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Trauma-induced coagulopathy (TIC) has a high incidence in patients with severe trauma. Patients 
who develop TIC usually have a poor prognosis, characterised by increased organ dysfunction, 
susceptibility to sepsis, and high mortality. Nonetheless, there are still few studies specifically focusing 
on postoperative TIC in severely traumatic patients. Therefore, the aim of this study was to construct 
a machine learning model for early identification of people at high risk of postoperative TIC. This 
retrospective analysis included data of severe trauma patients undergoing surgical treatment from 
January 2013 to February 2023 across four hospitals in China. Data of one hospital (n = 1204) was used 
for the development dataset, while other three hospitals contributed to the external validation dataset 
(n = 863). The study employed various machine learning algorithms, including random forests, logistic 
regression, gradient boosting decision trees, support vector machines, backpropagation artificial 
neural networks, extreme gradient boosting, and naïve Bayes. Model performance was estimated on 
the basis of accuracy, sensitivity, specificity, and area under the curve. In the internal cross-validation 
dataset, Shapley’s additive interpretation was applied to the model with the largest area under the 
receiver operating characteristic curve. TIC occurred in 25.4% (306/1204) and 2.9% (25/863) of patients 
in the developing and external validation set, respectively. Among the models evaluated, the Random 
Forest model demonstrated the highest performance, achieving an area under the curve of 0.82 for 
the test cohort and 0.73 for the external validation cohort. The findings suggest that machine learning 
models can effectively identify severely traumatized patients at a higher risk of postoperative trauma-
induced coagulopathy. Utilizing machine learning may enhance clinical decision-making and improve 
management strategies for postoperative coagulation issues.
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Trauma Induce Coagulopathy (TIC), a coagulation disorder that occurs after trauma, is a common complication 
of trauma. Its pathophysiology involves a complex interplay of endothelial dysfunction, inflammatory responses, 
and immune system mediators1. Furthermore, external factors such as hemodilution and hypothermia 
exacerbate its progression2.

The incidence of TIC, although varying depending on the study population and diagnostic criteria, is 
overall significantly higher with increasing trauma severity3. Increases significantly with increasing trauma 
severity, to approximately 25% in severely traumatized patients4. Trauma patients with TIC are at increased 
risk for mortality, transfusion requirements, and adverse outcomes5,6. First, organ dysfunction, sepsis, and 
mortality are significantly increased in patients with TIC. In addition, this patient population places greater 
demands on hospital resources, requiring more transfusions and ventilator support, and longer intensive care 
and hospitalization7–9. Specifically, one study found that patients with comorbid TIC had a significantly higher 
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mortality rate, which was four times that of patients without TIC (46.0% vs. 10.9%; P < 0.001)7. Further studies 
supported this finding, showing that 29% of patients in the TIC group developed multiple organ failure, and that 
the early in-hospital mortality rate (< 24 h) in patients with TIC was 13%, with an overall in-hospital mortality 
rate of 28% 10. Similarly, it has been shown that patients with comorbid TIC not only have increased mortality, 
organ damage, and transfusion requirements, but are also significantly associated with a reduction in ventilator-
free days in the Intensive Care Unit (ICU) and with a predisposition to post-traumatic ventilator-associated 
pneumonia9.

However, in clinical practice, we may overlook TIC occurring in trauma patients post-surgery. Patients 
requiring surgery are particularly vulnerable to hypothermia due to extended exposure in the operating theater, 
increased fluid administration, and general anesthesia. Hypothermia worsens acidosis and contributes to 
coagulopathy by impairing platelet function11. Existing predictive models for early trauma coagulopathy do 
not adequately address TIC in patients post-surgery12. Furthermore, these models lack the accuracy needed to 
reliably guide treatment decisions13.

Machine learning is a branch of artificial intelligence and an important data mining tool. In recent years, 
with the development of structured electronic medical records and medical big data, machine learning has 
been increasingly used in the field of trauma, such as radiological image recognition of trauma patients and 
monitoring of injury changes. Li et al.14 developed a machine-learning prediction model to assess the risk of 
postoperative transfer to the ICU, complications, and delayed discharge in hip fracture patients, and the results 
showed that the model demonstrated good results in predicting the accuracy of postoperative transfer to the ICU, 
complications, and delayed discharge. Kazuya Matsuo et al.15 used a machine-learning constructed model to 
predict the hospitalization following traumatic brain injury complications and mortality during hospitalization 
with an AUC of 0.895, which plays a positive role in the management and treatment of traumatic encephalopathy 
patients during hospitalization.

The aim of this study was to create a TIC risk prediction model for severely traumatic patients after surgical 
interventions with the aim of identifying those at high risk of developing TIC after surgery.

Methods
Ethics
The study proposal was approved by the ethics committees of Chongqing Emergency Medical Center (No. 
202348), Daping Hospital (No.2023261), The PLA Rocket Force Characteristic Medical Center (No. KY2023037), 
General Hospital of Southern Theater Command of PLA (No. NZLLKZ2024021). Informed consent was waived 
by each committee. The methods were conducted in accordance with the principles outlined in the Declaration 
of Helsinki. The study was registered with the China Clinical Trial Centre under the registration number 
(ChiCTR2300078097).

Study population
This is a retrospective study. The data for this study were collected retrospectively from four hospitals in China, 
involving 9054 trauma patients admitted to hospital from January 2013 to January 2023 for surgical treatment. 
Inclusion criteria were as follows: patients who underwent surgical treatment after trauma and were ≥ 18 years 
old. Exclusion criteria: non-traumatic surgery, preoperative TIC, age < 18 years, ISS score < 16, and > 20% missing 
sample data.

Outcome definition
The main outcome of this study was development of TIC defined as following: activated partial thromboplastin 
time (APTT) > 60 s or prothrombin time (PT) > 18 s or international normalized ratio (INR) > 1.5 16,17.

Data collection
The following variables were captured from the electronic patient record system. Demographic characteristics (sex, 
weight, age), preoperative comorbidities (hypertension, coronary heart disease, diabetes, chronic kidney disease 
[CKD], cerebrovascular disease, chronic obstructive pulmonary disease [COPD], injury situation (mechanism 
of injury, location of injury), preoperative situation (injury severity score [ISS], systolic blood pressure, heart 
rate, diastolic blood pressure, shock, American Society of Anesthesiologists [ASA], emergency), preoperative 
intervention (blood transfusion, haemostatic drugs, tracheal intubation, vasopressor, interventional procedure), 
intraoperative interventions (type of anaesthesia, sodium bicarbonate, vasopressor [intraoperative], warming 
equipment, operation time, blood loss, autologous blood, plasma, crystalloid, colloid, urine output, haemostatic 
drugs[intraoperative], Temperature [postoperative]), preoperative laboratory tests (red cell distribution width 
[RDW], white blood cell count [WBC], red blood cell count [RBC], hemoglobin [HGB], platelet distribution 
width [PDW], hematocrit [HCT], platelet [PLT], neutrophils% [Neu%], neutrophil count [Neu], mean platelet 
volume [MPV], Urea, creatinine [Cr], sodium, potassium, calcium, total protein, albumin, globulin, total 
bilirubin [TBil], aspartate aminotransferase [AST], alanine aminotransferase [ALT], APTT, fibrinogen [Fib], 
PT, INR), and TIC.

Data preprocessing and variable selection
In this study, for categorical variables, we employed multinomial interpolation, while for continuous variables, 
mean interpolation was utilized. Variables with missing values exceeding 20% were removed from the analysis. 
Use MinMaxScaler to normalise the preprocessed data. The Fisher Score evaluation system18 from Python’s 
Scikit-learn library was employed to calculate and rank scores for each feature, and insignificant features 
were subsequently eliminated. This systematic approach aids in identifying influential variables crucial for 
constructing accurate predictive models.
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Development of machine learning models
We constructed seven commonly used machine learning models: Backpropagation Artificial Neural Network 
(ANN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), 
Random Forest (RF), Gradient Boosted Decision Tree (GBDT), and Naive Bayesian (NB). ANN and XGBoost 
are suitable for high-dimensional complex data, ANN is used for deep learning tasks and XGBoost performs 
well in integrated learning. SVM is suitable for high dimensional and small sample classification problems. 
Logistic Regression is simple and intuitive, suitable for binary classification problems, and the model is highly 
explanatory. Random Forest and GBDT are suitable for complex nonlinear data, especially when the data is 
noisy, the former enhances the stability by integrating trees, and the latter improves the accuracy by gradient 
boosting. Naive Bayes is suitable for handling text classification and data with high dimensionality but strong 
feature independence. Previous studies have demonstrated the stability of these models19.

The study employed a single-center data derivation model. The training and testing sets were split in a 7:3 
ratio, and five-fold cross-validation was employed. Each fold involved dividing the clinical dataset into five 
sections, with one part used as the validation set and the remaining four sections used for training the machine 
learning models. To address class imbalance between positive and negative categories, the training set was 
preprocessed using Synthetic Minority Oversampling Technique (SMOTE) 20. The final model evaluation results 
represent the average performance across the five folds, providing a robust assessment of model generalization. 
Evaluation metrics such as accuracy, sensitivity, specificity, area under the curve (AUC), positive predictive value 
(PPV), and negative predictive value (NPV) were calculated to assess model performance. These metrics were 
essential for evaluating the models’ suitability for clinical decision-making. Additionally, Receiver Operating 
Characteristic (ROC) curves were plotted for each model to visualize and compare the AUC values, highlighting 
differences in performance.

Feature importance and model interpretability analysis
Based on the results of model evaluation, we identified the best-performing machine learning models. Feature 
importance analysis was conducted on these models to assess the impact of features on predictions. Each 
feature’s importance was determined using the model’s internal mechanisms. We focused on the top 20 features 
and ranked them according to their importance. A feature importance map was generated to visualize these 
rankings effectively. Additionally, SHapley Additive exPlanations (SHAP) analysis was employed to interpret the 
model results further. Through SHAP’s single-sample exPlan analysis, we gained insights into how each feature 
contributes to predictions for individual samples. This approach provided a detailed understanding of feature 
contributions in predicting the risk of postoperative traumatic coagulopathy in trauma patients.

External validation
To validate our model, data were collected from three participating hospitals for external validation. We extracted 
the same features as used in the model and included a total of 863 case samples in the external validation set.

Statistic analysis
In descriptive statistics, categorical variables were compared between the development and external groups and 
between the train and validation sets using chi-square tests or the Fisher’s exact test. Differences in continuous 
variables were estimated using Student’s t-test or rank sum test. Statistical significance was defined as P < 0.05. 
Analyses were conducted using SPSS Statistics (version 27; IBM, Armonk, NY) and PyCharm (version 2022.3.2; 
JetBrains, Prague, Czech Republic) to ensure that rigorous statistical procedures were followed throughout the 
study.

Results
Initially, the study included 9054 cases. After excluding non-trauma patients (N = 8), those with preoperative 
coagulopathy (n = 35), age < 18 years (n = 5), ISS score < 16 (n = 6850), and cases with > 20% missing sample 
variables (n = 89), a total of 2067 cases were included in the study, as illustrated in Fig. 1.

Table  1 presents the baseline characteristics of the development cohort, the median age was 51 (38–61) 
and 314 were male (26.1%); the overall incidence of TIC was 25.4%. There was no significant difference in 
demographics and preoperative comorbidities between the two groups (P > 0.05); however, there was significant 
difference in the mechanism of injury, preoperative conditions (shock, emergency surgery, ISS, ASA, heart rate), 
preoperative interventions (hemostatic drugs, endotracheal intubation, vasoactive medications), intraoperative 
interventions (anesthetic modality, bicarbonate, vasoactive medications, hemostatic drugs, operation time, 
hemorrhage, autologous blood, plasma, crystalloid, colloid, temperature), and preoperative tests (WBC, PLT, 
Neu, Neu%, RDW, MPV, urea, Cr, calcium, total proteins, albumin, globulin, ALT, APTT, PT, INR, and Fib) 
(P < 0.05).

Table 2 presents the baseline characteristics of the development cohort and the externally validated data. 
The incidence of postoperative TIC was 25.4% (306/1204) in the development cohort and 2.9% (25/863) in 
the external validation data. Variables that showed significant differences (p < 0.05) between the two cohorts 
included Injury situation (Mechanism of Injury, Location of Injury) preoperative factors (shock, emergency, 
ASA classification, ISS, heart rate), preoperative interventions (interventional procedure, blood transfusion, 
hemostatic drugs, tracheal intubation, vasopressors), preoperative laboratory tests (WBC, RBC, HGB, HCT, 
Neu%, Neu, RDW, PDW, MPV, Cr, sodium, potassium, calcium, albumin, globulin, TBiL, AST, APTT, PT, 
INR, Fib), intraoperative interventions (type of anesthesia, sodium bicarbonate, intraoperative vasopressors, 
tourniquet, warming equipment, intraoperative hemostatic drugs, operation time, blood loss, autologous blood, 
crystalloid, colloid, urine output, intraoperative temperature), TIC. Table 3 shows the one-way analyses of the 
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training and test sets, the results of which show no significant differences in all variables between the two groups 
(p > 0.05).

Figure 2 displays the Fisher scores in descending order, aiding in the selection of the optimal subset of features 
for the seven models. Ultimately, the top 32 variables were chosen for model training.

To assess the machine learning model’s performance, we partitioned the data into training and test sections 
in a 7:3 ratio and conducted five-fold cross-validation. Table 4 summarizes the results of the model evaluation. 
Additionally, ROC curves for visual comparison are depicted in Fig. 3.

Fig. 1.  Patient selection and dataset segmentation flowchart.
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Variables
Non-TIC Group
n = 898

TIC Group
n = 306 P value

Demographic

Sex Male 232(25.8%) 82(26.8%) 0.741

Age 51(39–59) 52(37–65) 0.089

Preoperative comorbidities

Hypertension 89(9.9%) 33(10.8%) 0.662

Coronary Heart Disease 7(0.8%) 3(1.0%) 0.721

Diabetes 35(3.9%) 21(6.9%) 0.033

Cerebrovascular Disease 9(1.0%) 2(0.2%) 0.739

COPD 13(1.4%) 4(1.3%) 1

CKD 2(0.2%) 1(0.3%) 1

Injury situation

Mechanism of Injury 0.027

Traffic accidents 475(39.4%) 173(56.5%)

Drop from height 244(27.2%) 65(21.2%)

fall 70(7.8%) 37(12.1%)

Sharp instrumental injury 33(3.7%) 10(3.3%)

Others 77(8.6%) 20(6.5%)

Location of Injury 0.027

Head and Neck 475(39.4%) 173(56.5%)

Face 244(27.2%) 65(21.2%)

Chest 70(7.8%) 37(12.1%)

Abdominal 33(3.7%) 10(3.3%)

Limbs and Pelvis 77(8.6%) 20(6.5%)

Appearance

Multiple injuries 688(76.6%) 219(71.6%)

Preoperative situation

Shock 150(16.7%) 127(41.5%) < 0.001

Emergency 472(52.6%) 248(81.1%) < 0.001

ASA Classification < 0.001

I 2(0.2%) 0(0.0%)

II 354(39.4%) 73(23.9%)

III 430(47.9%) 136(44.4%)

IV 100(11.1%) 76(24.8%)

V 12(1.3%) 21(6.9%)

ISS score 18.5(17–22) 21(17–27) < 0.001

Systolic Blood Pressure (mmHg) 122(108–137) 122.5(98.3–142) 0.903

Diastolic Blood Pressure (mmHg) 77(67–85) 74.5(62–86) 0.193

Heart rate (BPM) 86(78–101) 90(78–114) < 0.001

Preoperative intervention

Interventional Procedure 37(4.1%) 12(3.9%) 0.879

Blood transfusion 75(8.4%) 21(6.9%) 0.406

Haemostatic drugs 539(60.0%) 133(43.5%) < 0.001

Tracheal Intubation 60(6.7%) 65(21.2%) < 0.001

Vasoperssor 447(49.8%) 261(85.3%) < 0.001

Preoperative laboratory tests

WBC (109/L) 11.2(7.87–16.04) 14.9(10.06–19.67) < 0.001

RBC (1012/L) 3.71(3.17–4.28) 3.66(3.13–4.23) 0.385

HGB (g/L) 113(95–132) 111(95-129.5) 0.199

HCT (%) 34.6(29.3–39.5) 33.5(28.9–38.7) 0.191

PLT (109/L) 199(149–259) 182.5(134–227) < 0.001

Neu% (%) 83.7(77.4–88.9) 85.4(80.7–89.7) 0.012

Neu (109/L) 9.42(6.12–14.2) 12.64(8.10-17.51) < 0.001

RDW (%) 12.7(12.3–13.4) 12.9(12.3–13.8) 0.005

PDW (%) 16.2(16.0-16.5) 16.3(16-16.5) 0.116

MPV (fL) 10.1(9.2–11.1) 10.2(9.3–11.4) 0.022

Continued
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Evaluate model performance by AUC, Sensitivity, specificity, PPV and NPV. The RF machine learning model, 
selected after evaluation, was utilized to analyze risk factors for postoperative TIC in trauma patients. This analysis 
was based on the results of built-in feature importance and SHAP analysis, aiming to construct a predictive 
model for postoperative TIC risk. Figure 4 presents the top 20 features and their importance according to the 
RF model’s built-in feature analysis. Key risk factors identified include colloid, temperature (postoperative), PT, 
INR, crystalloid, PLT, calcium, and vasopressor [intraoperative], hemostatic drugs.

SHAP is a tool used to interpret machine learning model predictions by visualizing the contribution of each 
feature. It provides insights into both the direction and magnitude of each feature’s impact on model predictions. 
Figure 5 illustrates a summary plot of SHAP analysis for the RF model, highlighting the positive and negative 
contributions of features to predicting postoperative TIC in trauma patients. By examining the distribution of 
SHAP values, we identify features significantly influencing prediction outcomes. For instance, higher SHAP 
values for Colloid indicate greater impact on predicting TIC risk. The red distribution signifies samples with 
high feature values, correlating positively with prediction outcomes, suggesting higher risk for TIC. Conversely, 
the blue distribution indicates samples with low feature values, which negatively impact predictions, indicating 
lower TIC risk.

Figure 6 presents SHAP-specific instance plots, detailing how each feature influences TIC prediction in 
individual samples, along with predicted values. This aids in assessing each patient’s risk for postoperative TIC.

For external validation, we collected 4594 samples from three additional centers. After applying exclusion 
criteria, 863 patient samples formed the external validation set. The RF model trained earlier was applied to this 
set, resulting in an AUC value of 0.73. Figure 7 displays the ROC curve for external validation. Table 5 show the 
performance of RF model in the external validation.

Discussion
In this study, seven machine learning models were successfully constructed, of which the RF model outperformed 
the others in terms of performance, showing good performance in predicting and categorizing this data. Through 
feature importance analysis and SHAP interpretability analysis, the selected features were ranked according to 

Variables
Non-TIC Group
n = 898

TIC Group
n = 306 P value

Cr (umol/L) 6.1(4.8–7.4) 6.6(5.1–7.4) < 0.001

Urea (umol/L) 63.6(53.3–75) 68.5(59-81.1) 0.001

Sodium (mmol/L) 138.1(135.7-140.6) 138.3(135.7-141.5) 0.094

Potassium (mmol/L) 3.86(3.55–4.23) 3.76(3.3–4.43) 0.113

Calcium (mmol/L) 2.12(2.04–2.20) 2.09(2.00-2.15) < 0.001

Total Protein (g/L) 60.4(55.9–65.1) 59.5(52.3–62.9) < 0.001

Albumin (g/L) 38.1(34.8-40.35) 36.2(33.6-40.35) 0.001

Globulin (g/L) 22(19–25) 22(18–24) < 0.001

TBiL (umol/L) 14.8(10.4–20.7) 13.9(10.1–19.1) 0.28

AST (U/L) 35(21–63) 38.5(23–68) 0.101

ALT (U/L) 43(27–71) 54(33.5–79.5) < 0.001

APTT (s) 34.5(31.9–38.3) 36.0(32.8–40.1) < 0.001

PT (s) 13.8(13.5–14.5) 14.6(13.7–15.8) < 0.001

INR 1.07(1.01–1.13) 1.15(1.08–1.26) < 0.001

Fib (g/L) 3.01(2.13–4.59) 2.36(1.69–3.99) < 0.001

Intraoperative interventions

Type of Anaesthesia General anaesthesia 809(90.1%) 294(96.1%) 0.001

Sodium Bicarbonate 37(4.1%) 83(27.1%) < 0.001

Vasoperssor (intraoperative) 447(49.8%) 261(85.3%) < 0.001

Tourniquet 49(5.5%) 12(3.9%) 0.29

Warming Equipment 309(34.4%) 118(38.6%) 0.19

Haemostatic drugs(intraoperative) 5(0.6%) 9(2.9%) 0.002

Operation
Time (min) 160(115–225) 180.5(135.5–255) 0.001

Blood Loss (mL) 300(100–500) 500(200–1200) < 0.001

Autologous Blood (mL) 0.0(0.0–0.0) 0.0(0.0-250) < 0.001

Plasma (mL) 0(0.0–0.0) 0(0.0-400) < 0.001

Crystalloid (mL) 1100(900–1600) 1500(1000–2200) < 0.001

Colloid (mL) 500(500–1000) 1000(1000–1500) < 0.001

Urine (mL) 300(200–500) 325(200–600) 0.063

Temperature(postoperative) [℃] 36.6(36.3–36.9) 36.5(36.0-36.8) < 0.001

Table 1.  Baseline characteristics of study population in development Cohort.
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Variables
Development Cohort
n = 1204 External Cohort n = 863 P value

Demographic

Sex Male 314 (26.1%) 209 (24.2%) 0.337

Age 51(38–61) 49(40–58) 0.075

Preoperative comorbidities

Hypertension 122(10.1%) 81(9.4%) 0.574

Coronary Heart Disease 10(0.8%) 14(1.6%) 0.098

Diabetes 56(4.7%) 33(3.8%) 0.361

Cerebrovascular Disease 11(0.9%) 16(1.9%) 0.063

COPD 17(1.4%) 22(2.5%) 0.061

CKD 3(0.2%) 6(0.7%) 0.177

Injury situation

Mechanism of Injury < 0.001

Traffic accidents 648(53.8%) 377(43.7%)

Drop from height 309(25.7%) 376(43.6%)

fall 107(8.9%) 12(1.4%)

Sharp instrumental injury 43(3.6%) 7(0.8%)

Others 97(8.1%) 91(10.5%)

Location of Injury < 0.001

Head and Neck 186(15.4%) 141(16.3%)

Face 0(0.0%) 0(0.0%)

Chest 14(1.2%) 108(12.5%)

Abdominal 26(2.2%) 67(7.8%)

Limbs and Pelvis 71(5.9%) 173(20.0%)

Appearance 0(0.0%) 0(0.0%)

Multiple injuries 907(75.3%) 374(43.3%)

Preoperative situation

Shock 277 (23.0%) 120 (13.9%) < 0.001

Emergency 720 (59.8%) 194 (22.5%) < 0.001

ASA Classification < 0.001

I 2 (0.2%) 40 (4.6%)

II 427 (35.5%) 477 (55.3%)

III 566 (47.0%) 283 (32.8%)

IV 176 (14.6%) 59 (6.8%)

V 33 (2.7%) 4 (0.5%)

ISS score 19 (17–22) 22 (18–29) < 0.001

Systolic Blood Pressure (mmHg) 122(104–138) 123(110–136) 0.063

Diastolic Blood Pressure (mmHg) 76(66–85) 74(66–84) 0.218

Heart rate (BPM) 85 (76–103) 88 (79.5–102) 0.005

Preoperative intervention

Interventional Procedure 49(4.1%) 4(0.5%) < 0.001

Blood transfusion 96(8.0%) 160(18.5%) < 0.001

Haemostatic drugs 672 (55.8%) 118 (13.7%) < 0.001

Tracheal Intubation 125 (10.4%) 167 (19.4%) < 0.001

Vasoperssor 708 (58.8%) 127 (14.7%) < 0.001

Preoperative laboratory tests

WBC (109/L) 12.01 (8.21–17.36) 9.64 (7.30-13.03) < 0.001

RBC (1012/L) 3.70(3.17–4.28) 3.45(2.95–3.99) < 0.001

HGB (g/L) 113(96–132) 103(89–120) < 0.001

HCT (%) 34.5(29.3–39.4) 32.1(27.3–36.0) < 0.001

PLT (109/L) 194 (146–249) 186 (130-268.5) 0.154

Neu% (%) 84.4(77.8–89.1) 81.5(75.0–87.0) < 0.001

Neu (109/L) 10.09 (6.42–15.12) 7.71 (5.52–11.09) < 0.001

RDW (%) 12.8(12.3–13.5) 13.3(12.5–14.1) < 0.001

PDW (%) 16.2(16.0-16.5) 15.5(12.2–16.5) < 0.001

MPV (fL) 10.1(9.25–11.2) 10.6(9.9–11.6) < 0.001

Continued
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the importance and frequency of occurrence of each feature in the RF model, which led to the identification 
of a number of factors that have a significant impact on the risk of postoperative TIC in severely traumatized 
patients.

For instance, fluid resuscitation using crystalloid and colloid fluids has been linked to dilutional coagulopathy 
and poorer post-trauma outcomes21. Hewson previously investigated 68 patients who underwent massive 
transfusions, noting that coagulation disorders were prevalent following crystalloid administration, with 
prolonged APTT correlating with the volume of crystalloids administered22. Furthermore, a retrospective 
single-center trial in the United States demonstrated a higher mortality rate among trauma patients who 
received more than 1.5 L of crystalloids in the emergency department23. Another study highlighted that patients 
receiving ≥ 5 L of crystalloids within 24 h of injury faced increased risks of mortality due to trauma-induced 
multiorgan dysfunction and persistent coagulation disorders24.

Body temperature and calcium levels are crucial factors influencing coagulation, as evidenced by findings 
from this study. Postoperative body temperature was identified as a significant risk factor for TIC in trauma 
patients. Previous research indicates that hypothermia adversely affects platelet function and coagulation factor 
activity, thereby contributing to coagulation dysfunction11. Additionally, studies have shown that hypocalcemia 
can lead to endotheliopathy, increased blood transfusions, heightened use of vasoactive drugs, and independently 
increase the risk of TIC25.

Variables
Development Cohort
n = 1204 External Cohort n = 863 P value

Cr (umol/L) 12.8(12.3–13.5) 13.3(12.5–14.1) < 0.001

Urea (umol/L) 6.23 (4.9–7.4) 6.07 (4.66–7.69) 0.726

Sodium (mmol/L) 138.2 (135.7-140.8) 137.3 (135.6-139.6) < 0.001

Potassium (mmol/L) 3.85 (3.51–4.25) 4.08 (3.77–4.52) < 0.001

Calcium (mmol/L) 2.10 (2.03–2.19) 2.09 (2.07–2.09) < 0.001

Total Protein (g/L) 59.8 (55.0-64.9) 59.5 (54.3–64.5) 0.098

Albumin (g/L) 37.6 (34.5–41.1) 34.0 (29.8–37.8) < 0.001

Globulin (g/L) 22.0 (19.0–25.0) 24.9 (22.6–28.6) < 0.001

TBiL (umol/L) 14.5(10.3–20.2) 18.6(13.4–23.8) < 0.001

AST (U/L) 32.0(22.0–67.0) 50.3(30.7–74.9) < 0.001

ALT (U/L) 45.0(28.0-71.5) 43.4(27.3–71.0) 0.067

APTT (s) 35.0 (32.2–38.8) 29.0 (26.9–31.6) < 0.001

PT (s) 13.9 (13.4–14.8) 12.1 (11.3–13.1) < 0.001

INR 1.08 (1.02–1.16) 1.05 (0.98–1.13) < 0.001

Fib (g/L) 2.89(2.03–4.36) 4.03(2.88–4.88) < 0.001

Intraoperative interventions

Type of Anaesthesia General anaesthesia 1103 (91.6%) 663 (76.8%) < 0.001

Sodium Bicarbonate 120 (5.8%) 6 (0.7%) < 0.001

Vasoperssor (intraoperative) 708 (58.8%) 166 (19.2%) < 0.001

Tourniquet 61(5.1%) 160(18.5%) < 0.001

Warming Equipment 427(35.5%) 217(25.1%) < 0.001

Haemostatic drugs(intraoperative) 14 (1.2%) 259(30.0%) < 0.001

Operation
Time (min) 165.0 (116.0-225.0) 230.0 (164.5–320.0) < 0.001

Blood Loss (mL) 300 (100–600) 300 (100–500) < 0.001

Autologous Blood (mL) 0.0 (0.0–0.0) 0.0 (0.0–0.0) < 0.001

Plasma (mL) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.125

Crystalloid (mL) 1200 (1000–1700) 1100 (700–1600) < 0.001

Colloid (mL) 700 (500–1000) 847 (500–1000) < 0.001

Urine (mL) 300(200–500) 400(200–600) < 0.001

Temperature(postoperative) [℃] 36.5 (36.3–36.8) 36.6 (36.5–37.0) < 0.001

Outcome indicator TIC 306 (25.4%) 25 (2.9%) < 0.001

Table 2.  Baseline characteristics of study population in development and external Cohort. ASA, American 
Society of Anesthesiologists; CKD, chronic kidney disease, cerebrovascular disease, COPD, chronic obstructive 
pulmonary disease; WBC, white blood cell count; RBC, red blood cell count; HGB, hemoglobin; HCT, 
hematocrit; PLT, platelet; Neu%, neutrophils%; Neu, neutrophil count; RDW, red cell distribution width; 
PDW, platelet distribution width; MPV, mean platelet volume; Cr, creatinine; TBil, total bilirubin; AST, 
aspartate aminotransferase; ALT, alanine aminotransferase; APTT, activated partial thromboplastin time; PT, 
prothrombin time; INR, international normalized ratio; Fib, fibrinogen; TIC, trauma-induced coagulopathy.
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The results of this study have important implications for perioperative management of trauma patients. 
The results of this model may provide valuable guidance for perioperative resuscitation and postoperative 
coagulation management. Several models have been previously developed to recognize patients at risk of TIC. 
For example, Cosgriff et al. created a simple Score using criteria such as systolic blood pressure < 70 mmHg, 
temperature < 34 °C, ISS > 25 and pH < 7.1 (22). The inherent limitation of this score is its dependence on the 

Variables
Train set
n = 842

Test set
n = 362 P value

Preoperative situation

Shock 194 (23%) 83 (22.9%) 0.966

Emergency 496 (58.9%) 224 (61.9%) 0.335

ASA Classification 0.261

I 2 (0.2%) 0 (0.0%)

II 293 (34.8%) 134 (37.0%)

III 410 (48.7%) 156 (43.1%)

IV 117 (13.9%) 59 (16.3%)

V 20 (2.4%) 13 (3.6%)

ISS score 19 (17–22) 19 (17–22) 0.492

Heart rate 85 (77–103) 85 (75–102) 0.535

Preoperative intervention

Hemostatic drugs 463 (55.5%) 209 (57.7%) 0.397

Tracheal Intubation 87 (10.3%) 38 (10.5%) 0.932

Vasopressor 495 (58.8%) 213 (58.8%) 0.987

Preoperative laboratory tests

WBC (109/L) 12.25 (8.25–17.37) 11.63 (8.10-17.35) 0.5

PLT (109/L) 195 (146–252) 190 (147–245) 0.532

Neu (109/L) 10.26 (6.48–15.13) 9.83 (6.39–15.12) 0.507

Urea (umol/L) 6.22 (4.9–7.4) 6.27 (4.81–7.38) 0.97

Sodium (mmol/L) 138.2 (135.7-140.5) 138.1 (135.7-141.1) 0.764

Potassium (mmol/L) 3.83 (3.49–4.22) 3.88 (3.54–4.35) 0.105

Calcium (mmol/L) 2.1 (2.03–2.2) 2.09 (2.03–2.19) 0.642

Total Protein (g/L) 59.9 (55.7–65) 59.5 (54.3–64.5) 0.176

Albumin (g/L) 37.6 (34.6–41.1) 37.6 (34.5–41.3) 0.944

Globulin (g/L) 22 (19–25) 21 (19–24) 0.006

APTT (s) 34.9 (32.2–38.7) 35.2 (32.1–39.6) 0.503

PT (s) 13.9 (13.4–14.7) 13.9 (13.4–14.8) 0.38

INR 1.08 (1.02–1.15) 1.08 (1.02–1.17) 0.477

Intraoperative interventions

Type of Anaesthesia 773 (91.8%) 330 (91.2%) 0.711

Sodium Bicarbonate 90 (10.7%) 30 (8.3%) 0.202

Vasopressor (intraoperative) 495 (58.8%) 213 (58.8%) 0.987

Hemostatic drugs (intraoperative) 10 (1.2%) 4 (1.1%) 0.902&

Operation
Time (min) 165 (116–229) 160 (115–222) 0.268

Blood Loss (mL) 300 (100–700) 300 (100–600) 0.376

Autologous Blood (mL) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.491

Plasma (mL) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.23

Crystalloid (mL) 1200 (1000–1700) 1100 (1000–1700) 0.342

Colloid (mL) 700 (500–1000) 600 (500–1000) 0.824

Temperature(postoperative) [℃] 36.5(36.3–36.9) 36.5(36.3–36.8) 0.861

Outcome indicator TIC 214(25.4%) 92(25.4%) 1.000

Table 3.  The one-way analyses of the training and test sets. ASA, American Society of Anesthesiologists; 
CKD, chronic kidney disease, cerebrovascular disease, COPD, chronic obstructive pulmonary disease; WBC, 
white blood cell count; RBC, red blood cell count; HGB, hemoglobin; HCT, hematocrit; PLT, platelet; Neu%, 
neutrophils%; Neu, neutrophil count; RDW, red cell distribution width; PDW, platelet distribution width; 
MPV, mean platelet volume; Cr, creatinine; TBil, total bilirubin; AST, aspartate aminotransferase; ALT, alanine 
aminotransferase; APTT, activated partial thromboplastin time; PT, prothrombin time; INR, international 
normalized ratio; Fib, fibrinogen; TIC, trauma-induced coagulopathy.
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ISS, which may not always be readily available due to diagnostic uncertainty. Recently, two predictive scoring 
systems have been developed to predict TIC risk using prehospital information. Mitra et al. proposed a 
score that combines early available predictors, including systolic blood pressure < 100 mmHg or < 90 mmHg, 
temperature < 35 °C, injury to abdominal or pelvic contents, and chest decompression26. Meanwhile, Peltan et al. 
developed the Trauma Acute Coagulopathy Score using six predictors including prehospital shock index ≥ 1, age, 
mechanism of injury (excluding motor vehicle, motorbike, or bicycle collisions), GCS score below 15, prehospital 
cardiopulmonary resuscitation, and prehospital tracheal intubation27. These models are highly regarded for their 
simplicity and ease of use, but due to limitations in predictor selection and continuous variable dichotomisation, 
they may not fully reflect the complexity of the underlying pathophysiological processes. Subsequently, Perkins 
et al. used artificial intelligence and machine learning techniques to advance Bayesian network models to predict 
TIC. The model extracts predictors from prospective studies, minimising the risk of overfitting, and therefore 
excels in accuracy and adaptability to missing data28. However, although these scoring systems are designed 
to predict TIC, they may not encompass intraoperative factors that are critical for trauma patients undergoing 
surgical intervention. Such patients may be affected not only by initial trauma but also by perioperative fluid 
resuscitation, and therefore the above models may not be sufficient to predict them fully.

We leveraged domain knowledge in machine learning to develop a robust risk prediction model for 
postoperative TIC in trauma patients. During external validation, the model was directly tested using data from 
various centers. It is important to note that the model’s performance may vary when applied to different hospitals 
due to variations in surgical types and case characteristics. As can be seen from Table 1, there are many variables 
with statistically significant differences between the development cohort and the external cohort which suggests 
that the homogeneity and balance between the two cohorts are poor. This may affect the generalizability and 
stability of the predictive model constructed in the development cohort when undergoing external validation. 

Model AUC accuracy sensitivity specificity PPV NPV

model_LR 0.798 0.749 0.717 0.759 0.504 0.887

model_SVM 0.799 0.738 0.728 0.741 0.489 0.888

model_RF 0.820 0.735 0.761 0.726 0.486 0.897

model_GBDT 0.808 0.768 0.620 0.819 0.538 0.863

model_XGBoost 0.799 0.782 0.576 0.852 0.570 0.855

model_ANN 0.801 0.740 0.728 0.744 0.493 0.892

model_BN 0.799 0.765 0.696 0.789 0.529 0.884

Table 4.  Prediction performance of the machine learning models in the test set. LR, logistic regression; 
SVM, support vector machine; GBDT, gradient boosting decision tree; XGBoost, extreme gradient boosting; 
ANN, artificial neural network; NB, naive Bayes; AUC, area under curve; PPV, positive predictive value; NPV, 
negative predictive value.

 

Fig. 2.  Ranking of fisher scores for 62 features.
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However, our study demonstrated that the RF model maintained consistently high predictive performance, 
achieving an externally validated AUC of 0.73. This indicates the model’s robustness and validity across multiple 
centers. Although the predictive performance of the model has decreased, it is hypothesized that it may be 
possible that the external data may reflect a different clinical setting, patient background, or medical practice, 
resulting in a decrease in the predictive ability of the model on the external data. In the external validation we 
had a lower ppv value, because there are only 25 positive samples out of 863 external validation data. This may 
have led to a model bias towards predicting more negative samples, resulting in a higher npv of 0.979 and a 
lower ppv of 0.061. Machine learning models excel in capturing complex relationships and revealing nonlinear 
interactions among variables. Shap’s algorithm, a method for machine learning interpretation, calculates the 
contribution of each feature to predictions based on the Shapley values from game theory. This approach allows 
us to elucidate the impact of each feature on the model’s predictions, providing deeper insights into model 
behavior and enhancing interpretability.

This study represents the first attempt to develop a risk prediction model for postoperative TIC in trauma 
patients. However, several limitations need to be acknowledged. Firstly, the model was developed using 
retrospective data, which may introduce biases into the results. Future validation of the predictive model will 
be essential using prospective multicenter datasets to enhance its robustness and generalizability. Secondly, 

Fig. 3.  ROC of 7 machine learning models.
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our current model relies on a substantial number of features to predict postoperative TIC, potentially limiting 
its practical utility. Future efforts should focus on developing a streamlined prediction model that maintains 
performance while reducing the number of required features. Thirdly, the study only incorporated certain 
clinical variables and laboratory tests. For instance, variables such as lactate levels in intraoperative blood gas 
analysis and base deficit, which reflect metabolism and perfusion responses, were not included. Incorporating 
these variables in future iterations of the model could further optimize its predictive accuracy. Finally, although a 
“black box” analytical interpretation of machine learning was used in this study, it is still unclear how the model 

Fig. 4.  Rank of feature importance of TIC in RF model.
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predicts the outcomes. Relative importance and cross-validation revealed the features on which the model 
mainly relies, but we still have some uncertainty.

Conclusion
In conclusion, this study established and validated seven commonly used machine learning algorithms, 
demonstrating that the RF algorithm outperformed others in predicting postoperative TIC in trauma patients. 
The RF algorithm exhibited robust predictive performance in both internal and external validation sets. These 

Fig. 5.  Summary plots of SHAP values based on the RF models.
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findings highlight its potential utility in screening patients at high risk of postoperative TIC, aiding clinicians in 
making informed clinical decisions and implementing timely interventions.

Fig. 6.  SHAP Force Plot of Predictive Scores for Postoperative TIC Risk in Severely Traumatic Patients 
Corresponding to Specific Examples.
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