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With the development of railway transportation and the advancement of deep learning, object 
detection algorithms are increasingly replacing manual inspection of track fasteners. However, current 
algorithms struggle with low accuracy in complex weather conditions or low-contrast backgrounds. 
To address this, we propose a track fastener defect detection algorithm based on YOLOv11 (You Only 
Look Once).First, we incorporate the DHSA (Dynamic-range Histogram Self-Attention) module into the 
backbone network of YOLOv11 to enhance noise robustness. Second, we introduce the BRA (Bi-Level 
Routing Attention) sparse attention mechanism into the neck network for improved efficiency. Finally, 
we add the PPA (Parallelized Patch-Aware Attention) module to the original neck network to enhance 
multi-scale feature extraction, specifically for small object detection.To validate the model, we created 
a dataset and conducted experiments. The experimental results show that YOLO-DRPA achieves a 
mAP@0.5 of 94.6% and a mAP@0.5:0.95 of 80.7%, marking improvements of 1.8% and 4.0% over 
YOLOv11n, respectively. The model also demonstrates competitive performance compared to other 
popular object detection algorithms, highlighting its potential to improve both detection accuracy and 
efficiency.
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In recent decades, railway transportation has received extensive attention and experienced significant growth, 
aiming to further boost industrial production efficiency and accelerate socioeconomic development. However, 
this rapid growth has also led to an increase in potential safety hazards, which pose serious risks to industrial 
production and social stability. Track fasteners, essential components that connect railway tracks to sleepers, 
play a crucial role in maintaining track stability. The health of these fasteners directly affects the stability and 
efficiency of railway transportation. Unfortunately, track fasteners are prone to defects due to factors such as 
fatigue from prolonged use, uneven stress on the tracks, and adverse weather conditions. Common defects 
include breaks, lack of fastening, rotation, among others1, which severely hinder the normal operation of railway 
systems.

Currently, there are various methods for detecting defects in railway track fasteners. Traditional manual 
inspection relies heavily on the experience and skills of inspectors2, but it is inefficient and subject to human 
error, leading to missed or false detections. As a result, image-processing-based machine learning methods 
have emerged as alternatives to manual detection. These methods often use hand-crafted feature extraction 
algorithms and classifiers such as SIFT3 (Scale-Invariant Feature Transform), SURF4 (Speeded-Up Robust 
Features), and HOG5 (Histogram of Oriented Gradients). While these approaches offer improved efficiency and 
stability compared to manual inspection, their performance is still limited by the accuracy and robustness of the 
algorithms. Consequently, deep-learning-based methods, particularly those employing CNNs6 (Convolutional 
Neural Networks) and RCNNs7 (Region-based Convolutional Neural Networks), have gained widespread 
application.

Deep learning-based object detection primarily falls into two categories: two-stage and one-stage algorithms. 
Two-stage algorithms first generate candidate regions with target probabilities and then process these regions 
through ROI (Region of Interest) Pooling. Notable examples of this approach include RCNN and Faster RCNN8 
(Faster Region-based Convolutional Neural Network). In contrast, one-stage algorithms treat detection as a 
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regression task, directly predicting target categories and bounding boxes from images. Examples of one-stage 
algorithms include YOLO9 and SSD10 (Single Shot MultiBox Detector). Feng Guo et al. developed the YOLOv4-
hybrid11 model, which builds upon YOLOv4 to enable portable, high-speed track detection. While two-stage 
algorithms excel in accuracy, one-stage algorithms are typically faster. Additionally, Feng Guo et al. proposed 
RailFormer12, a Transformer-based model designed for precise pixel-level RSD (Rail Surface Defects) detection 
in the railway industry. Furthermore, multi-sensor data fusion13, such as the use of millimeter-wave radar, has 
been adopted to enhance detection performance, although this approach comes with higher hardware costs.

In general, defect detection of railway track fasteners involves a variety of methods, with deep learning-based 
approaches showing promising comprehensive performance and application potential. Considering specific 
challenges in railway track fastener defect detection, such as the unavoidable impact of weather conditions (e.g., 
rainy days, nighttime, tunnel environments), the low proportion of fastener targets in input detection images 
causing inefficient computation in traditional undifferentiated attention mechanisms, and the small size of 
fastener targets leading to the loss of important details during traditional feature extraction and downsampling, 
we propose an innovative model, YOLO11-DRPA, based on YOLO11. By incorporating the DHSA module14, 
BRA module15, and PPA module16, the model’s ability to address these challenges is improved. Specifically, the 
DHSA module added to the backbone network groups input images by gray levels and applies BHR (Bin-wise 
Histogram Reshaping) and FHR (Frequency-wise Histogram Reshaping) to enhance sensitivity to both global 
and local features, reducing weather noise interference and improving adaptability to tunnel environments. The 
BRA module in the neck network performs spatial division and sparse attention processing on fastener images, 
filtering out irrelevant information and helping optimize computing power usage. The PPA module, also in the 
neck network, uses pointwise convolution to partition input data into distinct feature groups, helping mitigate 
feature loss during downsampling and enhancing the model’s sensitivity to fasteners.

Methods
Dataset
Currently, datasets related to track fastener defects are relatively limited, and due to confidentiality concerns, 
most railway data are not publicly accessible. As a result, the track fastener dataset used in this study was sourced 
from Jinhua Railway Station in Zhejiang. It took approximately three months to capture 1,489 fastener images 
with a resolution of 4032 × 3024 from different angles and heights, under various weather conditions, using a 
manual camera. These images cover different fastener categories, including normal, rotation, lack, and break, as 
illustrated in Fig. 1. Additionally, real-world scenarios such as rainy days and low-light tunnel conditions were 
simulated to account for various lighting and occlusion challenges typically encountered in track detection tasks.

To increase the dataset size and ensure the sample distribution reflects real-world conditions, we applied 
several data augmentation techniques, including image position transformation, noise addition, and adjustments 

Fig. 1.  Dataset category examples. In the figure, (a–d) are respectively examples of image dataset for the 
categories of Normal, Lack, Break, and Rotation.
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to brightness and contrast. Subsequent experiments have demonstrated that variations in the sample size do not 
significantly affect the model’s detection performance. After screening and labeling, the dataset was split into 
training, validation, and test sets following an 8:1:1 ratio.

Experimental setup
In this study, we used Ubuntu 20.04 as the operating system and the PyTorch framework for model training. The 
software setup included PyTorch 2.0.1, CUDA 11.8, and CUDNN 8.7.0. The hardware configuration consisted 
of an AMD Ryzen 9 5900HX with Radeon Graphics x 16 and an NVIDIA GeForce RTX 3060 with 6GB of 
memory. For data augmentation, we utilized Albumentations17. New images were generated by stitching four 
different images together, along with applying transformations such as rotation, translation, and cropping. The 
experimental setup was configured with the following parameters: no pre-trained weights, a total of 300 epochs, 
a batch size of 16, an input image resolution of 640 × 640, and a cosine annealing learning rate strategy18.

YOLO-DRPA
YOLO-DRPA striction
The network structure of YOLO11 is divided into three parts: the backbone network, the neck network, and 
the output head. The backbone network is composed of four modules, namely Conv, C3k2, SPPF, and C2PSA. 
It generates rich feature tensors by gradually reducing the spatial resolution of the image and increasing the 
number of channels, and is mainly responsible for extracting features of the input image and capturing image 
information. The neck network is located between the backbone network and the output head, and its main part 
is the PAN (Path Aggregation Network), which is responsible for further enhancing and fusing the feature tensors 
output by the backbone network to provide better input for the output head. The output head is responsible for 
receiving the data output by the neck network and generating the final prediction results. It consists of three 
independent output heads, which respectively process feature maps of large, medium, and small sizes to meet 
the object detection requirements of different sizes. Finally, the network outputs a high-dimensional tensor 
containing category, confidence, and position coordinate information.

On this basis, we added the DHSA module to the backbone network and the BRA module and PPA module 
to the neck network. The specific network structure is shown in Fig. 2.

YOLO-DRPA backbone
In order to enhance the robustness of the model against the degradation factors caused by the inevitable weather 
environments (such as rainy days, nights, railway track tunnels, etc.) during the detection of railway track 
fasteners, including image noises like occlusions and changes in brightness19, we have introduced the DHSA 
module into the backbone network. The network structure of the DHSA module is shown in Fig. 3. It improves 
the model’s robustness to environmental noises through dynamic range convolution and a dual-path histogram 
self-attention mechanism.

In the dynamic range convolution, this module conducts convolution within a dynamic range on the input 
image. For a dynamic input feature F ∈ RW ×H ×C , where W × H  represents the spatial scale and C  
represents the number of channels, it is equally divided along the channel dimension into intermediate feature 
tensors F1 ∈ RW ×H × C

2  and F2 ∈ RW ×H × C
2 . The grayscale values of the data in the F1 branch are sorted 

horizontally and vertically, and then connected with F2 to obtain the adaptively processed feature F′ , as shown 
in Eq. (1):

	

F1, F2 = Split (F ) , F1 = Sortv (Sorth (F1)) ,

F ′ = Convd
3 ×3 (Conv1 ×1 (Concat (F1, F2)))

� (1)

where, Conv1×1 denotes the 1 × 1 pointwise convolution operation; Convd
3×3 represents the3 × 3 depthwise 

convolution operation; Concat refers to the operation of concatenating along the channels; Split stands for the 
operation of splitting along the channels; and Sorti∈(h, v) indicates the operation of arranging in the horizontal 
(h) or vertical (v) direction.

Subsequently, through depthwise separable convolution, the convolution operation is enabled to compute 
across dynamic ranges. This process organizes pixels of varying intensities into regular patterns, allowing 
convolution kernels to focus on preserving clean information and restoring degraded features respectively, 
thereby reducing noise interference.

In the dual-path histogram self-attention mechanism, for the output of the dynamic range convolution, the 
query-key pairs are first sorted and then passed to the two branches based on the index arrangement, which is 
used to extract local and global features simultaneously, as shown in Eq. (2).

	

V, d = Sort
(
RHW ×C

H × W ×C (V )
)

,

Q1, K1 = Split
(
Gather

(
RHW ×C

H × W ×C (QK1) , d
))

Q2, K2 = Split
(
Gather

(
RHW ×C

H × W ×C (QK2) , d
))� (2)

where, RHW ×C
H × W × C  represents the reshaping of the feature tensor from RH × W × C  to RHW × C , d is the 

index of the permutation value, and Gather denotes the retrieval of tensor elements from the given indices.
Finally, the dual-branch architecture employs BHR and FHR for feature reshaping. In the BHR branch, the 

number of bins is denoted as Bb, with each bin containing HW
B  features. Large-scale information is extracted 

from bins containing a large number of dynamically positioned pixels, covering a broader intensity range 
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to integrate global features and prevent the model from being misled by local noise. In the FHR branch, the 
frequency per bin is denoted as Bf, and the number of bins is set to HW

B . Fine-grained information is extracted 
from bins with fewer spatially adjacent pixels, focusing on a limited number of pixels to enhance the perception 
of detailed features and help identify details obscured by noise. The query-key features from both branches are 
reshaped accordingly and passed through a self-attention mechanism to capture long-range spatial dependencies 
and distinguish background from noise. The resulting attention maps Ab and Af are multiplied element-wise to 
obtain the final attention map A, as shown in Eq. (3).

Fig. 3.  The network structure of DHSA module. The legend depicts the main structure of the DHSA. The 
process of processing dynamic image data is encapsulated in the first step. Subsequently, reshaping operations 
of BHR and FHR are carried out to obtain the complete output features.

 

Fig. 2.  The network structure of YOLO-DRPA. The structure of YOLO11-DRPA is shown in the figure, with 
the details of the DHSA, BRA, and PPA modules provided in the section on YOLO-DRPA.
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Ai ∈ (b,f) = Softmax

(
Ri ( Q1) Ri(K1)T

√
k

)
Ri (V ) ,

A = Ab ⊙ Af

� (3)

Here, k represents the number of self - attention heads. Ri∈(b,f) stands for the reshaping methods BHR or FHR. 
Ai∈(b,f) denotes the attention maps obtained from the branches. A is the fusion result of the branch attention 

maps, and ⊙ represents element - wise multiplication.

YOLO11-DRPA nect
The original neck network of YOLO11n uses C3k2 and Conv modules (structure in Fig. 2), enabling bidirectional 
feature transmission20. However, its simple summation - based fusion treats all image data equally, mixing valid 
and invalid information. In track fastener detection, this wastes computational resources and reduces efficiency 
due to large - sized input images. We thus introduce the BRA module with a sparse attention mechanism to boost 
the model’s real - time performance.

The working process of the BRA module, as depicted in Fig. 4, mainly encompasses region division and 
input projection, region-to-region routing, and token-to-token attention. For an input image F ∈ RH × W × C , 
region division splits it into S × S non-overlapping regions. Different spatial scales such as 4 × 4, 7 × 7, and 
14 × 14 are commonly used for region division. Smaller scales provide more detailed local information, 

but an excessive number of regions increases routing overhead and may neglect long-range dependencies. 
Larger scales reduce computational load, yet information redundancy within regions may weaken feature 
representation. Therefore, a 7 × 7 size is typically chosen to balance local details and global context. Following 
this, the image data of each region F′ = R

H
S × W

S ×C undergoes input projection using the projection matrices 
ωV

0 S × S , ωK
0 S×S , and ωQ

0 S ×S  to generate value, key, and query tensors V ∈ RS × S , K ∈ RS × S , and 

Q ∈ RS × S . Subsequently, for region-to-region routing, a region affinity matrix is calculated and pruned to 
retain only the top k connections of each region, adaptively determining the regions of interest and routing 
indices, which significantly cuts down computation compared to traditional routing methods. Finally, in the 
token-to-token attention stage, key-value pairs from regions with higher affinity are collected and fused, yielding 
tensors Vg ∈ R

κH W
S2 , Kg ∈ R

κH W
S2 , and Q ∈ RS × S  to effectively tackle the issues of low-resolution targets 

and spatial ambiguity in track fastener detection.
By collecting key-value pairs from regions with high affinity and filtering out most irrelevant ones at the 

coarse-grained region level, fine-grained token-to-token attention calculation is performed only within a few 
relevant regions. This enables the model to precisely focus on semantically relevant key-value pairs, effectively 
addressing the challenges of low target resolution ratios and spatial ambiguity in fastener detection engineering.

To address the issue that key information of small fastener targets is likely to be lost during multiple 
downsampling operations21, we further introduce the PPA module into the original neck network. The PPA 

Fig. 4.  The working process of the BRA module. The figure shows the specific details of the BRA module, 
which retains relevant regions, filters out irrelevant regions, and incorporates an attention mechanism.
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module employs a multi-branch parallel feature extraction method at different levels, and the complete network 
is shown in Fig. 5.

The overall workflow is as follows: For the input feature tensor F ∈ RH× W × C , three parallel branches are 
constructed via point convolution adjustment to capture local features, global features, and perform multi-level 
convolution, respectively. In the local and global branches, feature extraction at different scales is achieved by 
controlling the patch size parameter p, involving operations such as partitioning F, channel averaging, linear 
computation, activation function processing, and feature selection. The serial convolution branch employs three 
3 × 3 convolutional layers instead of traditional convolutions to generate outputs. The resulting three-branch 

feature tensors Flocal ∈ RH× W ×C , Fglobal ∈ RH× W × C , and Fconv ∈ RH× W × C  are summed to form the 
intermediate feature tensor F′ ∈ RH× W × C . Finally, unlike the traditional FPN(Feature Pyramid Network) 
structure that simply fuses features across layers, the PPA module enhances the summed result with dedicated 
attention mechanisms for adaptive feature enhancement, emphasizing features relevant to small targets. The 
attention mechanism operates as follows: F′  first passes through the Channel Attention Module (CAM) to 
generate a one-dimensional channel attention map, denoted as Mc (F′ ). This map is then multiplied element-
wise with F′  to produce the channel attention tensor F′′, as shown in Eq.  (4). Subsequently, F′′ serves as 
the input to the Spatial Attention Module (SAM). After processing through SAM, a two-dimensional spatial 
attention map Ms (F′′) is obtained. This map is multiplied element-wise with F′′ to yield the final output 
feature Fo, as expressed in Eq. (5).

The PPA module captures multi-scale features of objects through a multi-branch feature extraction strategy 
and enhances these features using dedicated attention mechanisms. This ensures that the information of small 
fastener objects is better preserved and enhanced within the network, thereby improving the accuracy of defect 
detection for track fasteners.

	 F ′ ′ ′ = Mc

(
F ′ ′ )

⊗ F ′ ′ � (4)

	 Fo = Ms

(
F ′ ′ ′ )

⊗ F ′ ′ ′ � (5)

	 Mc

(
F ′ ′ )

= σ
(
MLP

(
AvgP ool

(
F ′ ′ )))

+ MLP
(
MaxP ool

(
F ′ ′ ))

� (6)

	
Ms

(
F ′ ′ ′ )

= σ

(∫ 7 × 7 ([
AvgP ool

(
F ′ ′ ′ )

; MaxP ool
(
F ′ ′ ′ )]))

� (7)

Here, F′′ represents the image data output by the addition of parallel branches. Mc ∈ R1× 1× C′
 represents 

the operation of generating a one - dimensional channel attention map through the CAM22. Ms ∈ RH′ ×W′ ×1 
represents the operation of generating a two - dimensional spatial attention map through the SAM23. ⊗  
represents the element - wise multiplication calculation.

Fig. 5.  The complete network structure of PPA module. The figure illustrates the detailed workflow of the PPA 
module, where “G” represents “Gather” and “FFN” represents “MLP + LayNorm + MLP”.
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Loss function
YOLO11 - DRPA adopts a comprehensive loss function24, which includes bounding box regression loss, 
classification loss, and confidence loss. As shown in Eq. (8).

	 Loss = Boxloss + Clsloss + Dflloss� (8)

Here, Loss represents the total loss function. Boxloss denotes the bounding box regression loss, Clsloss 
represents the classification loss, and Dflloss indicates the confidence loss.

Bounding box regression loss optimizes the difference between predicted and ground - truth bounding 
boxes. It has two components: center point coordinate loss and width - height loss, with the principle in Eq. (9).

	

Boxloss = λcoord

S2∑
i=0

B∑
j=0

1obj
ij

((
xi − x′

i

)2 +
(
yi − y′

i

)2
)

+ λcoord

S2∑
i=0

B∑
j=0

1obj
ij

((√
wi −

√
w′

i

)2
+

(√
hi −

√
h′

i

)2
) � (9)

where, S is the grid size, B is the number of bounding boxes per grid cell. 1obj
ij  indicates if the j - th box in the 

i - th cell predicts an object. x and y are are box center coords, w and h are its width and height, and λcoord is a 
weight coefficient for balancing losses.

The classification loss is typically calculated using the cross - entropy loss. It is used to measure the difference 
between the probability distribution predicted by the model and the true labels, aiming to determine which 
category the target belongs to. The specific form is shown in Eq. (10).

	
Clsloss =

∑ S2

i =0
1obj

i

∑
c ∈ classes

(
pi (c) − p′

i (c)
)2� (10)

	
Dflloss = −

∑
N
i =1

∑ C

c =1
yic (α (1 − pic)γ log (pic) + (1 − α ) pγ

iclog (1 − pic))� (11)

Here, pi (c) is the probability that the model predicts the target in the i - th grid cell belongs to class c, and 
p′

i (c) is the true label, indicating whether the target in the i - th grid cell belongs to class c. yic is the true 
label of the i - th sample, and pic is the probability that the i - th sample belongs to class c. α is the balancing 
factor used to adjust the weights between positive and negative samples, and γ is the focusing parameter used to 
control the degree of attention to difficult samples.

The confidence loss function is often combined with traditional cross - entropy loss to boost the model’s 
learning of hard samples. Its core is to weight category prediction probabilities, making the model focus more on 
misclassifiable samples. The specific formula is in Eq. (11).

Results
Evaluation method
In our study, to rigorously evaluate the model’s performance, we sampled 50 datasets for each experiment 
and conducted statistical analysis after removing the highest and lowest values. The metrics employed include 
Precision (P), Recall (R), Average Precision (AP), mean Average Precision (mAP)25, Standard Deviation (SD), 
model size parameters, and Frames Per Second (FPS). P represents the accuracy of target recognition, R denotes 
the recall rate, AP is the average precision calculated as the area under the Precision-Recall curve for each class, 
and mAP is the mean of individual APs across all classes. SD measures the standard deviation of mAP values. 
Additionally, we used a representative GPU device, the NVIDIA GeForce RTX 3060 GPU (NVIDIA, Santa Clara, 
CA, USA), which aligns with the computational capabilities of modern edge devices, to assess model size and 
FPS, thereby quantifying the model’s lightweight characteristics for downstream applications such as embedded 
systems. The mathematical formulations of P, R, AP, and mAP are presented in Equations (12) to (15).

	
P = T P

T P + F P
� (12)

	
R = T P

T P + F N
� (13)

	

AP =
1∫

0

P (R) dR� (14)

	
mAP =

∑ C

n =1APn

C
� (15)
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Here, TP represents the correctly predicted true positive instances, FP represents the false positive instances 
with inaccurate predictions, FN represents the falsely predicted false negative instances, and C represents the 
classes in the dataset.

Ablation and comparative experiment
In this stage, we first carried out a series of ablation experiments by combining various modules differently to verify 
the collaborative optimization among them. The experimental results show that whether added individually or 
in combination, each module can improve the model’s performance in different dimensions to some extent. For 
example, the PPA module optimizes the problem of information loss during traditional multiple downsampling 
through parallel multi-branch feature extraction. The BRA module introduces a sparse attention mechanism, 
constructs a region-level affinity graph, and performs pruning to improve the efficiency of attention calculation. 
The DHSA module convolves pixel features of images within a dynamic range to extract large-scale and fine-
grained information and fuses the outputs. All these modules enable the model to extract and retain rich spatial 
features, effectively improving the model’s detection accuracy. However, there are still some deficiencies in the 
engineering of fastener detection. The detailed experimental data are presented in Table 1.

Combination of single modules. The PPA module has the greatest improvement on the model precision P, 
increasing by 2.6% to reach 97.0%. However, the recognition accuracy for the target objects of Rotation and Lack 
decreases to 97.6% and 73.2%, respectively. In contrast, the BRA module has almost no improvement on the 
model precision P, but it enhances the recognition accuracy for various categories. Specifically, the recognition 
accuracy for the Lack category increases to 76.8%. Additionally, the DHSA module reduces the overall precision 
P, but it significantly improves the mean Average Precision (mAP) in the range of 0.5 to 0.95 for target recognition, 
reaching 80.1%, thus enhancing the confidence in the detection of fastener targets. In conclusion, the three 
modules all have a certain promoting effect on YOLO11, but they also have their own limitations.

For the fusion of dual modules, the combination of the PPA module and the BRA module further improves 
the model precision to 98.6%. It also enhances the recognition accuracy for Lack instances, reaching 76.5%. 
However, the average confidence of the fastener detection results decreases. The combinations of the other two 
groups also yield results similar to the above, indicating that the simple stacking of modules does not always 
improve the model performance, and an organic combination is required.

Finally, the joint effect of the three modules achieves the overall best performance. Although the standard 
deviation of each group of data is similar, and the improvement effect of our model in terms of overall recognition 
accuracy is relatively low, it reaches the best upper level in the recognition accuracy of each category. Moreover, it 
has the highest improvement in mAP0.5 and mAP0.5:0.95, increasing by 1.8% and 4.0% respectively compared 
with the original YOLO11 network, reaching 94.6% and 80.7%. While increasing the model size slightly, it 
improves the comprehensive performance of the model. The specific detection results are shown in Fig. 6.

Although the improved model has a decrease of 9.7 in terms of FPS, it reaches 38.5 and still meets the work 
requirements in the fastener detection project26. Moreover, in the fastener detection project, higher precision can 
better identify potential risks. In addition, with the enhancement of the computing power of edge devices, it is 
sufficient to optimize the calculation speed of the model.

To verify the performance and generalization of YOLO11-DRPA, we tested it on the training dataset and an 
unseen one, comparing it with Rtdetr27, PP-YOLOE-S28, and YOLOX variants, which are current mainstream 
object detection models. On the training dataset, YOLO11-DRPA achieved 95.4% accuracy and 93.5% regression 
rate, with a notable boost in regression rate over other models. It excelled in detecting rotation, normal, and 
damaged fasteners, and despite slightly lower performance in missing fastener detection than YOLO10n, it 
outperformed YOLO10n in regression rate and mAP0.5:0.95 by 3.2% and 3.4%, respectively, indicating higher 
stability. In the external dataset, its mAP0.5 reached 86.5%, the highest among all models, demonstrating strong 
generalization.​ The detailed experimental data are presented in Table 2.

Notwithstanding a marginal increment in model size and computational parameters, YOLO11-DRPA appears 
to yield discernible improvements in detection accuracy. Collectively, the results of this study indicate that the 
proposed YOLO11-DRPA model could potentially offer enhanced precision and comprehensive detection 
performance for railway track fastener inspection. It is hoped that this research can serve as a meaningful 
contribution to the ongoing efforts in advancing the methodologies within this specialized domain.

Conclusions
In this study, we propose the YOLO11-DRPA detection algorithm, an enhancement based on YOLO11n. By 
introducing the DHSA module into the backbone network, the model effectively fuses multi-scale image features 
and local-global information, improving its robustness against adverse weather conditions and environmental 
noise. The BRA module is integrated before the upsampling operation in the neck network, utilizing spatial 
scale segmentation and a regional self-attention mechanism to enhance operational efficiency. The PPA module 
is gradually added within the neck network. By leveraging weighted image attention in parallel branches, this 
module strengthens the model’s ability to detect small targets. Ablation experiments show that the synergistic 
integration of these modules achieves an optimal balance in network structure, leading to outstanding 
performance in the evaluation metrics of mAP@0.5 and mAP@0.5:0.95. Comparative experiments with leading 
detection models demonstrate that, despite a moderate increase in model size, the proposed approach results 
in significant improvements in detection accuracy and stability. These findings suggest that the model strikes 
a promising balance between complexity and recognition performance when compared to similar algorithms.

Experimental results on the railway track fastener dataset show that the YOLO11-DRPA algorithm effectively 
addresses the challenges of improving both defect detection efficiency29 and accuracy30. While the model 
size increases moderately, future research will focus on optimizing model parameters to reduce complexity, 
computational costs, and enhance operational efficiency, all while maintaining detection accuracy and stability. 
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These improvements are aimed at enabling the efficient deployment of the algorithm on resource-constrained 
embedded devices.

Fig. 6.  Verification of the model’s effectiveness. Group (a) is YOLO11-GRPA, and group (b) is YOLO11. The 
actual targets from left to right are Lack, Normal, Break, and Rotation.
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Data availability
The data sets generated and analyzed during the current study are not publicly available. Due to the confidenti-
ality agreements with our collaborating partners, sharing these data is restricted. However, further information 
or additional details may be provided upon reasonable request to the corresponding author, subject to approval 
from the collaborating partners and compliance with the terms of the confidentiality agreements.
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