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In recent years, haze has significantly hindered the quality and efficiency of daily tasks, reducing the 
visual perception range. Various approaches have emerged to address image dehazing, including 
image enhancement, restoration, and deep learning-based dehazing methods. While these methods 
have improved dehazing performance to some extent, they often struggle in bright regions of the 
image, leading to distortions and suboptimal dehazing results. Moreover, dehazing models generally 
exhibit weak noise resistance, with the PSNR value of dehazed images typically falling below 30 
dB. Residual noise remains in the processed images, leading to degraded visual quality. Currently, 
it is challenging for dehazing models to simultaneously ensure effective dehazing in bright regions 
while maintaining strong noise suppression capabilities. To address both issues simultaneously, we 
propose an image dehazing algorithm based on deep transfer learning and local mean adaptation. The 
framework consists of several key modules: an atmospheric light estimation module based on deep 
transfer learning, a transmission map estimation module utilizing local mean adaptation, a haze-
free image reconstruction module, an image enhancement module, and a noise reduction module. 
This design ensures stable and accurate atmospheric light estimation, enabling the model to process 
different regions of hazy images effectively and prevent distortion artifacts. Furthermore, to enrich 
the details of the dehazed pictures and enhance the dehazing performance while improving the 
model’s noise resistance, we incorporate an image enhancement module and a noise reduction module 
into the proposed dehazing framework. To validate the effectiveness of the proposed algorithm, we 
conducted dehazing experiments on a Self-Made Synthetic Hazy Dataset, the SOTS (outdoor) dataset, 
the NH-HAZE dataset, and O-HAZE dataset. Experimental results demonstrate that the proposed 
dehazing model achieves superior performance across all four datasets. The dehazed images exhibit 
no color distortion, and the PSNR values consistently exceed 30 dB, indicating that the dehazed 
images are of high quality. The dehazed images also demonstrate a significant advantage in SSIM 
performance compared to mainstream dehazing algorithms, consistently achieving a similarity of 
over 85%. This indicates that the proposed dehazing model effectively mitigates distortion while 
enhancing noise resistance, exhibiting strong generalization capabilities across different datasets. 
The experimental results confirm that the proposed dehazing algorithm handles bright regions, such 
as the sky, and significantly reduces residual noise in the dehazed images. Both aspects demonstrate 
strong performance, validating the effectiveness and superiority of the proposed dehazing model. 
Furthermore, the algorithm achieves consistently good dehazing performance across all three hazy 
datasets, demonstrating its generalization capability. This study presents a novel dehazing method 
and theoretical framework that can be effectively applied to scenarios such as autonomous driving 
and intelligent surveillance systems. The proposed model offers a novel approach to image dehazing, 
contributing to advancements in related fields and promoting further development in haze removal 
technologies.
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The presence of haze causes objects in images to become blurred, weakening the representation of image details 
and reducing object visibility1. Moreover, haze significantly hinders the rapid progress and development of 
fields such as autonomous driving2making it difficult for autonomous driving systems to interpret road scene 
information accurately, and severely affecting the efficiency and quality of intelligent transportation systems’ 
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daily operations. Image dehazing helps obtain clearer and more visible images, enabling intelligent systems 
to more accurately interpret image information3. Therefore, image dehazing has become a widely studied and 
significant research topic.

Image dehazing methods can be broadly categorized into three types: enhancement-based approaches, 
restoration-based approaches, and deep learning-based approaches4. Enhancement-based dehazing 
algorithms improve image detail and overall clarity by adjusting properties such as color, brightness, 
and contrast5. Representative methods in this category include Histogram Equalization6the Retinex 
algorithm7LCGE8LBAF9SAEN10and MSEN-PFE11.In addition, Wang et al.12developed the Detail-Enhancement 
Attention Network (DEA-Net), which effectively integrates structure preservation and attention mechanisms 
to enhance edge structural information while improving overall image quality. Overall, enhancement-based 
dehazing methods perform well under light to moderate haze conditions. However, they still face significant 
challenges in complex, high-density haze scenarios, such as insufficient image information, color distortion, and 
limited generalization ability.

Restoration-based dehazing methods aim to recover clear, haze-free images by analyzing the atmospheric 
scattering model and leveraging physical priors. A representative method in this category is the Dark Channel 
Prior (DCP) algorithm13which has been widely applied across various domains. The DCP algorithm is developed 
based on the atmospheric scattering model; however, it tends to produce noticeable distortions in bright regions 
of hazy images, such as the sky. In addition, its limited noise robustness often results in residual artifacts in the 
dehazed output.

In recent years, deep learning-based dehazing methods have continuously developed and achieved good 
dehazing results on synthetic hazy datasets. These methods annotate haze information in hazy datasets, allowing 
the model to learn haze features in images. However, deep learning-based dehazing methods often rely on 
synthetic hazy images for training, which limits the scope of haze feature learning14–16. Additionally, since haze 
in real-world scenarios has various characteristics, these methods tend to have weak generalization performance 
across different datasets, and the results on real hazy images are often suboptimal. Furthermore, these methods 
involve a large number of parameters, making them challenging to deploy and apply17–19. Currently, all three 
types of dehazing methods face challenges in simultaneously maintaining good dehazing performance in bright 
regions and strong noise resistance. There is still room for performance improvement in this regard.

Hu et al.20to improve dehazing performance in bright regions, built upon the DCP dehazing model. They first 
calculated the gray level with the fewest discontinuities in the gray histogram and used it as the segmentation 
threshold to adapt to haze features in maritime images, specifically for segmenting bright regions such as the sky. 
Based on this, they proposed an enhanced DCP method, which locally optimizes the transmission map in the 
sky region and globally optimizes it across the entire image. This effectively improves dehazing clarity; however, 
the results in bright regions still exhibit slight distortion, and the model’s noise resistance remains weak. Wang et 
al.21 proposed an adaptive image dehazing algorithm based on bright region detection to improve the dehazing 
performance of the DCP algorithm in bright regions. The algorithm first sets the lower bounds for the transmission 
map and introduces an adaptive correction factor to adjust the transmission in the bright field regions, which 
effectively alleviates the limitations of the DCP in wide and high-brightness areas. Experimental results show 
that the proposed method significantly enhances the dehazing performance in bright regions. However, the issue 
of weak noise resistance in the model remains unresolved. Tian et al.22 proposed an improved DCP algorithm 
combined with Particle Swarm Optimization (PSO) to address issues such as color distortion in the original DCP 
algorithm. However, similar problems, such as those in bright regions and weak noise resistance, persist in their 
approach. Guan et al.23proposed a polarization-assisted DCP dehazing method to address the shortcomings of 
the original DCP algorithm. However, their approach still fails to achieve both effective dehazing and strong 
noise resistance simultaneously. Han et al.24 proposed a remote sensing image dehazing method based on the 
atmospheric scattering model and DCP constraint network. The branch fusion module in this dehazing network 
is used to optimize feature weights, improving dehazing efficiency. To further improve dehazing performance, 
the PSD algorithm25 establishes a dehazing network composed of the DCP, Bright Channel Prior26and histogram 
equalization to guide the recovery of clear images. The Dehamer algorithm27 recovers clear images from hazy 
ones without relying on atmospheric light and transmission values, but it also reduces dehazing efficiency. Zheng 
et al.28 constructed a physics-aware dual-branch unit based on the atmospheric scattering model, and combined 
it with a contrastive regularization method to establish the C2PNet dehazing network. This greatly improved 
the dehazing performance. However, the model’s noise resistance does not exhibit strong generalization across 
different datasets. The RIDCP algorithm29 leverages a pre-trained VQGAN to obtain high-quality codebook 
priors, using these priors for controllable high-quality prior matching, thereby achieving feature restoration for 
hazy images. The DCMPNet al.gorithm30considering the potential relationship between scene depth information 
and hazy images, proposes a dual-task collaborative framework to achieve single-image dehazing. Experimental 
results show that this model effectively enhances the dehazing visualization performance. However, its noise 
resistance performance lacks generalization across different datasets. In summary, the above dehazing methods 
exhibit unsatisfactory performance in handling bright regions of images and in terms of noise resistance, with 
issues such as distortion and weak noise resistance. To address these problems, we propose an image dehazing 
algorithm based on deep transfer learning and local mean adaptation (DTLMA).

The main contribution of this paper is summarized as follows:

	1.	 We designed an atmospheric light estimation module based on deep transfer learning. Traditional methods 
rely on statistical priors, and once these assumptions are violated, the accuracy of atmospheric light estima-
tion deteriorates. Additionally, the process of estimating atmospheric light is prone to being influenced by 
image noise and low contrast, resulting in slower computational speed. To address the above issues, we im-
proved the MobileNetV2 model to learn both global and local image features from large-scale synthetic and 
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real-world data. This enhancement strengthens the model’s adaptability across different scenarios, helping to 
avoid failure cases and improve the speed of atmospheric light estimation.

	2.	 We designed a transmission estimation module based on local mean adaptation. To enable the dehazing 
model to effectively handle both bright and non-bright regions in an image, we apply window-based pro-
cessing to different locations of the image. First, we calculate the average transmission value for different lo-
cations in the image to distinguish between bright and non-bright regions in each window. Next, we design a 
novel transmission estimation method to ensure that the transmission in bright regions within each window 
better approximates that in non-bright regions. Finally, we apply guided filtering to the transmission map to 
reduce noise. Overall, this ensures that the model can appropriately adjust the transmission values for differ-
ent locations in the image.

	3.	 We designed an image enhancement module. The dehazed image retains some level of detail, but there may 
be a slight color shift compared to the original image in terms of color restoration. To address the above 
issues, we first apply wavelet denoising to the dehazed image to effectively reduce noise introduced by the 
dehazing algorithm. Next, we convert the dehazed image from the RGB space to the Lab space, where we 
perform adaptive histogram equalization on the L channel (luminance channel) separately. Finally, we use a 
weighted fusion method to moderately enhance the contrast, ensuring that the dehazed image appears more 
natural and closer to the original image.

	4.	 We designed an image denoising module to address the weak noise resistance of the dehazing model, which 
primarily results from the lack of noise handling, affecting the quality of the dehazed image. To solve this is-
sue, we added an image denoising module to the existing dehazing model. To preserve the edge details of the 
image while enhancing its quality, we introduced a guided filtering model to improve dehazing performance. 
To select the appropriate number of guided filtering layers, we conducted ablation experiments to ensure that 
the model enhances image quality without damaging image detail.

Related work
New dehazing methods have emerged in recent years. These methods aim to improve the visualization of 
dehazed images, enhance dehazing performance in bright regions, and reduce model complexity. Zheng et 
al.31to ensure the navigation safety of intelligent ships in complex hazy weather, proposed a lightweight real-
time dehazing method based on an integrated dehazing network for natural environments. This method uses 
hybrid dilated convolutions to construct the dehazing network, which expands the receptive field and improves 
feature extraction without increasing the model’s computational load. However, experimental results show that 
the model has weak noise resistance performance. Huang et al.32 pointed out that real-world hazy images lack 
labels, and most deep learning-based models are trained on synthetic datasets, neglecting the complexity and 
unpredictability of real-world haze. They proposed a Retinex-based decomposition cycle dehazing network 
(DCD-Net). Experimental results show that the dehazed images processed by this method generally have a PSNR 
performance lower than 30 dB. Cui et al.33 aimed to improve dehazing performance by enhancing spatial-spectral 
learning, proposing the EENet efficient dehazing network. Chen et al.34  to further enhance dehazing effects 
and reduce computational complexity, proposed the DPTE-Net lightweight dehazing network. This method 
considers the quadratic increase in complexity of self-attention modules with image resolution, which hinders 
their applicability on resource-constrained devices. By replacing the traditional self-attention module with the 
pooling mechanism of DPTE-Net, the model retains the learning capability of ViT while reducing computational 
requirements. However, the model’s noise resistance and dehazing efficiency still need improvement. Ma et al.35 
proposed a polarization dual-channel multi-scale decomposition algorithm to improve dehazing effects for 
both distant and near scenes in images. The main strategy is to extract the near and far scenes separately and 
then combine them into a dehazed image based on fusion principles. Cong et al.36 proposed a semi-supervised 
real-world data dehazing model to enhance the generalization performance of dehazing models. Experimental 
results show that the dehazing performance of the above method varies across different datasets. In summary, 
the dehazing models based on image restoration20–23 and deep learning27–30 have effectively improved dehazing 
performance to some extent, but the models generally exhibit weak noise resistance. In general, improving the 
model’s noise resistance requires including a denoising module in the dehazing process to filter out image noise. 
However, the introduction of the denoising module reduces the clarity and other relevant features of the dehazed 
image, leading to blurriness. Therefore, improving both the dehazing effect in bright regions and the model’s 
noise resistance has become a major challenge.

Method
To simultaneously address the above two issues, an image dehazing algorithm based on deep transfer learning 
and local mean adaptation was designed. This algorithm includes the design of several modules: a deep transfer 
learning-based atmospheric light value solver, a local mean adaptation-based transmission map solver, a haze-
free image restoration module, an image enhancement module, and an image denoising module. To mitigate 
the influence of various interfering factors during atmospheric light estimation, we employ transfer learning to 
estimate atmospheric light. The pre-trained MobileNetV2 model is improved to achieve more stable and accurate 
results. In addition, considering that different regions of an image require varying adjustments of transmission 
values, a local mean adaptive method is adopted to enhance the dehazing performance in different regions. 
Furthermore, since dehazing may result in the loss of image details, adaptive histogram equalization is applied to 
the L-channel of the dehazed image to enrich detailed information. Finally, as noise is a key factor affecting the 
quality of dehazed images, and guided filtering offers an edge-preserving advantage, an edge-preserving filtering 
model is integrated into the dehazing process to improve noise robustness and enhance image quality.
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The structure of the proposed model
To ensure that the model performs well in bright areas while maintaining strong noise resistance, a novel image 
dehazing algorithm based on deep transfer learning and local mean adaptation is designed. The specific structure 
of the proposed model is shown in Fig. 1. It first includes the Atmospheric Light Estimation Module Based on 
Transfer Learning (ALETL), followed by the Transmission Estimation Module Based on Local Mean Adaptation 
(TELMA). Additionally, it contains the Haze-Free Image Estimation Module (HFIEM), and finally, the Image 
Enhancement Module (IEM) and Image Denoising Module (IDM).

The DTLMA model begins with an enhanced MobileNetV2 network designed for atmospheric light 
estimation, which integrates the physical interpretability of traditional models with the powerful modeling 
capabilities of deep learning. To better accommodate regression tasks, the original classification layers are 
removed and replaced with fully connected regression layers. The use of depthwise separable convolutions, linear 
bottlenecks, and inverted residual structures effectively reduces computational complexity while enhancing 
feature representation. Moreover, the inclusion of a global feature extraction module improves the model’s 
adaptability to complex scenes. The proposed approach provides a balanced advantage in accuracy, efficiency, 
deployability, and theoretical soundness. It is well-suited for a wide range of practical applications compared with 
traditional hybrid methods and end-to-end deep learning models. In the estimation of image transmission, we 
propose a novel approach based on locally adaptive mean values to compute transmission maps. Unlike existing 
deep learning-based dehazing models, our method adaptively adjusts the transmission values across different 
regions of the image, which theoretically enhances the dehazing performance in spatially heterogeneous areas. 
After obtaining the initial dehazed image, an image enhancement module is introduced to enrich fine details 
and mitigate potential information loss caused by the dehazing process. Furthermore, we innovatively integrate 
guided filtering into the dehazing framework. Compared to other deep learning-based methods, this integration 
theoretically provides superior noise robustness and better preservation of image structure.

Design of the atmospheric light Estimation module based on deep transfer learning
Dehazing methods based on image restoration rely on the atmospheric scattering model37–39 to estimate the 
haze-free image. The expression of the atmospheric scattering model is as follows:

	 I(x) = t(x)J(x) + A(1 − t(x))� (1)

In the equation, I(x) represents the input hazy image, t(x) denotes the transmission map, J(x) is the haze-free 
image to be recovered, and A is the atmospheric light value.

Fig. 1.  Image Dehazing Algorithm Based on Deep Transfer Learning and Local Mean Adaptation. The block 
diagrams with different background colors in Fig. 1 represent the following modules: (a) ALETL module, (b) 
TELMA module, (c) HFIEM module, (d) IEM module, and (e) IDM module.
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According to the atmospheric scattering model, the values of atmospheric light and transmission directly 
impact the dehazing performance40–42. Traditional methods for estimating atmospheric light often assume that at 
least one color channel in non-sky regions is close to zero. However, this assumption may fail in certain scenarios. 
These include heavy fog, white objects, or strong lighting conditions, which can lead to significant estimation 
errors. Secondly, the estimation of atmospheric light is typically performed by selecting the brightest 0.1% of 
pixels in the dark channel image. However, this approach is highly susceptible to bright spots, halos, and strongly 
reflective objects. This susceptibility leads to inaccurate estimations. Lastly, the traditional method requires 
computing local minimum values and performing window-based searches, resulting in high computational 
complexity, which makes it unsuitable for real-time applications. To accurately estimate atmospheric light, we 
designed an atmospheric light estimation module based on transfer learning, as illustrated in Fig. 2.

The training process for the atmospheric light estimation model is as follows:
1) Dataset preparation: Reside (ITS).
2) The dataset is divided into a training set and a testing set. The training set consists of 12,990 pairs of hazy 

and clear images, while the testing set includes 1,000 hazy and clear images.
3) We calculated the atmospheric light values for both hazy and clear images in the training and test sets, 

and generated the corresponding labels. The labels are denoted as trainhazy.m, trainclear.m, testhazy.m, and 
testclear.m, respectively. The atmospheric light is assumed to be spatially uniform and represented by a fixed 
RGB vector across the entire image. First, the dark channel of each hazy image was computed by selecting the 
minimum RGB component at each pixel. Then, pixels corresponding to the top 0.1% darkest values in the dark 
channel were selected as candidate regions. Among these candidate pixels, the maximum RGB value was chosen 
as the atmospheric light.

	
A = max

y∈Ω
Ihazy(y)� (2)

Here, Ihazy(y) represents the RGB value of the hazy image at a given pixel position, and Ωrefers to the set of 
candidate region pixels.

4) Load the MobileNetV2 pre-trained model, remove the original classification layer, and add a new 
regression layer.

5) Set the training optimizer to Adam, with a batch size of 32 and 20 epochs for training.
6) The definition of the loss function is as follows:

	
loss = 1

N

N∑
i=1

(Apred − Ahazy)2� (3)

The prediction value of atmospheric light by the model is denoted as, and the true atmospheric light value of the 
hazy image is denoted asAhazy.

7) Plot the performance loss curves for training and testing.

Fig. 2.  Atmospheric light estimation module based on transfer learning.

 

Scientific Reports |        (2025) 15:27956 5| https://doi.org/10.1038/s41598-025-13613-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Deep transfer learning is a method that utilizes existing model knowledge and applies it to new tasks. The 
core idea is to pre-train a deep neural network on a large-scale dataset to learn general features. The pre-trained 
model is then transferred to a smaller target task dataset, reducing computational overhead and improving 
generalization ability. We use MobileNetV2 as the feature extraction network, leveraging depthwise separable 
convolutions to reduce computational complexity. Additionally, we incorporate linear bottlenecks and inverted 
residual structures to improve the model’s feature representation capabilities. To enable MobileNetV2 to better 
predict atmospheric light values, we made structural adjustments to the model. First, we remove the final 
classification layer and retain the global feature extraction layer. Then, we add a fully connected regression layer 
to directly predict the atmospheric light. The modified network architecture is shown in Fig. 3.

The modified MobileNetV2 network structure is as follows:

	1)	 Input Image (Hazy Image): This serves as the input to the model, with a size of 224 × 224 × 3.
	2)	 Standard Convolution Layer (Conv 3 × 3): This layer is responsible for extracting the initial features from the 

image.
	3)	 Depthwise Separable Convolution: This operation reduces computational complexity while extracting more 

diverse and rich features.
	4)	 Bottleneck Block: Through the 1 × 1 convolution, this block performs channel compression and expansion, 

enhancing the feature representation capability.
	5)	 Skip Connection: This mechanism facilitates better gradient flow, thus improving training stability.
	6)	 Global Average Pooling (GAP): This operation further compresses the feature map dimensions and outputs 

a global feature vector.
	7)	 Fully Connected Layer (FC Layer): This layer directly maps the GAP features to the output atmospheric light 

value.

Finally, the output layer of the model consists of a single regression output node, representing the atmospheric 
light value. Through transfer learning, the low-level features pretrained by MobileNetV2 are utilized, and the 
final fully connected layer is retrained to adapt the model for atmospheric light value estimation. The original 
classification layer of MobileNetV2 is removed, and a new fully connected layer for regression is added, which 
can be seen as an independent layer appended to the MobileNetV2 architecture. MobileNetV2 primarily serves 
as the feature extraction component, ultimately outputting a feature vector. The fully connected (FC) layer is an 
independent additional layer responsible for mapping the extracted features to the atmospheric light value A. 
During the atmospheric light value training process, the FC layer is appended after MobileNetV2, as expressed 
in the following equation:

	 A = fθ(I)� (4)

Where I is the input image,fθ  represents the MobileNetV2 transfer learning model, and A is the predicted 
atmospheric light value.

Fig. 3.  Modified mobileNetV2 network structure.
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Design of transmission Estimation module based on local mean adaptation
Considering that the dark channel prior theory does not hold in bright regions, where the corresponding dark 
channel values approach the atmospheric light value, the expression is as follows:

	 Idark(x) ≈ A� (5)

At this point, the expression for the transmission estimation is as follows:

	

∼
t (x) = 1 − w min

y∈Ω(x)
[min

c

Ic(y)
Ac

] ≈ 0� (6)

Equation (5) indicates that the dark channel prior theory is not suitable for bright regions in an image, where the 
estimated transmission values are significantly lower than the true values. This limitation results in suboptimal 
performance of DCP-based dehazing algorithms in bright areas such as the sky. To improve transmission 
estimation and enhance the visual quality of dehazed images, we designed a transmission estimation module 
based on local mean adaptation. The detailed procedure is as follows.

1) We first divide the image into multiple windows to adjust the transmission values regionally. Within each 
window, the image is segmented into bright and non-bright regions using a brightness mask. The criteria for 
setting the mask are as follows:

	
Mbright(x) =

{
1 t(x) >

−
t (x)

0 otherwise
� (7)

Mbright(x)represents the bright region mask, which is set to 1 if the transmission value within the window is 
lower than the overall mean transmission; otherwise, it is set to 0.Mdark(x) represents the dark region mask, 
which is complementary toMbright(x).

−
t (x)represents the local mean transmission value within the window, 

used to differentiate between bright and non-bright regions.
2) Calculate the local transmission mean for the bright and non-bright regions of each window separately:

	

−
t

bright
(x) = 1

|Ωbright(x)|
∑

y∈Ωbright(x)

t(y)� (8)

	

−
t

dark
(x) = 1

|Ωdark(x)|
∑

y∈Ωdark(x)

t(y)� (9)

−
t

bright
(x)represents the local transmission mean of the bright region. 

−
t

dark
(x)represents the local transmission 

mean of the dark region.Ωbright(x)andΩdark(x)represent the pixel sets of the bright and non-bright regions 
within the local window, respectively.

3) After segmenting each window into bright and non-bright regions and obtaining the average transmission 
values for both regions, we designed a locally adaptive mean method to uniformly estimate the transmission 
value within the window. The expression is as follows:

	
t

′
(x) = t(x) + (

−
t

dark
(x) − t(x)) · min( t(x)

−
t bright(x) + ε

, 1)� (10)

t
′
(x)represents the corrected transmission rate, andεrepresents a constant to prevent division by zero, set to 

0.001. As shown in Eq. (10), within a transmission adjustment window, transmission values belonging to the 
non-bright region remain largely unchanged. In contrast, transmission values within the bright region are 
increased based on their original values, thereby further refining the transmission estimation. This process 
effectively adjusts the transmission values for both bright and non-bright regions within the window.

4) To further smooth the transmission rate and improve the quality of the restored image, we apply guided 
filtering to the transmission rate:

	 trefined = GuidedF ilter(Igray, t
′
(x), r, ζ)� (11)

Igray.represents the guidance image, which is the reference image used in the filtering process, typically chosen 
as a grayscale image. r represents the filter window radius, andζrepresents the regularization parameter, which 
helps prevent over-enhancement of local contrast and prevents noise from being amplified during the filtering 
process.

In real-world scenarios, we need to consider two main issues. First, the degree of transmission rate correction 
may vary at different positions in the image. For example, bright areas such as the sky typically have lower 
transmission rates and require higher correction, while other regions may need less adjustment. If we only 
use the mean transmission rate of non-bright regions to adjust local areas in the image, it may lead to over-
correction or under-correction in certain areas. In addition, for foggy images, the threshold for dividing bright 
and non-bright regions may vary across different positions in the image. To address this issue, we first calculate 
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the average transmission rate for each local window. We then use this average value as the threshold to classify 
the bright and non-bright regions within each window. Then, we adjust the transmission rates of the bright and 
non-bright regions within each local window, ensuring that the transmission rates of both regions are optimized 
towards the average transmission rate of the non-bright region in that window. The advantage of this method 
lies in the adaptive transmission rate correction based on local transmission rates, rather than a global uniform 
correction. This improves the accuracy of the correction. Due to the smoothing effect of the local window 
mean, the transmission rate correction is smoother, reducing potential edge artifacts and color block issues. By 
adaptively adjusting the transmission rate based on local means, this method effectively controls the correction 
magnitude, preventing the image from becoming overly bright or overexposed due to excessive correction. As a 
result, the correction becomes more adaptive, enhancing the quality of the dehazed image.

Design of transmission Estimation module based on local mean adaptation
In summary, we proposed novel calculation methods for estimating atmospheric light and transmission values. 
After accurately estimating these two parameters, they are substituted into the atmospheric scattering model to 
recover haze-free images. The design formula of the haze removal module is as follows:

	
J(x) = I(x) − A

t(x) + A� (12)

In the above equation, A denotes the atmospheric light estimated by the ALETL module, t(x) represents the 
transmission estimated by the TELMA module, I(x) is the input image, and J(x) is the restored haze-free image.

Integrating the image enhancement module
To further enrich image details and enhance the dehazing effect, an image enhancement module is designed. 
First, wavelet denoising is applied to reduce image noise. Then, the dehazed image is converted from the RGB 
color space to the Lab color space, where the L channel (luminance channel) undergoes adaptive histogram 
equalization separately. The above processing does not affect color distribution, thereby avoiding the color 
distortion issues associated with traditional RGB histogram equalization. Additionally, a weighted fusion 
method is employed to moderately enhance contrast while preventing artifacts caused by excessive histogram 
equalization. Finally, the enhanced L channel is substituted back into the image, followed by conversion to the 
RGB color space. The structural diagram of the image enhancement process is shown in Fig. 4.

Integration of image denoising module
To enhance the quality of the dehazed image and reduce noise levels, guided filtering is applied as an additional 
processing step. Guided filtering43–45 is an edge-preserving filtering technique that utilizes a guidance image to 
perform smoothing while retaining crucial edge details in the image.

This method estimates the output pixels within local windows using a linear model, ensuring that the filtering 
result preserves the structure of the guidance image46. Compared to traditional methods such as Gaussian 
filtering, guided filtering offers the advantage of edge preservation and does not blur boundaries. Therefore, 
guided filtering was applied in the image enhancement module.

Experimental design of atmospheric light value Estimation
To achieve a more stable and accurate estimation of atmospheric light, a transfer learning-based atmospheric 
light estimation module was designed. The ITS subset of the RESIDE public dataset was employed as the training 
data, which contains a total of 13,990 synthetic hazy images. Among them, the first 12,990 images were used for 
training, while the remaining 1,000 images served as the test set. The ground-truth atmospheric light values for 
both the training and test sets were computed using a dedicated estimation method and stored as corresponding 
labels. This ensured a one-to-one correspondence between each hazy image and its true atmospheric light label. 
For the transfer learning-based atmospheric light estimation model, the maximum number of training epochs 
was set to 20, with each mini-batch consisting of 32 images. Each epoch involved 406 iterations, resulting in a 
total of 8,120 training iterations. The key parameters of the MobileNetV2 network are as follows: an expansion 
factor of 6, a width multiplier of 0.75, the Adam optimizer, an initial learning rate of 0.001, and a momentum 
value of 0.9. During the training process, the model’s loss and mean squared error (MSE) values were recorded 
at each iteration to assess convergence. The experiments were conducted on a hardware platform running 

Fig. 4.  Block diagram of the image enhancement architecture.
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Windows 11, equipped with a 14th Gen Intel® Core™ i9-14900HX CPU @ 2.20 GHz, 16.0 GB of RAM, and an 
NVIDIA GeForce RTX 4060 Laptop GPU with 8 GB GDDR6 memory. The software environment included 
PyCharm as the integrated development environment (IDE), Python version 3.11.11, and PyTorch as the deep 
learning framework. The loss and MSE curves during training are shown in Figs. 5 and 6.

As shown in Figs. 5 and 6, the atmospheric light value estimation model stabilizes around the 300th iteration, 
with the loss value approaching zero. This indicates that after the 300th iteration, the model’s prediction 
performance becomes stable, and the difference between the predicted and the true values is almost zero, 
signifying that the model has converged. From the RMSE curve, it can be observed that the difference between 
the model’s predicted values and the true values stabilizes after 1000 iterations, with the error value remaining 
below 0.1. This indicates that the model’s prediction error is small, and MobileNetV2 has successfully learned 
the pattern for atmospheric light value estimation, further confirming that the training process has reached 
convergence. To further verify whether the trained MobileNetV2 model can effectively predict real atmospheric 
light values, predictions were made on the test set, followed by performance testing. The results are shown in the 
following figures.

As shown in Fig. 7, the prediction errors for the vast majority of samples are relatively low, concentrated 
below 0.005, indicating that the model can accurately fit the true values in most cases. Figure  8 shows that 
the RMSE curve follows the same trend as the MSE, with the prediction errors for most samples being low. 
The RMSE curve shares the same dimensionality as the original data, making it a more intuitive reflection 
of the actual size of the prediction errors. Figure 9 shows the absolute error between the predicted and true 
values. Similar to the MSE curve, the majority of samples exhibit low MAE errors. Additionally, the MAE curve 
is less influenced by outliers and is more stable compared to the MSE curve. As shown in Fig. 10, the error 
distribution for all test samples is presented. The horizontal axis represents the error between the predicted and 
true values, while the vertical axis represents the number of samples. Most of the errors are concentrated around 
0, displaying a relatively symmetric distribution. This indicates that the model does not exhibit any significant 
systemic bias (i.e., it does not overestimate or underestimate the atmospheric light value). The majority of errors 
fluctuate within the range of [−0.1, 0.1], with few extreme errors, suggesting that the model can accurately 
estimate the atmospheric light value in most cases. As shown in Fig. 11, the scatter plot between the true values 
and predicted values is presented. Ideally, all points should align along the diagonal. In the image, most of the 
predicted values are close to the true values, with data points clustering near the ideal fitting line, indicating 
that the model performs well overall. Except for a small number of predictions with some deviations when the 

Fig. 6.  Training RMSE curve.

 

Fig. 5.  Training loss curve.
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true atmospheric light value is below 0.7, the majority of predicted values have a small error compared to the 
true values. As shown in Fig. 12, the variation curves of the true values (blue) and predicted values (red) for all 
test samples are displayed. The predicted values generally fit the true values well, with only a small number of 
predictions having some deviations from the true values. Overall, the model can estimate the atmospheric light 
values accurately in most cases, with only a small amount of data showing slight deviations. To further assess 
the testing performance, we calculated the overall average errors, including the overall average mean squared 
error (MSE), the overall average root mean squared error (RMSE), and the overall average mean absolute error 
(MAE). The results are shown in Table 1.

Fig. 9.  Mean absolute error (MAE) curve.

 

Fig. 8.  Root mean squared error (RMSE) curve.

 

Fig. 7.  Mean squared error (MSE) curve.
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As shown in Table 1, the overall MSE is 0.0010536, indicating that the average squared error between the 
predicted and true values is very small. The model’s predictions are generally stable, with most samples showing 
small errors. There are a few extreme errors (outliers), suggesting that the model performs well in estimating 
atmospheric light values in various hazy environments. The overall MAE is 0.023229, which means the average 
error for each sample is 0.023229. MAE is a linear error metric, unlike the MSE curve, which amplifies the 
influence of extreme values. Therefore, MAE provides a more realistic reflection of the actual error. The current 
MAE value indicates that the error for the vast majority of samples is less than 0.023, demonstrating good 
stability in the predictions. The overall RMSE of the model is 0.03246, which means the standard deviation of 
the error is approximately 0.03246. RMSE shares the same unit as the original data, making it more interpretable 
than MSE, and it is well-suited for assessing the overall error level of the model. The current RMSE value suggests 

Fig. 12.  True vs. predicted atmospheric light (line plot).

 

Fig. 11.  True vs. predicted atmospheric light.

 

Fig. 10.  Error distribution histogram.
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that the error fluctuation is small, indicating good model stability. If RMSE were significantly higher than MAE, 
it would suggest the presence of large outliers; however, since RMSE is only slightly higher than MAE, this 
indicates that the impact of extreme errors is not severe. Overall, the model demonstrates a good fit between 
predicted and true values and is capable of accurately estimating atmospheric light values.

To further verify the reliability of the proposed atmospheric light estimation model, we conducted comparative 
experiments using the EfficientNet-B0 model, which is currently a state-of-the-art atmospheric light estimation 
model known for its high accuracy and low parameter count. Experiments were performed on the same training 
and test sets, and the overall error performance was recorded. The results are presented in Table 2.

From the experimental results above, it can be observed that the three error metrics obtained using the 
EfficientNet-B0 model are relatively high. This indicates that the predicted atmospheric light values deviate more 
significantly from the ground truth when using this model. Overall, the proposed method demonstrates certain 
advantages, providing more accurate atmospheric light estimation and validating its reliability.

Image dehazing comparative experiment
To evaluate the dehazing performance and generalization ability of the proposed model, experiments were 
conducted on a self-constructed synthetic hazy dataset, the publicly available SOTS (Outdoor) dataset, and two 
real-world datasets: NH-HAZE and O-HAZE. The following sections describe the datasets and experimental 
settings in detail.

Datasets: The self-made synthetic hazy dataset contains 1,000 pairs of hazy and clear images. The clear images 
were sourced from the Cityscapes dataset and real-world collected images, while the hazy images were generated 
using an atmospheric scattering model by setting different β values to create hazy images with varying levels of 
haze intensity. Among them, images with β = 0.005 are considered as light haze images, images with β = 0.01 are 
considered as moderate haze images, images with β = 0.015 are considered as heavily hazy images, and images 
with β = 0.02 are considered as dense haze images. Each type of hazy image consists of 250 images. To test the 
dehazing performance of the proposed algorithm in outdoor bright areas, the SOTS (Outdoor) public dataset 
was selected, which contains 500 pairs of hazy and haze-free outdoor images. To validate the model’s dehazing 
performance in real-world hazy scenarios, tests were conducted on the publicly available NH-HAZE and 
O-HAZE datasets. The NH-HAZE dataset contains 55 pairs of real hazy and clear images, while the O-HAZE 
dataset includes 45 such pairs.

Experimental Parameter Settings: In the custom hazy dataset, both the original and haze-added images were 
uniformly resized to 620 × 480 pixels. Typically, the adaptive local mean window sizes for transmission estimation 
are selected from 20 × 20, 30 × 30, and 40 × 40. A smaller window size leads to an increased number of windows, 
which results in higher computational complexity, greater susceptibility to noise, and reduced smoothness. 
Conversely, a larger window size may fail to preserve image details and could result in the loss of local features. To 
balance dehazing accuracy and computational complexity, the adaptive local mean window size for transmission 
estimation was set to 30 × 30, resulting in a total of 336 windows. The experimental environments for the four 
hazy scenarios were consistent with those of the atmospheric light estimation module, with identical software 
and hardware configurations.

Dehazing comparison experiment based on self-made synthetic hazy dataset
To verify the effectiveness of the proposed model, we first conduct experiments comparing it with mainstream 
dehazing algorithms using the self-made synthetic hazy dataset. To more comprehensively and accurately evaluate 
the performance of dehazing models under varying haze conditions, we constructed a customized synthetic 
hazy dataset. Existing public datasets typically provide only coarse-grained categorizations of haze density. 
This limitation reduces their ability to assess a model’s adaptability and robustness across different scenarios, 
such as light, moderate, and heavy haze. In our dataset, haze levels are precisely defined and categorized into 
multiple grades, enabling more targeted and discriminative performance evaluation. Moreover, each hazy image 
is paired with a corresponding clear image, facilitating precise quantitative comparisons. The design of this 
dataset is grounded in the observation that haze concentration varies significantly in real-world applications, 
and a model’s effectiveness in practical deployment depends largely on its generalization ability across different 
haze levels. Therefore, conducting experiments on this dataset enables a more detailed characterization of model 
performance boundaries. It also provides reliable validation of the model’s practicality and robustness in complex 
real-world environments. The compared dehazing algorithms include image restoration-based methods, such 
as the DCP dehazing algorithm, as well as deep learning-based methods, including CoA dehazing25(Towards 

Error MSE MAE RMSE

Performance 0.0015912 0.027831 0.03852

Table 2.  Overall error performance of the efficientnet-B0 model.

 

Error MSE MAE RMSE

Performance. 0.0010536 0.023229 0.03246

Table 1.  Overall error performance of the ALETL model.
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Real Image Dehazing via Compression-and-Adaptation, CVPR 2025), Dehamer dehazing27 (Image Dehazing 
Transformer with Transmission-Aware 3D Position Embedding, CVPR 2022), C2Pnet28 (Curricular Contrastive 
Regularization for Physics-Aware Single Image Dehazing, CVPR 2023), and DCMPNet30 (Depth Information 
Assisted Collaborative Mutual Promotion Network for Single Image Dehazing, CVPR 2024). The code for the 
above experimental models was obtained from publicly available open-source repositories. The experimental 
environment remained consistent with the previous setup. For the DTLMA algorithm, all parameters were 
normalized, the minimum filtering window size was set to 15, and a single-layer guided filter was applied for 
noise reduction. Some dehazing visualization results of these algorithms on our self-generated synthetic hazy 
dataset are shown in Fig. 13.

As shown in Fig. 13, the dehazed images processed by the DCP algorithm exhibit distortion in bright regions. 
The dark channel prior theory is not well suited for handling bright areas such as the sky, resulting in suboptimal 
dehazing performance in these regions. The CoA model produces dehazed images with generally good visual 
quality; however, some haze remains in the images, partially obscuring important details. The image processed 
by the Dehamer algorithm loses a significant amount of detail, resulting in color shifts and the loss of fine details. 
The dehazing effect achieved by the C2Pnet algorithm does not exhibit color shift problems, but there are still 
some areas in the hazy image where haze has not been fully removed. The dehazing result from the DCMPNet 
algorithm is relatively mild in terms of color distortion, and the dehazed image retains more of the original 
image’s details. However, there is still a noticeable difference compared to the original image. The dehazing result 
obtained using the DTLMA algorithm shows better visual effects. To further verify the differences among the 
dehazing algorithms, the performance of the results obtained by the above methods is evaluated, and the average 
values are calculated. The results are shown in Table 3.

According to the PSNR evaluation results, the dehazed images produced by the aforementioned algorithms 
generally exhibit values below 32 dB. The Dehamer algorithm shows relatively weaker performance, indicating 
that some noise remains in the processed images. In contrast, the DTLMA algorithm achieves better results, with 
a peak signal-to-noise ratio (PSNR) of 31.85 dB, demonstrating that images processed by the proposed method 
contain less noise and possess higher quality. Regarding the SSIM evaluation, the Dehamer algorithm performs 
the poorest, suggesting a noticeable difference between the processed images and the original ones. The results 
processed by the DTLMA algorithm demonstrate superior dehazing performance, with an average SSIM value 

Performance DCP13 CoA25 Dehamer27 C2Pnet28 DCMPNet30 DTLMA

PSNR(dB) 29.73 29.93 27.07 30.57 30.79 31.85

SSIM(%) 77.01 89.79 68.82 86.88 87.80 91.90

CIEDE2000 9.24 3.52 12.58 5.98 4.88 2.18

Table 3.  Performance evaluation results of the dehazing models on the custom synthetic hazy dataset.

 

Fig. 13.  Visualization results on the self-made synthetic hazy dataset. (a) original (b) DCP (c) CoA (d) 
Dehamer (e) C2Pnet (f) DCMPNet (g) DTLMA (h) GT.
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reaching 91.90%. This indicates that the dehazed images produced by the proposed model are closest to the 
original images, exhibiting the lowest level of distortion. Additionally, the DTLMA algorithm achieves the best 
CIEDE2000 performance, indicating minimal color distortion and improved color restoration.

To enable locally adaptive adjustment of the transmission map, each input image (with a resolution of 
620 × 480) was divided into multiple non-overlapping local windows of size 30 × 30. Since the image width of 
620 is not divisible by the window size, zero-padding was applied to the right side of the image to extend its 
width to 630, allowing it to be evenly divided into 21 windows. As a result, each image was partitioned into 
336 non-overlapping local windows, and transmission estimation and correction were performed separately for 
each window. To prevent padding pixels from introducing errors in local computations, the transmission values 
corresponding to the padded region were excluded from subsequent statistical and averaging operations, serving 
only to maintain the integrity of the window structure. To further validate the rationality and effectiveness of 
the selected number of windows, three commonly used window sizes were tested within the dehazing model. 
Experiments were conducted on a synthetic hazy dataset, and the dehazing performance is presented in Table 4.

According to the experimental results, different settings of the adaptive window size for computing the local 
mean of transmittance have varying impacts on model performance. When the window size is set to 30 × 30, 
the overall dehazing performance achieves a relatively good balance and shows clear improvement compared to 
the 20 × 20 window setting. The use of a 20 × 20 window may introduce noise during the patch-based dehazing 
process, potentially disrupting the spatial structure of the image, which results in suboptimal dehazing quality. 
When the window size is increased to 40 × 40, the noise level in the dehazed image is reduced, leading to improved 
visual quality. However, both SSIM and CIEDE2000 scores decline, indicating increased color distortion and 
structural deviation. Overall, a window size of 30 × 30 is the most appropriate choice, offering a good trade-off 
between visual quality and color accuracy.

Dehazing comparison experiments based on the SOTS (outdoor) dataset
The SOTS (Outdoor) dataset contains 500 pairs of hazy and clear outdoor images, with many of the outdoor 
images featuring bright areas such as the sky. This provides an ideal scenario for testing the model’s ability 
to effectively handle bright regions. To verify the effectiveness of the proposed algorithm, experiments were 
conducted on the SOTS (Outdoor) dataset. The visualization results are shown in Fig. 14 below.

The dehazing results obtained by the above models on the SOTS (Outdoor) dataset are similar to those on 
the custom foggy dataset. The DCP-based dehazing algorithm still introduces a certain degree of distortion. In 
contrast, the CoA algorithm consistently achieves good dehazing performance and effectively enhances image 
clarity. The results obtained using the Dehamer algorithm lost a significant amount of detailed information, 
which also affected the resolution of the dehazed image. The results obtained by applying the C2Pnet 
algorithm still show a certain degree of haze, which continues to obscure important information in the image. 
The DCMPNet and DTLMA algorithms, on the other hand, provided better dehazing visual effects, with no 
significant distortion observed in the bright regions of the image. To quantify the dehazing performance of each 
model, a performance evaluation of the dehazing results obtained from the above models was conducted. The 
average dehazing performance values are shown in Table 5.

Based on the above dehazing performance evaluation, the dehazed results obtained by the existing models 
generally exhibit noticeable noise, with average PSNR values mostly below 30 dB. This indicates that these models 
have relatively weak noise suppression capabilities. In contrast, the proposed algorithm achieves a PSNR of 30.21 
dB, showing a clear advantage over other methods. Moreover, the average SSIM of the dehazed images produced 
by the proposed method reaches 90.86%, which also outperforms other mainstream dehazing algorithms. These 
experimental results verify the effectiveness of the proposed method. In terms of color fidelity, the CIEDE2000 
evaluation shows that the DTLMA model achieves superior performance, with an average CIEDE2000 value 
of 2.82. This indicates significantly lower color distortion and better image quality compared to other models.

Dehazing comparison experiments based on the real-world NH-HAZE foggy image dataset
To validate the dehazing performance of the proposed algorithm in real-world scenarios, experiments were 
conducted on the NH-HAZE dataset. An image enhancement module and an additional image denoising layer 
were incorporated into the DTLMA algorithm, and the parameters within the DTLMA model were normalized. 
The dehazing results are shown in Fig. 15.

As observed from the above visualization results, the dehazing performance varies across the different 
methods. The DCP algorithm exhibits noticeable distortion in its dehazed outputs. Deep learning-based 
methods such as CoA, Dehamer, C2PNet, and DCMPNet often rely on synthetic hazy images for training, which 
leads to suboptimal performance when applied to real-world haze scenarios. These methods tend to suffer from 
color distortion and incomplete haze removal, indicating limited cross-dataset generalization ability. In contrast, 
the proposed algorithm achieves more satisfactory dehazing results. To quantitatively assess the performance of 
each model, evaluation metrics for the dehazed results are summarized in Table 6.

Performance 40*40 30*30 20*20

PSNR(dB) 32.63 31.85 28.36

SSIM 90.26 91.90 88.98

CIEDE2000 3.27 2.18 3.85

Table 4.  Dehazing performance under different numbers of locally adaptive mean windows.
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Fig. 15.  Dehazing visualization results on the NH-HAZE dataset. (a) original (b) DCP (c) CoA (d) Dehamer 
(e) C2Pnet (f) DCMPNet (g) DTLMA (h) GT.

 

Performance DCP13 CoA25 Dehamer27 C2Pnet28 DCMPNet30 DTLMA

PSNR(dB) 28.98 28.89 24.57 28.78 29.77 30.21

SSIM(%) 74.73 88.98 64.01 82.06 88.09 90.86

CIEDE2000 8.35 3.86 10.52 6.65 5.91 2.82

Table 5.  Performance evaluation results of dehazing models on the SOTS(outdoor) dataset.

 

Fig. 14.  Presents the dehazing results on the SOTS (Outdoor) dataset. (a) original (b) DCP (c) CoA (d) 
Dehamer (e) C2Pnet (f) DCMPNet (g) DTLMA (h) GT.
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Based on the above performance evaluation results, most of the dehazing models exhibit noise robustness 
below 32 dB, indicating relatively weak denoising capabilities. In contrast, the proposed DTLMA algorithm 
achieves an average PSNR of 32.84 dB and an average SSIM of 85.25%, further validating its effectiveness. Among 
all evaluated models, the DTLMA algorithm consistently achieves the highest PSNR and SSIM across the three 
datasets, demonstrating both its effectiveness and superiority. The DTLMA algorithm achieved an average 
PSNR above 30 dB across all three hazy datasets, indicating strong noise robustness and good generalization 
performance. In terms of FADE evaluation, the DTLMA model produced the best results, suggesting that 
its dehazed images contain the least amount of residual haze and demonstrate the most effective dehazing 
performance.

Dehazing comparison experiments based on the real-world O-HAZE hazy image dataset
To further validate the dehazing performance of the proposed algorithm in real-world scenarios, additional 
experiments were conducted on the O-HAZE dataset. In this experiment, an image enhancement module 
and a single-layer denoising module were integrated into the DTLMA algorithm. Additionally, parameter 
normalization was applied within the DTLMA framework. The dehazing results are presented in Fig. 16.

As shown in the visual results in Fig.  16, the dehazing performance varies significantly across different 
methods. The image processed by the DCP algorithm exhibits noticeable distortion, and the haze is not effectively 
removed. The Dehamer algorithm demonstrates some improvement in haze removal; however, it introduces 
color shifts and residual distortion. The image produced by DCMPNet shows relatively better overall quality, 
yet still falls short in restoring fine details compared to the haze-free ground truth. The result from the C2PNet 
model retains a certain level of haze. In contrast, the CoA and DTLMA models yield comparatively better visual 
outcomes. To quantitatively evaluate the dehazing performance of each model, objective metrics were computed, 
and the results are presented in Table 7.

Based on the PSNR evaluation results, all the aforementioned models exhibit relatively poor noise resistance, 
with PSNR values generally below 30 dB. This further indicates that these dehazing methods struggle to suppress 
noise effectively, leaving residual noise that degrades the quality of the dehazed images. The DTLMA dehazing 
model, however, achieves an average PSNR of 33.56 dB, showing a clear advantage. In terms of SSIM and FADE 
metrics, the average SSIM reaches 90.52%, indicating that the proposed dehazing model provides the best 
restoration performance. These experimental results demonstrate the superiority of the proposed model and its 
strong generalization capability on real-world hazy datasets.

Ablation study
Ablation study of the ALETL module
To improve the accuracy of atmospheric light estimation, we designed the ALETL module to enhance the 
precision of atmospheric light values. To verify the effectiveness of the proposed method, we conducted step-by-
step ablation experiments based on the DCP algorithm. Specifically, the traditional atmospheric light estimation 
module in DCP was replaced with the ALETL module. Both the original and modified models were evaluated 
on a synthetic hazy dataset, and the performance results are summarized in Table 8.

The results indicate that replacing the original module with the ALETL module has a significant impact on 
dehazing performance for synthetic hazy datasets. After integrating the ALETL module, both the PSNR and 
SSIM values improved, with a particularly notable enhancement in SSIM. These findings demonstrate that the 
introduction of the ALETL module effectively enhances the overall performance of the model, confirming the 
reliability of the proposed improvement.

Ablation study of the TELMA module
To improve the accuracy of transmission estimation and enhance dehazing performance in bright regions such as 
the sky, we designed the TELMA module to further refine the estimation of transmission values. To validate the 
effectiveness of the proposed method, we further replaced the original transmission module with TELMA based 
on the DCP algorithm already integrated with the ALETL module. Dehazing experiments and performance 
evaluations were conducted on a synthetic hazy dataset, and the results are shown in Table 9.

The results show that further replacing the module with TELMA on top of the ALETL integration leads to 
additional improvements in dehazing performance. These findings indicate that the introduction of the TELMA 
module helps enhance dehazing in bright regions such as the sky, reduces distortion in the dehazed images, and 
improves the overall visual quality. Moreover, the results validate the effectiveness of the TELMA module design.

Ablation study on image enhancement
To further verify whether the introduction of the image enhancement module can positively impact dehazing 
performance, we first performed image dehazing after estimating atmospheric light and transmission values. 
Subsequently, dehazing was conducted on the synthetic hazy dataset both with and without the image 

Performance DCP13 CoA25 Dehamer27 C2Pnet28 DCMPNet30 DTLMA

PSNR(dB) 31.79 29.98 22.85 28.01 32.48 32.84

SSIM(%) 54.23 83.97 70.99 62.16 74.91 85.25

FADE 0.68 0.31 0.48 0.55 0.42 0.28

Table 6.  Performance evaluation results of the above dehazing models on the NH-HAZE dataset.
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Performance PSNR(dB) SSIM(%) CIEDE2000

Before replacing with TELMA 30.56 85.81 2.88

After replacing with TELMA 32.19 89.92 2.29

Table 9.  Dehazing performance before and after replacing the transmission module with TELMA.

 

Performance PSNR(dB) SSIM(%) CIEDE2000

Before replacing with the ALETL module 29.76 82.92 3.12

After replacing with the ALETL module 30.56 85.81 2.88

Table 8.  Dehazing performance before and after replacing the ALETL module.

 

Performance DCP13 CoA25 Dehamer27 C2Pnet28 DCMPNet30 DTLMA

PSNR(dB) 26.23 27.56 21.43 29.75 28.41 33.56

SSIM(%) 62.68 85.65 71.82 76.97 81.88 90.52

FADE 0.66 0.35 0.58 0.52 0.45 0.26

Table 7.  Performance evaluation of the above dehazing models on the O-HAZE dataset.

 

Fig. 16.  Visual dehazing results on the O-HAZE dataset. (a) original (b) DCP (c) CoA (d) Dehamer (e) 
C2Pnet (f) DCMPNet (g) DTLMA (h) GT.
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enhancement module. The visual comparison of dehazing results before and after enhancement is shown in 
Fig. 17.

The results above indicate that after image enhancement, the detail and edge information of the image become 
more pronounced, and the color restoration exhibits improved fidelity to the original image. For instance, in 
the second image, the windows and doors area shows enhanced color vibrancy and clearer details after image 
enhancement. This suggests that image enhancement helps to improve the visual quality of the dehazed image. 
To quantify the changes in dehazing performance, a performance evaluation of the images before and after 
enhancement was conducted, with the average performance values presented in Table 10.

Based on the above experimental results, after image enhancement, the SSIM performance of the dehazed 
images increased from an average of 89.92–91.01%. These results demonstrate that image enhancement can 
effectively improve the visualization of the dehazed images, further enhancing their visual quality beyond the 
original dehazing results, making the dehazed images closer to the original ones. At the same time, the noise in 
the dehazed images has been slightly amplified, with the average PSNR of the dehazed images decreasing from 
32.19 dB to 31.56 dB. However, the image enhancement process has little effect on the model’s noise resistance, 
as the enhanced images maintain the model’s noise robustness while improving the visualization quality.

Image denoising ablation experiment
To further enhance the model’s denoising performance and improve the quality of the dehazed images, denoising 
processing is applied based on the previous image enhancement. Considering that the guided filtering algorithm 
has an edge-preserving effect, the guided filtering module is further integrated into the image enhancement 
process. The number of stacked guided filtering layers may have different impacts on the model’s denoising 
performance. To determine the appropriate number of guided filtering layers, one to six layers of the guided 
filtering algorithm are added on top of the previous image enhancement. The dehazing visual effects after 
incorporating guided filtering are shown in Fig. 18.

Based on the above dehazing results, it is concluded that integrating an appropriate denoising algorithm 
into the image enhancement process effectively reduces image noise. This integration improves the model’s 
anti-noise performance. When guided filtering modules with varying numbers of layers were incorporated, the 
dehazed images showed no significant changes in visual effects. Changes in color and detail restoration were also 
minimal. To quantify the dehazing performance with different numbers of guided filtering layers, a performance 
evaluation was conducted based on the image enhancement process. The results are shown in Table 11.

From the above experimental results, it can be seen that the dehazed image performance varies with the 
addition of different numbers of guided filter layers on top of the image enhancement. In terms of PSNR, as the 
number of guided filter layers increases, the model’s noise resistance performance improves, rising from 31.56dB 
to 32.04 dB. These results indicate that the integration of guided filtering effectively enhances the model’s noise 
resistance. In terms of SSIM performance, with the increase in the number of guided filter layers, the SSIM 
performance of the dehazed images gradually decreases. The highest SSIM average value was achieved after 
integrating just one layer of guided filtering. To simultaneously ensure robust noise suppression and high visual 

Image Dehazing Performance PSNR(dB) SSIM(%) CIEDE2000

Before Image Enhancement 32.19 89.92 2.29

After Image Enhancement 31.56 91.01 2.23

Table 10.  Dehazing performance before and after image enhancement.

 

Fig. 17.  Visual results of dehazing before and after image enhancement. (a) Image enhancement before the 
effect. (b) Image enhancement after effect.
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quality in the dehazing model, we introduce an additional guided filtering module on top of the aforementioned 
image enhancement process. This module is designed to remove residual noise present in the dehazed images, 
thereby improving the overall image quality. By combining image enhancement with guided filtering-based 
denoising, the original dehazing model achieves enhanced performance and delivers superior dehazing results.

Comparative experiments on dehazing efficiency
To evaluate the dehazing efficiency of the above models, their average inference times were measured on three 
synthetic and real-world hazy datasets: the Synthetic Hazy Dataset, SOTS (Outdoor) Dataset, and NH-HAZE 
Dataset. All experiments were conducted on an NVIDIA GeForce RTX 4060 Laptop GPU with 8GB GDDR6 
memory. The average inference times of these dehazing models on the three datasets are shown in Figs. 19, 20 
and 21, and Fig. 22, respectively.

Figures 19, 20, 21 and 22 show that the DCP algorithm achieves the best dehazing efficiency and can perform 
fast dehazing in practical scenarios. However, it should be noted that DCP is not well suited for processing 
bright regions such as the sky in hazy images, where it causes severe distortions. Therefore, there is room for 
improvement in its visual dehazing quality. Overall, the CoA algorithm demonstrates good balance between 
dehazing quality and efficiency. The dehazing efficiency of the Dehamer and C2Pnet models still needs 
improvement. The DCMPNet algorithm achieves good overall dehazing performance and effectively removes 
haze to a large extent, but its inference speed is relatively low. The DTLMA algorithm shows strong dehazing 
performance across all four hazy datasets. Its dehazing speed is second only to the DCP model, while its overall 
dehazing quality surpasses other mainstream methods, indicating the proposed model’s advantages and practical 
application potential.

Conclusion
Currently, dehazing models do not perform well in handling bright areas and exhibit weak noise resistance, 
leading to distortion and poor noise resilience. To address these issues, a deep transfer learning and local mean 
adaptation-based image dehazing algorithm is proposed. This algorithm first employs a deep transfer learning-
based method to estimate the atmospheric light value. By training a modified MobileNetV2 module, the 
algorithm comprehensively captures global image information, reducing computational errors and enhancing 
processing speed, thereby more stably and accurately estimating the atmospheric light value. Additionally, a 
local mean adaptation-based transmission map estimation module is designed, allowing the model to effectively 

Performance EH GF*1 GF*2 GF*3 GF*4 GF*5 GF*6

PSNR(dB) 31.56 31.85 31.94 31.99 32.02 32.03 32.04

SSIM(%) 91.01 91.90 90.94 90.83 90.75 90.68 89.84

Table 11.  Performance evaluation results with different numbers of guided filter layers.

 

Fig. 18.  Dehazing visualization results after integrating different numbers of guided filtering layers. (a) EH (b) 
+ GF*1 (c) + GF*2 (d) + GF*3 (e) + GF*4 (f) + GF*5 (g) + GF*6 (h) GT.
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Fig. 21.  Average inference time on the NH-HAZE dataset.

 

Fig. 20.  Average inference time on the SOTS (Outdoor) dataset.

 

Fig. 19.  Average inference time on the synthetic foggy dataset.
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handle both bright and non-bright areas of the image. Finally, image enhancement and denoising are applied 
to the dehazed images to improve the model’s noise resistance and its ability to capture edge details. To validate 
the effectiveness of the proposed algorithm, experiments were conducted on four different hazy datasets. 
The experimental results show that the proposed dehazing model performs well across all four hazy datasets, 
demonstrating a certain degree of generalization capability. Finally, to validate the dehazing efficiency of the 
proposed model, comparative experiments were conducted with mainstream algorithms on a synthetic hazy 
dataset. The results demonstrate that the proposed dehazing algorithm achieves good dehazing efficiency. This 
paper provides a novel dehazing method and approach for fields such as autonomous driving, contributing to 
advancements and developments in related areas.

Data availability
The RESIDE (ITS) and SOTS datasets that support the findings of this study are publicly available at ​h​t​t​​​​p​s​​:​/​/​​s​i​​t​
e​​s​.​g​​o​o​g​​l​e​​.​c​​o​m​/​​v​i​e​w​/​r​e​s​i​d​e​-​d​e​h​a​z​e​-​d​a​t​a​s​e​t​s​/​r​e​s​i​d​e​-​s​t​a​n​d​a​r​d​. The NH-HAZE dataset that supports the findings 
of this study is publicly available at https://data.vision.ee.ethz.ch/cvl/ntire20/nh-haze/. The O-HAZE dataset 
that supports the findings of this study is publicly available at https://data.vision.ee.ethz.ch/cvl/ntire18/o-haze/.

Received: 22 April 2025; Accepted: 25 July 2025

References
	 1.	 LING, P. et al. Single image dehazing using saturation line prior[J]. IEEE Trans. Image Process. 32, 3238–3253 (2023).
	 2.	 CHEN W T et al. Sjdl-vehicle: Semi-supervised joint defogging learning for foggy vehicle re-identification[C]//Proceedings of the 

AAAI Conference on Artificial Intelligence. 36(1): 347–355. (2022).
	 3.	 Sakaridis, C., Dai, D. & Van Gool, L. Model adaptation with synthetic and real data for semantic dense foggy scene understanding[C]. 

In Proceedings of the European Conference on Computer Vision. 687–704 (2018).
	 4.	 HUANG, F. et al. Active imaging through dense fog by utilizing the joint polarization defogging and denoising optimization based 

on range-gated detection[J]. Opt. Express. 31 (16), 25527–25544 (2023).
	 5.	 POLLAK, A. & MENON, R. Image-to-image machine translation enables computational defogging in real-world images[J]. Opt. 

Express. 32 (19), 33852–33860 (2024).
	 6.	 Rivera-Aguilar, B. A. et al. A new histogram equalization technique for contrast enhancement of grayscale images using the 

differential evolution algorithm[J]. Neural Comput. Appl. 36 (20), 12029–12045 (2024).
	 7.	 FAN, T. et al. An improved single image defogging method based on Retinex[C]//2017 2nd international conference on image, 

vision and computing (ICIVC). IEEE, : 410–413. (2017).
	 8.	 Wang, Y. et al. UCL-dehaze: Toward real-world image dehazing via unsupervised contrastive learning[J]. IEEE Trans. Image 

Process. 33, 1361–1374 (2024).
	 9.	 Xiao, J. et al. Single image dehazing based on learning of haze layers[J]. Neurocomputing. 389, 108–122 (2020).
	10.	 Zhang, S. et al. Semantic-aware dehazing network with adaptive feature fusion[J]. IEEE Trans. Cybern. 53 (1), 454–467 (2021).
	11.	 Ahmed, M., Li, X. & Tran, H. Multi-scale enhancement with pseudo-fog estimation for generalizable dehazing[J]. J. Vis. Commun. 

Image Represent. 92, 104781–104793 (2023).
	12.	 Chen, Z., He, Z. & Lu, Z.‑M. DEA‑Net: Single image dehazing based on detail‑enhanced convolution and content‑guided 

attention[J]. IEEE Trans. Image Process. 33, 1002–1015 (2024).
	13.	 HE, K., SUN, J. & TANG, X. Single image haze removal using dark channel prior[J]. IEEE Trans. Pattern Anal. Mach. Intell. 33 (12), 

2341–2353 (2010).
	14.	 Dong, H. et al. Multi-scale boosted dehazing network with dense feature fusion[C]. In Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition. 2157–2167 (2020).
	15.	 Guo, C. L. et al. Image dehazing transformer with transmission-aware 3D position embedding[C]. In Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition. 5812–5820 (2022).
	16.	 He, K. et al. Momentum contrast for unsupervised visual representation learning[C]. In Proceedings of the IEEE/CVF Conference 

on Computer Vision and Pattern Recognition. 9729–9738 (2020).
	17.	 Dong, J. & Pan, J. Physics-based feature dehazing networks[C]. In Proceedings of the European Conference on Computer Vision. 

188–204 (2020).

Fig. 22.  Average inference time on the O-HAZE dataset.

 

Scientific Reports |        (2025) 15:27956 21| https://doi.org/10.1038/s41598-025-13613-z

www.nature.com/scientificreports/

https://sites.google.com/view/reside-dehaze-datasets/reside-standard
https://sites.google.com/view/reside-dehaze-datasets/reside-standard
https://data.vision.ee.ethz.ch/cvl/ntire20/nh-haze
https://data.vision.ee.ethz.ch/cvl/ntire18/o-haze
http://www.nature.com/scientificreports


	18.	 Liu, X. et al. GridDehazeNet: Attention-based multi-scale network for image dehazing[C]. In Proceedings of the IEEE/CVF 
International Conference on Computer Vision. 7314–7323 (2019).

	19.	 LIU, W. & ZHANG, J. Research on Image Defogging Algorithm Combining Homomorphic Filtering and Retinex[C]//2024 4th 
International Symposium on Computer Technology and Information Science (ISCTIS). IEEE, : 596–599. (2024).

	20.	 HU, K. et al. A method for defogging sea fog images by integrating dark channel prior with adaptive Sky region Segmentation[J]. 
J. Mar. Sci. Eng. 12 (8), 1255 (2024).

	21.	 WANG, Y. et al. Adaptive Image-Defogging algorithm based on Bright-Field region Detection[C]//Photonics. MDPI 11 (8), 718 
(2024).

	22.	 TIAN, H. & YU X Y. Research on image defogging algorithm based on dark channel prior and particle swarm optimization[J]. J. 
Beijing Univ. Posts Telecommunications. 47 (2), 118 (2024).

	23.	 GUAN, J., MA, M. & HUO, Y. Underwater polarimetric dark channel prior descattering[J]. Opt. Laser Technol. 175, 110864 (2024).
	24.	 HAN, L. et al. Atmospheric scattering model and dark channel prior constraint network for environmental monitoring under hazy 

conditions[J]. J. Environ. Sci. 152, 203–218 (2025).
	25.	 Ma, L. et al. Coa: Towards real image dehazing via compression-and-adaptation[C]//Proceedings of the Computer Vision and 

Pattern Recognition Conference. : 11197–11206. (2025).
	26.	 LBAO, Z. H. A. N. G., SHAN, W. A. N. G. & XIAOHAN, W. A. N. G. Single image dehazing based on a bright channel prior model 

and a saliency analysis strategy. IET Image Proc. 15 (5), 1023–1031 (2021).
	27.	 Guo, C. L. et al. Image dehazing transformer with transmission-aware 3D position embedding[C]. In Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition. 5812–5820 (2022).
	28.	 Zheng, Y. et al. Curricular contrastive regularization for physics-aware single image dehazing[C]. In Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition. 5785–5794 (2023).
	29.	 Wu, R. Q. et al. RIDCP: Revitalizing real image dehazing via high-quality codebook priors[C]. In Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition. 22282–22291 (2023).
	30.	 ZHANG, Y. & ZHOU, S. LI H. Depth Information Assisted Collaborative Mutual Promotion Network for Single Image 

Dehazing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. : 2846–2855. (2024).
	31.	 Zheng, Y. et al. A novel image dehazing algorithm for complex natural environments[J]. Pattern Recogn. 157, 110865 (2025).
	32.	 Huang, Y. et al. DCD-Net: weakly supervised decomposition learning for real-world image dehazing[J]. Sig. Process. 230, 109826 

(2025).
	33.	 Cui, Y. et al. EENet: an effective and efficient network for single image dehazing[J]. Pattern Recogn. 158, 111074 (2025).
	34.	 Tran, L. A. & Park, D. C. Distilled pooling transformer encoder for efficient realistic image dehazing[J]. Neural Comput. Appl. 37 

(6), 5203–5221 (2025).
	35.	 Ma, T. et al. Polarimetric dual‑channel multi‑scale decomposition dehazing[J]. IEEE Sensors J. 25, 8569–8585 (2025).
	36.	 Cong, X. et al. A semi-supervised nighttime dehazing baseline with spatial-frequency aware and realistic brightness constraint[C]//

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. : 2631–2640. (2024).
	37.	 Yang, Y., Guo, C. L. & Guo, X. Depth-aware unpaired video dehazing[J]. IEEE Trans. Image Process. 33, 2388–2403 (2024).
	38.	 Ren, J. et al. Triplane-smoothed video dehazing with clip-enhanced generalization[J]. Int. J. Comput. Vision. 133 (1), 475–488 

(2025).
	39.	 Du, Y. et al. Dehazing network: asymmetric UNet based on physical model[J]. IEEE Trans. Geosci. Remote Sens. 62, 1–12 (2024).
	40.	 Wang, Y. et al. UCL-Dehaze: toward real-world image dehazing via unsupervised contrastive learning[J]. IEEE Trans. Image 

Process. 33, 1361–1374 (2024).
	41.	 Stevens, T. S. W. et al. Dehazing ultrasound using diffusion models[J]. IEEE Trans. Med. Imaging. 43 (10), 3546–3558 (2024).
	42.	 Chougule, A. et al. Agd-net: attention-guided dense inception u-net for single-image dehazing[J]. Cogn. Comput. 16 (2), 788–801 

(2024).
	43.	 Dang, Y. et al. Efficient and adaptive recommendation unlearning: A guided filtering framework to erase outdated Preferences[J]. 

ACM Trans. Inform. Syst. 43 (2), 1–25 (2025).
	44.	 Shen, Z. et al. IDTransformer: infrared image denoising method based on convolutional transposed self-attention[J]. Alexandria 

Eng. J. 110, 310–321 (2025).
	45.	 Limami, F. et al. Fractional optimal control for deep convolutional neural networks exploring ODE-based solutions for image 

denoising[J]. Inverse Probl. Imaging. 19 (2), 424–455 (2025).
	46.	 He, K., Sun, J. & Tang, X. Guided image filtering[J]. IEEE Trans. Pattern Anal. Mach. Intell. 35 (6), 1397–1409 (2012).

Acknowledgements
This study was supported by the National Natural Science Foundation of China(Grant: 51977021) and Chong-
qing Graduate Student Research Innovation Program(Grant: CYB240245).

Author contributions
Dongyang Shi: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Vis-
ualization, Writing-original draft, Writing-review & editing. Sheng Huang: Conceptualization, Formal analysis, 
Methodology, Supervision, Validation, writing original draft, Writing-review & editing.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Scientific Reports |        (2025) 15:27956 22| https://doi.org/10.1038/s41598-025-13613-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:27956 23| https://doi.org/10.1038/s41598-025-13613-z

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Image dehazing algorithm based on deep transfer learning and local mean adaptation
	﻿Related work
	﻿Method
	﻿The structure of the proposed model
	﻿Design of the atmospheric light Estimation module based on deep transfer learning
	﻿Design of transmission Estimation module based on local mean adaptation


