MDSCM layer 
in particular. Furthermore, rather than using BN layers, the decoder uses WAP-BN layers. Comparing the 
improved LinkNet model to the conventional, the modifications made reduce processing costs and preserve 
aggregate multi-scale context information. The negative measure, FDR using ILN-GNet for PD detection is less 
than 0.02, while LinkNet, GhostNet, GoogleNet, AlexNet, EfficientNet, CNN30, Ensemble12, LSTM-CNN36 and 
XGBoost46 attain high FDR values. Likewise, the neutral and positive metrics using ILN-GNet for PD detection 
are high, while, negative metrics using ILN-GNet attain low values. Therefore, faster training and more process 
effectiveness are achieved by the combination of improved LinkNet and Ghostnet.

Additionally, the performance comparison of the proposed ILN-GNet model over the existing methods such 
as LinkNet, GhostNet, GoogleNet, AlexNet, EfficientNet, CNN30, Ensemble12, LSTM-CNN36 and XGBoost46 
using dataset 2 is shown in Fig. 11, Fig. 12 and Fig. 13, respectively. The proposed ILN-GNet model achieved a 
greater specificity of 0.974 at 80% of training data, which surpasses the results of the traditional methods such 
as the LinkNet (0.0.950), GhostNet (0.847), GoogleNet (0.853), AlexNet (0.873), EfficientNet (0.804), CNN30 
(0.849), Ensemble12 (0.762), LSTM-CNN36 (0.861) and XGBoost46 (0.752). Moreover, the suggested ILN-
GNet model scored minimal ratings of FNR and FPR across different splits of training data, demonstrating a 
lower probability of misclassification. Additionally, the suggested ILN-GNet model acquired greater values on 
F-measure and MCC about 0.961 and 0.974 respectively, in contrast, the existing methods offer lower values on 
these measures. Therefore, improvements over the conventional methods are largely due to the preprocessing 
method based on the modified WF, feature extraction based on the modified PHOG, and the integration of the 
improved LinkNet and GhostNet architecture.

(a) (b)

(c) (d)

Fig.8.  Performance of PD detection with handwriting images using ILN-GNet over traditional method on (a) 
Precision, (b) Sensitivity, (c) Accuracy, (d) Specificity using dataset 1.
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Ablation analysis
The ablation study employing ILN-GNet for PD identification for datasets 1 and 2, respectively, is displayed 
in Tables 2 and 3. The performance of ILN-GNet is examined over ILN-GNet with conventional LinkNet, 
ILN-GNet with conventional LinkNet and Ghostnet, ILN-GNet with conventional PHOG, ILN-GNet with 
conventional WF, ILN-GNet without feature extraction, Model without MDSCM and Model without WAP-BN. 
In Table 2, ILN-GNet shows a high accuracy of 0.964, while ILN-GNet with standard LinkNet is 0.931, ILN-GNet 
with conventional LinkNet and Ghostnet is 0.952, ILN-GNet with standard PHOG is 0.903, ILN-GNet with 
conventional WF is 0.863, ILN-GNet without extraction of feature is 0.923, Model without MDSCM is 0.893 and 
Model without WAP-BN is 0.908, displays less accuracy values on dataset 1. In contrast to conventional WF, the 
modified WF preserves the edges while effectively removing the noise. The enhanced PHOG characteristics aid 
in gathering the precise details needed for PD identification by increasing the accuracy of gradient magnitude 
estimation and lessening the effect of higher-frequency noise. Additionally, the changes made to the enhanced 
LinkNet reduced computation costs and captured aggregate multi-scale context information as compared to the 
original LinkNet. Particularly, the FDR using ILN-GNet is less than 0.035, while ILN-GNet with conventional 
LinkNet, ILN-GNet with conventional LinkNet and Ghostnet, ILN-GNet with conventional PHOG, ILN-GNet 
with conventional WF, ILN-GNet without feature extraction, Model without MDSCM and Model without WAP-
BN scores less FDR values.

On observing results in Table 3, the suggested ILN-GNet model’s sensitivity for Dataset 2 is 0.974, which is 
higher than that of the models with Standard LinkNet (0.948), with Standard LinkNet and GhostNet (0.948), with 
Standard PHOG (0.896), with Standard WF (0.878), without feature extraction (0.904), with MDSCM (0.891), 
and with WAP-BN (0.898). With an accuracy of 0.952, the ILN-GNet model has a strong overall detection 
capability. Notably, the absence of Modified PHOG and Modified WF results in significant accuracy drops 
to 0.891 and 0.851, respectively. Similarly, the removal of MDSCM and WAP-BN modules causes consistent 
declines across all performance metrics, emphasizing their importance in enhancing feature representation and 

 (a) (b)

(c)

Fig.9.  Performance of PD detection with handwriting images using ILN-GNet over traditional method on (a) 
F measure, (b) MCC, (c) NPV for dataset 1.
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classification robustness. These findings underscore the critical role of the Modified Wiener Filter, Modified 
PHOG-based features, and the enhanced LinkNet architecture incorporating MDSCM and WAP-BN layers in 
achieving improved detection performance for Parkinson’s Disease.

Statistical analysis
Tables 4 and 5 detail the statistical analysis in terms of accuracy utilizing ILN-GNet-based PD detection for 
datasets 1 and 2 respectively. The study displays the improvement of ILN-GNet over LinkNet, GhostNet, 
GoogleNet, AlexNet, EfficientNet, CNN30, Ensemble12, LSTM-CNN36 and XGBoost46. For detecting PD, this 
work employs improved LinkNet and GhostNet classifiers. Utilizing global information at different scales is 
greatly aided by the enhanced LinkNet architecture that has been suggested with several structural changes. 
Furthermore, the improved LinkNet accelerates training and greatly improves operational efficiency. In Table 
4, the ILN-GNet reached a higher accuracy of 0.984 for the maximum statistical metric, whereas, LinkNet, 
GhostNet, GoogleNet, AlexNet, EfficientNet, CNN30, Ensemble12, LSTM-CNN36 and XGBoost46 reach lesser 
accuracies of 0.952, 0.863, 0.903, 0.927, 0.806, 0.871, 0.847, 0.944 and 0.855 respectively. Similarly, a high 
accuracy of 0.950 is gained for the mean case by ILN-GNet, while LinkNet, GhostNet, GoogleNet, AlexNet, 
EfficientNet, CNN30 and Ensemble12 attain lower accuracies. The suggested ILN-GNet model outperformed the 
existing methods, such as XGBoost (0.760), LSTM-CNN (0.861), LinkNet (0.911), GhostNet (0.821), GoogleNet 
(0.861), AlexNet (0.880), EfficientNet (0.760), CNN (0.831), and Ensemble model  (0.800), as shown by the 
results in Table 5 for dataset 2. Additionally, when compared to traditional methods, ILN-GNet demonstrated 
improved classification accuracy with a maximum efficiency value of 0.976. These results demonstrate that 
the enhancements introduced namely the modified Wiener Filter for preprocessing, modified PHOG-based 
feature extraction, and the hybrid integration of improved LinkNet with GhostNet collectively contribute to the 
significant improvement in detection accuracy over traditional methods.

 (a) (b)

(c)

Fig.10.  Performance of PD detection with handwriting images using ILN-GNet over traditional method on 
(a) FNR, (b) FDR and (c) FPR for dataset 1.
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ROC analysis
Figure 14 and Fig. 15 express the ROC analysis for varied TD, such as 60, 70, 80 and 90 using datasets 1 and 2 
respectively. It is observed that for all TDs, the proposed ILN-GNet attains high TPR values when compared to 
others. Particularly, the proposed ILN-GNet attains a high TPR of 1.0 for all TDs when FPR is 1.0 for dataset 1. 
The AUC values for the proposed ILN-GNet are 0.92, 0.93, 0.96 and 0.98 for TDs 60, 70, 80 and 90, respectively. 
Thus, the ROC plot shows the performance of the proposed ILN-GNet over LinkNet, GhostNet, GoogleNet, 
AlexNet, EfficientNet, CNN30, Ensemble12, LSTM-CNN36 and XGBoost46 models with high TPR values. For 
dataset 2, at 70% of training data, the ILN-GNet model scored better values on TPR about 0.96 and FNR 
about 0.1. The AUC value of the ILN-GNet method is 0.98. the findings show that the suggested ILN-GNet 
model scored higher TPR demonstrating fewer false negatives and lower FPR scores, suggesting that the model 
contributes to minimal misclassified cases. These results demonstrate the suggested ILN-GNet model precisely 
classified the healthy and patients in contrast to the existing methods.

Confusion matrix
The confusion matrix given in Fig. 16 aids in evaluating the classification efficiency of the DL model for datasets 
1 and 2. It distinguishes the predicted output by DL from the actual targeted values. The confusion matrix 
contains the values of TP, FP, FN and TN. Using the proposed ILN-GNet for PD detection at 80% TD exhibits 
TP = 129, FP = 5, FN = 4 and TN = 110, respectively. This indicates that five healthy individuals’ handwriting was 
incorrectly classified as PD-affected. This suggests that the model may be overly sensitive to certain handwriting 
characteristics that are shared between healthy and PD samples. Using dataset 2, the ILN-GNet model achieved 
TP = 124 and FN = 3, which indicates that the PD-affected individuals were incorrectly classified as healthy. 
Overall, the ILN-GNet model efficiently detects the healthy and patient classes.

Analysis of computational time
Computational time analysis is the process of determining how long a model will take to complete a task. It 
is a crucial performance indicator that assesses the efficacy of the model. The proposed ILN-GNet model’s 

(a) (b)

(c) (d)

Fig.11.  Performance of PD detection with handwriting images using ILN-GNet over traditional method on 
(a) Precision, (b) Sensitivity, (c) Accuracy, (d) Specificity for dataset 2.
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computational time comparison with existing methods, such as EfficientNet,  Ensemble, CNN, LSTM-CNN, 
LinkNet, XGBoost, GhostNet, GoogleNet, and AlexNet utilizing datasets 1 and 2, is shown in Table 6. As a result, 
the suggested ILN-GNet method demonstrates superior efficiency in terms of processing speed. ILN-GNet 
recorded minimal computational times of 63.748 s on Dataset 1 and 62.355 s on Dataset 2, outperforming all 
other compared models. In contrast, the LSTM-CNN required significantly more time, with 128.650 s for dataset 
1 and 125.650 s for dataset 2, and LinkNet took 107.111 s on dataset 1 and 106.452 s on dataset 2. Even relatively 
lightweight architectures such as GhostNet, GoogleNet, and EfficientNet demonstrated higher computation 
times compared to ILN-GNet, with GhostNet being the closest in efficiency at 74.134 s and 73.658 s, still slower. 
Traditional models like XGBoost also lag behind, requiring over 100 s on both datasets. These results confirm 
that ILN-GNet not only delivers high precision, as previously shown but also maintains a low computational 
burden, making it highly suitable for real-time PD detection applications.

Analysis of cross-validation
An important machine learning technique is cross-validation, which tests a model on several dataset subsets to 
assess its generalizability and resilience. This study evaluates the effectiveness of the proposed ILN-GNet model 
using two datasets, Dataset 1 and Dataset 2. The cross-validation results of the ILN-GNet model for these datasets 
are presented in Table 7 and Table 8, respectively. The model’s efficiency is validated using standard measures 
such as specificity, accuracy, sensitivity, precision, MCC, NPV, F-measure, FNR, and FPR. For Dataset 1 (trained 
on Dataset 1 and tested on Dataset 2), the ILN-GNet model achieved an accuracy of 0.951 and a precision of 
0.914, demonstrating its high reliability in distinguishing between healthy and affected individuals. Similarly, 
the model performed even better in several areas for Dataset 2 (trained on Dataset 2 and tested on Dataset 1), 
obtaining a sensitivity of 0.970 and an NPV of 0.969, demonstrating a significant capacity to accurately detect 
true positive and true negative cases. Furthermore, the model maintained low error rates, with an FNR of 0.030 
and FPR of 0.030, signifying a minimal rate of missed or incorrect predictions. These cross-validation results 

 (a) (b)

(c)

Fig.12.  Performance of PD detection with handwriting images using ILN-GNet over traditional method on 
(a) F measure, (b) MCC, (c) NPV for dataset 2.
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Metrics ILN-GNet

Model with 
conventional 
LinkNet

Model with 
conventional 
LinkNet and 
Ghostnet

Model with 
conventional 
PHOG

Model with 
conventional WF

Model without 
Feature 
Extraction

Model without 
MDSCM

Model 
without 
WAP-
BN

Accuracy 96.40% 93.10% 95.20% 90.30% 86.30% 92.30% 89.30% 90.80%

Sensitivity 95.70% 92.20% 95.70% 89.60% 84.30% 93.90% 89.10% 91.50%

Specificity 97.00% 94.00% 94.70% 91.00% 88.00% 91.00% 89.50% 90.20%

Precision 96.50% 93.00% 94.00% 89.60% 85.80% 90.00% 87.90% 89.00%

F-measure 96.10% 92.60% 94.80% 89.60% 85.10% 91.90% 88.50% 90.20%

MCC 92.70% 86.20% 90.30% 80.50% 72.40% 84.70% 78.60% 81.60%

NPV 96.30% 93.30% 96.20% 91.00% 86.70% 94.50% 90.60% 92.60%

FPR 3.00% 6.00% 5.30% 9.00% 12.00% 9.00% 10.50% 9.80%

FNR 4.30% 7.80% 4.30% 10.40% 15.70% 6.10% 10.90% 8.50%

FDR 3.50% 7.00% 6.00% 10.40% 14.20% 10.00% 12.10% 11.00%

Table 2.  Ablation study on ILN-GNet for PD Detection using Dataset 1.

 

 (a) (b)

(c)

Fig.13.  Performance of PD detection with handwriting images using ILN-GNet over traditional method for 
(a) FNR, (b) FDR and (c) FPR for dataset 2.
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show that the proposed ILN-GNet model performs better in PD identification and has good generalizability and 
reliability across two datasets.

Analysis of statistical test
The results of the statistical test establish if the suggested ILN-GNet model’s improvements over traditional 
techniques are statistically significant. The T-test, Friedman, and Wilcoxon tests were used in this study to 
evaluate the ILN-GNet model’s performance against the results of traditional techniques.

The Wilcoxon test results, which compare the efficiency of the suggested ILN-GNet model to other approaches 
across two datasets, are shown in Table 9. A p-value less than 0.1 indicates statistical significance, suggesting 
a significant performance difference between ILN-GNet and the respective models. For Dataset 1, ILN-GNet 

Methods Mean Minimum Median Std-Dev Maximum

XGBoost 0.760 0.732 0.759 0.022 0.790

LSTM-CNN 0.861 0.831 0.859 0.024 0.895

LinkNet 0.911 0.881 0.909 0.024 0.944

GhostNet 0.821 0.790 0.819 0.024 0.855

GoogleNet 0.861 0.831 0.859 0.024 0.895

AlexNet 0.880 0.851 0.878 0.023 0.911

EfficientNet 0.760 0.732 0.759 0.022 0.790

CNN 0.831 0.800 0.830 0.024 0.863

Ensemble 0.800 0.770 0.799 0.023 0.831

ILN-GNet 0.942 0.911 0.940 0.024 0.976

Table 5.  Statistical study of PD detection with handwriting images using ILN-GNet over traditional methods 
for dataset 2.

 

Methods Mean Minimum Median SD Maximum

XGBoost 0.824 0.796 0.823 0.024 0.855

LSTM-CNN 0.912 0.883 0.911 0.024 0.944

LinkNet 0.919 0.891 0.916 0.024 0.952

GhostNet 0.829 0.800 0.827 0.025 0.863

GoogleNet 0.870 0.841 0.868 0.025 0.903

AlexNet 0.891 0.861 0.887 0.026 0.927

EfficientNet 0.770 0.742 0.766 0.026 0.806

CNN 0.839 0.810 0.837 0.024 0.871

Ensemble 0.810 0.780 0.806 0.026 0.847

PROP 0.950 0.921 0.947 0.025 0.984

Table 4.  Statistical study of PD detection with handwriting images using ILN-GNet over traditional methods 
for dataset 1.

 

Metrics ILN-GNet

Model with 
conventional 
LinkNet

Model with 
conventional 
LinkNet and 
Ghostnet

Model with 
conventional 
PHOG

Model with 
conventional WF

Model without 
Feature 
Extraction

Model without 
MDSCM

Model 
without 
WAP-
BN

Accuracy 95.20% 92.30% 94.40% 89.10% 85.10% 91.10% 88.10% 89.60%

Sensitivity 97.40% 94.80% 94.80% 89.60% 87.80% 90.40% 89.10% 89.80%

Specificity 93.20% 90.20% 94.00% 88.70% 82.70% 91.70% 87.20% 89.50%

Precision 92.60% 89.30% 93.20% 87.30% 81.50% 90.40% 85.90% 88.20%

F-measure 94.90% 92.00% 94.00% 88.40% 84.50% 90.40% 87.50% 89.00%

MCC 90.40% 84.80% 88.70% 78.20% 70.40% 82.20% 76.30% 79.20%

NPV 97.60% 95.20% 95.40% 90.80% 88.70% 91.70% 90.20% 91.00%

FPR 6.80% 9.80% 6.00% 11.30% 17.30% 8.30% 12.80% 10.50%

FNR 2.60% 5.20% 5.20% 10.40% 12.20% 9.60% 10.90% 10.20%

FDR 7.40% 10.70% 6.80% 12.70% 18.60% 9.60% 14.10% 11.80%

Table 3.  Ablation study on ILN-GNet for PD Detection using Dataset 2.
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demonstrates statistically significant improvements over XGBoost, LSTM-CNN, LinkNet, GhostNet, GoogleNet, 
AlexNet, EfficientNet, and Ensemble, with p-values consistently below 0.1, except for CNN (p-value = 0.100), 
which shows no significant difference. On Dataset 2, ILN-GNet outperforms most models, including XGBoost, 
LSTM-CNN, GoogleNet, AlexNet, and EfficientNet, with p-values ranging from 0.004 to 0.082, indicating clear 
statistical significance. The Wilcoxon test highlights ILN-GNet’s superior performance across both datasets, with 
the model’s architecture leading to more accurate and robust PD detection, particularly in comparison to models 
like CNN and LinkNet, which show no significant advantage over ILN-GNet. Overall, the results suggest that the 
hybrid design of ILN-GNet is highly effective for PD detection tasks.

The Friedman test results are shown in Table 10, which contrasts the suggested ILN-GNet model’s performance 
with that of several alternative models for Datasets 1 and 2. A p-value less than 0.1 indicates statistical significance, 
suggesting a significant performance difference between ILN-GNet and the respective models. For Dataset 
1, ILN-GNet shows statistically significant improvements over LSTM-CNN (p-value = 0.037), EfficientNet 
(p-value = 0.022), XGBoost (p-value = 0.082), LinkNet (p-value = 0.061), and GoogleNet (p-value = 0.072) 
approach significance. For Dataset 2, ILN-GNet outperforms XGBoost (p-value = 0.005), EfficientNet 
(p-value = 0.002), and AlexNet (p-value = 0.008), showing stronger statistical significance. Other models like 
LSTM-CNN (p-value = 0.078), GoogleNet (p-value = 0.037), and Ensemble (p-value = 0.083) show some level 
of significance. Models such as CNN, and LinkNet do not show significant performance differences from ILN-
GNet on either dataset. Overall, the Friedman test confirms that ILN-GNet consistently demonstrates superior 
performance, particularly on Dataset 2, underscoring its effectiveness in detecting Parkinson’s Disease across 
different model comparisons.

The T-test results comparing the efficiency of the suggested ILN-GNet model with several different 
models across Datasets 1 and 2 are shown in Table 11. A p-value less than 0.1 indicates statistical significance, 
suggesting a significant performance difference between ILN-GNet and the respective models. For Dataset 
1, ILN-GNet shows statistically significant superiority over EfficientNet (p-value = 0.045) and XGBoost 
(p-value = 0.080), as both p-values are below 0.1, indicating a meaningful performance gap. Models like LSTM-
CNN (p-value = 0.070), GoogleNet (p-value = 0.080), and Ensemble (p-value = 0.070) also show a significant 
difference, although the performance gap is smaller. Other models such as LinkNet (p-value = 0.080), GhostNet 
(p-value = 0.090), AlexNet (p-value = 0.090), and CNN (p-value = 0.100) show no significant performance 
difference, with p-values approaching 0.1. For Dataset 2, ILN-GNet shows statistically significant improvement 

(a) (b)

(c) (d)

Fig.14.  ROC analysis for TD (a) 60%, (b) 70%, (c) 80% and (d) 90% for dataset 1.
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(a) (b)

Fig.16.  Confusion matrix using proposed ILN-GNet for PD detection for (a) Dataset 1 and (b) Dataset 2.

 

(a) (b)

(c) (d)

Fig.15.  ROC analysis for TD (a) 60%, (b) 70%, (c) 80% and (d) 90% for dataset 2.
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over EfficientNet (p-value = 0.016), XGBoost (p-value = 0.025), and AlexNet (p-value = 0.045), with all these 
models having p-values below 0.1, indicating that ILN-GNet performs better. GoogleNet (p-value = 0.061) also 
shows a significant difference, though not as strong as the previous models. In contrast, models like LSTM-
CNN (p-value = 0.080), Ensemble (p-value = 0.080), and CNN (p-value = 0.080) have p-values near 0.1, which 
indicate marginal but not conclusive differences in performance. Overall, the T-test results show that ILN-GNet 
significantly outperforms several models on both datasets.

Conclusion
This research developed a novel PD detection approach with handwriting images using an improved hybrid 
classification model. The handwriting image was pre-processed primarily using modified WF. Next, deep 
features, shape features, and modified PHOG were obtained. Lastly, a hybrid ILN-GNet framework was used for 
detection, and its average indicated whether the person was affected or healthy. Additionally, the effectiveness of 
the proposed ILN-GNet model is contrasted with conventional techniques like EfficientNet, LinkNet, GhostNet, 
GoogleNet, and AlexNet as well as cutting-edge models like CNN and Ensemble. Thus, at 90% of training data, 

Measures Training with Dataset 1 and Testing with Dataset 2 Training with Dataset 2 and Testing with Dataset1

Accuracy 94.80% 94.90%

Sensitivity 96.90% 97.00%

Specificity 92.50% 92.60%

Precision 91.30% 91.30%

F-measure 93.30% 93.40%

MCC 89.20% 89.30%

NPV 96.80% 96.90%

FPR 7.50% 7.40%

FNR 3.10% 3.00%

FDR 8.70% 8.70%

Table 8.  Analysis of Cross-validation for Dataset 2.

 

Measures Training with Dataset 1 and Testing with Dataset 2 Training with Dataset 2 and Testing with Dataset1

Accuracy 95.10% 95.20%

Sensitivity 96.40% 96.50%

Specificity 92.10% 92.20%

Precision 91.40% 91.50%

F-measure 93.70% 93.80%

MCC 90.20% 90.40%

NPV 96.20% 96.40%

FPR 7.90% 7.80%

FNR 3.60% 3.50%

FDR 8.60% 8.50%

Table 7.  Analysis of Cross-validation for Dataset 1.

 

Methods

Dataset 1 Dataset 2

Computational Time (s) Computational Time (s)

XGBoost 105.680 103.587

LSTM-CNN 128.650 125.650

LinkNet 107.111 106.452

GhostNet 74.134 73.658

GoogleNet 88.958 85.649

AlexNet 85.521 83.652

EfficientNet 84.165 86.568

CNN 96.555 97.688

Ensemble 101.466 102.697

ILN-GNet 63.748 62.355

Table 6.  Analysis of computational time for datasets 1 and 2.
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the proposed ILN-GNet model had a higher accuracy of 0.982, while LinkNet, GhostNet, GoogleNet, AlexNet, 
EfficientNet, CNN, and Ensemble had an accuracy of 0.921, 0.864, 0.916, and 0.827, respectively. The F-measure 
and MCC of the suggested ILN-GNet model were higher, at 0.966 and 0.971, respectively. The incorporation 
of the modified wiener filter, the extraction of improved PHOG along the retrieval of deep features and shape 
features contribute to enhanced detection. Additionally, the Improved LinkNet architecture is proposed with 
structural modifications using an MDSCM layer and integrated with GhostNet. The resulting hybrid model 
demonstrates significantly better performance compared to existing methods.

Despite the promising results, this study has several limitations. The performance of the modified Wiener 
filter used in pre-processing is critical; improper tuning may lead to the loss of important handwriting features. 
Furthermore, the combination of Improved LinkNet with GhostNet raises the model’s overall complexity even 
though it might improve classification accuracy. In order to improve the model’s performance even more, future 
studies will concentrate on resolving these issues. Future research would examine improving preprocessing 
methods to lower false positives. Only the most pertinent features are chosen, which helps keep the framework 
from overfitting to unimportant data and increases the model’s overall accuracy by concentrating on the most 
significant patterns. For this purpose, optimal feature selection techniques could be explored in future studies. 

ILN-GNet model Vs

Dataset 1 Dataset 2

T-test T-test

XGBoost 0.080 0.025

LSTM-CNN 0.070 0.08

LinkNet 0.080 0.1

GhostNet 0.090 0.09

GoogleNet 0.080 0.061

AlexNet 0.090 0.045

EfficientNet 0.045 0.016

CNN 0.100 0.08

Ensemble 0.070 0.08

Table 11.  Analysis of T-test for datasets 1 and 2.

 

ILN-GNet model Vs

Dataset 1 Dataset 2

Friedman p-value Friedman p-value

XGBoost 0.082 0.005

LSTM-CNN 0.037 0.078

LinkNet 0.061 0.100

GhostNet 0.095 0.095

GoogleNet 0.072 0.037

AlexNet 0.091 0.008

EfficientNet 0.022 0.002

CNN 0.100 0.082

Ensemble 0.065 0.083

Table 10.  Analysis of Friedman test for Dataset 1 and Dataset 2.

 

ILN-GNet model Vs

Dataset 1 Dataset 2

Wilcoxon p-value Wilcoxon p-value

XGBoost 0.065 0.008

LSTM-CNN 0.032 0.062

LinkNet 0.048 0.100

GhostNet 0.082 0.082

GoogleNet 0.056 0.032

AlexNet 0.076 0.011

EfficientNet 0.022 0.004

CNN 0.100 0.065

Ensemble 0.051 0.067

Table 9.  Analysis of Wilcoxon test using datasets 1 and 2.
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Moreover, future studies will explore alternative ML classifiers and fusion strategies such as weighted fusion to 
assess and improve the overall performance of the model. Furthermore, recognizing that PD has no cure but 
that early intervention can significantly alleviate symptoms, our future work’s aim is to integrate the proposed 
approach into the healthcare environment with the support of medical professionals and to enhance the model 
to assess symptom severity and eventually provide personalized treatment suggestions such as medication 
options, physical therapy, or speech therapy, based on patient data.

Data availability
The data underlying this article are available in the Kaggle repository named as HandPD dataset, at ​h​t​t​p​s​:​​/​/​w​w​
w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​c​l​a​​y​t​o​n​t​e​​y​b​a​u​r​u​​/​s​p​i​r​a​l​-​h​a​n​d​p​d​/​d​a​t​a  and theMeander_HandPD images in HandPD ​d​a​t​
a​s​e​t at https://wwwp.fc.unesp.br/ ~ papa/pub/datasets/Handpd/dataset, at ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​c​l​a​​
y​t​o​n​t​e​​y​b​a​u​r​u​​/​s​p​i​r​a​l​-​h​a​n​d​p​d​/​d​a​t​a and theMeander_HandPD images in HandPD dataset at​h​t​t​p​s​:​/​/​w​w​w​p​.​f​c​.​u​n​e​
s​p​.​b​r​/​~​p​a​p​a​/​p​u​b​/​d​a​t​a​s​e​t​s​/​H​a​n​d​p​d​/
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