
Interactive 3D segmentation for 
primary gross tumor volume in 
oropharyngeal cancer
Mikko Saukkoriipi1, Jaakko Sahlsten1, Joel Jaskari1, Lotta Orsmaa2, Jari Kangas2, 
Nastaran Rasouli2, Roope Raisamo2, Jussi Hirvonen3, Helena Mehtonen3, Jorma Järnstedt3, 
Antti Mäkitie4, Mohamed Naser5, Clifton Fuller5, Benjamin Kann6,7 & Kimmo Kaski1,8

Radiotherapy is the main treatment modality of oropharyngeal cancer (OPC), in which an accurate 
segmentation of primary gross tumor volume (GTVt) is essential but also challenging due to significant 
interobserver variability and the time consumed in manual tumor delineation. For such a challenge an 
interactive deep learning (DL) based approach offers the advantage of automatic high-performance 
segmentation with the flexibility for user correction when necessary. In this study, we investigate 
an interactive DL for GTVt segmentation in OPC by introducing a novel two-stage Interactive Click 
Refinement (2S-ICR) framework and implementing state-of-the-art algorithms. Using the 2021 HEad 
and neCK TumOR dataset for development and an external dataset from The University of Texas MD 
Anderson Cancer Center for evaluation, the 2S-ICR framework achieves a Dice similarity coefficient of 
0.722 ± 0.142 without user interaction and 0.858 ± 0.050 after ten interactions, thus outperforming 
existing methods in both cases.

Oropharyngeal cancer (OPC) is a subtype of head and neck squamous cell carcinoma that predominantly affects 
the tonsils and the base of the tongue and poses substantial challenges in medical imaging and treatment. Early 
detection and effective treatment of OPC are critical for improving patient outcomes, in terms of quality of 
life and survival1. Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and Positron Emission 
Tomography (PET) are the primary modalities used for the initial staging, planning of radiation therapy (RT), 
and follow-up of OPC2. RT is a pivotal treatment modality for OPC, but it is based on laborious and error-prone 
manual or semi-automatic segmentation of primary gross tumor volume (GTVt)2. An accurate segmentation of 
GTVt in the oropharynx region is particularly challenging due to significant interobserver variability3–5. This 
challenge not only compromises the efficacy of treatment, but it also increases both the duration and cost of care2. 
Consequently, there is a need for the development of precise, fast, and cost-efficient automatic segmentation 
techniques for OPC GTVt to enhance treatment outcomes and operational efficiency.

An automated segmentation of the OPC GTVt using deep learning (DL) methods has shown good promise 
in reducing variability and enhancing the precision and reliability of radiotherapy planning6–8. However, the 
segmentation can fall short of the required performance and necessitate further manual refinement or complete 
rework by clinicians. In such cases, interactive deep learning presents a compelling approach by facilitating 
efficient interface for segmentation refinement9.

A common approach for interactive DL segmentation is click-based interaction, where the user provides 
feedback by clicking on coordinates requiring correction9,10. To our knowledge, the only work considering 
interactive DL for OPC tumor segmentation is11, which used a slice-based method where users manually 
segment an entire slice of the tumor volume. However, this approach requires time-consuming retraining of the 
DL model after each interaction, limiting its practical use in clinical settings. Consequently, research on practical 
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interactive deep learning segmentation to improve GTVt segmentation remains limited, despite its potential 
benefits9.

As for related research works, the DeepGrow12 and DeepEdit13, both integrated within the Medical Open 
Network for Artificial Intelligence (MONAI)14, are two widely known click-based interactive segmentation 
methods. The DeepGrow incorporates interaction events in each iteration during training, which leads to 
lower initial segmentation performance compared to the baseline. However, with interactions, segmentation 
accuracy improves rapidly12,13. The DeepEdit addresses this issue by introducing a hyperparameter called “click-
free iterations,” which controls the fraction of non-interactive training iterations. While this improves initial 
segmentation, it affects negatively the performance during interactions13. Evaluations of multiple 3-dimensional 
(3D) medical image data sets have shown that DeepEdit performance is inferior to traditional DL segmentation 
methods in non-interactive mode, and inferior to DeepGrow in interactive mode13. Hence for both methods 
there is trade-off between non-interactive and interactive segmentation performance.

In this study, we introduce a novel two-stage Interactive Click Refinement (2S-ICR) framework to enhance 
user-driven segmentation refinement while preserving the initial state-of-the-art segmentation accuracy. In 
addition we demonstrate the effectiveness of interactive OPC GTVt segmentation from volumetric PET-CT 
scans and highlight its potential in clinical applications. Moreover, we conduct a comprehensive comparison 
of existing click-based state-of-the-art interactive deep learning methods against our proposed segmentation 
framework, which establishes a new benchmark for future research on OPC GTVt segmentation.

Our findings reveal that the trade-off between the non-interactive and interactive segmentation performance 
can be addressed by dividing the task into two stages and training specialized deep learning models for each 
stage. We refer to these models as the initial and refinement networks. Additionally, we find that the sigmoid 
probability volume can be used efficiently as a memory mechanism, not only between the non-interactive 
and interactive deep learning models but also across interaction events. Furthermore, we demonstrate that an 
ensemble approach can be seamlessly integrated into interactive semantic segmentation.

Results
Experimental setup
We trained and validated interactive deep learning models using five-fold cross-validation on the 2021 
HECKTOR dataset2 and simulated user interactions as in12,13. To reduce variability due to simulated probabilistic 
interactions, validation was repeated three times with different seeds. Testing on the MDA dataset employed an 
ensemble of the five-fold trained HECKTOR 2021 models. DeepEdit was trained with 0%, 25%, and 50% click-
free propotions, referred to as DeepGrow, DeepEdit-25, and DeepEdit-50, respectively.

Segmentation performance
Initial segmentation, or 0-click segmentation, represents the model output before any user interactions. The 
2S-ICR framework demonstrated superior Dice Similarity Coefficient performance for the HECKTOR 2021 
and MDA datasets. On the MDA dataset, 2S-ICR achieved a DSC of 0.722, surpassing DeepGrow with 0.642 
and DeepEdit variants with scores of 0.642 and 0.721 for 25 percent and 50 percent click-free propotions. On 
the HECKTOR 2021 dataset, 2S-ICR achieved the highest DSC of 0.752, exceeding DeepGrow with 0.663 and 
DeepEdit models with scores of 0.729 and 0.738. For the HD95, the 2S-ICR achieved the best result on the 
HECKTOR 2021 dataset with a value of 3.000. On the MDA dataset, the 2S-ICR achieved a value of 5.385, just 
next to DeepEdit-50 with value of 5.099. Full results for HECKTOR 2021 and MDA datasets are shown in Tables 
1 and 2, respectively.

Specifically on the MDA dataset, the 2S-ICR showed steady improvements for all interaction levels. 
Specifically, the DSC increased from 0.722 for 0 clicks to 0.858 for 10 clicks, with an average performance of 
0.820 over the whole range of interaction. In terms of HD95, the metric improved significantly from 5.385 mm 
for 0 clicks to 2.236 mm for 10 clicks, thus indicating enhanced boundary precision through user interactions.

Model 0 Clicks 1 Click 5 Clicks 10 Clicks 0 to 10 Avg.

(a) Dice similarity coefficient performance

 2S-ICR (ours) 0.722 ± 0.142 0.773 ± 0.128 0.835 ± 0.072 0.858 ± 0.050 0.820 ± 0.097

 DeepGrow12,13 0.642 ± 0.216 0.722 ± 0.139 0.818 ± 0.074 0.849 ± 0.051 0.794 ± 0.119

 DeepEdit-2513 0.642 ± 0.151 0.738 ± 0.141 0.806 ± 0.081 0.839 ± 0.055 0.795 ± 0.104

 DeepEdit-5013 0.721 ± 0.153 0.739 ± 0.145 0.791 ± 0.093 0.822 ± 0.074 0.783 ± 0.112

(b) HD95 performance

 2S-ICR (ours) 5.385 ± 5.124 4.472 ± 3.325 3.000 ± 1.506 2.236 ± 0.764 3.000 ± 2.065

 DeepGrow12,13 6.403 ± 10.368 5.099 ± 4.457 3.317 ± 1.909 2.449 ± 0.926 3.317 ± 2.551

 DeepEdit-2513 5.385 ± 5.144 4.690 ± 3.620 3.317 ± 2.133 2.828 ± 1.506 3.606 ± 2.650

 DeepEdit-5013 5.099 ± 6.636 4.899 ± 4.211 3.606 ± 2.551 3.000 ± 1.887 3.606 ± 2.650

Table 1.  Quantitative results on the MDA dataset (N = 67) for 0, 1, 5, and 10 number of clicks and for the 
overall averaged. Bolded values indicate the best performance in each column. (a) Dice similarity coefficient 
(mean ± standard deviation) performance. (b) HD95 (median ± interquartile range) performance in 
millimeters.
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Specifically on the HECKTOR 2021 dataset, the 2S-ICR achieved the highest DSC of 0.836 on average, with 
a peak of 0.870 for 10 clicks. The HD95 results paralleled the improvements in the DSC, starting from 3.000 mm 
and down to 1.732 mm by the tenth interaction. These results reflect a consistent enhancement in segmentation 
accuracy with increasing user input.

Compared to DeepGrow and DeepEdit variants, the 2S-ICR consistently delivered the best results. On the 
MDA dataset, it maintained the highest DSC of 0.820 on average, compared to DeepGrow’s 0.794 and DeepEdit-
25’s 0.795. HD95 results further emphasized its superiority, showing the most substantial improvements across 
all interaction levels. Statistical analysis in Fig. 1 revealed that the 2S-ICR is statistically significantly better than 
DeepEdit-25 and DeepEdit-50 after 5 and 10 clicks.

Number of clicks required to achieve specific thresholds
The metric of number of clicks (NoC) highlights the efficiency of the 2S-ICR framework in achieving specific 
segmentation thresholds. On the MDA dataset, the 2S-ICR consistently required fewer clicks compared to the 
DeepGrow and DeepEdit variants. For example, it achieved a Dice Similarity Coefficient (DSC) of 0.75 with just 
1.81 clicks on average, and a DSC of 0.85 with 5.97 clicks. Additionally, 2S-ICR showed superior performance for 
HD95 thresholds, requiring fewer interactions to achieve 5.0 mm and 2.5 mm thresholds.

Similarly, on the HECKTOR 2021 dataset, the 2S-ICR mostly outperformed the competing methods for all 
metrics, see Table 3. It achieved the DSC value of 0.75 with an average of 1.34 clicks and 0.85 with 3.96 clicks. For 
the HD95 threshold of 5.0 mm, 2S-ICR required only 0.07 clicks on average. Moreover, the proportion of failures 
(PoF) was the lowest for 2S-ICR in nearly all cases, except for the 0.75 DSC threshold on HECKTOR 2021, where 
the DeepGrow showed a marginally lower failure rate of 0.45% compared to the 2S-ICR’s rate of 1.64%.

Segmentation refinement using the 2S-ICR framework is visually demonstrated with a scan from the 
MDA test set in the Fig. 2. Initially, the network segmented two regions adjacent to the throat erroneously, as 
highlighted in yellow. These regions were connected to a tumor located in the lower horizontal region of the 
neck, resulting in an overly extensive segmentation mask. Through user interactions, the segmentation surface 
was iteratively adjusted to align more closely with the ground truth delineation. Specifically, the segmentation 
on the left side was refined with a single click, while the right side required two additional clicks, for optimal 
correction. This example illustrates the capability of the method to efficiently enhance segmentation accuracy 
by guiding the segmentation surface closer to the ground truth tumor boundaries through user interaction, as 
depicted in Fig. 2.

Runtime and memory analysis
We evaluate the inference efficiency of our proposed 2S-ICR method against baseline interactive segmentation 
approaches–DeepGrow12, DeepEdit variants (DeepEdit-25, DeepEdit-50)13, and a non-interactive U-Net 
baseline15–on 3D volumes from the HECKTOR 2021 dataset. Tests were conducted on an NVIDIA RTX 3080 
GPU (10 GB VRAM) and an Intel i5-12600K CPU, with results summarized in Table 4.

As shown in Table 4, 2S-ICR achieves a GPU inference time of 0.08 s, matching the efficiency of DeepGrow, 
DeepEdit variants, and U-Net, with a peak VRAM usage of 2.06 GB. This VRAM requirement, while slightly 
higher than DeepGrow/DeepEdit (1.86 GB) and U-Net (1.88 GB), remains well within the capacity of consumer-
grade GPUs to ensure practical deployment. On the CPU, 2S-ICR delivers a competitive inference time of 1.62 ± 
0.05 s, marginally faster than the 1.63 ± 0.05 s of baselines. These results demonstrate that 2S-ICR balances low 
latency and modest memory demands, making it well-suited for real-time interactive segmentation in clinical 
workflows.

Impact of mask dropout on interactive segmentation performance
The incorporation of mask dropout during training of the 2S-ICR framework influenced significantly interactive 
segmentation performance. As presented in Table 5, the DSC increased from 0.827 ± 0.134 to 0.845 ± 0.109 

Model 0 Clicks 1 Click 5 Clicks 10 Clicks 0 to 10 Avg.

(a) Dice similarity coefficient performance

 2S-ICR (ours) 0.752 ± 0.203 0.787 ± 0.191 0.850 ± 0.101 0.870 ± 0.067 0.836 ± 0.131

 DeepGrow12,13 0.663 ± 0.316 0.755 ± 0.211 0.840 ± 0.096 0.861 ± 0.065 0.817 ± 0.157

 DeepEdit-2513 0.729 ± 0.243 0.767 ± 0.197 0.828 ± 0.110 0.851 ± 0.076 0.814 ± 0.144

 DeepEdit-5013 0.738 ± 0.229 0.765 ± 0.200 0.822 ± 0.128 0.847 ± 0.094 0.812 ± 0.150

(b) HD95 performance

 2S-ICR (ours) 3.000 ± 4.103 2.236 ± 2.123 2.000 ± 1.414 1.732 ± 0.822 2.000 ± 1.586

 DeepGrow12,13 3.674 ± 9.273 3.000 ± 3.099 2.000 ± 1.268 2.000 ± 1.035 2.236 ± 1.430

 DeepEdit-2513 3.317 ± 6.690 3.000 ± 3.385 2.236 ± 1.430 2.000 ± 1.414 2.236 ± 1.874

 DeepEdit-5013 3.081 ± 5.413 3.000 ± 3.385 2.236 ± 1.430 2.000 ± 1.414 2.236 ± 1.585

Table 2.  Quantitative results on the HECKTOR 2021 dataset over 5-fold validation for 0, 1, 5, and 10 
number of clicks and for the overall averaged. Each interaction and sample outcome is averaged over three 
repetitions, and the dataset (N=224) mean and standard deviation are reported. Bolded values indicate the 
best performance in each column. (a) Dice similarity coefficient (mean ± standard deviation) performance. (b) 
HD95 (median ± interquartile range) performance in millimeters.
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when pdrop increased from 0 to 0.2. For higher dropout probabilities, the DSC values stabilized around 0.845, 
showing minimal sensitivity for further increases in pdrop.

Increasing pdrop from 0.0 to 0.2 had a significant impact on the number of voxels affected per interaction 
event. As can be seen in Table 5, for pdrop = 0.0, the mean number of voxels adjusted was 731 ± 719, beign 
significantly lower compared to the 941 ± 1477 for pdrop = 0.2. This increase suggests that introducing mask 
dropout facilitates larger updates in response to user interactions. Beyond pdrop = 0.2, the mean number of 
changed voxels varied only slightly, stabilized around 900.

Discussion
Here we have introduced a two-stage click refinement (2S-ICR) framework, to serve as a novel interactive 
deep learning method that redefines the standard for segmenting the volume of primary gross tumors in 
oropharyngeal cancer. Our framework’s core innovation lies in the deployment of two specialized models: an 
initial segmentation model and a refinement model. This dual-model approach strategically eliminates the 
trade-off between non-interactive and interactive performance, as observed in case of previous methodologies.

Volumetric medical image segmentation offers significant potential but is fraught with unique challenges in 
the medical field. These include heterogeneous data from various imaging devices, imaging artifacts, patient-
specific variations, disparate image acquisition and quality across centers, and the presence of lymph nodes 
with high metabolic responses in PET images2. These complexities can occasionally lead to failures in AI-driven 
segmentation, thus highlighting the indispensable need for human expertise to interactively guide and refine the 

Fig. 1.  Change in the segmentation performance through click interactions evaluated on the MDA dataset. 
Performance is evaluated using (a) Dice similarity coefficient (DSC) and (b) Hausdorff Distance at the 95th 
percentile (HD95). The statistical significance tests between the models are based on the two-sided Wilcoxon 
signed rank test with Benjamini–Hochberg procedure to correct for multiple testing, in which p < 0.05 is 
considered significant.
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segmentation process with AI models. Given the current limitations of technology, this collaboration between 
human expertise and AI models is essential to achieve precise and reliable results in medical imaging.

Although the interactive segmentation approach has a strong basis in 2D, particularly in non-medical 
domains16–18, the previous interactive segmentation research in the OPC GTVt domain has mainly focused 
on 2D slicing methods11 or on reducing annotation effort19. However, the state-of-the-art non-interactive 
segmentation methods for OPC GTVt have used 3D methods with volumetric PET-CT scans and were found to 
improve performance via global context compared to 2D based methods2,6–8,20. Our present work addresses this 
limitation by performing interactive OPC GTVt segmentation directly in the volumetric space.

Although some 2D interactive segmentation methods employ two models to reduce computational costs21, 
our motivation for the two-model architecture of 2S-ICR is distinct. Here we will prioritize avoiding the trade-
off between non-interactive and interactive performance as is often the case in single-model approaches13. By 
leveraging previous outputs as input, a common practice in 2D shown to stabilize predictions18, we not only 
enhance 3D performance but also seamlessly chain non-interactive and interactive models. This enables a 
synergistic workflow, in which each model is optimized for its specific task.

Fig. 2.  The progressive refinement of segmentation of 2S-ICR shown for the first three interactions overlaid 
on CT (top row) and PET (bottom row) slices. In addition, false positives are marked in yellow and clicks with 
white arrow.

 

Method 0.75 DSC 0.85 DSC 5.0 mm HD95 2.5 mm HD95

NoC (cnt) PoF (%) NoC (cnt) PoF (%) NoC (cnt) PoF (%) NoC (cnt) PoF (%)

(a) Number of Clicks (NoC) required to achieve specific thresholds on the MDA dataset (N = 67), using an ensemble of models trained via 5-fold cross-
validation on the HECKTOR 2021 dataset.

 2S-ICR (ours) 1.81 ± 0.12 0.00 ± 0.00 5.97 ± 0.25 15.92 ± 1.41 1.00 ± 0.00 0.00 ± 0.00 6.50 ± 0.41 17.41 ± 1.86
 DeepGrow12,13 2.50 ± 0.06 1.49 ± 0.00 7.40 ± 0.29 20.90 ± 2.11 2.00 ± 0.00 0.00 ± 0.00 8.00 ± 0.00 21.89 ± 1.41
 DeepEdit-2513 2.67 ± 0.12 1.00 ± 0.70 7.50 ± 0.08 26.37 ± 0.70 1.33 ± 0.47 0.00 ± 0.00 8.00 ± 0.41 28.86 ± 1.86
 DeepEdit-5013 3.46 ± 0.09 2.49 ± 0.70 8.46 ± 0.56 15.92 ± 1.41 1.00 ± 0.00 3.48 ± 0.70 10.17 ± 0.62 34.83 ± 0.70
(b) Number of Clicks (NoC) required to achieve specific thresholds on the HECKTOR 2021 dataset (N = 224), trained using 5-fold cross-validation.

 2S-ICR (ours) 1.34 ± 0.46 1.64 ± 1.72 3.96 ± 0.97 16.38 ± 5.45 0.07 ± 0.25 0.30 ± 0.77 0.97 ± 0.64 6.27 ± 3.11
 DeepGrow12,13 2.05 ± 0.41 0.45 ± 0.90 5.02 ± 0.51 19.52 ± 4.17 0.40 ± 0.49 0.30 ± 0.76 1.90 ± 1.17 8.80 ± 4.42
 DeepEdit-2513 2.41 ± 1.16 1.05 ± 1.12 4.97 ± 1.13 25.13 ± 13.32 0.33 ± 0.47 0.45 ± 0.91 4.20 ± 3.86 10.01 ± 5.90
 DeepEdit-5013 2.44 ± 0.65 1.20 ± 1.80 4.54 ± 0.91 25.00 ± 7.08 0.00 ± 0.00 1.49 ± 1.78 2.70 ± 1.93 11.33 ± 4.90

Table 3.  Number of Clicks (NoC) required to achieve specific thresholds for Dice Similarity Coefficient (DSC) 
and Hausdorff Distance at the 95th percentile (HD95) on the MDA and HECKTOR 2021 datasets. Values are 
reported as mean ± standard deviation. PoF (%) indicates the proportion of images that failed to reach the 
given threshold within 20 interaction events. Bolded values indicate the best performance in each category.
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DeepEdit was one of the first interactive models implemented for 3D medical segmentation tasks13, where 
both the pre- and post-interaction performances were measured. It turned out that the quality of interactive 
DL segmentation without interactions was worse than that of non-interactive DL methods. DeepEdit has 
addressed this issue, to some extent, with the approach of “click-free” (i.e., non-interactive) training iterations. 
However, this approach introduced a trade-off: more click-free iterations improved non-interactive performance 
at the expense of interactive performance. In contrast, the 2S-ICR’s two distinct models ensure optimal initial 
segmentation and effective refinement with interactions.

In the evaluation of our framework using the MDA dataset, 2S-ICR turned out to consistently outperform 
user interactions at all levels compared to established methods such as DeepGrow and various configurations of 
DeepEdit, with the only exception being HD95 at 0 clicks. However, as HD95 was not used during training, this 
also illustrates the discrepancy between DSC and HD95 results. Specifically, the Dice similarity coefficients for 
the 2S-ICR ranged from 0.722 without any clicks to 0.858 with ten clicks, averaging 0.820 across all interaction 
levels, which exceeds the performance of competing models (Table 1). These results underscore the efficacy 
of our dual-model architecture in harnessing user interactions to progressively refine segmentation accuracy 
without compromising baseline performance.

Moreover, the 2S-ICR showed superior handling of segmentation challenges, as evidenced by the HD95 
results. For example, HD95 metrics improved from 5.385 mm at 0 clicks to 2.236 mm at 10 clicks, with a 
lower interquartile range than in case of other methods, reflecting a stable and substantial improvement in 
segmentation quality as user involvement increased (Table 1). These results not only highlight the robustness of 
2S-ICR in different operational scenarios, but also shows its potential to deliver precise and clinically relevant 
segmentation in interactive settings.

The analysis of the HECKTOR and MDA datasets reveal a significant variance in the image-level segmentation 
results, which can be seen in Tables 1 and  2, respectively, confirming the challenges noted in the existing 
literature on accurate GTVt segmentation2,3,5,20. This variability shows that while some segmentations meet 
clinical standards, others do not, which emphasizes the need for an interactive method for efficiently enhancing 
suboptimal segmentations.

Beyond segmentation accuracy, the inference efficiency of 2S-ICR underscores its potential for clinical 
adoption. On an NVIDIA RTX 3080 GPU, 2S-ICR achieves an inference time of 0.08  s and matches the 
performance of established interactive methods like DeepGrow and DeepEdit, while using 2.06 GB of VRAM. 
Although this VRAM usage is slightly higher than baselines (1.86–1.88 GB), it remains well within the capacity 
of consumer-grade GPUs. On an Intel i5-12600K CPU, 2S-ICR delivers a low latency result of 1.62 ± 0.05 s and 
enables real-time segmentation on standard clinical workstations without specialized hardware. These attributes 
highlight 2S-ICR’s suitability for seamless integration into clinical workflows.

Our study has several limitations. First, the 2S-ICR framework was developed and evaluated for a single 
binary segmentation task, whereas clinical applications often require multi-class segmentation, such as 
distinguishing primary tumours from lymph nodes20. While 2S-ICR is theoretically extendable to multi-class 
interactive segmentation–for example, by incorporating class-specific positive and negative click maps (i.e., 3D 

pdrop DSC 1 to 10 Avg. N changed voxels

0.0 0.827 ± 0.134 731 ± 719
0.2 0.845 ± 0.109 941 ± 1477
0.4 0.843 ± 0.112 888 ± 1075
0.6 0.843 ± 0.116 932 ± 1161
0.8 0.842 ± 0.104 917 ± 1208

Table 5.  Effect of varying mask dropout probability (pdrop) on the interactive segmentation performance 
of the 2S-ICR framework on the HECKTOR 2021 dataset. The table presents the average Dice similarity 
coefficient (DSC) and the mean number of voxels changed per interaction event (µ ± σ). Results highlight the 
impact of different pdrop values on segmentation accuracy and model adaptability to user interactions.

 

Method VRAM (GB)

NVIDIA RTX 3080 (10 GB) Intel i5-12600K CPU

Inference time (s) Inference time (s)

2S-ICR (ours) 2.06 0.08 ± 0.00 1.62 ± 0.05
DeepGrow12,13 1.86 0.08 ± 0.01 1.63 ± 0.05
DeepEdit-2513 1.86 0.08 ± 0.01 1.63 ± 0.05
DeepEdit-5013 1.86 0.08 ± 0.01 1.63 ± 0.05
U-Net15 1.88 0.08 ± 0.00 1.63 ± 0.05

Table 4.  Inference efficiency of interactive segmentation methods on the HECKTOR 2021 dataset, reporting 
peak VRAM usage and mean inference times (with standard deviation) on an NVIDIA RTX 3080 GPU and 
Intel i5-12600K CPU. U-Net15 is the non-interactive baseline.
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volumes encoding user interactions for each class) and modifying the output layer accordingly–this extension is 
beyond the scope of the present study and thus left for future work.

Second, the evaluation was limited to primary gross tumour volumes using the HECKTOR 20212 and MDA 
datasets, which, although derived from real-world clinical settings, do not include complex cases such as metal 
artifacts or post-surgical anatomy. As prior work has shown that evaluation outcomes are sensitive to dataset 
composition22, and therefore, the generalizability of our results to other clinical scenarios is uncertain. However, 
as for reducing the effects of metal artifacts, we refer the reader to the following literature23,24. In addition, 
2S-ICR could potentially be integrated into active learning pipelines25,26 to support efficient annotation of 
prioritized samples.

Third, we used simulated interaction events, following prior work12,13. Although simulations provide a 
controlled and scalable environment, they may not fully capture how clinicians interact in practice. The simulator 
identifies error regions by comparing model predictions to ground truth and samples interaction points using a 
distance-weighted probability distribution. While effective for benchmarking, this approach assumes idealized 
user behavior by favoring areas with large errors and never producing incorrect interaction events. Furthermore, 
our preliminary results indicated that the location of the interaction had a considerable effect on the model 
performance. This highlights the need to understand clinician behavior during interactive segmentation for 
improved applicability. To develop better-suited interaction simulation algorithms, human interaction patterns 
should be analysed, and improved simulation algorithms should be developed. As interactive segmentation 
changes depend on interaction locations and types, these may affect the results. However, this study was beyond 
the scope and is planned for future work.

Despite these limitations, 2S-ICR remains a flexible framework that may generalize to broader clinical 
applications, support active learning, and be adapted to various segmentation architectures beyond the one 
evaluated in this study.

The benefits of the proposed framework extend beyond improved accuracy. By eliminating the last remaining 
drawback associated with interactive segmentation, 2S-ICR unlocks the full potential of the entire interactive 
segmentation field. This breakthrough paves the way for a wider adoption of interactive segmentation in various 
clinical applications. By enabling clinicians to easily and quickly improve segmentation results, it promises more 
accurate treatment planning and improved patient outcomes.

In this study we have introduced 2S-ICR, a new interactive click-based framework, for segmentation 
of primary gross tumor volume in oropharyngeal cancer. The results show that our framework achieves 
performance comparable to or superior to state-of-the-art interactive deep learning methods, both with and 
without user interactions. These results highlight the potential of this approach to improve the performance of 
GTVt segmentation, enabling clinicians to quickly improve segmentation results based on just a few interactions. 
The more accurate segmentation enabled by our approach could lead to a more precise OPC treatment planning 
and to improved patient outcomes.

Methods
2S-ICR framework
The 2S-ICR dual-model segmentation framework, depicted in Fig. 3 and formalized in Algorithm 1, integrates 
two deep learning models: a standard segmentation model with a 2-channel input and an interactive refinement 
model with a 5-channel input. If no interactions are given to the 2S-ICR, it segments the PET-CT image using 

Fig. 3.  Visualisation of 2S-ICR framework. The initial segmentation (t = 0) is provided by a standard model 
which is shown in the green box on left. The segmentation refinement (t ≥ 1) loop using a refinement model 
is visualised in the yellow box on right. Spatial dimensions (H×W×D), thresholding (>), negative (Neg), and 
positive (Pos) feature maps.
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the standard model. When the user first interacts with the model, the given error coordinate, PET-CT image, 
and the output of the standard model are given to the interactive model. When the user further interacts with the 
2S-ICR, the output of the standard model is replaced with the last output of the 2S-ICR, and the new interaction 
coordinate is given alongside with the previous ones for the 2S-ICR to further refine its output. We train the 
standard model and the interactive model separately, so as to closely follow the scenario where the 2S-ICR is 
applied on top of a pre-trained GTVt segmentation network.

A key feature of 2S-ICR is its use of sigmoid-activated segmentation volumes as a memory mechanism. These 
volumes, with continuous values in the range 0 to 1, initially bridge the standard and interactive models by 
preserving the spatial information of initial segmentation. During iterative interactions, they maintain continuity 
between interaction events, stabilizing refinements per user input. Unlike prior methods, such as DeepGrow12 
and DeepEdit13, which lack memory mechanisms and thus cannot leverage prior segmentation states, 2S-ICR’s 
continuous segmentation maps enable it to examine and utilise prior segmentation state in interpreting the 
interaction inputs for enhanced performance.

Algorithm 1.  2S-ICR interactive segmentation algorithm

We utilized the Monai implementation of the 3D U-Net architecture27 across all models: the initial 
segmentation model of 2S-ICR framework, the segmentation refinement model of the framework, and the 
models for DeepGrow and DeepEdit. To ensure a fair comparison between these methods, the only difference 
was the number of input channels. The networks consisted of channels [16, 32, 64, 128, 256], stride [1, 2, 2, 
2], two residual units. The choice of a stride of 1 for the first layer was pivotal for enhancing the impact of 
the interaction event. All interactive methods use a click encoding scheme proposed by Maninis et al.28 for 
2D images, adapted by DeepGrow12 for 3D volumes, and adopted by DeepEdit13 and 2S-ICR. User clicks are 
encoded as Gaussian-smoothed balls in two 3D volumes: one for positive clicks to mark foreground (e.g., tumors 
in PET-CT) and one for negative clicks to mark background, guiding precise segmentation refinement.

Ensemble of interactive segmentation models
The ensemble experiments consist of a five-member ensemble based on the 5-fold cross-validation, both for the 
standard and interaction models. The ensemble probability is based on the average of the member probabilities. 
The ensembling was integrated into the interaction loop by selecting each interaction coordinate based on the 
ensemble prediction, i.e., each member in interaction model is given the same interaction coordinates in each 
iteration.

Simulated interactions
As large-scale training and validation of an interactive DL model is not feasible with human interactions, we 
chose to simulate interactions in these phases. We used the user click interaction simulator proposed in12,13. 
The click simulator compares the model output to the ground truth segmentation in order to select optimal 
interaction coordinates. Specifically, the simulator first extracts erroneous regions by examining where in the 
volume the model output and the ground truth differ. Then for each erroneous voxel, the distance to the border 
of the erroneous region is computed. After this, the distances are normalized by the sum of all the distances. 
As a result, all voxel values are in the range [0, 1] and sum to 1. Then, we treat these values as probabilities of a 
multinomial distribution and sample an interaction coordinate accordingly.

Training procedure
The 2S-ICR framework comprises an initial segmentation network and a refinement network, designed to 
iteratively enhance segmentation accuracy based on user feedback. To prevent the refinement network from 
becoming overly reliant on the initial segmentation, we introduce a novel regularization strategy during training. 
This dependency on the initial mask can hinder the network’s ability to effectively incorporate interaction 
feedback. Our approach mitigates this issue by randomly omitting the initial segmentation with a probability of 
pdrop, replacing it with a neutral volume filled with the value 0.5. Since the initial segmentation is a post-sigmoid 
output where each voxel represents the probability of belonging to the foreground class, the value 0.5 signifies 
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uncertainty. This regularization encourages the network to rely more on the original input and user interactions, 
improving performance and responsiveness to feedback.

We evaluated the impact of varying pdrop on segmentation performance and the number of modified voxels 
per interaction (Table 5). The results indicate that pdrop > 0 consistently yields better outcomes than pdrop = 0. 
The average DSC improved with non-zero values of pdrop, and the number and standard deviation of changed 
voxels per interaction increased, reflecting greater adaptability in the refinement process. Based on these 
findings, we chose pdrop = 0.2 for our experiments.

Unlike previous interactive volumetric segmentation methods13,29 that execute the backward pass only 
after all interaction events have been accumulated–making the process computationally costly–we optimized 
the refinement network of the 2S-ICR framework at every interaction event during training. This approach 
significantly accelerated the training process while still allowing the model to achieve state-of-the-art 
performance.

The initial network of the 2S-ICR is trained without any user interactions and its output segmentation serves 
as the starting point for subsequent refinements by the refinement network. For the training of the refinement 
network we follow the procedure proposed in prior research13. Specifically, we randomly determine the 
number of simulated interactions in each training iteration, employing a uniform distribution ranging from 
1 to 15 interactions. This approach ensures that the refinement network learns to effectively incorporate user 
interactions across a diverse range of scenarios. During training, the best checkpoint was chosen based on the 
highest mean DSC over interactions ranging from 0 to 10, reflecting our primary evaluation metrics as presented 
in Tables 1 and 2.

All models were trained using a composite loss function that integrates the Dice Loss with the Binary Cross-
Entropy (BCE) Loss, similar to previous approaches for OPC GTVt segmentation7,8. The composite loss function 
is formulated as:

	 LDiceBCE = LDice + LBCE,� (1)

where LDice denotes the Dice Loss and LBCE the Binary Cross-Entropy Loss. While the composite loss can also 
be computed as a weighted sum of its components, we chose to use uniform weights.

The Dice Loss is defined as:

	
LDice = 1 −

2
∑

i
pigi + ϵ∑

i
pi +

∑
i
gi + ϵ

,� (2)

where p and g represent the model output and ground truth segmentation, respectively, and ϵ = 1 × 10−5 is a 
smoothing factor to prevent division by zero. The Binary Cross-Entropy Loss is defined as:

	
LBCE = −

∑
i

[gi log(pi) + (1 − gi) log(1 − pi)] .� (3)

In both loss functions, the summation is over the voxels of the segmentation volume. The composite loss allows 
for a more comprehensive optimization by addressing both the overlap of the imbalanced foreground class and 
the per-pixel classification accuracy30.

To enhance the models’ robustness to variations in imaging conditions and reduce overfitting, we applied 
a data augmentation pipeline during model training, adhering to the procedures presented in8. All the models 
are trained under the same settings for fair comparison. Specifically, we apply random affine transformations 
that include rotations over all axes up to 45 degrees, scaling and shearing within ranges of [-0.1, 0.1], and 
translation within a range of [-32, 32] voxels, each with a probability of 0.5. In addition, the augmentations 
include mirroring over all the axes, induced with the same probability of 0.5. For the CT modality, additional 
intensity augmentations are implemented, which consist of random contrast adjustments, with gamma range of 
[0.5, 1.5] and applied with probability of 0.25, intensity shifting, with offset of 0.1 and applied with probability of 
0.25, random Gaussian noise, with standard deviation of 0.1 and applied with probability of 0.25, and Gaussian 
smoothing applied with probability of 0.25.

Each model was trained for a maximum of 300 epochs, employing early stopping with a patience of 50 epochs. 
We utilized the AdamW31 optimization algorithm. The initial learning rate was set to 1 × 10−4 and gradually 
decayed to zero by the final epoch using the cosine annealing scheduler. The AdamW weight decay coefficient 
was set to 1 × 10−5. The best checkpoint of each model was determined based on the highest mean DSC over 0 
to 10 interactions, evaluated after each epoch on the validation fold during 5-fold cross-validation. Each model 
was trained using a mini-batch size of 1 on an NVIDIA A100 GPU with 80 GB of memory. Additional validation 
runs were performed on an NVIDIA RTX 3080 GPU with 10 GB of memory.

Evaluation measures
We assess the performance of the algorithms using two widely adopted metrics for automated GTVt segmentation: 
the Dice Similarity Coefficient and the Hausdorff Distance at the 95th percentile2. Given the isotropic 1 mm 
voxel resolution of both the HECKTOR and MDA datasets, Euclidean distances between voxels correspond 
directly to distances in millimeters.

Before computing the evaluation metrics, the predicted segmentation probabilities are binarized by 
thresholding at 0.5 to produce the binary segmentation S:
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	 S = {i | pi > 0.5},� (4)

where pi is the predicted probability at voxel i. This binarization is applied consistently for all evaluation metrics 
to ensure a fair comparison between the predicted and ground truth segmentations.

The DSC measures the volumetric overlap between the ground truth segmentation and the predicted 
segmentation. Let G be the set of voxels belonging to the ground truth segmentation:

	 G = {i | gi = 1},� (5)

where gi is the ground truth label at voxel i, with gi = 1 indicating the foreground class.
The DSC is defined as:

	
DSC(G, S) = 2|G ∩ S|

|G| + |S| ,� (6)

where | · | denotes the cardinality of a set, and G ∩ S represents the intersection of the two sets. The DSC 
ranges from 0 (no overlap) to 1 (perfect overlap), providing a measure of how closely the predicted segmentation 
matches the ground truth.

The HD95 metric quantifies the spatial discrepancy between the surfaces of the ground truth and predicted 
segmentations on a per-volume basis. It is a robust version of the Hausdorff Distance, focusing on the 95th 
percentile of the distances to reduce the impact of outliers.

For each volume v, we first extract the surfaces (boundary voxels) of the ground truth segmentation ∂Gv  and 
the predicted segmentation ∂Sv  from their respective binary segmentations Gv  and Sv .

We define the minimum distance from a point to a surface as:

	
d(a, ∂B) = min

b∈∂B
∥a − b∥,� (7)

where a is a point on one surface, ∂B is the set of points on the other surface, and ∥a − b∥ is the Euclidean 
distance between points a and b.

The sets of distances are then:

	 DGv→Sv = {d(x, ∂Sv) | x ∈ ∂Gv}, � (8)

	 DSv→Gv = {d(y, ∂Gv) | y ∈ ∂Sv}. � (9)

We combine these distances into a single set for each volume:

	 Dv = DGv→Sv ∪ DSv→Gv .� (10)

The HD95 metric for volume v is then defined as the 95th percentile of the distances in Dv :

	 HD95v = Percentile95(Dv),� (11)

where Percentile95(Dv) denotes the value below which 95% of the distances in Dv  fall. Since the voxel spacing 
is isotropic 1 mm, these distances are measured in millimeters.

After computing the HD95 metric for each volume, we aggregate the results by reporting the median and 
interquartile range (IQR) of the image-level HD95 values:

	 Median HD95 = Median ({HD95v}) , � (12)

	 IQR HD95 = Q3 − Q1, � (13)

where Q1 and Q3 are the 25th and 75th percentiles of the set {HD95v}, respectively.
To evaluate the interaction efficacy of the algorithms, we report the Number of Clicks (NoC) required to 

achieve predefined performance thresholds for both the DSC and HD95 metrics. The NoC quantifies the average 
number of user interactions needed for each sample to exceed these thresholds.

For the DSC metric, we report the NoC required to reach DSC thresholds of 0.75 and 0.85, which indicate 
the number of clicks needed to achieve a Dice Similarity Coefficient of 0.75 and 0.85, respectively. Similarly, for 
the HD95 metric, we report the NoC required to reduce the HD95 below thresholds of 5.0 mm and 2.5 mm, 
corresponding to the number of clicks needed to bring the Hausdorff Distance at the 95th percentile below 
5.0 mm and 2.5 mm, respectively.

The maximum number of allowed clicks is set to 20. If the model fails to reach the target threshold within 
this limit, the sample is considered a failure. We report the Percent of Failures as the percentage of failed samples 
for each threshold, calculated as:

	
PoF =

(
Number of Failed Samples
Total Number of Samples

)
× 100%.� (14)
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Specifically, the PoF at DSC thresholds of 0.75 and 0.85 denotes the percentage of samples that did not achieve 
the respective DSC thresholds within 20 clicks. Likewise, the PoF at HD95 thresholds of 5.0 mm and 2.5 mm 
represents the percentage of samples that did not reduce the HD95 below the respective thresholds within 20 
clicks.

Datasets
This study does not involve human subjects as it relies on retrospective and registry-based data; therefore, it 
is not subject to IRB approval. Our external validation dataset was retrospectively collected under a HIPAA-
compliant protocol approved by the MD Anderson Institutional Review Board (RCR03-0800), which includes 
a waiver of informed consent.

The 2021 HEad and neCK TumOR dataset (HECKTOR), introduced in2, consists of co-registered PET-
CT images from 224 patients. The dataset was gathered from five centers located in Canada, Switzerland, or, 
France, with ground truth GTVt segmentations provided by multiple annotator agreement. The external MD 
Anderson Cancer Center dataset (MDA) consists of co-registered PET-CT images from 67 patients that are 
human papillomavirus positive, with the GTVt segmentations from a single annotator. The images are cropped 
to contain only the head and neck region, centered on the GTVt, and resampled to 1443 volumes with isotropic 
1 mm resolution, i.e., in terms of both pixel-spacing and slice thickness.

We adhered to the data normalization procedure established in the previous work7. The CT scans were 
windowed to [-200, 200] Hounsfield units and subsequently normalized to the range of [-1, 1]. The PET scans 
were standardized using z-score normalization. This normalization procedure ensured consistency across the 
datasets and enabled the use of the same models without retraining.

Data availability
The HECKTOR 2021 training dataset is publicly accessible from ​h​t​t​p​s​:​​/​/​w​w​w​.​​a​i​c​r​o​w​​d​.​c​o​m​​/​c​h​a​l​l​e​n​g​e​s​/​m​i​c​c​a​i​-​2​
0​2​1​-​h​e​c​k​t​o​r​. The external validation dataset is publicly available on ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​6​0​8​4​/​m​9​.​f​i​g​s​h​a​r​e​.​2​2​7​1​8​
0​0​8​.​​

Code availability

The 2S-ICR framework and trained models are available on GitLab (​h​t​t​p​s​:​​​/​​/​v​e​r​s​i​o​​n​.​a​
a​l​t​​o​.​​​f​i​ /​g​i​t​​l​​a​b​/​s​​a​u​k​k​​o​m​​3​/​i​n​t​​e​r​a​c​t​​i​v​e​-​s​e​g​m​e​n​t​a​t​i​o​n).
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