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This paper presents a novel approach to bypass road network design using interval valued fuzzy 
outerplanar graphs (IVFOGs), addressing the increasing demands of vehicular growth and evolving 
lifestyles. The uncertainty and variability inherent in urban traffic regulation are effectively managed 
through the application of interval valued fuzzy sets, which capture linguistic and imprecise traffic 
parameters. The study investigates the structural properties of IVFOGs and their corresponding duals, 
providing a solid theoretical foundation for modeling bypass networks. The concepts of vertex and 
edge deletion are explored to construct and analyze optimal bypass routes that avoid congested in 
urban centers. Furthermore, examples are provided to study the maximal and maximum interval 
valued fuzzy outerplanar graphs determined by both vertex and edge deletion. This framework 
enhances mobility, optimizes commuter travel time, and contributes to efficient road transport 
planning by offering a flexible, uncertainty-tolerant model tailored for real-world traffic scenarios.

Keywords  Interval valued fuzzy graph, Interval valued fuzzy dual graphs, VD and ED interval valued fuzzy 
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Fuzzy set theory, introduced by Lotfi A. Zadeh1 in 1965, extends classical set theory by allowing for degrees 
of membership. This framework is particularly useful in dealing with situations where the boundaries of sets 
are not well-defined. A significant early contribution came from Azriel Rosenfeld2 pioneered the use of fuzzy 
set theory in image analysis and pattern recognition, laying the groundwork for further advancements. Fuzzy 
graph theory emerged as an extension of classical graph theory to handle ambiguous and uncertain relationships 
among elements. Algorithms have been developed for fuzzy shortest paths, clustering, isomorphism detection, 
and more, enabling applications in decision-making, social network analysis, and systems modeling. Abdul- 
Jabbar3 introduced the concept of fuzzy planar graphs and fuzzy dual graphs, showing that the dual of a dual 
fuzzy graph is the original fuzzy graph and establishing that the dual of a fuzzy bipartite graph is Eulerian.

Contributions by Harary4 emphasized key features of planar, non-planar, and dual graphs. Berthold et al.5 
built on Kuratowski’s property, which states that a graph is non-planar if it contains subdivisions of ​ K5 ​or ​ 
K3,3. Additionally, Chartrand et al.6 identified outerplanar graphs as those that do not contain a subgraph 
homeomorphic to K4 − x, where x is an edge of K4​ and discussed the concept of permutation graphs. 
These graphs are created by taking two identical copies of a labeled graph G and connecting them based on 
a permutation α of the vertices of G. The study focuses on determining the conditions under which such 
permutation graphs are planar and provides a criterion for this. The Petersen graph is cited as an example of a 
non-planar permutation graph. Further exploration of outerplanar graphs was presented7.

In parallel, Kulli8 has worked on minimally nonouterplanar graphs, focusing on their properties and 
characteristics. The study throws some pertinent lights on their structure as well as consequences of these 
attributes in graph theory. Their work enhanced understanding of structural and computational properties 
within outerplanar graphs. Mitchell9 had suggested linear algorithms that identify maximal outerplanar and 
outerplanar graphs.  These algorithms improved upon previous methods by leveraging the characteristics of 
biconnected graphs and 2-vertices. Fleischner et al.10 concentrated exclusively on developing a criterion to 
assess the planarity of permutation graphs, without exploring the characteristics of outerplanar graphs or their 
weak duals. Syslo11 investigated outerplanar graphs, providing characterizations and developing methods for 
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testing, coding, and counting these graphs. Furthermore, investigated the subgraph isomorphism problem for 
outerplanar graphs, proving that it remains NP-complete even under strong connectivity constraints, except 
for the induced subgraph isomorphism problem on 2-connected outerplanar graphs, for which a polynomial-
time algorithm is provided. This algorithm leverages a unique correspondence between 2-connected outerplanar 
graphs and plane trees to efficiently verify induced subgraph relations are described by12.

Samanta et al.13,14 presented extended these ideas to the fuzzy domain by introducing fuzzy multigraphs, 
fuzzy planar graphs, and fuzzy dual graphs, incorporating planarity values and defining strong fuzzy planar 
graphs to model real-world networks like subways and tunnels. Innovative concepts pertaining to fuzzy planar 
graphs, focusing on the characteristics of the fuzzy planarity value are presented and interesting theorems related 
to fuzzy planar graphs are investigated15. Shriram et al.16 defined the concept of fuzzy combinatorial dual graphs, 
closely related to fuzzy dual graphs, and establishes several key results regarding their properties. This work 
contributes to the broader field of fuzzy graph theory, emphasizing its relevance and applications in various 
domains. Model for forming fuzzy planar subgraphs aimed at partitioning large-scale integration networks. 
Their approach emphasizes vertex-deletion and edge-deletion operations to create fuzzy planar subgraphs. They 
also proposed a new Planar Partition subgraph method to enhance the efficiency of identifying these subgraphs 
and discussed the concept of thickness value within fuzzy graphs. The results are demonstrated through examples 
and applied to network partitioning in VLSI design are introduced17.

Parvathi and Karunambigai18 introduced a new definition for intuitionistic fuzzy graphs (IFGs) and explores 
their properties, including concepts like semi-µ strong paths and bridges and discussed the potential extension 
of these concepts to other types of intuitionistic fuzzy sets and their components. Three new product operations: 
direct product, lexicographic product, and strong product of interval-valued intuitionistic (s, t) − fuzzy 
graphs, enhancing the framework for analyzing these structures are proposed. And also defined the concepts 
such as regular and totally regular interval-valued intuitionistic fuzzy graphs, along with busy and free vertices, 
emphasizing their significance in applications like reliable communication networks and fuzzy social networks 
are introduced19. Rehman et al.20 introduced the concept of domination in intuitionistic fuzzy influence graphs 
(IFIGs), extending fuzzy graph theory by incorporating intuitionistic fuzzy sets to better handle uncertainty 
through membership and non-membership degrees and it’s defined several key notions such as strong influence 
pairs, influence cut nodes, and the strong pair domination number within IFIGs. Furthermore, various related 
concepts such as strong and weak q-fractional fuzzy influence pairs, q-fractional fuzzy influence cut-nodes, 
and domination numbers, and apply these to locate and control smog areas, demonstrating the model’s 
practical effectiveness and comparing it favourably with existing methods and decision-making techniques are 
introduced21. Zuo22 introduced the concept of picture fuzzy graphs (PFGs), extending fuzzy and intuitionistic 
fuzzy graphs by incorporating positive, neutral, and negative membership degrees to better model uncertainty in 
real-life scenarios and defined the various types of PFGs, operations on them, and demonstrates their application, 
particularly in social networks.

The application of bipolar fuzzy sets to graph structures, defining concepts such as bipolar fuzzy graph 
structures, bipolar fuzzy cycles, trees, cut vertices, and bridges, while exploring their properties through 
various examples. Additionally, the authors are investigated complementation types within bipolar fuzzy 
graph structures, enhancing the understanding of their theoretical framework are introduced23. Regular and 
totally regular bipolar fuzzy graphs and establishes necessary and sufficient conditions for their equivalence are 
presented. Additionally, discussed the bipolar fuzzy line graphs and their properties, including conditions for 
isomorphism between bipolar fuzzy graphs and their corresponding line graphs are investigated24. Akram25 
introduced bipolar fuzzy planar graphs: such graphs may well form a category that is different from traditional 
fuzzy planar graphs. Furthermore, the bipolar fuzzy planarity value has been defined to numerically value the 
degree of planarity in these graphs. Pramanik et al.26 defined the properties of bipolar fuzzy planar graphs and 
bipolar fuzzy dual graphs are examined, and an application of these concepts is discussed for image shrinking 
layout. Three new operations on bipolar fuzzy graphs: direct product, semi-strong product, and strong product, 
along with sufficient conditions for their completeness, then demonstrated that any product of strong bipolar 
fuzzy graphs remains a strong bipolar fuzzy graph, contributing to the theoretical framework of this growing 
research area are introduced27.

Ghorai et al.28,29 introduced m-polar fuzzy multi-graphs to overcome edge crossings that exist in a planar 
graph. Edge crossings in various applications are problematic; they defined the key concepts such as m-polar 
fuzzy multi-sets, planar graphs, and strong edges and went on in the exploration of the properties. Mondal et 
al.30 generalized m-polar fuzzy graphs are explored along with their properties, and this includes the study of 
generalized m-polar fuzzy planar graphs and generalized m-polar fuzzy dual graphs, an illustrative example is 
provided to demonstrate the application of generalized m-polar fuzzy graphs to a social group network problem.

Recent developments include interval-valued fuzzy graphs, where vertex and edge memberships are 
represented by intervals. Mahapatra et al.31 conducted a study on interval-valued m-polar fuzzy graphs, and 
significant contributions involve the establishment of various concepts associated with IVmPF graphs, such 
as complete IVmPF graphs, strong IVmPF graphs, and the faces and dual graphs of IVmPF planar graphs. 
Additionally, the authors presented a practical application of IVmPF planar graphs. The idea of Generalized 
Neutrosophic Planar Graphs (GNPG) was proposed Mahapatra et al.32. Additionally, they illustrated the 
practical uses of GNPG in urban traffic management are achieved.

The interval-valued fuzzy line graphs, expanding traditional fuzzy graph theory and also established 
the conditions for isomorphism between interval-valued fuzzy graphs and their line graphs, highlighting 
applications in database theory and decision-making systems are presented33. Introduced the various types of 
interval-valued fuzzy graphs, including balanced and highly irregular variants, and explores their properties and 
relationships with intuitionistic fuzzy graphs, necessary and sufficient conditions for the equivalence of certain 
irregular interval-valued fuzzy graphs are also established34. The simplified interval-valued Pythagorean fuzzy 
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sets (SIVPFS) to streamline the calculations of interval-valued Pythagorean fuzzy sets (IVPFS) and developed 
a novel concept of simplified interval-valued Pythagorean fuzzy graphs for representing uncertain information 
in decision-making processes. Furthermore, the authors presented the aggregation operators and apply the 
SIVPFG in multi-agent decision-making scenarios with a numerical example to demonstrate its practicality 
are introduced24. Arif et al.35 presented interval-valued picture (S, T)-fuzzy graphs (IVP- (S, T)-fuzzy graphs) 
as an extension of picture fuzzy graphs, aimed at effectively addressing problems involving uncertainty. Various 
operations and structural properties are explored, culminating in applications for multiple attribute decision-
making (MADM). Pal et al.36 introduced the theoretical concepts related to interval-valued fuzzy graphs, focusing 
on the degree of an edge and its total degree, derived from operations like Cartesian product and composition, 
emphasizes their applications in computer science areas such as data mining and networking. The concept of 
interval-valued fuzzy graphs, extending traditional fuzzy sets to represent uncertainty more effectively through 
interval membership degrees and explored the various operations and properties of these graphs, alongside their 
applications in fields like fuzzy control and approximate reasoning are discussed37.

Additionally, researchers like Rashmanlou et al.27 introduced three new operations on interval-valued fuzzy 
graphs: direct product, semi-strong product, and strong product, providing sufficient conditions for their 
completeness, established that if any of these products is complete, then at least one of the factors must be a 
complete interval-valued fuzzy graph. the concepts of antipodal interval-valued fuzzy graphs and self-median 
interval-valued fuzzy graphs, exploring their isomorphism properties. And emphasized the application of these 
graphs in enhancing precision and flexibility in various fields, including computer science and soft computing 
are introduced38. The ring sum and tensor product of product interval-valued fuzzy graphs, establishing key 
theorems on their relationships, then defined and analysed balanced and strictly balanced interval-valued fuzzy 
graphs are investigated39. Isometric relationships, demonstrating that isometry is an equivalence relation that 
preserves the interval-valued memberships of vertices are defined40. Three new operations: strong product, 
tensor product, and lexicographic product on interval-valued fuzzy graphs, highlighting their flexibility and 
compatibility for various applications in computer science, investigated the degrees of vertices resulting from 
these operations, contributing to a deeper understanding of the structural properties of interval-valued fuzzy 
graphs and their utility in fields like data mining and networking are defined41. Talebi et al.42 introduced the 
concepts of regular and totally regular interval-valued fuzzy graphs, emphasizing their flexibility over traditional 
fuzzy graphs by allowing membership degrees to be represented as intervals. And also defined busy and free 
vertices, explores their properties under isomorphism, and discussed self μ-complementary interval-valued 
fuzzy graphs, providing necessary conditions for their existence.

In this context, outerplanar graphs originally defined in classical settings are extended into the fuzzy domain 
with interval-valued membership functions. This paper explores interval-valued fuzzy outerplanar graphs and 
their various properties. The main objective of this paper is to develop and analyze the structural properties of 
interval-valued fuzzy outerplanar graphs, and to demonstrate their applicability in real-world transportation 
network modeling. The specific aims are as follows:

•	 To define and characterize interval-valued fuzzy outerplanar graphs and explore their properties in relation 
to classical outerplanar graphs.

•	 To study the process of forming subgraphs of IVFOGs via vertex and edge deletion, and to differentiate be-
tween maximal and maximum IVFOG subgraphs.

•	 To introduce and investigate the concept of interval-valued fuzzy dual graphs, particularly within the context 
of outerplanar structures.

•	 To present a case study on bypass road networks, illustrating how IVFOGs can model uncertainty in urban 
planning and infrastructure design.

By addressing these objectives, this study not only fills a notable gap in fuzzy graph theory but also highlights the 
practical advantages of IVFOGs in contemporary applications, particularly where uncertainty and adaptability 
are critical.

Motivation
Fuzzy set theory was first introduced by Lotfi A. Zadeh1 in 1965, extending classical set theory by allowing 
elements to have degrees of membership. This foundational concept is particularly effective for modeling 
situations with ambiguous or imprecise boundaries. Building on this idea, Azriel Rosenfeld2 was among the first 
to apply fuzzy set theory to graphs, marking the beginning of fuzzy graph theory.

Further advancements came with Abdul-Jabbar3, who introduced the concept of fuzzy planar graphs, 
incorporating fuzziness into the structure of planar graphs and extending classical notions of planarity. As research 
progressed, more refined models were proposed to capture uncertainty more effectively. One such development 
was the introduction of interval-valued fuzzy graphs by Akram et al.43, who explored various operations such 
as Cartesian product, composition, union, and join, along with structural properties like completeness and self-
complementarity. These graphs allow each vertex and edge to have an interval of membership values, adding 
flexibility in representing uncertain systems.

To better assess the spatial structure of fuzzy graphs, Pramanik et al.44 introduced the concept of interval-
valued fuzzy planar graphs and proposed the"degree of planarity"as a metric. They also studied related properties 
such as strong edges, fuzzy faces, and interval-valued fuzzy dual graphs, providing deeper insights into the 
topological features of fuzzy graphs.

In a more recent development, Deivanai et al.45 introduced fuzzy outerplanar graphs, extending the classical 
outerplanar graph concept into the fuzzy domain. Their work examined how fuzziness can model ambiguous 
relationships in real-world networks, especially in the context of transportation systems. They investigated the 
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properties of maximal and maximum fuzzy outerplanar subgraphs, highlighting their usefulness in network 
optimization.

Building upon these contributions, this paper aims to investigate the notion of outerplanarity within interval-
valued fuzzy graphs, combining the flexibility of interval-valued memberships with the structural simplicity of 
outerplanar graphs. The study explores their theoretical properties and practical applications, particularly in 
modeling and optimizing transport networks under uncertain and dynamic conditions. Basic notations and 
meaning given in the Table 1.

Preliminaries
This section explains the basic fundamental concepts associated with interval-valued fuzzy graphs and interval 
valued fuzzy planar graphs.

Definition 1  Ref43. Let V be a non-empty set. For i = 1,2, . . . , p, consider mappings τ−
i : V → [0,1] and 

τ+
i : V → [0,1] such that τ−

i (x) ≤ τ+
i (x) for all x ∈ V. An interval-valued fuzzy multiset on V is represented as 

(V,
[
τ−

i , τ+
i

]
=

{(
x,

[
τ−

i , τ+
i

])
|x ∈ V, i = 1,2, . . . , p

}
.

Definition 2  Ref43. Let V be a non-empty set. Define the mappings τ−
i : V → [0,1] and τ+

i : V → [0,1] 
such that τ−

i (x) ≤ τ+
i (x) for all x ∈ V and i = 1,2, . . . , p, which constitute an IVFMS on V. Additional-

ly, let δ−
j : V × V → [0,1] be mappings such that B = {

(
V × V,

[
δ−

j , δ+
j

])
, j = 1,2, . . . , q}, forms an 

IVFMS on V × V. (A,B) is termed an IVFMG if the conditions δ−
j (x, y) ≤ min{τ−

i (x) , τ−
i

(
y
)
} and 

δ+
j

(
x, y

)
≤ min

{
τ+

i (x) , τ+
i

(
y
)}

 hold for all x, y ∈ V, for every i = 1,2, . . . , p, j = 1,2, . . . , q.

Definition 3  Ref44. The strength of an edge (a, b) is represented by an interval I(a,b) =
[
I−

(a,b), I+
(a,b)

]
, 

where I−
(a,b) = δ−(a,b)

min{τ+(a),τ+(b)}  and I+
(a,b) = δ+(a,b)

min{τ+(a),τ+(b)} . An edge (a, b) is considered non-trivial 
if I−

(a,b) > 0.

Definition 4  Ref44. Let ξ = (A,B) be an IVFMG. An edge (a, b) in ξ is called interval-valued fuzzy strong if 
I(a,b) ≥ [0.5,0.5]; otherwise, it is considered interval-valued fuzzy weak.

Definition 5  Ref44. In an interval-valued fuzzy multigraph (IVFMG) denoted as ξ = (A,B) , the set B contains 
two edges: ((a, b) ,

[
δ− (a, b) , δ+ (a, b)

]
) and ((c, d) ,

[
δ− (c, d) , δ+ (c, d)

]
), which intersect at a point P . To 

Notations Meanings

G Crisp graph

ξ an interval valued fuzzy graph

V set of vertices of ξ

E set of edges of ξ

X universal set

m A membership function that maps elements from a crisp set to the interval [0,1]

A a fuzzy set

τ The function that assigns membership values to the vertices

δ The function that assigns membership values to the edges

[τ −, τ +] the membership value of a vertex, τ−  and τ+  represents the left end and right end points respectively

[δ−, δ+] the membership value of an edge, δ−  and δ+  represents the left end and right end points respectively

[τ −
i

, τ +
i

] the  th membership value of a vertex, τ−
i  and τ+

i  represents the left end and right end points respectively

[δ−
i

, δ+
i

] The value of membership for the edge connecting j th two vertices is represented by δ−
i  and δ+

i , denoted the left and right end points respectively

I(a,b)

The strength of the edge (a, b) is an interval number with the left end point I(a,b) = δ−(a,b)
{τ+(a)∧τ+(b)} . The right end point is 

I(a,b) = δ+(a,b)
min{τ+(a)∧τ+(b)}

Ip Intersecting number at the point of crossing of two edges (a, b) and (c, d) , which is an interval number whose left end point is I−
P =

I−
(a,b)+I−

(c.d)
2  

and the right end point is I+
P =

I+
(a,b)+I+

(c.d)
2

The degree of planarity in an interval-valued fuzzy graph refers to the characteristics of an interval number, specifically its left endpoint is 

f− = 1
1+{I

+
P1

+I
+
P2

+···+I
+
Pk

}
 and the right end point is f+ = 1

1+{I
−
P1

+I
−
P2

+···+I
−
Pk

}
, k represent the number of intersection points

Table 1.  Some basic notions.
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analyse these edges, then calculate their respective interval numbers I(a,b) and I(c,d). The intersecting number 
at point P is defined as:

	
IP =

[
I−

P , I+
P

]
=

[
I−

(a,b) + I−
(c,d)

2 ,
I+

(a,b) + I+
(c,d)

2

]

Here, IP  represents an interval number within the range of [0,1]. Next, let consider the concept of planarity. In 
a traditional sense, a planar graph is defined as one that does not have any edge crossings or intersections. This 
means that the planarity of such a graph is considered ‘full’. Consequently, as the number of intersection points in 
an IVFMG increases, the degree of planarity decreases. Thus, for IVFMG, it can be concluded that IP ​ is inversely 
proportional to the degree of planarity.

Definition 6  Ref44. In an interval-valued fuzzy multigraph (IVFMG) denoted as ξ, the points of intersection 
between edges in a geometrical representation are labeled as P1, P2, . . . , Pk , where k is an integer. This config-
uration allows us to classify ξ as an interval-valued fuzzy planar graph (IVFGP), characterized by its degree of 
planarity expressed as f =

(
f−, f+

)
. The calculations for the endpoints are defined as follows:

The left endpoint f− is given by:

	
f− = 1

1 + {I+
P1

+ I+
P2

+ · · · + I+
Pk

}

The right endpoint f+ is calculated using:

	
f+ = 1

1 +
{

I−
P1

+ I−
P2

+ · · · + I−
Pk

}

It is clear that   is bounded and belongs to the set f ∈ D [0,1], which consists of all subintervals of the interval 
[0,1].In cases where there are no intersection points in the geometrical representation of an IVFGP, its degree of 
planarity is represented as [1,1]. This indicates that if the underlying crisp graph corresponding to this IVFGP 
is a planar graph, it maintains full planarity. Therefore, the presence of intersection points reduces the degree of 
planarity in the IVFGP.

Definition 7  Ref44. Let ξ = (A,B) be a strong IVFPG characterized by a degree of planarity of [1,1] on a vertex 
set V. A face of ξ is defined as a region bounded by a subset of edges E′ ⊂ V × V in its geometric representation. 
The strength of a face is determined by the interval:

	
Strength = {[ min

{
I−
(x,y)

}
, min

{
I+
(x,y)

}
]|(x, y) ∈ E′}

A face is classified as an interval-valued strong fuzzy face if its strength is greater than of [0.5,0.5]; otherwise, it 
is termed an interval-valued weak fuzzy face. Every interval valued strong IVFPG has an infinite region which is 
called outer face. Other faces are called inner faces.

Definition 8  Ref44. let  ξ = (A,B)  be an IVFPG characterized by a degree of planarity repre-
sented as [1,1]. This indicates that the graph has no edge crossings. The graph has interval-val-
ued strong faces denoted as  f1, f2, . . . , fk , which correspond to a new IVFPG denoted 
as ξ1 = (A1,B1) where A1 = {(V1, [τ−, τ+]),B1 = {(V1 × V1, [v−

l , v+
l ]).In this new graph, the set of ver-

tices is defined as V1 = {xi, i = 1,2, . . . , k}, where each vertex xi corresponds to the face fi of the original 
graph ξ.

The membership values of these vertices are determined by the mappings: τ− : V1 → [0,1] such that τ− (xi) = 
max {δ−(u, v)| (u, v) is an edge of the boundary of the interval valued fuzzy face fi}. Also, τ+ : V1 → [0,1] 
such that τ+ (xi) = max {δ+(u, v)| (u, v) is an edge of the boundary of the interval valued fuzzy face fi}.

Between two interval-valued fuzzy faces fi and fj  of ξ ​, there may exist more than one common edges. 
Consequently, in the dual graph ξ1, there may also exist multiple edges between the corresponding vertices xi 
and xj . These edges are characterized by their membership degrees denoted as: For the  th edges between 
vertices xi and xj :

The lower membership degree is given by

	 v−
l (xi, xj) = δ− (u, v)

The upper membership degree is given by

	 v+
l (xi, xj) = δ+ (u, v)
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where (u, v) represents a common edge between the two interval-valued fuzzy faces fi and fj  and l = 1,2, . . . , s. 
with  s being the total number of common edges between these faces or the number of edges connecting 
vertices xi and xj .

Definition 9  Ref46. Let ξ = (A,B)  represent an interval-valued fuzzy graph, where  A = [δA− , δA+

] and B = [δB− , δB+ ] are two interval-valued fuzzy sets defined over a non-empty finite set V  and a subset 
E ⊆ V × V representing the edges. The order of the graph ξ is denoted as O(ξ) and is defined by the interval: 
O (ξ) = [O− (ξ) ,O+ (ξ)] Where the lower bound of the order O− (ξ) is calculated as:

	
O− (ξ) =

∑
u∈V

δA− (u)

The upper bound of the order O+ (ξ) is given by:

	
O+ (ξ) =

∑
u∈V

δA+ (u)

Definition 10  Ref46. Let ξ = (A,B)  represent an interval-valued fuzzy graph, where  A = [δA− , δA+

] and B = [δB− , δB+ ] are two interval-valued fuzzy sets defined over a non-empty finite set V  and a subset 
E ⊆ V × V  representing the edges.The size of the graph  ξ  is denoted as S (ξ)  and is defined by the inter-
val:S (ξ) = [S− (ξ) , S+ (ξ)]

Where the lower bound of the size S− (ξ) is calculated as:

	
S− (ξ) =

∑
u∈V

δB− (uv)

The upper bound of the size S+ (ξ) is given by:

	
S+ (ξ) =

∑
u∈V

δB+ (uv)

Interval valued fuzzy outerplanar graph
In this section, introduced the concept of interval valued fuzzy outerplanar graphs, which extend the classical 
notion of outerplanarity to graphs with interval valued fuzzy values. The focus is on defining the graph structure 
and understanding its properties in the context of interval valued fuzziness.

Definition 11  An interval valued fuzzy graph ξ qualifies as an interval valued fuzzy outerplanar graph when ξ 
is embedded in the plane such that every vertex lies on the exterior boundary of the region.

Let i (ξ) represent the number of vertices in a planar embedding that do not depend on the boundary of the 
outer region. Therefore, i (ξ) = 0 for an interval valued fuzzy outerplanar graph.

The graphs given in Fig. 1 and Fig. 2 are examples of interval valued fuzzy outerplanar graphs.

 ([0.7, 0.3])

 ([0.3, 0.6])
 [0.5, 0.1]

 ([0.6, 0.2])

[0.6, 0.7]
  [0.8, 0.3]

[0.4, 0.4]

([0.2, 0.7])

  [0.2, 0.6]

   [0.1, 0.2]

   [0.3, 0.2]

[0.2, 0.1]

[0.1, 0.2]

 ([0.6, 0.2])

[0.9, 0.4]

Fig. 1.  Interval valued fuzzy outerplanar graph with cycle.
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Definition 12  An Interval valued fuzzy graph that cannot be embedded in the plane so that each vertex lies on 
the exterior region’s boundary is known as an Interval valued fuzzy non-outerplanar graph.

In other words, it’s an Interval valued fuzzy graph that does not satisfy the property of being Interval valued 
fuzzy outerplanar, where some vertices are in located the interior of the drawing rather than exclusively on the 
outer boundary.

If i(ξ) ̸= 0, then an Interval valued fuzzy planar graph is not an interval valued fuzzy outerplanar graph.
The graphs given in Fig. 3 and Fig. 4 are examples of Interval valued fuzzy non-outerplanar graphs.

Characterization of interval valued fuzzy outerplanar graph
This section investigates the defining characteristics and structural criteria that characterize interval valued 
fuzzy outerplanar graphs.

Theorem 1  An Interval valued fuzzy graph ξ is interval valued fuzzy outer planar if and only if it contains no 
interval valued fuzzy subgraph homomorphic from K4 or K2,3.

Proof  It is known that K4 or K2,3  are not Interval valued fuzzy outerplanar. Thus, no interval valued fuzzy 
graph having an interval valued fuzzy subgraph homomorphic from K4 or K2,3 is interval valued fuzzy outer-
planar graphs shown in the Figs. 5 and 6.

Conversely,
Suppose ξ is an interval valued fuzzy graph containing no interval valued fuzzy subgraph homomorphic 

from K4 or K2,3. By kuratowski’s theorem, ξ is planar. Assume ξ is not interval valued fuzzy outer planar graph. 
Thus, without loss of generality, we assume that ξ is a cyclic block which is not interval valued fuzzy outerplanar 

1 [(0.5, 0.2]) 2 ([0.3, 0.4])
[0.2, 0.5] 

[0.4, 0.7] 

 [0.6, 0.8] 

[0.7,0.3] 
[0.2, 0.4]

[0.3, 0.6] 4 ([0.8, 0.5]) 
3 ([0.7, 0.9]) 

Fig. 3.  Interval valued fuzzy graph K4.

 

 ([0.4, 0.5])

 ([0.5, 0.3])

 ([0.5, 0.7])

[0.3, 0.2]

 ([0.3, 0.4]

[(0.7, 0.6]

[0.2, 0.3]

    [0.4, 0.8]

 ([0.7, 0.1])

[0.5, 0.9]

     [0.6, 0.4]

 ([0.7, 0.2])

 ([0.9, 0.5])

Fig. 2.  Interval valued fuzzy outerplanar graph without cycle.
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 ([0.7, 0.4])

 ([0.9, 0.7])
 ([0.8, 0.3])

    [0.3, 0.5]
[0.8, 0.7]

[0.9, 0.3]
   [0.6, 0.5]

[0.4, 0.3]

[0.7, 0.9]

([0.7, 0.3])

 ([0.5, 0.1])

Fig. 6.  Interval valued fuzzy graph K2,3.

 

 ([0.5, 0.1])

 ([0.3, 0.6])

 ([0.4, 0.3])

 ([0.2, 0.9])
[0.7, 0.2]

[0.8, 0.3]
[0.9, 0.3] [0.3, 0.1]

[0.2, 0.8][0.1, 0.4]

Fig. 5.  Interval valued fuzzy graph K4.

 

 ([0.7, 0.9]) 
[0.3, 0.6]

4 ([0.8, 0.5]) 

[0.7, 0.3] 

[0.6, 0.8]  [0.2, 0.4]

1 ([0.5, 0.2]) [0.2, 0.5]
2 ([0.3, 0.4]) 

[0.4, 0.7] 

Fig. 4.  Interval valued fuzzy planar embedding of K4.
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graph. Further we assume that ξ is so embedded in the fuzzy plane that the exterior region contains maximum 
number of vertices.

The exterior region is bounded by a cycle C. Since not all vertices of ξ, lie on C, there are one or more vertices 
lying interior to C.

If there exist a vertex v3 interior on C and three mutually disjoint paths between v3 and three distinct vertices 
of C, then ξ contains fuzzy subgraph homomorphic from K4.

Otherwise, since ξ is a cyclic block, there must exists a vertex v3 and two disjoint paths between v3 and two 
disjoint vertices v1 and v5 on C.

Moreover, from the above choice of C, the edge v1v5 does not belong to C. This implies ξ contains a bipolar 
fuzzy subgraph homomorphic from K2,3. This is a contradiction. Therefore, Fig. 7 ξ is an interval valued fuzzy 
outerplanar graph. This completes the proof.

Theorem 2  If ξ is a connected interval valued fuzzy outerplanar graph, then it has a fuzzy dual ξ∗ there exist a 
vertex v such that ξ∗ − v contains no fuzzy cycle.

Figure 8 (a) and (b) Example for interval valued fuzzy outerplanar graph ξ has interval valued fuzzy dual 
graph ξ∗ then there exist v such that ξ∗ − v contains no interval valued fuzzy cycle.

Proof  Let ξ = (V, τ, δ) be a connected fuzzy outerplanar graph in Fig. 8 and there are no intersections of edges 
E′ ⊂ E within the graph, we can divide the fuzzy graph into a finite number of regions. Each of these regions 
corresponds to a f1, f2, f3, . . . fk  be the fuzzy faces and the membership value for each face is determined16.

f = [f−, f+] =
[
min

{
δ−(x,y)

τ−(x)∧τ−(y) ,
δ+(x,y)

τ+(x)∧τ+(y) : δ− (
x, y

)
∈ Ei′&δ+ (

x, y
)

∈ Ej ′
}]

 Where Ei′ and 

Ej ′ is the region bounded by the interval valued fuzzy edges in interval valued fuzzy planar graph.
When the interval valued fuzzy graph divided into regions with interval valued fuzzy face and values, it 

becomes very easy to interval valued fuzzy dual graph ξ∗ such that each face of ξ corresponds to a vertex and 
each edge of ξ corresponds to edge in ξ∗ = (V′, τ ′, δ′). Consequently, the interval valued fuzzy dual graph ξ∗ 
exists for the interval valued fuzzy outerplanar graph.

Since ξ is interval valued fuzzy outerplanar graph. It is outer face is an interval valued fuzzy cycle. Therefore, 
the graph ξ∗ − v that results from removing the vertex v from ξ∗ in Fig. 8(a). And Fig. 8(b) the resulting graph 
ξ∗ − v contains no interval valued fuzzy cycle.

Example 1  Consider the interval valued fuzzy outerplanar graph ξ = (V, τ, δ) illustrated in the Fig. 8. If the 
dotted lines in Fig. 8(a) are superimposed interval valued fuzzy dual graph of ξ∗ and separated diagram.

Here f1, f2, f3 and f4 are four fuzzy faces. f1 is bounded by the edges 
((v1, v2), [0.2,0.3]), ((v2, v3), [0.4,0.5]) and ((v1, v3), [0.4,0.2]); f2 is bounded by the edges 
((v2, v3), [0.4,0.1]), ((v2, v5), [0.4,0.1]), ((v3, v5), [0.3,0.5]) and ((v2, v5), [0.6,0.7]); f3 is bounded by the 
edges ((v2, v4), [0.3,0.3]), ((v2, v5), [0.4,0.1]) and ((v4, v5), [0.3,0.2]); f4 is the outer face ((v3, v5), [0.3,0.5]), 
((v1, v3), [0.4,0.2]), ((v1, v2), [0.2,0.3]), ((v2, v4), [0.3,0.3]) and ((v4, v5), [0.3,0.2]). The membership value of 
an interval valued fuzzy faces [f1−, f1

+] = [0.4,0.333] ,
[
f2

−, f2
+]

= [0.375,0.333] ,
[
f3

−, f3
+]

= [0.6,0.333] ,
[
f4

−, f4
+]

= (0.375,0.333) , 

 ([0.5, 0.1])

 ([0.3, 0.5])

 ([0.2, 0.3])[0.7, 0.2]

[0.8, 0.5][0.9, 0.7]

 ([0.7, 0.4])

 ([0.9, 0.7]) ([0.8, 0.3])

     [0.3, 0.5]

    ([0.6, 0.5]

[0.4, 0.3]

[0.7, 0.9]

 ([0.7, 0.3])

Fig. 7.  Interval valued fuzzy Outerplanar graphs.
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S. No Interval valued fuzzy faces f− f+

1 f1 0.4 0.333

2 f2 0.375 0.333

3 f3 0.6 0.333

4 f4 0.375 0.333

Table 2.  Calculation of interval valued fuzzy faces.

 

1

4

2

3

1 ([0.7, 0.5])

3 ([0.8, 0.4])
2 ([0.5, 0.3])

[0.2, 0.3]

[0.4, 0.2]

[0.4, 0.1]

[0.3, 0.3]

4 ([0.5, 0.6]) [0.3, 0.2]

[0.4, 0.1]

5 ([0.9, 0.8])

[0.3, 0.5]

(a)

(b)

3 ([0.6, 0.333])

4 ([0.375, 0.333]) 

[0.2, 0.3]

[0.3, 0.5]

[0.4, 0.1]

1 ([0.4, 0.333])

[0.4, 0.2]

2 ([0.375, 0.333])

[0.3, 0.3]

[0.4, 0.1]

[0.3, 0.2]

[0.4, 0.7][0.4, 0.1] 

1 ([0.4, 0.6]) 
2 ([0.375, 0.875]) 3 ([0.6, 0.875]) 

Fig. 8.  Connected Interval valued fuzzy outerplanar graphs ξ. (a) Interval valued fuzzy dual graph ξ∗, (b) Not 
interval valued fuzzy cycle ξ∗ − v.
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are presented in Table 2. Each interval valued face of ξ corresponds to a vertex and each edge of ψ corresponds to 
edge in ξ∗ = (V′, τ ′, δ′) Then v exists in such a way that ξ∗ − v contains no interval valued fuzzy cycle.

Definition 13  If an edge cannot be added to an interval valued fuzzy outerplanar graph ξ without sacrificing its 
outer planarity property, then the graph is interval valued maximal fuzzy outerplanar graph.

The graphs given in Fig. 9 and Fig. 10 are examples of Interval valued maximal fuzzy outerplanar graphs.

Definition 14  An interval valued fuzzy planar graph ξ is considered minimally interval valued fuzzy non-out-
erplanar if i (ξ) ̸= 0 with atmost one vertex v ∈ ξ such that τ(x) > 0 in the interior region.

The graphs given in Fig. 11 and Fig. 12 are examples of minimally interval valued fuzzy non- outerplanar graphs.

 ([0.3, 0.1])

 ([0.3, 0.1])

 ([0.3, 0.1])
[0.9, 0.2]

    [0.2, 0.1]

   [0.5, 0.3]

[0.4, 0.2]

 ([0.3, 0.1])

   [0.9, 0.2]

  [0.7, 0.2]

Fig. 11.  Minimally interval valued fuzzy non-outerplanar graph K4.

 

 ([0.3, 0.1]) [0.3, 0.1]  ([0.9, 0.2])

 [0.4, 0.2]

 ([0.5, 0.3])

[0.6, 0.2]

 ([0.4, 0.2])

[0.5, 0.3]

  [0.7, 0.1]

 ([0.6, 0.4])
 ([0.2, 0.5]) [0.6, 0.1]

[0.5, 0.3]

     [0.2, 0.2]

     [0.7, 0.2]

Fig. 10.  Interval valued maximal fuzzy outerplanar graph.

 

 ([0.6, 0.4]) ([0.2, 0.5])

[0.6, 0.2]

[0.5, 0.2]

[0.4, 0.3] [0.4, 0.3]

 ([0.3, 0.1])  ([0.9, 0.2])

[0.1, 0.1]

[0.2, 0.2]

[0.7, 0.2]

 ([0.4, 0.2])
 ([0.5, 0.3])

[0.3, 0.2]

[0.2, 0.1]

Fig. 9.  Interval valued maximal fuzzy outerplanar graph.
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Vertex deletion interval valued fuzzy outerplanar subgraph
This section discusses the subgraph resulting from eliminating specified vertices from the interval valued fuzzy 
graph, as well as establishing interval valued fuzzy outerplanar graphs and providing examples that are relevant.

Definition 15  Assume ξ is an Interval valued fuzzy planar graph. If ξ′ is the Vertex Deleted interval valued fuzzy 
subgraph possessing outerplanarity property, then it is referred to as the Vertex Deleted interval valued fuzzy 
outerplanar subgraph of ξ′′.

Example 2  Let’s look at the Interval valued fuzzy graph ξ = (V,A,B) shown in Fig.  13. The set 
of vertices in ξ is V = {v1, v2, v3, v4, v5, v6} and their membership values of these are as fol-
lows: τ− (v1) = 0.6, τ+ (v1)=0.5,τ− (v2) = 0.85, τ+ (v2)=0.9,τ− (v3) = 0.4, τ+ (v3)
=0.5,τ− (v4) = 0.4, τ+ (v4)=0.1,τ− (v5) = 0.7, τ+ (v5)=0.8,τ− (v6) = 0.6, τ+ (v6)=0.7 and the edg-
es B is δ− (v1, v2) = 0.65, δ+ (v1, v2) = 0.1, δ− (v1, v3) = 0.35, δ+ (v1, v3) = 0.4, δ− (v2, v3) = 0.25, 
δ+ (v2, v3) = 0.3, δ− (v2, v5) = 0.6, δ+ (v2, v5) = 0.7, δ− (v3, v6) = 0.35, δ+ (v3, v6) = 0.4, δ− (v5, v6) = 0.55, 
δ+ (v5, v6) = 0.6, δ− (v6, v5) = 0.4, δ+ (v6, v5) = 0.2, δ− (v2, v4) = 0.4, δ+ (v2, v4) = 0.4, δ− (v3, v4) = 0.4, 
δ+ (v3, v4) = 0.2, δ− (v4, v5) = 0.3, δ+ (v4, v5) = 0.5, δ− (v4, v6) = 0.4, δ+ (v4, v6) = 0.2.

The edges intersect between the sets τ−(v2, v6), τ+(v2, v6), and τ−(v3, v5), τ+(v3, v5) within interval valued 
fuzzy graph ξ. Let us define subsets X and Y in V, where X = {(v1([0.6,0.5])} and Y = {v4([0.4,0.1])} in the 
interval valued fuzzy graph ξ.

The Interval valued fuzzy subgraphs ξ − X, represented as ψ1 can be seen in Fig. 13(a). Similarly, the interval 
valued fuzzy subgraph ξ − Y represented as ξ2 is shown in Fig.  13(b). It can be noted that, interval valued 
subgraph ξ1 is categorized as a Vertex Deletion interval valued fuzzy subgraph, while ξ2 is classified as a Vertex 
Deleted interval valued fuzzy outerplanar subgraph of ξ.

Note 1  It is not necessary for the Vertex Deletion interval valued fuzzy subgraph of ξ to be the Vertex Deletion 
interval valued fuzzy outerplanar subgraph of ξ. The interval valued graphs in Figs.13(a) and (b) allow for the 
observation of this.

Theorem 3  An interval valued fuzzy outerplanar graph ξ always has a vertex deleted interval valued fuzzy out-
erplanar subgraph that is also a vertex deleted interval valued fuzzy subgraph of ξ.

Proof  Let the interval valued fuzzy outerplanar graph be. and H be the vertex deleted interval valued fuzzy sub-
graph of ξ. The vertices of the interval valued fuzzy graph ξ will all be in the outer region since it is outerplanar. 
As a result, the interval valued subgraph that was created by deleting vertices still has outerplanarity. Any vertex 
deleted interval valued subgraph in ξ is therefore a vertex deletion interval valued fuzzy outerplanar subgraph 
of ξ.

Theorem 4  Let ξ be an interval valued fuzzy outerplanar graph which is connected and let W be a subset of 
its vertices, such that W ⊆ V. The interval valued fuzzy outerplanar subgraph of ξ with a vertex deleted is 
ξ′ = ξ\W. Its interval valued fuzzy dual graph is ξ′′.

Proof  Let us consider a connected interval valued fuzzy outerplanar subgraph ξ in Fig.  14 and W ⊆ V. let 
ξ − W form a Vertex deleted intervsal valued fuzzy outerplanar subgraph denoted ξ′ Since there is no intersec-
tion of interval valued fuzzy edges in the subgraph ξ′, we can divide the interval valued fuzzy graph into a finite 
number of regions. Each of these regions corresponds to an interval valued fuzzy face, and the membership 
values for each face is determined16.

 ([0.3, 0.1])

 ([0.9, 0.3]) ([0.3, 0.1])

    [0.4, 0.2]

[0.4, 0.3]

[0.3, 0.2]

        [0.2, 0.1]

[0.6, 0.1]

[0.1, 0.1]

([0.4, 0.3])

 ([0.6, 0.3])

Fig. 12.  Minimally interval valued fuzzy non-outerplanar graph K2,3.
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[0.4, 0.2]

1 ([0.6, 0.5])

3 ([0.4, 0.5])2 ([0.85, 0.9])

[0.35, 0.4]
[0.65, 0.1]
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[0.6, 0.7] [0.4, 0.2]

[0.35, 0.4]

5 [0.7, 0.8]
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6 ([0.6, 0.7])

4 ([0.4, 0.1])

[0.25, 0.3]

(b)

(a)

[0.4, 0.2]

3 ([0.4, 0.5])2 ([0.85, 0.9])

[0.4, 0.2]

[0.4, 0.4]

[0.6, 0.7]

[0.3, 0.5]

[0.4, 0.2]

[0.35, 0.4]

[0.55, 0.6]5 ([0.7, 0.8])
6 ([0.6, -0.7])
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4 [0.4, 0.1]

1 ([0.6, 0.5])

2 ([0.85, 0.9])

[0.65, 0.1] [0.35, 0.4]

3 ([0.4, 0.5])

[0.25, 0.3]

[0.6, 0.1]

[0.35, 0.1]

5 ([0.7, 0.8])
6 ([0.6, 0.7])

[0.55, 0.6]

[0.4, 0.2]

Fig. 13.  Interval valued fuzzy graph. (a) Vertex Deleted Interval valued fuzzy subgraph, (b). Vertex deletion 
Interval valued fuzzy outerplanar subgraph.
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f = [f−, f+] =
[
min

{
δ−(x,y)

τ−(x)∧τ−(y) ,
δ+(x,y)

τ+(x)∧τ+(y) : δ− (
x, y

)
∈ Ei′&δ+ (

x, y
)

∈ Ej ′
}]

 Where Ei′ and 

Ej ′ is the region bounded by the interval valued fuzzy edges in interval valued fuzzy planar graph.
Using the fact that each interval valued fuzzy graph with planarity value as 1 has interval valued fuzzy dual 

graph, ξ − W has an interval valued fuzzy dual graph ξ′′ in Fig. 14(a). Consequently, the bipolar fuzzy dual 
graph exists for the Vertex Deleted interval valued fuzzy outerplanar subgraph of ξ.

Example 3  From Example 2. it is evident that the interval valued subgraph ξ′′ is the Vertex Deletion interval 
valued fuzzy outerplanar subgraph of ξ. The dotted lines represent the superimposed interval valued fuzzy dual 
graph of ξ′′ in Fig. Fig. 14(a).

(a)

[0.25, 0.3]

[0.55, 0.6]5 ([0.7, 0.8])

[0.35, 0.4]

6 ([0.6, 0.7])
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2 ([0.85, 0.9])

[0.35, 0.4]

3

3 ([0.4, 0.5]

1 ([0.6, 0.5])

2

1

[0.4, 0.2]

4

4

[0.25, 0.3] [0.55, 0.6]
1 32

Fig. 14.  Vertex Deletion interval valued fuzzy outerplanar subgraph. (a) Interval valued fuzzy dual graph.
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Here f1, f2, f3 and f4 are four fuzzy faces. f1 is bounded by the edges 
((v1, v2), [0.65,0.1]), ((v2, v3), [0.25,0.3]) and ((v1, v3), [0.35,0.4]); f2 is bounded by the edges 
((v2, v3), [0.25,0.3]), ((v3, v6), [0.35,0.4]), ((v5, v6), [0.55,0.6]) and ((v2, v5), [0.6,0.7]); f3 is bounded 
by the edges ((v5, v6), [0.55,0.6]), ((v6, v5), [0.4,0.2]); f4 is the outer face ((v1, v3), [0.35,0.4]), 
((v1, v2), [0.65,0.1]), ((v2, v5), [0.6,0.7]), ((v5, v6), [0.35,0.4]) and ((v3, v6), [0.35,0.4]). The interval valued 
fuzzy dual graph is associated with interval valued fuzzy face values, with all interval valued fuzzy faces 
having membership values of [f1−, f1

+] = [0.625,0.2] , [f2−, f2
+] = [0.625,0.6], [f3−, f3

+] = [0.857,0.285] 
and [f4−, f4

+] = [0.666,0.2], are presented in Table 3. Therefore, the Vertex Deletion interval valued fuzzy 
outerplanar subgraph ξ′′ indeed possesses a interval valued fuzzy dual graph.

Maximum and maximal vertex deletion interval valued fuzzy outerplanar subgraphs
This section introduced the concepts of maximum and maximal vertex deletion interval valued fuzzy outerplanar 
subgraphs and investigates the relationship between these two ideas using appropriate examples.

Definition 16  If ξ′ = (V′, τ ′, δ′) is the Vertex Deletion interval valued fuzzy outerplanar subgraph of ξ such 
that there is no other Vertex deleted interval valued fuzzy outerplanar subgraph of ξ with maximum order and 
size compared to the interval valued subgraph ξ′, then ξ′ is said to be the maximum Vertex deleted interval 
valued fuzzy outerplanar subgraph of ξ.

Note 2  Let order and size of the Vertex deleted interval valued fuzzy outerplanar subgraphs ξ′ and ξ′′ of ξ be 
[O−′,O+′] > [O−′′

,O+′′] and [S−′, S+′] > [S−′′
, S+′′] respectively. The interval valued subgraph ξ′ is said 

to be maximum Vertex deleted interval valued fuzzy outerplanar subgraph of ξ if [O−′,S−′]> [O−′′,S−′′] and 
[O+′,S+′]> [O+′′,S+′′]. Suppose two Vertex deleted interval valued fuzzy outerplanar subgraphs ξ1 and ξ2 are 
obtained in the interval valued fuzzy graph ξ. If ξ1 ̸= ξ2 but the order and size of two interval valued subgraphs 
are equal (i.e.),[O−′,S−′]> [O−′′,S−′′]and [O+′,S+′]> [O+′′,S+′′]., then the two interval valued subgraphs 
are maximum Vertex deleted interval valued fuzzy outerplanar subgraph of ξ.

Example 4  Let’s look at the Interval valued fuzzy graph ξ = (V,A,B) shown in Fig.  15. The set 
of vertices in ξ is V = {v1, v2, v3, v4, v5, v6} and their membership values of these are as fol-
lows: τ− (v1) = 0.25, τ+ (v1)=0.3,τ− (v2) = 0.35, τ+ (v2)=0.7,τ− (v3) = 0.4, τ+ (v3)
=0.5,τ− (v4) = 0.7, τ+ (v4)=0.8,τ− (v5) = 0.15, τ+ (v5)=0.1,τ− (v6) = 0.45, τ+ (v6)=0.5. and the 
edges δ− (v1, v6) = 0.1, δ+ (v1, v6) = 0.2, δ− (v2, v6) = 0.2, δ+ (v2, v6) = 0.3, δ− (v4, v6) = 0.3, 
δ+ (v4, v6) = 0.6, δ− (v5, v6) = 0.7, δ+ (v5, v6) = 0.8, δ− (v1, v2) = 0.5, δ+ (v1, v2) = 0.6, δ− (v2, v3) = 0.5, δ+ (v2, v3) = 0.6, δ− (v3, v4) = 0.4, 
δ+ (v3, v4) = 0.5, δ− (v4, v5) = 0.7, δ+ (v4, v5) = 0.8, δ− (v5, v1) = 0.25, δ+ (v5, v1) = 0.35.

Figure 15 (a)-(f) Maximum Vertex Deletion interval valued fuzzy outerplanar subgraphs.
The vertex deleted of interval valued fuzzy outerplanar subgraphs of ξ are shown in Fig. 15(a)-(f). From the 

Table 4. Note that Fig. 15(c) is the maximum vertex deleted interval valued fuzzy outerplanar subgraph of ξ.

Theorem 5  The interval valued fuzzy outerplanar subgraph of Maximum Vertex Deletion has an interval valued 
fuzzy dual graph, but the converse need not be true.

Proof  We can easily conclude that maximum Vertex Deletion interval valued fuzzy outerplanar subgraph has an 
interval valued fuzzy dual and that the converse need not be true based on the proof of Theorem 4.

Definition 17  A Vertex Deletion interval valued fuzzy outerplanar subgraph ξ′ = (V′, τ ′, δ′) induced on ξ 
and all other interval valued subgraphs of ξ induced by the vertex set V′′ = V′ ∪ {v} (where v ∈ V\V′) that 
does not satisfy the outerplanarity property is the maximal Vertex Deletion interval valued fuzzy outerplanar 
subgraph of ξ′ is.

Theorem 6  The interval valued fuzzy outerplanar subgraph of each maximum vertex deletion is the maximal 
vertex deletion interval valued fuzzy outerplanar subgraph of ξ.

Proof  Let ξ′ denote the maximum interval valued fuzzy outerplanar subgraph of ξ resulting from Vertex Dele-
tion. A subset W ̸= ∅ ⊆ V exists, in which some of the ξ vertices have been deleted.

S. No Interval valued fuzzy faces f− f+

1 f1 0.625 0.8

2 f2 0.625 0.777

3 f3 0.857 0.285

4 f4 0.666 0.2

Table 3.  Calculation of interval valued fuzzy faces.
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Choose a vertex u in W, and consider ξ′′ = ξ′ ∪ {u} where ξ′′ = {x ∈ V′ ∪ {u}
δ(x,y) ̸= ∅, x, y ∈ V\W ∪ {u}}. 

Since ξ′ is a maximum induced interval valued outerplanar subgraph, adding any of the vertex’s results u. Hence, 
ξ′ is the maximal induced vertex elimination interval valued fuzzy outerplanar subgraph of ξ. Therefore, every 
maximum induced vertex deleted interval valued fuzzy outer graph is a maximal induced vertex deleted interval 
valued fuzzy outerplanar subgraph of ξ.

(a)

(b)
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Fig. 15.  Interval valued fuzzy graph. (a) ξ − v2, (b) ξ − v6, (c) ξ − v5, (d). ξ − v3, (e). ξ − v1, (f). ξ − v4.

 

Scientific Reports |        (2025) 15:34018 16| https://doi.org/10.1038/s41598-025-13393-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


(c)

(d)

(e)

(f)

[0.5, 0.6]

[0.2, 0.3]

6([0.45, 0.5])

1 ([0.25, 0.3])

[0.3, 0.6]

4 ([0.7, 0.8])

[0.4, 0.5] 

2 ([0.35, 0.7])

[0.5, 0.6]

[0.1, 0.2]

3 ([0.4, 0.5])

[0.2, 0.3]

4 ([0.7, 0.8])

5([0.15, 0.1])

1 ([0.25, 0.3])
[0.25, 0.35]

[0.1, 0.2] [0.5, 0.6][0.7,0.8]

[0.7,0.8]

6([0.45, 0.5]) 

2 0([0.35, 0.7])

[0.3, 0.6]

[0.7,0.8]
[0.7,0.8]

[0.3, 0.6]

6([0.45, 0.5])

4 ([0.7, 0.8])
[0.2, 0.3]

2 ([0.35, 0.7])

[0.5, 0.6][0.4, 0.5]

5([0.15, 0.1])

3 ([0.4, 0.5])

6([0.45, 0.5])

[0.7, 0.8]

2 ([0.35, 0.7])

5([0.15, 0.1])

[0.1, 0.2]

[0.5, 0.6]

[0.25, 0.35]
1 ([0.25, 0.3])

[0.5, 0.6]

3 ([0.4, 0.5])

[0.2, 0.3]

Fig. 15.  (continued)
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Theorem 7  The answer to Theorem 6. is not necessarily true.

Proof  Let ξ be the interval valued fuzzy graph and, ξ′ and ξ′′ are the Vertex Deletion interval valued fuzzy out-
erplanar subgraphs of ξ. Let W1,W2 be the subsets of vertex set V in ξ.W1 and W2 contains the deleted vertices 
from ξ respectively. Then ξ′ and ξ′′ are said to be maximal interval valued fuzzy outerplanar subgraph if ξ′ ∪ {u} 
where u ∈ W1 and ξ′′ ∪ {v} where v ∈ W2 are interval valued fuzzy non outerplanar.

Therefore, these interval valued subgraphs are interval valued fuzzy outerplanar subgraphs with maximal 
vertex deletion of ξ. However, fuzzy interval valued subgraphs have different order and size, so a vertex deletion 
interval valued fuzzy outerplanar subgraph is a maximal vertex deletion interval valued fuzzy outer subgraph 
with highest order and size. So ξ′ or ξ′′ is a maximal vertex deletion interval valued fuzzy outerplanar subgraph, 
but two interval valued fuzzy graphs are maximal. Therefore, the interval valued fuzzy outerplanar subgraph 
of every maximal vertex deletion need not be a maximum vertex deletion interval valued fuzzy outerplanar 
subgraph.

Note 3  Only when both interval valued subgraphs are maximum vertex Deletion interval valued fuzzy outer-
planar subgraphs as defined by Note 2. are two Vertex Deletion interval valued fuzzy outerplanar subgraphs 
maximal.

Example 5  Let’s look at the Interval valued fuzzy graph ξ = (V, τ, δ) shown in Fig.  16. The set of vertices 
in ξ is V = {v1, v2, v3, v4, v5} and their membership values of these are as follows: τ− (v1) = 0.35, τ+ (v1)
= 0 . 7 , τ− (v2) = 0.45, τ+ (v2) = 0 . 9 , τ− (v3) = 0.5, τ+ (v3) = 0 . 6 , τ− (v4) = 0.7, τ+ (v4)
=0.8,τ− (v5) = 0.15, τ+ (v5)=0.2 and the edges B is δ− (v1, v5) = 0.15, δ+ (v1, v5) = 0.25, 
δ− (v2, v5) = 0.7, δ+ (v2, v5) = 0.8, δ− (v3, v5) = 0.17, δ+ (v3, v5) = 0.18, δ− (v1, v2) = δ− (v2, v1) = 0.1, 
δ+ (v1, v2) = δ+ (v2, v1) = 0.2, δ− (v2, v3) = δ− (v3, v2) = 0.2, δ+ (v2, v3) = δ+ (v3, v2) = 0.3, δ− (v3, v4) = δ− (v4, v3) = 0.3, 
δ+ (v3, v4) = δ+ (v4, v3) = 0.2, δ− (v4, v1) = δ− (v1, v4) = 0.2, δ+ (v4, v1) = δ+ (v1, v4) = 0.3.

All the graphs in Fig. 16(a)-(e) are maximal outerplanar of interval valued fuzzy subgraph of ξ. But Fig. 16(a) 
is the maximum interval valued fuzzy outerplanar subgraph of ξ in the Table 5. Then it can be observed that 
maximal interval valued fuzzy outerplanar subgraph need not be maximum interval valued fuzzy outerplanar 
subgraph of ξ.

Edge deletion interval valued fuzzy outerplanar subgraphs
In this section, we covered the subgraph formed by removing specified edges from an interval valued fuzzy 
graph, as well as constructing interval valued fuzzy outerplanar graphs and presenting illustrations.

Definition 18  If ξ is an interval valued fuzzy planar graph and ξ′ is its Edge Deletion interval valued fuzzy sub-
graph, then ξ′ is the Edge Deletion interval valued fuzzy outerplanar subgraph of ξ if and only if it preserves an 
interval valued fuzzy outerplanar.

Note 4  There is no need for an edge deletion interval valued fuzzy outerplanar subgraph of ξ to be an edge de-
letion interval valued fuzzy subgraph of ξ.

Theorem 8  In an interval valued fuzzy outerplanar graph ξ, every Edge Deletion interval valued fuzzy subgraph 
is always an Edge Deletion interval valued fuzzy outerplanar subgraph of ξ.

Proof  Let ξ be an interval valued fuzzy outerplanar graph and let H be an edge deletion interval valued fuzzy 
subgraph of ξ. Since an interval valued fuzzy graph ξ is outerplanar, all its vertices will be in the outer region. 
Thus, the subgraph obtained by edge deletion still possess outerplanarity property. Therefore, any edge-deleted 
interval valued fuzzy subgraphs in ξ are edge-deleted interval valued fuzzy outerplanar subgraphs of ξ.

Theorem 9  Let W be the subset of edges of a connected interval valued fuzzy outerplanar graph such that 
W ⊆ E. If ξ′ is an edge deletion interval valued fuzzy outerplanar subgraph of ξ if the resulting graph connects 
ξ′ to the interval valued fuzzy dual graph.

S.No Subset Vertex deleted Interval Valued fuzzy Outerplanar Subgraph O−(ξ) O+(ξ) S−(ξ) S+(ξ)

1 W1 = v1([0.25, 0.3]) ξ − W1 2.05 2.6 0.85 1.15

2 W2 = v2([0.35, 0.7]) ξ − W2 1.95 2.2 1.2 1.5

3 W3 = v3(0.4, 0.5) ξ − W3 1.9 2.4 0.9 1.1

4 W4 = v4([0.7, 0.8]) ξ − W4 1.6 2.1 1.4 1.9

5 W5 = v5([0.15, 0.1]) ξ − W5 2.15 2.8 1.65 1.95

6 W6 = v6([0.45, 0.5]) ξ − W6 1.85 2.4 1.3 1.9

Table 4.  Calculation of order and size of these vertex deletion interval valued fuzzy outerplanar subgraphs.
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Proof  By using the same proof as Theorem 4. and which is obviously true for the case of edges.

Maximum and maximal edge deletion interval valued fuzzy outerplanar subgraph
This section introduced the ideas of maximum and maximal edge deletion interval valued fuzzy outerplanar 
subgraphs and analyzes the relationship between these two notions, using appropriate examples.
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Fig. 16.  Example for maximal Vertex Deletion Interval valued fuzzy graph ξ. (a) ξ − v5, (b). ξ − v2, (c). 
ξ − v3, (d). ξ − v1, (e). ξ − v4.
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Definition 19  Maximum ED- interval valued fuzzy outerplanar subgraph.

If ξ′ = (V′, τ ′, δ′) with size [S−, S+] is the Edge Deletion interval valued fuzzy outerplanar subgraph of non-
outerplanar interval valued fuzzy graph ξ = (V, τ, δ) such that there is no other Edge Deletion interval valued 

fuzzy outerplanar subgraph ξ′′ of size [S−′′
, S+′′

] of ξ such that 
[
S−′′

, S+′′
]

> [S−′, S+′], then ξ′ is the 

maximum interval valued fuzzy outerplanar subgraph of ξ.
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Fig. 16.  (continued)
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Note 5  Suppose two Edge Deletion interval valued fuzzy outerplanar subgraphs ξ1 and ξ2 is obtained from 
the interval valued fuzzy graph ψ.If the sizes of the two interval valued subgraphs are equal but ξ1 ̸= ξ2. 

(i.e.)
[
S−′′

, S+′′
]

> [S−′, S+′], then the two interval valued subgraphs are maximum Edge Deletion interval 

valued fuzzy outerplanar subgraphs of ξ. This means that there is no unique maximum edge deletion interval 
valued fuzzy outerplanar subgraph of ξ.

Example 6  Let’s look at the Interval valued fuzzy graph ξ = (V, τ, δ) shown in Fig.  17. The 
set of vertices in ξ is V = {v1, v2, v3, v4, v5} and their membership values of these are as fol-
lows: τ− (v1) = 0.33, τ+ (v1)=0.1,τ− (v2) = 0.15, τ+ (v2)=0.1,τ− (v3) = 0.25, τ+ (v3)
=0.2,τ− (v4) = 0.6, τ+ (v4)=0.1,τ− (v5) = 0.5, τ+ (v5)=0.1 , τ− (v6) = 0.7, τ+ (v6)=0.1. 
For edges ([ȧ, ḃ]) = ei ∀δ(

[
ȧ, ḃ

]
) ∈ E; i = 1,2, 3, . . . , 11 and edge set with the values as B is 

δ− (e1) = δ− (e8) = δ− (e9) = 0.5, δ+ (e1) = δ+ (e8) = δ+ (e9) = 0.1, δ− (e2) = 0.35, δ− (e2) = 0.2, 
δ− (e3) = 0.55, δ+ (e3) = 0.3,δ− (e4) = 0.25, δ+ (e4) = 0.1,δ− (e5) = 0.55, δ+ (e5) = 0.2,δ− (e6) = 0.3, 
δ+ (e6) = 0.1,δ− (e7) = 0.8, δ+ (e7) = 0.3,δ− (e10) = 0.65, δ+ (e10) = 0.2,δ− (e11) = 0.2, δ+ (e11) = 0.1.

Figure 17 (a) An example of interval valued fuzzy subgraphs with maximum and maximal Edge Deletion 
from an interval valued fuzzy graph ξ.

In Fig. 17 (a), the maximal Edge deleted interval valued fuzzy outerplanar subgraph are shown. Thus, a result, 
ξ − U is the greatest Edge Deleted interval valued fuzzy outerplanar subgraph of ξ, and interval valued fuzzy 
subgraph is maximal.

In the following section, an application of interval valued fuzzy outerplanar graphs in a bypass road network 
is shown.

(a)
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6([0.7, 0.1])

e1 

e6  e2 

e7 e11
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Fig. 17.  Interval valued fuzzy graph. (a) Edge Deletion from an interval valued fuzzy subgraph.

 

S.No VD Interval Valued Fuzzy outerplanar subgraphs O−(ξ) O+(ξ) S−(ξ) S+(ξ)

1 Figure 16(a) ξ−{v5  ([0.15, 0.2])} 2 2.3 1.62 1.93

2 Figure 16(b) ξ−{v2  ([0.45, 0.9])} 1.7 1.6 1.3 1.8

3 Figure 16(c) ξ−{v3  ([0.5, 0.6])} 1.65 1.9 1.17 1.18

4 Figure 16(d) ξ−{v1  ([0.35, 0.7])} 1.8 1.8 0.75 1.25

5 Figure 16(e) ξ−{v4  ([0.7, 0.8])} 1.45 1.7 1.6 1.7

Table 5.  Calculation of order and size of these vertex deletion interval valued fuzzy outerplanar subgraphs.
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Application of bypass road network in interval valued fuzzy outerplanar graphs
Bypass roads are designed to redirect heavy traffic away from city centers, effectively reducing traffic congestion. 
By diverting heavy-duty vehicles onto alternate routes, these roads alleviate pressure on the main city streets, 
leading to quicker travel times on both routes. This can result in reduced travel times, lower fuel consumption, 
and decreased emissions. Consequently, it improves accessibility to desired locations and positively impacts the 
local economy. A fuzzy graph can be used to model a traffic network where there is some certainty about the 
relative positions of the objects, but the information remains imprecise or uncertain. In this model, the nodes 
represent different city neighborhoods, while the edges illustrate the connections between them.

The fuzziness in the graph captures the uncertainty associated with factors like population distribution, 
traffic volumes, and road capacities. Managing this uncertainty is crucial for designing bypass roads that are both 
efficient and adaptable to changing conditions. By identifying an interval valued fuzzy outerplanar subgraph, 
planners can create routes that consider these uncertainties, ensuring that the bypass roads not only alleviate 
traffic in the city center but also adjust to shifts in traffic patterns and population growth. This strategy enables 
the development of a more resilient and flexible transportation network, capable of meeting future demands 
while maintaining optimal travel times and minimizing congestion in the urban core.

Moreover, the use of interval-valued fuzzy models allows for a more nuanced understanding of transportation 
dynamics. Unlike classical graphs, which operate with binary or crisp data, interval-valued fuzzy graphs account 
for a range of possibilities, making them suitable for complex urban systems where data is often incomplete, 
evolving, or imprecise. For instance, in real-world scenarios, traffic flow data may fluctuate throughout the day 
due to weather, special events, or accidents. Modeling these variations using interval values provides a buffer 
for unpredictability, allowing traffic engineers to design bypass networks that perform well under a range of 
conditions.

Additionally, the outerplanar nature of the graph ensures that the network remains relatively simple and 
computationally efficient. Outerplanar graphs are those that can be drawn in the plane without edge crossings 
such that all vertices lie on the outer face. This property is particularly beneficial in bypass road planning, where 
the goal is often to connect outer regions without interfering with the densely connected inner-city network. This 
simplifies not only the visualization of potential routes but also the optimization of infrastructure investments.

In practice, incorporating interval-valued fuzzy outerplanar subgraphs into geographic information systems 
(GIS) and traffic simulation tools can assist urban planners in visualizing multiple planning scenarios. For 
example, a bypass route might be modeled with intervals reflecting best-case and worst-case travel times or 
expected traffic volumes. These insights can guide the selection of routes that offer the best compromise between 
efficiency, cost, and long-term adaptability.

Ultimately, the integration of interval-valued fuzzy outerplanar graphs in traffic modeling offers a powerful 
toolset for dealing with uncertainty and complexity. As cities continue to expand and transportation demands 
grow more dynamic, such advanced graph-theoretic techniques will become increasingly vital for sustainable 
urban planning and smart infrastructure development.

Let V = {B1, B2, B3, ...Bn} denote the set of towns where buses stop and let ci ​ represent the number of buses 
stopping at town Bi​. Suppose the number of buses arriving in town Bi​ during a time period T  is ai. The town 
Bi​ is given by the interval ai/ci,Expected Crowd in each in town [Ci, Cj ] for i = 1,2, ..., m, j = 1,2, ..., n.

The vertex membership is calculated based on the number of buses passing through the town, shopping at 
the town, Expected crowd at each town.

The membership value of a route [Bi, Bj ] is defined as follows in interval form:

	
δ[Bi, Bj ] =

{ [ sij

P (δ (Bi) ∧ δ (Bj)) ,
sij

P (τ (Bi) ∧ τ (Bj))
]

, if0 ≤ s ≤ P
[δ(Bi) ∧ δ (Bj) , τ(Bi) ∧ τ(Bj)] , if s > P

where sij  represents the number of passengers traveling on route (Bi, Bj) during time T , and P  is the threshold 
for a ‘satisfied bus-stopping town’, set to 30.

δ (Bi) and δ (Bj) are the lower bounds of the membership intervals for towns Bi and Bj  respectively. τ(Bi) 
and τ(Bj) are the upper bounds of the membership intervals for towns Bi and Bj  respectively. Thus, the interval 
membership value for the edge (Bi,Bj) for both the lower and upper bounds of the number of passengers and 
their respective memberships.

The modelling to design an optimal bypass road network are presented as an algorithm:
Algorithm

Constructing an interval-valued fuzzy outerplanar graph for bypass road planning.
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For illustration, Table 6 provides data on the number of buses stopping at each town and the number of 
passengers traveling through the towns. The routes (edges) for the problem include: (B1, B2), (B1, B8), (B1, B9), 
(B2, B3), (B2, B10), (B3, B4), (B3, B12), (B4, B5), (B4, B12), (B5, B6), (B5, B12), (B6, B7), (B6, B11), (B7, B8), 
(B7, B11), (B8, B9), (B9, B10), (B10, B11),(B10, B12), (B11, B12).The number of passengers for all routes and 
their membership values are listed in Table 7. The bus routes within the town are illustrated in Fig. 17.

For instance, consider the bypass road network and the corresponding interval-valued fuzzy graph shown 
in Figs. 18 and 19. Figure 20 does not initially represent an interval-valued fuzzy outerplanar graph due to the 
presence of overlapping connections and central congestion nodes that violate the conditions of outerplanarity. 
However, by strategically deleting certain vertices particularly those representing highly congested or low-
traffic towns an interval-valued fuzzy outerplanar subgraph can be derived. This refined subgraph enables the 

Vertex
Number of buses stopping 
at town ai

Number of buses passing 
through town ci ai/ci

Expected Crowd in each town(
ai
ci

)
× [Ci, Cj ]

Crowdness 
factor as 
Percentage 
[Vertex 
Membership 
value α]

B1 38 42 0.90 [35,45] [0.32,0.41]

B2 39 45 0.87 [37,47] [0.32,0.41]

B3 41 45 0.91 [43,45] [0.39,0.41]

B4 41 45 0.91 [43,45] [0.39,0.41]

B5 43 48 0.91 [43,45 [0.39,0.45]

B6 44 49 0.89 [41,48] [0.36,0.43]

B7 44 49 0.89 [41,48] [0.36,0.43]

B8 44 49 0.89 [41,48] [0.36,0.43]

B9 19 35 0.54 [45,49] [0.24,0.26]

B10 17 35 0.48 [47,48] [0.22,0.23]

B11 19 35 0.54 [41,45] [0.22,0.24]

B12 20 38 0.53 [46,48] [0.24,0.25]

Table 6.  Calculation of vertex membership value.
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construction of an efficient bypass road system between key urban centers, as effectively illustrated in Fig. 18. 
Through this approach, the original graph, which may contain complex or non-planar structures, is transformed 
into a more manageable and application-ready model.

The city can be accessed using the bypass routes via the edges highlighted in Fig. 20, which represent feasible 
travel paths after simplification. As demonstrated in Fig. 19, the deletion of specific vertices not only reduces the 
complexity of the network but also results in a topology conducive to bypass development. These adjustments 
preserve the essential connectivity of the transportation network while removing redundancies and minimizing 
intersections.

Additionally, Fig.  20 provides an illustrative example of a fuzzy outerplanar graph structure, showcasing 
how vertices (representing towns) and edges (representing routes) can be effectively rearranged and optimized 
to support a more streamlined bypass network. The outerplanar configuration ensures that all vertices lie along 

Fig. 18.  Bypass road network mapping.

 

Edge Number of passengers traveling (s) Edge membership value β

(B1, B2) 28 [0.30,0.38]

(B1, B8) 16 [0.17,0.22]

(B1, B9) 17 [0.14,0.15]

(B2, B3) 26 [0.28,0.36]

(B2, B10) 15 [0.11,0.12]

(B3, B4) 27 [0.35,0.37]

(B3, B12) 18 [0.14,0.15]

(B4, B5) 24 [0.31,0.33]

(B4, B12) 17 [0.14,0.14]

(B5, B6) 21 [0.25,0.30]

(B5, B12) 17 [0.14,0.14]

(B6, B7) 19 [0.23,0.27]

(B6, B11) 18 [0.13,0.14]

(B7, B8) 26 [0.31,0.37]

(B7, B11) 22 [0.16,0.17]

(B8, B9) 23 [0.18,0.19]

(B9, B10) 20 [0.15,0.15]

(B10, B11) 26 [0.19,0.20]

(B10, B12) 21 [0.15,0.16]

(B11, B12) 23 [0.17,0.18]

Table 7.  Calculation of edge membership value.
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the external boundary, eliminating inner cycles that typically contribute to traffic congestion. This geometrical 
clarity allows for the development of direct and less conflicted routes that circumnavigate the city center.

By utilizing the inherent characteristics of fuzzy outerplanar graphs such as the ability to model ambiguity in 
road usage, traffic density, and infrastructural capacity urban planners can design bypass road systems that are 
not only capable of alleviating current traffic challenges but are also inherently adaptive to future fluctuations in 
population growth, vehicular load, and spatial expansion. The interval-valued fuzzy model, in particular, offers 
the flexibility to account for uncertainty and variation in transportation parameters, making it a powerful tool in 
smart urban planning. This methodology thus underscores the practical advantages and long-term sustainability 
of employing fuzzy graph theory in contemporary infrastructure development, enabling the creation of road 
networks that are resilient, efficient, and well-aligned with the dynamic needs of modern cities.

Conclusion
In this study, we have explored the properties and characteristics of interval-valued fuzzy outerplanar graphs. 
Through the analysis of subgraphs derived from these graphs via vertex and edge deletions, we have demonstrated 
methods for identifying maximal and maximum interval-valued fuzzy outerplanar subgraphs. The relationships 
among these concepts were rigorously examined, leading to several theorems that further our understanding 
of interval-valued fuzzy graph structures. Furthermore, we introduced interval-valued fuzzy dual graphs, 
highlighting their important characteristics and their close relationship with interval-valued fuzzy outerplanar 
graphs. This investigation has revealed the versatility and utility of these graphs in various applications due to 
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Fig. 20.  Interval valued fuzzy outerplanar graph.
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Fig. 19.  Interval valued fuzzy non outerplanar graph.
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their ability to represent uncertainty and variability. Finally, we explore the application of interval-valued fuzzy 
outerplanar graphs to bypass road networks. By modeling the bypass road network with this approach, we can 
effectively capture and represent the uncertainty and variability in factors such as road conditions, traffic flow, 
and connectivity.

Data availability
All data generated or analysed during this study are included in this article. If someone wants to request the data 
from this study, it is possible to contact the corresponding author: Tadesse Walelign (tadelenyosy@gmail.com).
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