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Predicting postoperative trauma-
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with severe injuries by machine
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Trauma-induced coagulopathy (TIC) has a high incidence in patients with severe trauma. Patients

who develop TIC usually have a poor prognosis, characterised by increased organ dysfunction,
susceptibility to sepsis, and high mortality. Nonetheless, there are still few studies specifically focusing
on postoperative TIC in severely traumatic patients. Therefore, the aim of this study was to construct

a machine learning model for early identification of people at high risk of postoperative TIC. This
retrospective analysis included data of severe trauma patients undergoing surgical treatment from
January 2013 to February 2023 across four hospitals in China. Data of one hospital (n=1204) was used
for the development dataset, while other three hospitals contributed to the external validation dataset
(n=863). The study employed various machine learning algorithms, including random forests, logistic
regression, gradient boosting decision trees, support vector machines, backpropagation artificial
neural networks, extreme gradient boosting, and naive Bayes. Model performance was estimated on
the basis of accuracy, sensitivity, specificity, and area under the curve. In the internal cross-validation
dataset, Shapley’s additive interpretation was applied to the model with the largest area under the
receiver operating characteristic curve. TIC occurred in 25.4% (306/1204) and 2.9% (25/863) of patients
in the developing and external validation set, respectively. Among the models evaluated, the Random
Forest model demonstrated the highest performance, achieving an area under the curve of 0.82 for
the test cohort and 0.73 for the external validation cohort. The findings suggest that machine learning
models can effectively identify severely traumatized patients at a higher risk of postoperative trauma-
induced coagulopathy. Utilizing machine learning may enhance clinical decision-making and improve
management strategies for postoperative coagulation issues.
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Trauma Induce Coagulopathy (TIC), a coagulation disorder that occurs after trauma, is a common complication
of trauma. Its pathophysiology involves a complex interplay of endothelial dysfunction, inflammatory responses,
and immune system mediators!. Furthermore, external factors such as hemodilution and hypothermia
exacerbate its progression®.

The incidence of TIC, although varying depending on the study population and diagnostic criteria, is
overall significantly higher with increasing trauma severity’. Increases significantly with increasing trauma
severity, to approximately 25% in severely traumatized patients®. Trauma patients with TIC are at increased
risk for mortality, transfusion requirements, and adverse outcomes™®. First, organ dysfunction, sepsis, and
mortality are significantly increased in patients with TIC. In addition, this patient population places greater
demands on hospital resources, requiring more transfusions and ventilator support, and longer intensive care
and hospitalization’=. Specifically, one study found that patients with comorbid TIC had a significantly higher
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mortality rate, which was four times that of patients without TIC (46.0% vs. 10.9%; P< 0.001)”. Further studies
supported this finding, showing that 29% of patients in the TIC group developed multiple organ failure, and that
the early in-hospital mortality rate (<24 h) in patients with TIC was 13%, with an overall in-hospital mortality
rate of 28% !°. Similarly, it has been shown that patients with comorbid TIC not only have increased mortality,
organ damage, and transfusion requirements, but are also significantly associated with a reduction in ventilator-
free days in the Intensive Care Unit (ICU) and with a predisposition to post-traumatic ventilator-associated
pneumonia’.

However, in clinical practice, we may overlook TIC occurring in trauma patients post-surgery. Patients
requiring surgery are particularly vulnerable to hypothermia due to extended exposure in the operating theater,
increased fluid administration, and general anesthesia. Hypothermia worsens acidosis and contributes to
coagulopathy by impairing platelet function'!. Existing predictive models for early trauma coagulopathy do
not adequately address TIC in patients post-surgery'?. Furthermore, these models lack the accuracy needed to
reliably guide treatment decisions!>.

Machine learning is a branch of artificial intelligence and an important data mining tool. In recent years,
with the development of structured electronic medical records and medical big data, machine learning has
been increasingly used in the field of trauma, such as radiological image recognition of trauma patients and
monitoring of injury changes. Li et al.!* developed a machine-learning prediction model to assess the risk of
postoperative transfer to the ICU, complications, and delayed discharge in hip fracture patients, and the results
showed that the model demonstrated good results in predicting the accuracy of postoperative transfer to the ICU,
complications, and delayed discharge. Kazuya Matsuo et al.'® used a machine-learning constructed model to
predict the hospitalization following traumatic brain injury complications and mortality during hospitalization
with an AUC of 0.895, which plays a positive role in the management and treatment of traumatic encephalopathy
patients during hospitalization.

The aim of this study was to create a TIC risk prediction model for severely traumatic patients after surgical
interventions with the aim of identifying those at high risk of developing TIC after surgery.

Methods

Ethics

The study proposal was approved by the ethics committees of Chongqing Emergency Medical Center (No.
202348), Daping Hospital (N0.2023261), The PLA Rocket Force Characteristic Medical Center (No. KY2023037),
General Hospital of Southern Theater Command of PLA (No. NZLLKZ2024021). Informed consent was waived
by each committee. The methods were conducted in accordance with the principles outlined in the Declaration
of Helsinki. The study was registered with the China Clinical Trial Centre under the registration number
(ChiCTR2300078097).

Study population

This is a retrospective study. The data for this study were collected retrospectively from four hospitals in China,
involving 9054 trauma patients admitted to hospital from January 2013 to January 2023 for surgical treatment.
Inclusion criteria were as follows: patients who underwent surgical treatment after trauma and were > 18 years
old. Exclusion criteria: non-traumatic surgery, preoperative TIC, age < 18 years, ISS score < 16, and >20% missing
sample data.

Outcome definition
The main outcome of this study was development of TIC defined as following: activated partial thromboplastin
time (APTT) > 60 s or prothrombin time (PT) > 18 s or international normalized ratio (INR) > 1.5 1617,

Data collection

The following variables were captured from the electronic patient record system. Demographic characteristics (sex,
weight, age), preoperative comorbidities (hypertension, coronary heart disease, diabetes, chronic kidney disease
[CKD], cerebrovascular disease, chronic obstructive pulmonary disease [COPD], injury situation (mechanism
of injury, location of injury), preoperative situation (injury severity score [ISS], systolic blood pressure, heart
rate, diastolic blood pressure, shock, American Society of Anesthesiologists [ASA], emergency), preoperative
intervention (blood transfusion, haemostatic drugs, tracheal intubation, vasopressor, interventional procedure),
intraoperative interventions (type of anaesthesia, sodium bicarbonate, vasopressor [intraoperative], warming
equipment, operation time, blood loss, autologous blood, plasma, crystalloid, colloid, urine output, haemostatic
drugs|intraoperative], Temperature [postoperative]), preoperative laboratory tests (red cell distribution width
[RDW], white blood cell count [WBC], red blood cell count [RBC], hemoglobin [HGB], platelet distribution
width [PDW], hematocrit [HCT], platelet [PLT], neutrophils% [Neu%], neutrophil count [Neu], mean platelet
volume [MPV], Urea, creatinine [Cr], sodium, potassium, calcium, total protein, albumin, globulin, total
bilirubin [TBil], aspartate aminotransferase [AST], alanine aminotransferase [ALT], APTT, fibrinogen [Fib],
PT, INR), and TIC.

Data preprocessing and variable selection

In this study, for categorical variables, we employed multinomial interpolation, while for continuous variables,
mean interpolation was utilized. Variables with missing values exceeding 20% were removed from the analysis.
Use MinMaxScaler to normalise the preprocessed data. The Fisher Score evaluation system'® from Python’s
Scikit-learn library was employed to calculate and rank scores for each feature, and insignificant features
were subsequently eliminated. This systematic approach aids in identifying influential variables crucial for
constructing accurate predictive models.
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Development of machine learning models

We constructed seven commonly used machine learning models: Backpropagation Artificial Neural Network
(ANN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Logistic Regression (LR),
Random Forest (RF), Gradient Boosted Decision Tree (GBDT), and Naive Bayesian (NB). ANN and XGBoost
are suitable for high-dimensional complex data, ANN is used for deep learning tasks and XGBoost performs
well in integrated learning. SVM is suitable for high dimensional and small sample classification problems.
Logistic Regression is simple and intuitive, suitable for binary classification problems, and the model is highly
explanatory. Random Forest and GBDT are suitable for complex nonlinear data, especially when the data is
noisy, the former enhances the stability by integrating trees, and the latter improves the accuracy by gradient
boosting. Naive Bayes is suitable for handling text classification and data with high dimensionality but strong
feature independence. Previous studies have demonstrated the stability of these models'.

The study employed a single-center data derivation model. The training and testing sets were split in a 7:3
ratio, and five-fold cross-validation was employed. Each fold involved dividing the clinical dataset into five
sections, with one part used as the validation set and the remaining four sections used for training the machine
learning models. To address class imbalance between positive and negative categories, the training set was
preprocessed using Synthetic Minority Oversampling Technique (SMOTE) %°. The final model evaluation results
represent the average performance across the five folds, providing a robust assessment of model generalization.
Evaluation metrics such as accuracy, sensitivity, specificity, area under the curve (AUC), positive predictive value
(PPV), and negative predictive value (NPV) were calculated to assess model performance. These metrics were
essential for evaluating the models’ suitability for clinical decision-making. Additionally, Receiver Operating
Characteristic (ROC) curves were plotted for each model to visualize and compare the AUC values, highlighting
differences in performance.

Feature importance and model interpretability analysis

Based on the results of model evaluation, we identified the best-performing machine learning models. Feature
importance analysis was conducted on these models to assess the impact of features on predictions. Each
feature’s importance was determined using the model’s internal mechanisms. We focused on the top 20 features
and ranked them according to their importance. A feature importance map was generated to visualize these
rankings effectively. Additionally, SHapley Additive exPlanations (SHAP) analysis was employed to interpret the
model results further. Through SHAP’s single-sample exPlan analysis, we gained insights into how each feature
contributes to predictions for individual samples. This approach provided a detailed understanding of feature
contributions in predicting the risk of postoperative traumatic coagulopathy in trauma patients.

External validation
To validate our model, data were collected from three participating hospitals for external validation. We extracted
the same features as used in the model and included a total of 863 case samples in the external validation set.

Statistic analysis

In descriptive statistics, categorical variables were compared between the development and external groups and
between the train and validation sets using chi-square tests or the Fisher’s exact test. Differences in continuous
variables were estimated using Student’s t-test or rank sum test. Statistical significance was defined as P<0.05.
Analyses were conducted using SPSS Statistics (version 27; IBM, Armonk, NY) and PyCharm (version 2022.3.2;
JetBrains, Prague, Czech Republic) to ensure that rigorous statistical procedures were followed throughout the
study.

Results

Initially, the study included 9054 cases. After excluding non-trauma patients (N=38), those with preoperative
coagulopathy (n=35), age<18 years (n=5), ISS score<16 (n=6850), and cases with >20% missing sample
variables (n=289), a total of 2067 cases were included in the study, as illustrated in Fig. 1.

Table 1 presents the baseline characteristics of the development cohort, the median age was 51 (38-61)
and 314 were male (26.1%); the overall incidence of TIC was 25.4%. There was no significant difference in
demographics and preoperative comorbidities between the two groups (P> 0.05); however, there was significant
difference in the mechanism of injury, preoperative conditions (shock, emergency surgery, ISS, ASA, heart rate),
preoperative interventions (hemostatic drugs, endotracheal intubation, vasoactive medications), intraoperative
interventions (anesthetic modality, bicarbonate, vasoactive medications, hemostatic drugs, operation time,
hemorrhage, autologous blood, plasma, crystalloid, colloid, temperature), and preoperative tests (WBC, PLT,
Neu, Neu%, RDW, MPYV, urea, Cr, calcium, total proteins, albumin, globulin, ALT, APTT, PT, INR, and Fib)
(P<0.05).

Table 2 presents the baseline characteristics of the development cohort and the externally validated data.
The incidence of postoperative TIC was 25.4% (306/1204) in the development cohort and 2.9% (25/863) in
the external validation data. Variables that showed significant differences (p <0.05) between the two cohorts
included Injury situation (Mechanism of Injury, Location of Injury) preoperative factors (shock, emergency,
ASA classification, ISS, heart rate), preoperative interventions (interventional procedure, blood transfusion,
hemostatic drugs, tracheal intubation, vasopressors), preoperative laboratory tests (WBC, RBC, HGB, HCT,
Neu%, Neu, RDW, PDW, MPV, Cr, sodium, potassium, calcium, albumin, globulin, TBiL, AST, APTT, PT,
INR, Fib), intraoperative interventions (type of anesthesia, sodium bicarbonate, intraoperative vasopressors,
tourniquet, warming equipment, intraoperative hemostatic drugs, operation time, blood loss, autologous blood,
crystalloid, colloid, urine output, intraoperative temperature), TIC. Table 3 shows the one-way analyses of the
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Fig. 1. Patient selection and dataset segmentation flowchart.

training and test sets, the results of which show no significant differences in all variables between the two groups
(p>0.05).

Figure 2 displays the Fisher scores in descending order, aiding in the selection of the optimal subset of features
for the seven models. Ultimately, the top 32 variables were chosen for model training.

To assess the machine learning model’s performance, we partitioned the data into training and test sections
in a 7:3 ratio and conducted five-fold cross-validation. Table 4 summarizes the results of the model evaluation.
Additionally, ROC curves for visual comparison are depicted in Fig. 3.
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Non-TIC Group | TIC Group
Variables n=_898 n=306 Pvalue
Demographic
Sex Male 232(25.8%) 82(26.8%) 0.741
Age 51(39-59) 52(37-65) 0.089
Preoperative comorbidities
Hypertension 89(9.9%) 33(10.8%) 0.662
Coronary Heart Disease 7(0.8%) 3(1.0%) 0.721
Diabetes 35(3.9%) 21(6.9%) 0.033
Cerebrovascular Disease 9(1.0%) 2(0.2%) 0.739
COPD 13(1.4%) 4(1.3%) 1
CKD 2(0.2%) 1(0.3%) 1
Injury situation
Mechanism of Injury 0.027
Traffic accidents 475(39.4%) 173(56.5%)
Drop from height 244(27.2%) 65(21.2%)
fall 70(7.8%) 37(12.1%)
Sharp instrumental injury | 33(3.7%) 10(3.3%)
Others 77(8.6%) 20(6.5%)
Location of Injury 0.027
Head and Neck 475(39.4%) 173(56.5%)
Face 244(27.2%) 65(21.2%)
Chest 70(7.8%) 37(12.1%)
Abdominal 33(3.7%) 10(3.3%)
Limbs and Pelvis 77(8.6%) 20(6.5%)
Appearance
Multiple injuries 688(76.6%) 219(71.6%)
Preoperative situation
Shock 150(16.7%) 127(41.5%) <0.001
Emergency 472(52.6%) 248(81.1%) <0.001
ASA Classification <0.001
I 2(0.2%) 0(0.0%)
II 354(39.4%) 73(23.9%)
111 430(47.9%) 136(44.4%)
v 100(11.1%) 76(24.8%)
v 12(1.3%) 21(6.9%)
ISS score 18.5(17-22) 21(17-27) <0.001
Systolic Blood Pressure (mmHg) 122(108-137) 122.5(98.3-142) 0.903
Diastolic Blood Pressure (mmHg) 77(67-85) 74.5(62-86) 0.193
Heart rate (BPM) 86(78-101) 90(78-114) <0.001
Preoperative intervention
Interventional Procedure 37(4.1%) 12(3.9%) 0.879
Blood transfusion 75(8.4%) 21(6.9%) 0.406
Haemostatic drugs 539(60.0%) 133(43.5%) <0.001
Tracheal Intubation 60(6.7%) 65(21.2%) <0.001
Vasoperssor 447(49.8%) 261(85.3%) <0.001
Preoperative laboratory tests
WBC (10°/L) 11.2(7.87-16.04) 14.9(10.06-19.67) | <0.001
RBC (10'%/L) 3.71(3.17-4.28) 3.66(3.13-4.23) 0.385
HGB (g/L) 113(95-132) 111(95-129.5) 0.199
HCT (%) 34.6(29.3-39.5) 33.5(28.9-38.7) 0.191
PLT (10°/L) 199(149-259) 182.5(134-227) <0.001
Neu% (%) 83.7(77.4-88.9) 85.4(80.7-89.7) 0.012
Neu (10°/L) 9.42(6.12-14.2) 12.64(8.10-17.51) | <0.001
RDW (%) 12.7(12.3-13.4) 12.9(12.3-13.8) 0.005
PDW (%) 16.2(16.0-16.5) 16.3(16-16.5) 0.116
MPV (fL) 10.1(9.2-11.1) 10.2(9.3-11.4) 0.022
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Non-TIC Group | TIC Group
Variables n=_898 n=306 Pvalue
Cr (umol/L) 6.1(4.8-7.4) 6.6(5.1-7.4) <0.001
Urea (umol/L) 63.6(53.3-75) 68.5(59-81.1) 0.001
Sodium (mmol/L) 138.1(135.7-140.6) | 138.3(135.7-141.5) | 0.094
Potassium (mmol/L) 3.86(3.55-4.23) 3.76(3.3-4.43) 0.113
Calcium (mmol/L) 2.12(2.04-2.20) 2.09(2.00-2.15) <0.001
Total Protein (g/L) 60.4(55.9-65.1) 59.5(52.3-62.9) <0.001
Albumin (g/L) 38.1(34.8-40.35) 36.2(33.6-40.35) 0.001
Globulin (g/L) 22(19-25) 22(18-24) <0.001
TBiL (umol/L) 14.8(10.4-20.7) 13.9(10.1-19.1) 0.28
AST (U/L) 35(21-63) 38.5(23-68) 0.101
ALT (U/L) 43(27-71) 54(33.5-79.5) <0.001
APTT (s) 34.5(31.9-38.3) 36.0(32.8-40.1) <0.001
PT (s) 13.8(13.5-14.5) 14.6(13.7-15.8) <0.001
INR 1.07(1.01-1.13) 1.15(1.08-1.26) <0.001
Fib (g/L) 3.01(2.13-4.59) 2.36(1.69-3.99) <0.001
Intraoperative interventions
Type of Anaesthesia General anaesthesia 809(90.1%) 294(96.1%) 0.001
Sodium Bicarbonate 37(4.1%) 83(27.1%) <0.001
Vasoperssor (intraoperative) 447(49.8%) 261(85.3%) <0.001
Tourniquet 49(5.5%) 12(3.9%) 0.29
Warming Equipment 309(34.4%) 118(38.6%) 0.19
Haemostatic drugs(intraoperative) 5(0.6%) 9(2.9%) 0.002
(T)if;;a(trisi‘;) 160(115-225) 180.5(135.5-255) | 0.001
Blood Loss (mL) 300(100-500) 500(200-1200) <0.001
Autologous Blood (mL) 0.0(0.0-0.0) 0.0(0.0-250) <0.001
Plasma (mL) 0(0.0-0.0) 0(0.0-400) <0.001
Crystalloid (mL) 1100(900-1600) | 1500(1000-2200) | <0.001
Colloid (mL) 500(500-1000) 1000(1000-1500) | <0.001
Urine (mL) 300(200-500) 325(200-600) 0.063
Temperature(postoperative) ['C] 36.6(36.3-36.9) 36.5(36.0-36.8) <0.001

Table 1. Baseline characteristics of study population in development Cohort.

Evaluate model performance by AUC, Sensitivity, specificity, PPV and NPV. The RF machine learning model,
selected after evaluation, was utilized to analyze risk factors for postoperative TIC in trauma patients. This analysis
was based on the results of built-in feature importance and SHAP analysis, aiming to construct a predictive
model for postoperative TIC risk. Figure 4 presents the top 20 features and their importance according to the
RF model’s built-in feature analysis. Key risk factors identified include colloid, temperature (postoperative), PT,
INR, crystalloid, PLT, calcium, and vasopressor [intraoperative], hemostatic drugs.

SHAP is a tool used to interpret machine learning model predictions by visualizing the contribution of each
feature. It provides insights into both the direction and magnitude of each feature’s impact on model predictions.
Figure 5 illustrates a summary plot of SHAP analysis for the RF model, highlighting the positive and negative
contributions of features to predicting postoperative TIC in trauma patients. By examining the distribution of
SHAP values, we identify features significantly influencing prediction outcomes. For instance, higher SHAP
values for Colloid indicate greater impact on predicting TIC risk. The red distribution signifies samples with
high feature values, correlating positively with prediction outcomes, suggesting higher risk for TIC. Conversely,
the blue distribution indicates samples with low feature values, which negatively impact predictions, indicating
lower TIC risk.

Figure 6 presents SHAP-specific instance plots, detailing how each feature influences TIC prediction in
individual samples, along with predicted values. This aids in assessing each patient’s risk for postoperative TIC.

For external validation, we collected 4594 samples from three additional centers. After applying exclusion
criteria, 863 patient samples formed the external validation set. The RF model trained earlier was applied to this
set, resulting in an AUC value of 0.73. Figure 7 displays the ROC curve for external validation. Table 5 show the
performance of RF model in the external validation.

Discussion

In this study, seven machine learning models were successfully constructed, of which the RF model outperformed
the others in terms of performance, showing good performance in predicting and categorizing this data. Through
feature importance analysis and SHAP interpretability analysis, the selected features were ranked according to
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Development Cohort
Variables n=1204 External Cohort n=863 | P value
Demographic
Sex Male 314 (26.1%) 209 (24.2%) 0.337
Age 51(38-61) 49(40-58) 0.075
Preoperative comorbidities
Hypertension 122(10.1%) 81(9.4%) 0.574
Coronary Heart Disease 10(0.8%) 14(1.6%) 0.098
Diabetes 56(4.7%) 33(3.8%) 0.361
Cerebrovascular Disease 11(0.9%) 16(1.9%) 0.063
COPD 17(1.4%) 22(2.5%) 0.061
CKD 3(0.2%) 6(0.7%) 0.177
Injury situation
Mechanism of Injury <0.001
Traffic accidents 648(53.8%) 377(43.7%)
Drop from height 309(25.7%) 376(43.6%)
fall 107(8.9%) 12(1.4%)
Sharp instrumental injury | 43(3.6%) 7(0.8%)
Others 97(8.1%) 91(10.5%)
Location of Injury <0.001
Head and Neck 186(15.4%) 141(16.3%)
Face 0(0.0%) 0(0.0%)
Chest 14(1.2%) 108(12.5%)
Abdominal 26(2.2%) 67(7.8%)
Limbs and Pelvis 71(5.9%) 173(20.0%)
Appearance 0(0.0%) 0(0.0%)
Multiple injuries 907(75.3%) 374(43.3%)
Preoperative situation
Shock 277 (23.0%) 120 (13.9%) <0.001
Emergency 720 (59.8%) 194 (22.5%) <0.001
ASA Classification <0.001
I 2 (0.2%) 40 (4.6%)
11 427 (35.5%) 477 (55.3%)
I 566 (47.0%) 283 (32.8%)
v 176 (14.6%) 59 (6.8%)
v 33 (2.7%) 4(0.5%)
ISS score 19 (17-22) 22 (18-29) <0.001
Systolic Blood Pressure (mmHg) 122(104-138) 123(110-136) 0.063
Diastolic Blood Pressure (mmHg) 76(66-85) 74(66-84) 0.218
Heart rate (BPM) 85 (76-103) 88 (79.5-102) 0.005
Preoperative intervention
Interventional Procedure 49(4.1%) 4(0.5%) <0.001
Blood transfusion 96(8.0%) 160(18.5%) <0.001
Haemostatic drugs 672 (55.8%) 118 (13.7%) <0.001
Tracheal Intubation 125 (10.4%) 167 (19.4%) <0.001
Vasoperssor 708 (58.8%) 127 (14.7%) <0.001
Preoperative laboratory tests
WBC (10°/1) 12.01 (8.21-17.36) 9.64 (7.30-13.03) <0.001
RBC (10'%/L) 3.70(3.17-4.28) 3.45(2.95-3.99) <0.001
HGB (g/L) 113(96-132) 103(89-120) <0.001
HCT (%) 34.5(29.3-39.4) 32.1(27.3-36.0) <0.001
PLT (10°/L) 194 (146-249) 186 (130-268.5) 0.154
Neu% (%) 84.4(77.8-89.1) 81.5(75.0-87.0) <0.001
Neu (10°/L) 10.09 (6.42-15.12) 7.71 (5.52-11.09) <0.001
RDW (%) 12.8(12.3-13.5) 13.3(12.5-14.1) <0.001
PDW (%) 16.2(16.0-16.5) 15.5(12.2-16.5) <0.001
MPV (fL) 10.1(9.25-11.2) 10.6(9.9-11.6) <0.001
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Development Cohort
Variables n=1204 External Cohort n=863 | P value
Cr (umol/L) 12.8(12.3-13.5) 13.3(12.5-14.1) <0.001
Urea (umol/L) 6.23 (4.9-7.4) 6.07 (4.66-7.69) 0.726
Sodium (mmol/L) 138.2 (135.7-140.8) 137.3 (135.6-139.6) <0.001
Potassium (mmol/L) 3.85 (3.51-4.25) 4.08 (3.77-4.52) <0.001
Calcium (mmol/L) 2.10 (2.03-2.19) 2.09 (2.07-2.09) <0.001
Total Protein (g/L) 59.8 (55.0-64.9) 59.5 (54.3-64.5) 0.098
Albumin (g/L) 37.6 (34.5-41.1) 34.0 (29.8-37.8) <0.001
Globulin (g/L) 22.0 (19.0-25.0) 24.9 (22.6-28.6) <0.001
TBiL (umol/L) 14.5(10.3-20.2) 18.6(13.4-23.8) <0.001
AST (U/L) 32.0(22.0-67.0) 50.3(30.7-74.9) <0.001
ALT (U/L) 45.0(28.0-71.5) 43.4(27.3-71.0) 0.067
APTT (s) 35.0 (32.2-38.8) 29.0 (26.9-31.6) <0.001
PT (s) 13.9 (13.4-14.8) 12.1 (11.3-13.1) <0.001
INR 1.08 (1.02-1.16) 1.05 (0.98-1.13) <0.001
Fib (g/L) 2.89(2.03-4.36) 4.03(2.88-4.88) <0.001
Intraoperative interventions
Type of Anaesthesia General anaesthesia 1103 (91.6%) 663 (76.8%) <0.001
Sodium Bicarbonate 120 (5.8%) 6 (0.7%) <0.001
Vasoperssor (intraoperative) 708 (58.8%) 166 (19.2%) <0.001
Tourniquet 61(5.1%) 160(18.5%) <0.001
Warming Equipment 427(35.5%) 217(25.1%) <0.001
Haemostatic drugs(intraoperative) 14 (1.2%) 259(30.0%) <0.001
?Peraﬁo,n 165.0 (116.0-225.0) | 230.0 (164.5-320.0) <0.001
ime (min)
Blood Loss (mL) 300 (100-600) 300 (100-500) <0.001
Autologous Blood (mL) 0.0 (0.0-0.0) 0.0 (0.0-0.0) <0.001
Plasma (mL) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.125
Crystalloid (mL) 1200 (1000-1700) 1100 (700-1600) <0.001
Colloid (mL) 700 (500-1000) 847 (500-1000) <0.001
Urine (mL) 300(200-500) 400(200-600) <0.001
Temperature(postoperative) [‘C] 36.5 (36.3-36.8) 36.6 (36.5-37.0) <0.001
Outcome indicator TIC 306 (25.4%) 25 (2.9%) <0.001

Table 2. Baseline characteristics of study population in development and external Cohort. ASA, American
Society of Anesthesiologists; CKD, chronic kidney disease, cerebrovascular disease, COPD, chronic obstructive
pulmonary disease; WBC, white blood cell count; RBC, red blood cell count; HGB, hemoglobin; HCT,
hematocrit; PLT, platelet; Neu%, neutrophils%; Neu, neutrophil count; RDW, red cell distribution width;

PDW, platelet distribution width; MPV, mean platelet volume; Cr, creatinine; TBil, total bilirubin; AST,
aspartate aminotransferase; ALT, alanine aminotransferase; APTT, activated partial thromboplastin time; PT,
prothrombin time; INR, international normalized ratio; Fib, fibrinogen; TIC, trauma-induced coagulopathy.

the importance and frequency of occurrence of each feature in the RF model, which led to the identification
of a number of factors that have a significant impact on the risk of postoperative TIC in severely traumatized
patients.

For instance, fluid resuscitation using crystalloid and colloid fluids has been linked to dilutional coagulopathy
and poorer post-trauma outcomes?'. Hewson previously investigated 68 patients who underwent massive
transfusions, noting that coagulation disorders were prevalent following crystalloid administration, with
prolonged APTT correlating with the volume of crystalloids administered??. Furthermore, a retrospective
single-center trial in the United States demonstrated a higher mortality rate among trauma patients who
received more than 1.5 L of crystalloids in the emergency department®*. Another study highlighted that patients
receiving>5 L of crystalloids within 24 h of injury faced increased risks of mortality due to trauma-induced
multiorgan dysfunction and persistent coagulation disorders*.

Body temperature and calcium levels are crucial factors influencing coagulation, as evidenced by findings
from this study. Postoperative body temperature was identified as a significant risk factor for TIC in trauma
patients. Previous research indicates that hypothermia adversely affects platelet function and coagulation factor
activity, thereby contributing to coagulation dysfunction''. Additionally, studies have shown that hypocalcemia
can lead to endotheliopathy, increased blood transfusions, heightened use of vasoactive drugs, and independently
increase the risk of TIC?.
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Train set Test set
Variables n=_842 n=362 Pvalue
Preoperative situation
Shock 194 (23%) 83 (22.9%) 0.966
Emergency 496 (58.9%) 224 (61.9%) 0.335
ASA Classification 0.261
I |2(02%) 0 (0.0%)
II |293(34.8%) 134 (37.0%)
III | 410 (48.7%) 156 (43.1%)
IV [ 117 (13.9%) 59 (16.3%)
V|20 (2.4%) 13 (3.6%)
ISS score 19 (17-22) 19 (17-22) 0.492
Heart rate 85 (77-103) 85 (75-102) 0.535
Preoperative intervention
Hemostatic drugs 463 (55.5%) 209 (57.7%) 0.397
Tracheal Intubation 87 (10.3%) 38 (10.5%) 0.932
Vasopressor 495 (58.8%) 213 (58.8%) 0.987
Preoperative laboratory tests
WBC (10°/L) 12.25(8.25-17.37) | 11.63 (8.10-17.35) | 0.5
PLT (10°/L) 195 (146-252) 190 (147-245) 0.532
Neu (10°/L) 10.26 (6.48-15.13) | 9.83 (6.39-15.12) 0.507
Urea (umol/L) 6.22 (4.9-7.4) 6.27 (4.81-7.38) 0.97
Sodium (mmol/L) 138.2 (135.7-140.5) | 138.1 (135.7-141.1) | 0.764
Potassium (mmol/L) 3.83 (3.49-4.22) 3.88 (3.54-4.35) 0.105
Calcium (mmol/L) 2.1(2.03-2.2) 2.09 (2.03-2.19) 0.642
Total Protein (g/L) 59.9 (55.7-65) 59.5 (54.3-64.5) 0.176
Albumin (g/L) 37.6 (34.6-41.1) 37.6 (34.5-41.3) 0.944
Globulin (g/L) 22 (19-25) 21 (19-24) 0.006
APTT (s) 34.9 (32.2-38.7) 35.2 (32.1-39.6) 0.503
PT (s) 13.9 (13.4-14.7) 13.9 (13.4-14.8) 0.38
INR 1.08 (1.02-1.15) 1.08 (1.02-1.17) 0.477
Intraoperative interventions
Type of Anaesthesia 773 (91.8%) 330 (91.2%) 0.711
Sodium Bicarbonate 90 (10.7%) 30 (8.3%) 0.202
Vasopressor (intraoperative) 495 (58.8%) 213 (58.8%) 0.987
Hemostatic drugs (intraoperative) 10 (1.2%) 4(1.1%) 0.902%
?ESZ“‘&‘I‘I’I‘; ) 165 (116-229) 160 (115-222) 0.268
Blood Loss (mL) 300 (100-700) 300 (100-600) 0.376
Autologous Blood (mL) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.491
Plasma (mL) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.23
Crystalloid (mL) 1200 (1000-1700) 1100 (1000-1700) | 0.342
Colloid (mL) 700 (500-1000) 600 (500-1000) 0.824
Temperature(postoperative) [‘C] 36.5(36.3-36.9) 36.5(36.3-36.8) 0.861
Qutcome indicator TIC 214(25.4%) 92(25.4%) 1.000

Table 3. The one-way analyses of the training and test sets. ASA, American Society of Anesthesiologists;
CKD, chronic kidney disease, cerebrovascular disease, COPD, chronic obstructive pulmonary disease; WBC,
white blood cell count; RBC, red blood cell count; HGB, hemoglobin; HCT, hematocrit; PLT, platelet; Neu%,
neutrophils%; Neu, neutrophil count; RDW, red cell distribution width; PDW, platelet distribution width;
MPYV, mean platelet volume; Cr, creatinine; TBil, total bilirubin; AST, aspartate aminotransferase; ALT, alanine
aminotransferase; APTT, activated partial thromboplastin time; PT, prothrombin time; INR, international
normalized ratio; Fib, fibrinogen; TIC, trauma-induced coagulopathy.

The results of this study have important implications for perioperative management of trauma patients.
The results of this model may provide valuable guidance for perioperative resuscitation and postoperative
coagulation management. Several models have been previously developed to recognize patients at risk of TIC.
For example, Cosgriff et al. created a simple Score using criteria such as systolic blood pressure <70 mmHg,
temperature < 34 °C, ISS>25 and pH<7.1 (22). The inherent limitation of this score is its dependence on the
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Fig. 2. Ranking of fisher scores for 62 features.

Model AUC | accuracy | sensitivity | specificity | PPV | NPV
model_LR 0.798 | 0.749 0.717 0.759 0.504 | 0.887
model_SVM 0.799 | 0.738 0.728 0.741 0.489 | 0.888
model_RF 0.820 | 0.735 0.761 0.726 0.486 | 0.897
model_GBDT 0.808 | 0.768 0.620 0.819 0.538 | 0.863
model_XGBoost | 0.799 | 0.782 0.576 0.852 0.570 | 0.855
model_ANN 0.801 | 0.740 0.728 0.744 0.493 | 0.892
model BN 0.799 | 0.765 0.696 0.789 0.529 | 0.884

Table 4. Prediction performance of the machine learning models in the test set. LR, logistic regression;

SVM, support vector machine; GBDT, gradient boosting decision tree; XGBoost, extreme gradient boosting;
ANN, artificial neural network; NB, naive Bayes; AUC, area under curve; PPV, positive predictive value; NPV,
negative predictive value.

ISS, which may not always be readily available due to diagnostic uncertainty. Recently, two predictive scoring
systems have been developed to predict TIC risk using prehospital information. Mitra et al. proposed a
score that combines early available predictors, including systolic blood pressure <100 mmHg or <90 mmHg,
temperature < 35 °C, injury to abdominal or pelvic contents, and chest decompression26. Meanwhile, Peltan et al.
developed the Trauma Acute Coagulopathy Score using six predictors including prehospital shock index > 1, age,
mechanism of injury (excluding motor vehicle, motorbike, or bicycle collisions), GCS score below 15, prehospital
cardiopulmonary resuscitation, and prehospital tracheal intubation?”. These models are highly regarded for their
simplicity and ease of use, but due to limitations in predictor selection and continuous variable dichotomisation,
they may not fully reflect the complexity of the underlying pathophysiological processes. Subsequently, Perkins
et al. used artificial intelligence and machine learning techniques to advance Bayesian network models to predict
TIC. The model extracts predictors from prospective studies, minimising the risk of overfitting, and therefore
excels in accuracy and adaptability to missing data?®. However, although these scoring systems are designed
to predict TIC, they may not encompass intraoperative factors that are critical for trauma patients undergoing
surgical intervention. Such patients may be affected not only by initial trauma but also by perioperative fluid
resuscitation, and therefore the above models may not be sufficient to predict them fully.

We leveraged domain knowledge in machine learning to develop a robust risk prediction model for
postoperative TIC in trauma patients. During external validation, the model was directly tested using data from
various centers. It is important to note that the model’s performance may vary when applied to different hospitals
due to variations in surgical types and case characteristics. As can be seen from Table 1, there are many variables
with statistically significant differences between the development cohort and the external cohort which suggests
that the homogeneity and balance between the two cohorts are poor. This may affect the generalizability and
stability of the predictive model constructed in the development cohort when undergoing external validation.
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Fig. 3. ROC of 7 machine learning models.

However, our study demonstrated that the RF model maintained consistently high predictive performance,
achieving an externally validated AUC of 0.73. This indicates the model’s robustness and validity across multiple
centers. Although the predictive performance of the model has decreased, it is hypothesized that it may be
possible that the external data may reflect a different clinical setting, patient background, or medical practice,
resulting in a decrease in the predictive ability of the model on the external data. In the external validation we
had a lower ppv value, because there are only 25 positive samples out of 863 external validation data. This may
have led to a model bias towards predicting more negative samples, resulting in a higher npv of 0.979 and a
lower ppv of 0.061. Machine learning models excel in capturing complex relationships and revealing nonlinear
interactions among variables. Shap’s algorithm, a method for machine learning interpretation, calculates the
contribution of each feature to predictions based on the Shapley values from game theory. This approach allows
us to elucidate the impact of each feature on the model’s predictions, providing deeper insights into model
behavior and enhancing interpretability.

This study represents the first attempt to develop a risk prediction model for postoperative TIC in trauma
patients. However, several limitations need to be acknowledged. Firstly, the model was developed using
retrospective data, which may introduce biases into the results. Future validation of the predictive model will
be essential using prospective multicenter datasets to enhance its robustness and generalizability. Secondly,
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Fig. 4. Rank of feature importance of TIC in RF model.

our current model relies on a substantial number of features to predict postoperative TIC, potentially limiting
its practical utility. Future efforts should focus on developing a streamlined prediction model that maintains
performance while reducing the number of required features. Thirdly, the study only incorporated certain
clinical variables and laboratory tests. For instance, variables such as lactate levels in intraoperative blood gas
analysis and base deficit, which reflect metabolism and perfusion responses, were not included. Incorporating
these variables in future iterations of the model could further optimize its predictive accuracy. Finally, although a
“black box” analytical interpretation of machine learning was used in this study, it is still unclear how the model
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predicts the outcomes. Relative importance and cross-validation revealed the features on which the model
mainly relies, but we still have some uncertainty.

Conclusion

In conclusion, this study established and validated seven commonly used machine learning algorithms,
demonstrating that the RF algorithm outperformed others in predicting postoperative TIC in trauma patients.
The RF algorithm exhibited robust predictive performance in both internal and external validation sets. These
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findings highlight its potential utility in screening patients at high risk of postoperative TIC, aiding clinicians in
making informed clinical decisions and implementing timely interventions.
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Fig. 7. ROC curves for external validation of RF model.

model AUC | accuracy | sensitivity | specificity | PPV | NPV

model_RF | 0.728 | 0.787 0.440 0.797 0.061 | 0.979

Table 5. The performance of RF model in the external validation.
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