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Vildagliptin modulates the
microbiota and induces an
immunometabolic profile
compatible with neuroprotection in
type 2 diabetes

Juliane Colombo Carrer de Macedo?, Dioze Guadagnini, Heloisa B. Assalin?,
Emilia Sousa Oliveira?, Daniela O. Magro®, Marcos R. Alborghetti?, Mauricio L. Sfor¢a?,
Silvana A. Rocco?, Andrey Santos® & Mario J. A. Saad'™*

Dipeptidyl peptidase 4 (DPP-4) inhibitors (DPP-4i) are widely used to treat Type 2 diabetes (T2D) and
are known for their cardiovascular and renal safety profiles. Systematic reviews have also shown that
DPP-4i are associated with reduced dementia risk via unknown mechanisms. To examine vildagliptin
(DPP-4i) effects on the intestinal microbiota in T2D patients, plasma metabolomics were conducted
and inflammatory profiles collected to investigate correlations with potential neuroprotective effects.
We examined 29 patients with T2D (not well controlled with metformin) before, and at 30 and 60 days
after vildagliptin was introduced, and investigated intestinal microbiota, plasma metabolomic, and
inflammatory profiles. In patients after 2 months, vildagliptin induced mild microbiota changes,
represented by significant increases in Bariatricus and Butyricimonas genera and the Marinifilaceae
family (short-chain fatty acids producers), reduced insulin, HOMA-IR, MCP1, and interferon (IFN)-y
levels, and elevated interleukin (IL)-4 and IL-10 levels, all of which represented an anti-inflammatory
profile. Metabolomics results showed that leucine, 2-oxoisocaproate (branched-chain amino acid
metabolite), and inosine were significantly reduced after vildagliptin was introduced. Additionally,
choline, dimethylamine, and betaine levels were significantly higher, which may contribute to explain
DPP-4i protective effects against dementia, as these metabolites are neuroprotective. In our T2D
patient cohort (not well controlled with metformin), vildagliptin, in addition to improved glucose
control and improved insulin resistance, modulated the intestinal microbiota, anti-inflammatory
cytokine profiles, and metabolomics, and when combined, may contribute to explain DPP-4i's
neuroprotective effects.

Dipeptidyl peptidase 4 (DPP-4) inhibitors (DPP-4i) are widely used to treat Type 2 Diabetes (T2D) and
are known for their cardiovascular and renal safety profiles'. Efficacious toward diabetes, these inhibitors
improve glucose metabolism and pancreatic islet function?=. Incretin-based DPP-4i therapies are based on
the insulinotropic actions of glucagon-like peptide 1 (GLP-1)2. By increasing endogenous GLP-1 and insulin
levels and reducing glucagon secretion®, DPP-4i effectively lower postprandial blood glucose levels by inhibiting
incretin degradation. A previous systematic review and network meta-analysis comparing cognitive outcomes
associated with antidiabetic agents demonstrated that DPP-4i were associated with reduced dementia risk (Odds
ratio=0.78, 95% confidence interval (CI) 0.61-0.99). In a Bayesian network meta-analysis examining the
impact of antidiabetic agents on dementia risk, DPP-4i similarly showed protective effects against Alzheimer’s
disease when compared with no antidiabetic treatments (Hazard ratio =0.48, 95% CI 0.25-0.92)8. Furthermore,
animal studies also supported potential DPP-4i neuroprotective effects®!”.

While some studies have suggested links between DPP-4i and the intestinal microbiota'®-, few have been
performed in humans, and without unclear correlation with microbiota and metabolic effect?®2°. Moreover, in
previous studies, correlations between DPP-4i-modulated microbiota, plasma metabolomics, insulin resistance,
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and inflammatory profiles were not investigated. To address this, we investigated vildagliptin (DPP-4i) effects on
the intestinal microbiota, plasma metabolomics, and inflammatory profiles in T2D patients (not well controlled
with metformin) to identify correlations with potential neuroprotective effects.

Methods

Study design and the patient population

The anthropometric and metabolic characteristics of T2D patients before and after 60 days of vildagliptin
treatment are presented in Table 1. This longitudinal, paired, interventional study evaluated patients before,
during, and after the intervention. Each participant served as their own control; therefore, a double-blind, placebo-
controlled group was not included. Participants were recruited from the Public Health System. The protocol
was approved by Research Ethics Committees at the University of Campinas (CAAE: 84087617.0.0000.5404)
and was conducted in accordance with relevant guidelines and regulations. All patients involved in this study
provided written informed consent.

Participants were 32-70 years old, of both sexes and diagnosed with T2DM (Table 1). HbAlc levels were 6.5-
10%, body mass index 25-35 kg/m?, and a glomerular filtration rate was >30 ml/min/1.75 m2. All participants
had no prior DPP-4i use.

Exclusion criteria: type 1 diabetes, renal and hepatic insufficiency, pregnancy, and any intestinal pathology.
Patients who had used DPP-4i, proton pump inhibitors, or antibiotics within 3 months before study
commencement were also excluded. In total, 36 patients were selected; but three missed one fecal sample
collection, two had compromised serum samples due to technical issues, and two experienced fecal and serum
sample losses, leading to their exclusion. The remaining 29 patients completed the study.

Lipopolysaccharide (LPS) and interleukin serum levels

Serum was separated from bloods, diluted to 20% (v/v) in endotoxin-free water, and heated to 70 °C for 10 min
to inactivate serum proteins. LPS was quantified using a commercial Limulus Amebocyte Assay kit (Cambrex,
Walkersville, MD, USA) following the manufacturer’s instructions®’. Samples were aliquoted for multiplex
immunoassays (Bio-Plex 200; Bio-Rad Laboratories, Hercules, CA, USA), which used magnetic bead panels to
analyze IFN-y, IL-1-a, IL-1-a, IL-1RA, IL-4, IL-6, IL-8, IL-10, IL-13, IL-17A, IL-18, MCP-1, MCSE, and TNF-a
(HCYTOMAG-60K and HMMP2MAG-55K-01, MILLIPLEX MAP Human; Millipore Sigma, Merck KGaA).

Metabolite quantification

Metabolites were processed and quantified using Nuclear Magnetic Resonance Suite software v.8.1 (Chenomx
Inc™, Edmonton, AB, Canada). The processor module was used to adjust the spectral phase and perform baseline
corrections. A 0.5 Hz line-broadening function was used to reduce signal noise and fit metabolite signals to
spectral peaks. The water signal was suppressed, and spectra were calibrated using the TMSP-d4 reference signal

Characteristic (N=29) p value
Age—years (Mean +SD) 56.17+9.76

Sex (%)

Female n (%) 20 (68.97)

Male n (%) 9(31.03)

Weight (kg)

0 Day(Mean + SD) 76.72+10.85 | >0.05
60 Days (Mean + SD) 76.78+11.42

BMI

0 Day (Mean +SD) 29.54+3.42 | >0.05
60 Days (Mean + SD) 29.81+3.65

Glucose (mg/dl)

0 Day (Mean +SD) 160+53 <0.05
60 Days (Mean + SD) 133+49

HbAlc

0 Day (Mean +SD) 7.95+1.44 <0.0001
60 Days (Mean +SD) 7.09+1.43

Medication use at presentation (%)

Losartan or others antihypertensiveagents | 58.6

Use of statin or other lipid-lowering agent | 48.2
Use of Metformin 100

Table 1. Characteristics of the patients (n=29). Data are presented as mean + standard deviation for
continuous variables or as number of participants (% of total) for categorical variables. Losartan was the only
Angiotensin Receptor Blocker reported by patients. Comparisons between baseline (Day 0) and after 60 days
were performed using the Student’s t-test for normally distributed variables and the Mann-Whitney U test for
non-normally distributed variables. Fisher’s exact test was used for categorical variables.
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at 0.5 mM. Spectra were then individually transferred to a Profiling module to determine metabolomic profiles.
Metabolites were identified and concentrations measured. Metabolite concentration data were exported to
Excel® (Microsoft Office™ 365) and normalized as required™.

Microbiota analysis

Stool samples were collected before, and at 30 and 60 days after vildagliptin was introduced, stored at — 80 °C, and
processed in a controlled environment to minimize contamination. Genomic DNA was extracted from a 200 mg
sample using the QTAamp DNA Stool MiniKit (Qiagen, Hilden, Germany). A negative control (water from the mini
kit) was used from extraction through to final sequencing steps, and a mock microbial DNA community standard
was used as a positive control (ZymoBIOMICS, Irvine, CA, USA). For each sample the V3-V4 hyper-variable
region (Primer Forward TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG;
Reverse GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC) of the
bacterial 16S rRNA gene was amplified followed by Illumina 16S Metagenomic Sequencing Library Preparation
guide. The taxonomic composition of the bacterial communities was obtained by analyzing the V3-V4 region of
the 16S rRNA gene using the Illumina® MiSeq platform. The constructions of the DNA sequencing libraries were
performed according to the manufacturer’s instructions (Illumina, San Diego, CA, USA) and followed the same
flow described by Caporaso et al.**. The fastq sequences were analyzed using the Illumina 16S Metagenomics
software.

Statistical analysis

Quantitative variables were presented according to distribution patterns: mean and standard deviation, or
median, minimum, and maximum values. Student’s t-tests were used to compare two independent samples,
and non-parametric (Mann-Whitney) tests were used for non-normally distributed variables. Categorical
variables were presented as proportions, and either Pearson ¥? or Fisher’s exact tests were used to compare
two proportions from independent samples. The taxonomic classification was performed using the DADA2
pipeline and the GreenGenes2 database**%. Paired abundance analyzes were performed using the IBM SPSS®
20.0 software (Wilcoxon Signed Ranks Test). The analysis of alpha (Metrics: Pielou’s evenness) and beta diversity
(Metrics: Unweighted UniFrac, weighted UniFrac ) was performed using QIIME?®. The graphs were generated by
GraphPad Prism 7.0 and Graphical Software: R (version 4.3.1). A 5% significance level was adopted in statistical
tests.

Results
As expected, in T2D patients (not well controlled with metformin), vildagliptin use for 2 months improved
metabolic control, as evidenced by significant decreases in fasting plasma glucose levels, and more importantly,
HbAIclevels. Although fasting insulin levels did not change after administration, a clear and significant decrease
in HOMA-IR was recorded, indicating improved insulin sensitivity (Fig. 1).

Lipopolysaccharide (LPS) levels showed no statistically significant differences between groups. To investigate
inflammatory patterns, we examined expression of the following molecules: interferon (IFN)-v, interleukin (IL)-
1-a, IL-1-B, IL-1RA, IL-4, IL-6, IL-8, IL-10, IL-13, IL-17A, IL-18, MCP-1, MCSEF, and TNF-a (Fig. S1). Most
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Fig. 1. Vildagliptin effects on glycemia, HbAlc, and HOMA-IR over time (0 and 60 days). Data points
represent mean values, with error bars indicating standard deviation. Statistical comparisons between time
points are shown, with p values indicating significant differences: Glycemia: Significant reduction from day 0 to
60 (p=0.0194). HbAlc: Significant decrease from day 0 to 60 (p=2.85e—07). HOMA-IR: Significant difference
from day 0 to 60 (p=0.0492).
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cytokines levels were similar between groups, but IL-4 and IL-10 levels (anti-inflammatory ILs) were higher at
2 months after vildagliptin administration, while MCP1 levels (inflammatory cytokine) were reduced (Fig. 2).

Metabolomics and microbiota analysis

We performed metabolomics analyses in patients before and 60 days after vildagliptin administration (Fig. S1).
Levels of leucine, inosine, and the BCAA 2-oxoisocaproate were significantly reduced after vildagliptin was
introduced (Fig. 3); however, choline, dimethylamine, and betaine levels were significantly higher (Fig. 3).

We also performed microbiota compositional analyses on patients before and 60 days after vildagliptin was
introduced. The Bray-Curtis index reflects microbial B-diversity, which assesses compositional dissimilarities
between microbial communities, accounting for species presence and abundance. A pseudo-F value=1.2655
indicated a slight difference between groups 0 and 60, with a p value =0.053, suggesting a potential trend toward
a significant difference. However, a g-value=0.159 indicated that this difference was not statistically significant
after correction for multiple testing (Fig. 4).

We also analyzed a-diversity using several indices, but only the Simpson_evenness index showed a significant
difference across periods. This index, a Simpson index variant, measures a-diversity with a focus on species
dominance and evenness. Kruskal-Wallis tests showed significant variable distribution differences among groups.
Pairwise comparisons showed that 0 was significantly different to 60 (p value=0.0032 and g-value=0.0096,
respectively). A reduced Simpson_evenness index indicated diversity loss or a shift in microbiota composition,
resulting in lower uniformity at 60 (Fig. 4F).

In 60, a significant increase in Bariatricus and Butyricimonas genera and the Marinifilaceae family was
observed when compared to 0. These taxa showed p- and adjusted p-values (p_adj) indicating statistical
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Fig. 2. Cytokine (IL-10, IL-4, IFN-y, and MCP-1) level changes over time (0 and 60 days). Data points
represent mean values, with error bars indicating standard deviation. Statistical comparisons between time
points are shown, with p values indicating significant differences: IL-10: Increase from day 0 to 60 (p=0.0097),
IL-4: Increase from day 0 to 60 (p=0.00542). IFN-y: Significant difference from day 0 to 60 (p=0.0370). MCP-
1: Significant difference from day 0 to 60 (p =0.0202).
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Fig. 3. Changes in metabolite levels (leucine, 2-oxoisoacropate, choline, dimethylamine, betaine, aspartate,
inosine, and serine) over time (0 and 60 days). Data points represent mean values, with error bars indicating
standard deviation. Statistical comparisons between time points are shown, with p values indicating significant
differences: Leucine: Significant decrease from day 0 to 60 (p=0.0129). 2-Oxoisoacropate: Increase from day
0to 60 (p=0.0122). Choline: Significant increase from day 0 to 60 (p=0.0077). Dimethylamine: Increase from
day 0 to 60 (p=0.0002). Betaine: Significant difference from day 0 to 60 (p=0.0451). Aspartate: Significant
increase from day 0 to 60 (p=0.0408). Inosine: Significant increase from day 0 to 60 (p=0.0386). Serine:
Increased from day 0 to 60 (p=0.0003).

significance (p <0.05), along with high Linear Discriminant Analysis (LDA) scores (logl0), reinforcing their
enrichment at this time point (Fig. 4G).

Discussion

In T2D patients (not well controlled with metformin), vildagliptin, in addition to improved glucose control,
improved insulin resistance and modulated intestinal microbiota, accompanied by anti-inflammatory cytokine
profiles and metabolomics. The integration of these data may have a role in neuroprotective effects of DPP-4i.

Improved insulinresistance, as demonstrated by increased HOMA-IR, was also accompanied by improvements
in insulin resistance markers, such as BCAAs and/or their metabolites. BCAAs are clearly correlated with insulin
resistance, and in some situations may predict T2D development?”-*%. We showed that vildagliptin reduced
leucine and 2-oxoisocaproate (valine metabolite), suggesting that improved insulin resistance was not only
related to glucose metabolism, but broadly, may also have affected amino acid metabolism.

In patients, the gut microbiota showed minimal changes after vildagliptin was introduced (60 days), though
some important bacterial genera were increased. A reduced Simpson_e index at 60 days was likely due to
increased Bariatricus and Butyricimonas genera and the Marinifilaceae family. This increased microbial subset
suggested a distinctive microbial composition at 60 days, marked by higher genera levels. LDA scores indicated
that taxa enriched at 60 days significantly contributed to the unique characteristics of this group. Such a
microbial profile may be associated with beneficial functions, such as short-chain fatty acids (SCFA) production,
particularly butyrate®, which exerts anti-inflammatory properties and has promotional effects on intestinal
barrier integrity. Thus, microbiota changes by day 60 had positive implications for modulating inflammation
and intestinal health.

Previous studies have also investigated the effects of DPP-4 inhibitors on gut microbiota modulation. For
instance, Smits et al.?® reported no alterations in gut microbial diversity following treatment with liraglutide and
sitagliptin, whereas in our study, vildagliptin treatment resulted in modest but significant changes, specifically
increases in the genera Bariatricus and Butyricimonas, as well as the Marinifilaceae family. Furthermore, while
Smits et al. observed no significant changes in choline or betaine levels, we found a significant increase in these
neuroprotective metabolites following vildagliptin administration. Similarly, whereas Martinez-Lopez et al.?
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Fig. 4. Gut microbiota analysis. (A) Beta diversity. The beta diversity based on Bray-Curtis dissimilarity

is presented in a non-metric multidimensional scaling (NMDS) plot showing the microbiota dissimilarity
between groups. UniFrac metric measures the phylogenetic distance between sets of microbial communities (A
pseudo-F value of 1.2655 for 0 and 60, with a p value=0.04 and g-value =0.159). Box plots showing a-diversity
metrics across different time points (0 and 60). Metrics included (B) Observed Features, (C) Inverse Simpson,
(D) Shannon, (E) Pielous Evenness, and (F) Simpson’s Evenness. Box plots show the distribution of values

for each time period, with 0 in red and 60 in blue. These metrics highlighted species richness, diversity, and
evenness at different time points. Groups are represented by different colors: 0 is red and 60 days blue. (G)
Linear Discriminant Analysis (LDA) scores of enriched microbial taxa in 60 days. Taxa include Bariatricus
and Butyricimonas genera and the Marinifilaceae family. Higher LDA scores (log10) indicated a greater taxa
contribution to the unique microbial profile at this period, suggesting significant enrichment when compared
to day 0.
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examined the effects of linagliptin combined with metformin, our study focused specifically on vildagliptin as
add-on therapy.

Liao et al.?® investigated the effects of sitagliptin on gut microbiota and demonstrated that microbiota from
sitagliptin-treated T2D patients, when transplanted into germ-free mice fed a high-fat diet (HFD), improved
HFD-induced glucose intolerance in the recipient mice—suggesting that DPP-4 inhibitor-induced microbiota
alterations may at least partially contribute to their hypoglycemic effects.

Recent data have shown that the intestinal microbiota express DPP-4, but human DPP-4i do not efficiently
block this expression?*~*2. Although vildagliptin showed the lowest binding affinity to bacterial DPP-4 when
compared with other human DPP-4i*2, we cannot exclude the possibility that some of our data are secondary to
partial bacterial DPP-4 blockage, in addition to efficient blockage by human DPP-4.

Growing evidence now indicates that gliptins exert neuroprotective effects in diabetes management; patients
with T2D mellitus (T2DM) treated with DPP-4i showed improved functional outcomes and reduced mortality
rates following acute ischemic stroke'*!*. Additionally, elderly diabetic patients with Alzheimer’s disease
receiving sitagliptin also demonstrated enhanced cognitive function®.

Gliptin neuroprotective effects are also substantiated in animal studies; vildagliptin and sitagliptin both
mitigated hippocampal mitochondrial dysfunction and improved learning in adult rats on a high-fat diet>!°.
Pretreatment with linagliptin also reduced brain infarction size following transient middle cerebral artery
occlusion in T2DM mice!!. Notably, gliptin-induced neuroprotection extended beyond diabetic models with
dietary-induced abnormalities, as agents also showed protective effects in Alzheimer’s'>!? and Parkinson’s'
disease models. In non-diabetic animals, gliptins reduced neurodegeneration after acute focal cerebral
ischemia!! and chronic cerebral hypoperfusion'®. Recent research in a stereotactic cryo-lesion model showed
that pre-surgical sitagliptin administration reduced lesion size and activated a neuroprotective cAMP response
element-binding protein pathway in female C57BL/6] mice'®.

Collectively, these findings suggest that gliptins may exert preventive neuroprotective effects in both
diabetic and non-diabetic models. Moreover, chronic or prophylactic vildagliptin administration prevented
neurodegeneration in animal models of Alzheimer’s disease'?, Parkinson’s disease!, diabetic vascular dementia'?,
and insulin resistance induced by a high-fat diet>'°.

Our data showing increased circulating choline and betaine levels after vildagliptin administration suggested
a possible mechanism that accounted, at least in part, for DPP-4i neuroprotective effects. These metabolites can
be increased by the diet and endogenous sources, while betaine is produced by the intestinal microbiota®4’.
Previous studies identified relationships between decreased choline intake and increased risks for cognitive
decline and Alzheimer’s disease*®=>", while a disease-associated reduction in serum choline in Alzheimer’s
disease patients was identified when compared with controls*®. Additionally, patients with cerebral amyloid
angiopathy and cerebral white matter rarefaction had lower choline levels when compared with controls,
emphasizing a putative choline “link” to white matter integrity. Patients with mild cognitive impairment showed
reduced circulating choline levels, with acetylcholine levels unchanged, suggesting that initial Alzheimer’s
disease development may be linked to reduced choline levels, but only in later disease stages is there a reduction
in acetylcholine®. Recent data also suggested that betaine exerted beneficial effects on obesity, diabetes, cancer,
and neurodegenerative diseases’!. The neuroprotective role of betaine may be related to its anti-inflammatory
effects, inhibiting nuclear factor-kB activity and NLRP3 inflammasome activation and counteracting oxidative
stress. Additionally, betaine also alleviates endoplasmic reticulum stress and inhibits apoptosis®>.

We also observed increased IL-10 and IL-4 levels accompanied by decreased MCP-1 and INF-a levels, which
suggested an immunological profile with potentially neuroprotective effects®. IL-10 is an anti-inflammatory
cytokine with neuroprotective effects against multiple sclerosis, traumatic brain injury, amyotrophic lateral
sclerosis, Alzheimer's disease, and Parkinson’s disease’*, with effects partly mediated by attenuating
neuroinflammatory responses®® and promoting axon remyelination®®.

Reduced circulating MCP-1 levels induced by vildagliptin may also have contributed to its neuroprotection
effects, as MCP-1 is a proinflammatory cytokine which breaks down the blood-brain barrier and recruits
and activates glia cells and macrophages®. IL-4 is secreted by Th2 cells and has critical roles in modulating
physiological functions in the central nervous system and mitigating neuroinflammatory processes®®~%’. IL-4
also modulates immune responses and neuroinflammation and was shown to induce neuroprotective and
neurorepair effects in different central nervous system experimental disease models®!. Such neuroprotection
mechanisms are not completely understood, but may include an induced polarized microglial/macrophage
phenotype and gene expression reflecting an M2 microglia phenotype®.

Although increased choline levels may exert neuroprotective effects, this increase, associated with increased
dimethylamine levels, may also increase cardiovascular disease (CVD) risks. A recent meta-analysis showed
that higher circulating choline levels were associated with a higher CVD risk and all-cause mortality®.
Moreover, increased circulating dimethylamine, which is methylamine gut microbiota-dependent, may also
have detrimental cardiovascular risk effects®!. However, previous data also showed that circulating aspartate and
serine levels had negative correlations with CVDs®. Thus, increased aspartate and serine levels induced by
vildagliptin may exert beneficial effects on cardiovascular risk. Taken together, these data suggest that although
DPP-4i improves glycemic control and insulin resistance and increases aspartate and serine levels, increased
circulating choline and dimethylamine levels may prevent any beneficial cardiovascular effects, contributing to
explain the neutral effect on MACE®"~.

While our study did not include functional assays such as fecal microbiota transplantation, our findings reveal
a correlation between vildagliptin treatment and an immunometabolic profile consistent with neuroprotection.
This correlation, supported by existing literature on the individual roles of the metabolites and cytokines we
observed, may contribute to the growing body of evidence regarding the neuroprotective potential of DPP-4
inhibitors.
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Fig. 5. Vildagliptin improved insulin resistance and promoted an intestinal microbial profile linked to
beneficial functions, including SCFA production and an anti-inflammatory cytokine profile. Additionally,
the slight modulation of the microbiota was accompanied by increased metabolite levels associated with
neuroprotection. Together, these findings provide a potential explanation for the neuroprotective effects
observed with DPP-4 inhibitors.

The present study has certain limitations that should be acknowledged. First, we did not assess the isolated
effects of vildagliptin on microbiota modulation and the immunometabolic profile, as all patients were also
receiving metformin, which is known to significantly influence microbiota composition’®”!. Additionally, we
cannot exclude the possibility that improvements in glycemic control themselves contributed to changes in gut
microbiota and intestinal metabolites. Previous studies have demonstrated that glycemic control, independent of
the therapeutic agent used, can modulate the gut microbiota’>”>. However, the patterns of modulation reported
in prior studies differ from those observed with vildagliptin in our study, suggesting that the effects we describe
may be specifically attributable to vildagliptin.

Moreover, the lack of a placebo control group (due to ethical constraints) is another limitation of our study.
Nonetheless, our findings provide valuable insights into the combined effects of vildagliptin on metabolic control,
microbiota modulation, and inflammatory profiles, which collectively may contribute to neuroprotection in a
real-world clinical setting for T2D patients inadequately controlled with metformin alone.

Therefore, despite the absence of a placebo control group, our findings advance the understanding of the
multifaceted actions of vildagliptin—particularly its unique effects on the metabolome and gut microbiota
within this specific patient cohort—which were not fully elucidated in previous studies. We believe that these
novel correlations offer important insights into the potential mechanisms underlying the neuroprotective effects
of DPP-4 inhibitors.

In summary, we showed that vildagliptin improved insulin resistance, induced an intestinal microbial profile
associated with beneficial functions (SCFA production), and an anti-inflammatory cytokine profile. A slightly
modulated microbiota was also accompanied by increased metabolite levels associated with possible roles in
neuroprotection. Combined, these data may contribute to explain some of the neuroprotective effects associated
with DPP-4i (Fig. 5).

Data availability

All the data produced or examined during this study are presented within this article. The 16S rRNA sequence
dataset has been deposited in the BioProject repository (PRJNA1219131 https://dataview.ncbi.nlm.nih.gov/obj
ect/PRINA1219131?reviewer=q28vjp4m2q43pc7mkpbenfq2fk). Licensing rights Figure Title: Fig. 5 Created in
BioRender. Saad, M. (2025) https://BioRender.com/m07k176.
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