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Lithium manganese phosphate (LiMnPO4) is the most promising candidate for the next generation of 
lithium-ion battery cathode materials due to its 4.1 V(vs. Li/Li+) high voltage platform. At present, the 
discharge rate performance and cycle stability are still poor. And here, various Fe, Ni co-doped carbon-
coated LiMnPO4 composites materials LiMnPO4/C were successfully prepared using coprecipitation and 
solvothermal methods. Morphological and electrochemical performance analyses were conducted on 
the LiMnPO4/C materials prepared by different methods to explore the relationship between material 
morphology and electrochemical performance. Compared with the coprecipitation method, LiMnPO4/C 
prepared by the solvothermal method has a smaller particle size and a more regular morphology. 
Moreover, after the addition of glucose as an auxiliary, the particles exhibit a spindle-shaped porous 
structure, leading to improved cycling performance and rate capability, and demonstrating superior 
electrochemical properties. At 0.1, 0.2, 0.5, 1, and 2 C, the discharge specific capacities are 121.4, 
102.7, 91.2, 81.5, and 53.7 mAh g− 1, respectively. After 100 cycles at 1 C rate, 91% of the initial 
capacity is still retained. The above results indicate selecting appropriate preparation methods and 
controlling the structure and morphology of the material, the electrochemical activity of LiMnPO4 can 
be directly influenced, which providing a new approach to improve the electrochemical performance of 
LiMnPO4.
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With the depletion of fossil resources and the increasing demand for energy, energy crises and environmental 
pollution have become two major global challenges1,2. Low-carbon, green, and efficient renewable energy has 
become a key focus of research and development3–6. Lithium-ion batteries (LIBs) are currently widely used in 
portable electronic devices, electric vehicles, and large-scale energy storage systems due to their high energy 
density, long cycle life, and environmentally friendly nature7–10. As a crucial component of LIBs, the cathode 
material determines the performance and price of LIBs11–13. Among them, olivine-type lithium transition metal 
phosphates (LiMPO4, M = Mn, Fe, Co, Ni) have been widely studied and applied as LIBs cathode materials in 
recent years14–21. This is due to the strong P-O covalent bonds and stable three-dimensional framework structure 
of PO4

3−, which prevents structural rearrangement during Li+ insertion/extraction, resulting in good structural 
stability.

Since its first synthesis and report by Goodenough’s research group in 1997, LiFePO4 has been widely used 
as a cathode material in lithium-ion batteries due to its advantages of good stability, environmental friendliness, 
and low cost22–24. Despite these advantages, lithium iron phosphate (LFP) is limited by its low theoretical 
capacity(170 mAh g− 1), in particular, the Fe2+/Fe3+ redox couple results in a relatively low discharge voltage 
plateau (3.4 V vs. Li/Li+) for LiFePO4, leading to a low theoretical energy density (578 Wh kg− 1) and severely 
hindering its application in power batteries25–28. In contrast, LiMnPO4 also possesses an olivine structure and 
exhibits a higher voltage plateau of 4.1 V (vs. Li/Li+), a theoretical capacity similar to LiFePO4 (170 mAh g− 1), 
and an energy density approximately 20% higher than LiFePO4. It also has advantages such as low toxicity, 
safety, and low cost, making it better suited to meet the high energy density requirements of next-generation 
lithium-ion batteries29–31. Notably, the operating potential of LiMnPO4 is compatible with the voltage window 
of most currently used lithium-ion battery electrolytes, making it an ideal alternative to LiFePO4 as a cathode 
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material32,33. However, the extremely low electronic conductivity and Li+ migration rate of LiMnPO4 lead to 
poor rate performance, posing the biggest challenge to its development11. Furthermore, the Jahn-Teller effect 
of Mn3+ in the delithiated phase MnPO4 causes lattice distortion and excessive volume change during Li+ 
insertion/extraction, resulting in poor cycle stability of LiMnPO4 batteries. These factors hinder the commercial 
application of LiMnPO4 batteries and represent significant challenges for the development of LiMnPO4 cathode 
materials29,34.

Currently, strategies such as carbon coating, ion doping, and material nanostructuring are primarily 
employed to enhance the electrochemical performance of LiMnPO4

35–37. Among these, cation doping has 
become a common method for improving the electrochemical properties of LiMnPO4. For example, Khalfaouy 
et al.38. prepared Ni-doped LiMnPO4 material, LiMn1 − xNixPO4 (x = 0.00-0.05), and found that nickel doping 
significantly improved the cycle stability and rate performance of LiMnPO4. Li et al.39. synthesized Fe-doped 
LiMn0.8Fe0.2PO4/C composite material via a solid-state method using different iron sources. The results showed 
that iron doping could also significantly improve the rate performance and cycle performance of LiMnPO4. 
Simultaneously, optimizing the morphology to improve the transport properties of LiMnPO4 has also become a 
research focus. Morphology and particle size control are crucial for Li+ diffusion in LiMnPO4 and significantly 
affect its rate performance, representing an effective pathway to achieve high-performance of LiMnPO4

21,40–42. 
Among various preparation methods, the solvothermal method not only promotes a complete reaction of 
reactants but also allows for simpler control of crystal morphology by adjusting the supersaturation of the 
solution through temperature and pressure control. This method is widely used for the synthesis of LiMnPO4 
materials with various morphologies43–45.

Currently, most studies employ single-element doping methods to improve the electrochemical performance 
of LiMnPO4, while research on double-element doping is relatively limited. Based on previous studies of nickel 
and iron doping, this work adopts a Fe, Ni double-doping strategy (molar ratio of Mn: Fe: Ni = 0.85:0.075:0.075) 
to synthesize three carbon-coated LiMnPO4/C composites using co-precipitation and solvothermal methods, 
respectively. The prepared LiMnPO4/C composites are then characterized by X-ray diffraction (XRD), scanning 
electron microscopy (SEM), and galvanostatic charge-discharge tests. The influence of different synthesis 
methods on the morphology and electrochemical performance of Fe, Ni double-doped LiMnPO4/C was 
comparatively studied.

Materials and methods
Preparation of LiMnPO4 and LiMnPO4/C composites
Three Ni, Fe co-doped LiMnPO4/C composite materials were prepared using co-precipitation and solvothermal 
methods, respectively. The molar ratio of Mn: Fe: Ni is 0.85:0.075:0.075 in all cases. All reagents used in 
this work are analytical reagent (AR) grade. These include lithium hydroxide (LiOH·H2O, Tianjin Kemiou 
Chemical Reagent Co., Ltd.), phosphoric acid (H3PO4, Xilong Science), manganese sulfate (MnSO4·H2O, 
Xilong Science), ferrous sulfate (FeSO4·7H2O, Xilong Science), ethylene glycol (C2H6O2, Xilong Science), nickel 
nitrate (Ni(NO3)2·6H2O, Shanghai Reagent Second Factory), glucose (C6H12O6, Sinopharm Chemical Reagent 
Co., Ltd.), sucrose (C12H22O11, Chengdu Jinshan Chemical Reagent Co., Ltd.), and cetyltrimethylammonium 
bromide (CTAB) ((C16H33)N(CH3)3Br, Sinopharm Chemical Reagent Co., Ltd.).

Co-precipitation method: First, 0.0425  mol MnSO4·H2O was dissolved in 30  ml deionized water, and 
0.0425 mol H3PO4 was dissolved in 10 ml deionized water separately. The H3PO4 solution was added to the 
MnSO4·H2O solution and stirred for 1 h. Then 0.1275 mol LiOH·H2O and 0.075 g CTAB (0.1 wt%) were added 
to the above mixture under continuous stirring until a brown uniform solution is obtained, labelled solution A1. 
Second, 0.00375 mol FeSO4·7H2O and 0.00375 mol Ni(NO3)2·6H2O were dissolved in 15 ml deionized water 
under stirring, 0.0075 mol H3PO4 was dissolved in 5 ml deionized water additionally, and this H3PO4 solution 
was added dropwise to the mixed FeSO4· and Ni(NO3)2 solution and stirred at room temperature for 1 h. Then 
0.0225 mol LiOH·H2O and 0.035 g CTAB were slowly added dropwise to the above solution and continue stirred 
at room temperature for 1 h, labelled solution A2. Third, solution A1 and solution A2 were mixed and stirred 
magnetically at 50 ℃ for 6 h. After standing overnight, the precipitate was separated by centrifugation. The 
precipitate was dried at 80 ℃ for 12 h in a drying oven to obtain a precursor. The precursor was mixed with a 
sucrose aqueous solution(precursor to sucrose mass ratio of 2:1) and stirred for 2 h. The mixture was then dried 
at 80 ℃ for 24 h in a drying oven. Finally, the mixture was sintered at 600 ℃ for 5 h under N2 atmosphere to 
obtain LiMnPO4/C, denoted as LiMnPO4/C-A.

Solvothermal method: Based on the co-precipitation method described above, the difference is that the 
solvent is replaced with a mixture of glycol and water (volume ratio 1:1), the resulting B1 and B2 mixed solution 
was transferred to a hydrothermal autoclave and maintained at 180 ℃ for 10 h. After centrifugation and drying, 
the precursor was mixed with sucrose (precursor to sucrose mass ratio of 2:1) in an aqueous solution and stirred 
for 2 h as the precipitation method mentioned above. Then drying and calcination and mixing with sucrose like 
the precipitation method mentioned above and the resulting material was labeled LiMnPO4/C-B. Additionally, 
LiMnPO4/C was prepared using the same solvothermal method, the difference is that 1 gram of glucose was 
added during the hydrothermal process, and the resulting material was labeled LiMnPO4/C-C. The preparation 
process of LiMnPO4/C-C is illustrated in Fig. 1.

Material characterization
The phase structures of all synthesized samples were analyzed by X-ray diffraction (XRD, Shimadzu XRD-6100) 
using Cu Kα radiation in the 2θ range of 5–80°. The morphologies of the synthesized samples were characterized 
using field emission scanning electron microscopy (FE-SEM, Hitachi SU8010). The elemental distribution of 
the LiMnPO4/C-C sample was analyzed by energy-dispersive X-ray spectroscopy (EDS, Horiba EMAX). The 
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specific surface area and pore size distribution of the samples were characterized by nitrogen adsorption/
desorption isotherms at 77 K obtained using a surface area and porosity analyzer (Micromeritics ASAP2460).

Electrochemical tests
The active material, acetylene black, and polyvinylidene fluoride (PVDF) were mixed in a weight ratio of 80:10:10, 
respectively (the active material loading is 1.5 mg). The mixture was homogenized by stirring in N-methyl-2-
pyrrolidone (NMP) for 6  h to form a slurry. This slurry was then uniformly coated onto an aluminum foil 
current collector using a coating machine (Shenzhen Kejing MSK-AFAE-S200). The resulting electrode was 
dried overnight at 80 °C. The electrode was transferred to an argon-filled glove box (Vigor SG1200/750TS) and 
used as the positive electrode in a CR2025 coin cell. A Celgard 2400 membrane served as the separator, lithium 
foil as the negative electrode, and 1  M LiPF6 solution in ethylene carbonate (EC): diethyl carbonate (DEC): 
dimethyl carbonate (DMC) (volume ratio 1:1:1) as the electrolyte.

Constant current charge-discharge tests were performed using a Land CT3002A battery tester within a 
voltage range of 2.5–4.5 V. Electrochemical impedance spectroscopy (EIS) measurements were conducted on a 
Princeton Applied Research VersaSTAT 3 electrochemical workstation over a frequency range of 10− 2 to 105 Hz. 
All tests were performed at 25 °C.

Results and discussion
XRD and SEM analysis
Figure 2 shows the XRD patterns of the three prepared samples: LiMnPO₄/C-A, LiMnPO₄/C-B, and LiMnPO₄/
C-C. All three samples show good agreement with the LiMnPO₄ standard PDF# 33–0803, this indicates that 
LiMnPO₄/C were prepared successsfully. The absence of carbon diffraction peaks may be attributed to the 
amorphous nature of the carbon36. On the other hand, the lack of iron and nickel peaks may be due to their 
low concentrations being masked by the manganese signal, there is a number marked as nickel peak. All XRD 
peaks match those of LiMnPO₄, with no additional peaks present, indicating that nickel-iron doping has been 
incorporated into the LiMnPO₄ crystal lattice.

The morphologies of the three samples, LiMnPO4/C-A, LiMnPO₄/C-B, and LiMnPO₄/C-C, are shown in 
Fig. 3. The co-precipitation method produced LiMnPO₄/C-A with an irregular morphology and large particle 
size, exhibiting non-nanoscale agglomeration. The solvothermal method yielded LiMnPO₄/C-B with a 
more regular rod-like morphology, approximately 100 nm in width and 200–300 nm in length. The glucose-
assisted solvothermal method produced LiMnPO₄/C-C with a regular, spindle-shaped, porous structure. The 
particle size of LiMnPO₄/C-C is similar to LiMnPO₄/C-B, but with a more uniform distribution. Further 
TEM characterization revealed the porous structure of LiMnPO₄/C-C, Fig. 5 clearly shows the distinct porous 
structure of LiMnPO₄/C-C, in contrast to LiMnPO₄/C-A and LiMnPO₄/C-B which lack porosity. The uniformly 
small particles are beneficial for shortening the Li⁺ diffusion pathways, while the porous structure facilitates 
increased contact with the electrolyte33,46.

To further determine the elemental composition and distribution of the LiMnPO₄/C-C nanomaterial, energy 
dispersive spectroscopy (EDS) and elemental mapping were performed on the prepared LiMnPO₄/C-C material, 
with the results shown in Fig. 4. Figure 4 shows that Fe, Ni, and C elements are uniformly distributed throughout 
the LiMnPO₄/C-C sample, indicating successful doping of Fe and Ni into the LiMnPO₄ material.

To further characterize the porous structure of the synthesized LiMnPO₄/C-C, nitrogen adsorption-
desorption tests were performed on the prepared LiMnPO₄/C-C, and the results are shown in Fig. 6. The BET 
surface area of LiMnPO₄/C-C is 63.0 m²g− 1, and the pore volume is 0.12 cm³g− 1. The adsorption-desorption 
isotherm (Fig. 6a) is a typical type IV isotherm, exhibiting a clear hysteresis loop at higher nitrogen pressure, 
indicating a mesoporous structure of LiMnPO₄/C-C47. Figure 6b shows that the LiMnPO₄/C-C has an unimodal 
pore-size distribution with a average pore diameter of 7.46 nm. The large surface area provides more active sites 
for Li⁺ insertion/extraction, and the nanoporous structure contributes to an improved Li⁺ diffusion rate.

Fig. 1.  Schematic preparation process of LiMnPO4/C-C cathode materials.
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Figure 7 presents the XPS analysis of LiMnPO4/C-A, LiMnPO₄/C-B, and LiMnPO₄/C-C. The survey scan 
reveals the presence of nickel (Ni) and iron (Fe) elements. Furthermore, the Mn 2p peak is consistent with 
that reported in the literature for Fe-doped LiMnPO₄, while the Fe2p peak (Fe2p3/2:710.73, 711.05, 709.56 eV, 
Fe2p1/2:723.76, 724.34, 724.16 eV), matches that reported for LiMn₀.₉Fe₀.₁PO₄48. Based on the preceding XRD 
and elemental mapping analyses, it can be concluded that nickel- and iron-doped LiMnPO₄ has been successfully 
synthesized.

Electrochemical performance of LiMnPO4/C composites
Figures 8 and 9 show the charge-discharge curves and rate performance of LiMnPO4/C-A, LiMnPO4/C-B, and 
LiMnPO4/C-C, respectively. Figure 8 reveals that all three materials exhibit a discharge plateau around 4.1 V, 
consistent with most literature reports on LiMnPO4, further confirming the successful synthesis of LiMnPO4. At 
0.1 C, the co-precipitation method prepared LiMnPO4/C-A shows a maximum discharge capacity of 45.9 mAh 
g⁻¹, the solvothermal method prepared LiMnPO4/C-B exhibits a maximum discharge capacity of 117.9 mAh g⁻¹, 
and the glucose-assisted solvothermal method prepared LiMnPO4/C-C shows a maximum discharge capacity 
of 121.4 mAh g⁻¹. Clearly, the solvothermal methods significantly improve the maximum discharge capacity of 
LiMnPO4/C. Figure 9 shows that the discharge capacities of LiMnPO4/C-A, LiMnPO4/C-B, and LiMnPO4/C-C 
are 2 mAh g⁻¹, 4.7 mAh g⁻¹, and 53.7 mAh g⁻¹ at 2 C, respectively. LiMnPO4/C-C demonstrates superior rate 
performance, indicating that glucose significantly enhances the rate capability of the LiMnPO4/C material.

Figure 10 presents the discharge cycling performance of LiMnPO4/C-B and LiMnPO4/C-C at 1 C for 100 
cycles. LiMnPO4/C-B exhibits a capacity retention of 80.7%, while LiMnPO4/C-C shows a significantly improved 
capacity retention of 91.0%. This indicates that the LiMnPO4/C-C material, with its regular, nanostructured, 
spindle-like morphology, possesses superior cycling stability. Combining this with the previous morphological 
and structural analysis, it is found that the LiMnPO4/C-C material, with its regular, nanostructured, spindle-like 
porous structure, not only shows significant improvements in discharge capacity and rate performance but also 
exhibits greatly enhanced discharge cycling stability. Table 1 compares the electrochemical performance of this 
material with that of LiMnPO4 materials reported in recent literature.

Fig. 3.  SEM images of (a) LiMnPO4/C-A, (b) LiMnPO4/C-B and (c) LiMnPO4/C-C.

 

Fig. 2.  XRD patterns of LiMnPO4/C-A, LiMnPO4/C-B and LiMnPO4/C-C.
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Figure  11 shows the Nyquist plots and equivalent circuit diagrams for LiMnPO4/C-A, LiMnPO4/C-B, 
and LiMnPO4/C-C electrodes. The inset table presents the fitting data of the EIS curves. The curves consist 
of a semicircle in the high-frequency region and a sloping line in the low-frequency region. The diameter of 
the semicircle corresponds to the charge transfer resistance (Rct) between the electrode and the electrolyte, 
while the intercept of the semicircle on the Z’ axis is attributed to the solution resistance (Rs). The slope of the 
inclined line (Zw) represents the Warburg impedance, corresponding to the diffusion of Li+ ions in the bulk 
material22,34,53. The Rct values for LiMnPO4/C-A, LiMnPO4/C-B, and LiMnPO4/C-C electrodes are 204.1, 76.8, 
and 64.9 Ω, respectively, indicating that LiMnPO4/C-C exhibits a faster electrochemical response and better 
kinetic performance. Furthermore, the slope of the inclined line in the low-frequency region is steeper for the 
LiMnPO4/C-C electrode than for LiMnPO4/C-A and LiMnPO4/C-B, indicating a smaller Zw and a faster Li+ 
diffusion rate. The EIS results demonstrate that LiMnPO4/C-C possesses superior electrochemical kinetics, 
further validating the interpretations of the previous charge-discharge and cycling performance test results.

Fig. 5.  TEM images of (a) LiMnPO4/C-A, (b) LiMnPO4/C-B and (c) LiMnPO4/C-C.

 

Fig. 4.  SEM images of LiMnPO4/C-C (a), EDS elemental mappings of P、Mn、Fe、Ni and C in LiMnPO4/
C-C respectively (b-f) and proportion of elements(g).
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Conclusions
A variety of Fe and Ni doping LiMnPO4 composites were prepared through three different methods : LiMnPO4/
C-A, LiMnPO4/C-B, and LiMnPO4/C-C. Comparative analysis reveals that the LiMnPO4/C-C material prepared 
by a glucose-assisted solvothermal method exhibits smaller particle size and a more regular morphology 
compared to the co-precipitation method, and the material displays a spindle-shaped porous structure. Benefiting 
from this nanosize, regular morphology and porous structure, the battery prepared using this material shows 
significantly improved rate performance and cycling performance, demonstrating superior electrochemical 
properties. Their discharge capacities are achieved of 121.4, 102.7, 91.2, 81.5, and 53.7 mAh g⁻¹ at 0.1, 0.2, 0.5, 1, 
and 2 C rates, respectively, and the capacity retention reaches 91% after 100 charge-discharge cycles at 1 C. This 
demonstrates that selecting an appropriate preparation method and controlling the morphology and structure of 
the material are crucial for optimizing the electrochemical performance of LiMnPO4. This study provides a basis 
and guidance for further optimization of the electrochemical performance of LiMnPO4 materials.

Fig. 7.  XPS spectrum overall spectrum (a), Mn2p (b), Ni2p (c) and Fe2p (d) for LiMnPO₄/C-A, LiMnPO₄/
C-B and LiMnPO₄/C-C.

 

Fig. 6.  Nitrogen adsorption-desorption isotherm(a) and pore size distribution curves(b) of LiMnPO4/C-C.
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Fig. 9.  Discharge capacity of LiMnPO4/C-A, LiMnPO4/C-B and LiMnPO4/C-C samples at different rates.

 

Fig. 8.  Charge-discharge curves (a-c) and specific capacity comparison (d) of LiMnPO4/C-A, LiMnPO4/C-B 
and LiMnPO4/C-C samples at 1 C.
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Fig. 11.  EIS of LiMnPO4/C-A, LiMnPO4/C-B and LiMnPO4/C-C.

 

Cathode material Actual capacity(mAh g− 1) Cycling performance Refs.

LiMnPO4-SS 89.15(at 0.2 C) 99%(50 cycles) 49

LiMnPO4 84(at 0.2 C) — 50

LiMnPO4 89.8(at 0.05 C) 80%(30 cycles) 16

LMnPO4/C 80.2(at 0.1 C) — 51

LiMnPO4 91.5(at 0.2 C) 25%(50 cycles) 52

LiMnPO4/C 102.7(at 0.2 C) 91%(100 cycles) this work

Table 1.  Comparison of electrochemical performance for different LiMnPO4 materials.

 

Fig. 10.  Cycle performance of LiMnPO4/C-B and LiMnPO4/C-C.
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