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The clinical applicability of electroencephalography (EEG) relies on the reliability and temporal 
stability of its measures. While the reliability of linear EEG measures is well established, the long-
term stability of both linear and nonlinear measures at the individual level, as well as interindividual 
variability, remains underexplored. This study evaluated the one-year stability of EEG absolute 
band powers (theta, alpha, beta, and gamma) and nonlinear measures (Higuchi’s fractal dimension, 
Lempel–Ziv complexity, detrended fluctuation analysis, and in-phase Matrix Profile) across 12 monthly 
EEG recordings in nine healthy males aged 26–49. Intraclass correlation coefficients (ICCs) indicated 
excellent reliability across all measures, although beta power showed slightly reduced ICCs in temporal 
regions and gamma power demonstrated lower reliability in peripheral sites. At the individual level, 
nonlinear measures showed greater temporal stability than EEG band powers. Although a few 
individuals, particularly in band power measures, exhibited annual fluctuations comparable to or 
exceeding interindividual variability, most participants demonstrated consistent EEG profiles over 
time. These findings support the use of nonlinear EEG measures in longitudinal research and indicate 
their potential for developing personalized EEG-based neural biomarkers. They also highlight the 
importance of estimating expected individual variability when designing individualized monitoring 
approaches, as high reliability at the group level does not preclude substantial within-subject 
variability in some cases.

Mental health disorders affect nearly one billion individuals worldwide, with anxiety and unipolar depression 
being among the most prevalent conditions, impacting approximately 580  million people1. Mental health 
conditions constitute a leading cause of disability, and the COVID-19 pandemic further exacerbated their global 
burden, leading to a 25% increase in anxiety and depression cases due to social isolation, financial distress, and 
health-related concerns1. Despite their prevalence, mental disorders remain significantly undertreated, with 75% 
of individuals in low- and middle-income countries receiving no treatment due to resource limitations, stigma, 
and systemic barriers1,2. Furthermore, the diagnosis and treatment of mental health disorders remain largely 
subjective, relying on clinical interviews and self-report questionnaires. These methods introduce variability 
due to the respondents’ willingness and ability to comprehend and answer questions, clinicians’ expertise, and 
sociocultural factors, resulting in frequent misdiagnosis and inadequate treatment access2.

Changes in mental health are reflected in alterations in brain activity. Electroencephalography (EEG) is an 
effective complementary method to traditional clinical assessments for evaluating mental health, offering an 
objective and cost-effective tool for capturing electrical activity generated by cortical neurons near the scalp. 
EEG provides quantifiable measures that can aid in early diagnosis, track disease progression, and evaluate 
treatment efficacy3. EEG’s affordability, high temporal resolution, and non-invasive nature make it a valuable 
tool for investigating brain dynamics in both clinical and healthy populations. Over the decades, EEG has been 
widely utilized, leading to the development and adoption of various methods to compute different EEG measures 
for studying cognitive functions and neurological disorders4–12.

EEG linear and nonlinear measures
Traditional EEG analysis relies on spectral band power measures, which provide essential insights into brain 
dynamics by quantifying neural oscillations across different frequency bands. EEG frequency bands are linked to 
distinct cognitive and physiological processes, with delta (0.5–4 Hz) associated with deep sleep, theta (4–8 Hz) 
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with memory and drowsiness, alpha (8–13 Hz) with relaxation and attentional control, beta (13–30 Hz) with 
active thinking and motor planning, and gamma (> 30  Hz) with higher-order cognitive functions such as 
perception and consciousness3. While band power and other linear measures have been extensively studied, they 
do not fully account for the dynamic and complex nature of neural activity3. As the brain operates as a nonlinear 
system, nonlinear EEG measures have been developed or adapted from other domains to capture its self-
organizing dynamics better. These methods provide additional information to linear measures by quantifying 
irregularity, complexity, and long-range temporal dependencies in neural signals. Probably the most used 
complexity measures are fractal dimensions. Higuchi’s fractal dimension (HFD) estimates the self-similarity 
of EEG signals, reflecting neural complexity, and has been applied to many different areas of neurological and 
mental health research6,8,12–16. Detrended fluctuation analysis (DFA) measures long-range temporal correlations 
(LRTC)17,18 and has also been successfully applied in EEG studies4,7,10 as well as Lempel–Ziv complexity (LZC) 
that measures the number of new patterns in a time series19,20. A more recent method, the in-phase Matrix 
Profile (pMP), has been introduced to identify repeating patterns in EEG signals12. The in-phase Matrix Profile 
adapts the fast Matrix Profile similarity-search algorithm21 to EEG by comparing fixed-length, phase-aligned 
subsegments by calculating Euclidean distances, yielding a parameter-free index of segment-to-segment self-
similarity in the time domain. Its first EEG application outperformed HFD in distinguishing patients with 
major depressive disorder from healthy controls, underscoring the method’s diagnostic potential12. Bachmann 
et al.8 demonstrated that combining linear and nonlinear EEG measures improves classification accuracy when 
distinguishing depressed individuals from healthy controls, reinforcing the potential utility of these measures 
in clinical applications. Although some nonlinear EEG methods have been used for decades, their potential 
still remains underexplored compared to traditional spectral approaches. Given that nonlinear methods align 
more closely with the brain’s intrinsic dynamics, richer information about neural function and dysfunction is 
expected.

For the present single-channel resting-state design, we restricted the nonlinear feature set to four time-domain 
measures (HFD, DFA, LZC, and pMP) because together they span scale-free complexity, long-range temporal 
correlations, algorithmic irregularity, and segment-to-segment in-phase self-similarity while requiring little or 
no parameter tuning. Entropy-based alternatives (e.g., sample or permutation entropy) were not included, as 
their reliability depends strongly on embedding and tolerance parameters and on longer stationary epochs, 
which can hamper longitudinal comparability22–24.

Reliability of EEG measures
For EEG measures to be effectively utilized in clinical and research applications, they must demonstrate high 
reliability and temporal stability. Establishing temporal stability in EEG measures is essential to distinguish 
genuine brain-state-related neural changes from intrinsic EEG variability. Stable EEG measures enhance the 
validity and interpretability of findings, thereby improving clinical decision-making and advancing scientific 
understanding of brain function and disorders.

The reliability of linear EEG measures, particularly power in standard frequency bands, has been well 
studied, with early studies confirming the reliability and stability of power across different frequency bands25–27. 
More recent investigations have expanded on these findings by examining the reliability of additional linear 
measures28–31. However, considerably less research has focused on the reliability and stability of nonlinear EEG 
measures. Only a few studies have included them in their analyses15,16,32,33. The available evidence suggests that 
nonlinear measures exhibit either lower reliability than traditional EEG band power measures32,33 or a level of 
reliability comparable to linear measures15, indicating that these measures may capture aspects of EEG dynamics 
not reflected in the power of traditional frequency bands.

Gudmundsson et al.33 investigated the stability of quantitative EEG measures in 15 healthy elderly 
individuals over two months (19 EEG recordings per participant). Their findings indicated that band power 
measures demonstrated the highest reliability, with mean ICCs of 0.77 for absolute power and 0.80 for relative 
power across eight channels and all frequency bands. Complexity-based measures such as LZC exhibited lower 
reliability (ICC = 0.70), while coherence measures were the least stable, with their reliability strongly dependent 
on channel location.

Põld et al.15 conducted a three-year test–retest study on 17 healthy participants, reporting that relative power 
measures exhibited reliability comparable to nonlinear measures such as HFD and DFA. The highest reliability 
was observed for relative alpha power (mean ICC = 0.87 across 18 channels). Although ICCs for EEG frequency 
bands and nonlinear measures were comparable, the nonlinear measures demonstrated greater temporal stability 
at the group level, as reflected by smaller relative differences between the two recordings. Lord & Allen16 studied 
306 subjects, including controls and individuals with a history or current episode of depression, and found 
high internal consistency for HFD and sample entropy within single sessions, as well as high reliability across 
multiple days (ICCs for HFD ranging between 0.64 and 0.86 across different channels in eight recording sessions 
conducted over four days within two weeks).

Despite these contributions, existing studies provide limited understanding of EEG temporal stability 
at the individual level. Many studies employ test–retest designs with only a few EEG recordings per 
participant15,26–28,30–32, while others cover short observation periods of up to two months16,33. While these studies 
offer valuable insights into EEG stability, they do not consider the characteristics of individual participants.

Person-specific EEG patterns
Numerous studies have successfully distinguished between a control group and a group with mental disorders 
using both linear and nonlinear EEG measures8–12. However, although these group-level results are promising, 
a measure that separates diagnostic groups may still reveal little about within-person EEG variability and thus 
may not capture clinically meaningful deviations in an individual over time.
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Brain activity patterns are expected to exhibit strong individual specificity34, and EEG signals have been 
suggested to function as a unique neural fingerprint35,36. However, for EEG measures to be effective in detecting 
neural changes within individuals, it is essential first to establish their normal variability in a healthy state, 
as this variability is expected to differ from individual to individual. Without a clear understanding of this 
baseline variability, it remains difficult to determine whether a new measurement reflects normal fluctuations 
or a deviation indicative of altered brain function. Detecting such deviations assumes that EEG measures 
remain relatively stable within an individual under normal conditions. At the same time, excessive fluctuations 
may either lead to misinterpreting normal variability as pathological or cause true pathological changes to go 
unnoticed, thereby undermining the applicability of an EEG measure.

Although interest in individualized EEG analysis is increasing, longitudinal studies examining EEG stability 
at the individual level over extended periods remain limited. Previously, we conducted a single-participant 
case study evaluating EEG-based individual measures over 15 sessions spanning 14 months37. While this 
study provided valuable insights into the long-term stability of linear and nonlinear measures, inter-individual 
differences cannot be assessed based on a single subject. More extensive studies are needed to establish individual 
variability in the healthy state by determining the extent to which EEG measures remain stable within individuals 
over months or years.

The lack of longitudinal research at the individual level is a significant barrier to the clinical application 
of EEG. While EEG measures may exhibit high test–retest reliability and temporal stability, their long-term 
stability at the individual level remains largely unexamined. A dependable clinical measure should achieve an 
optimal balance between long-term stability, ensuring consistency across repeated measurements under similar 
conditions, and sensitivity to meaningful physiological changes over time. Understanding these dynamics of 
EEG variability is critical for both clinical and research applications, ensuring that EEG-based measures are 
applicable, interpretable, and reliable for individual-level diagnostics and monitoring.

Study objectives
The aim of this study is to examine the temporal stability of single-channel EEG measures at the individual 
level over one year, based on repeated monthly recordings. While previous research has primarily addressed 
short-term test–retest reliability or group-level comparisons, this study focuses on individual consistency and 
variation over time in healthy adults. We assess both linear EEG measures (absolute power in theta, alpha, beta, 
and gamma frequency bands) and nonlinear measures (HFD, LZC, DFA, and pMP), evaluating their person-
specific variability. Based on this framework, we formulate two hypotheses: (1) Although EEG measures differ 
between individuals, they remain temporally stable within the same person over one year. (2) Nonlinear EEG 
measures exhibit greater temporal stability at the individual level compared to absolute band powers.

By characterizing stable, person-specific EEG patterns and describing the typical range of variation observed 
for each individual, this study aims to support the development of individualized EEG biomarkers and contribute 
to future personalized monitoring approaches in mental health research.

Methods
Subjects
Nine healthy male subjects participated in the study. We restricted the sample to males to avoid menstrual-
cycle–related variability, as resting-state neural oscillations have been shown to fluctuate across cycle phases 
in EEG38 and magnetoencephalography39. At the time of the first recording, participants had a mean age of 
37.2 ± 8.1 years, with an age range of 26 to 49 years. All participants self-reported as right-handed, nonsmokers, 
and free of any history of concussions involving loss of consciousness, narcotic or psychotropic substance use, 
alcohol abuse, or mental or psychiatric disorders.

To ensure consistency, participants were instructed to maintain their usual daily routines and refrain from 
consuming alcohol or caffeinated beverages for 24 h before each recording. The study was conducted following 
the Declaration of Helsinki and received formal approval from the Tallinn Medical Research Ethics Committee 
and the Estonian Institute for Health Development’s Human Research Ethics Committee. All participants signed 
written informed consent before the study.

Collection of EEG data
For each participant, EEG recordings were scheduled every four weeks (with flexibility for five to six weeks 
in exceptional cases, such as illness or travel), resulting in a total of 12 recordings over the course of one year. 
Recordings were conducted on a consistent day of the week and at the same time of day, ensuring homogeneity. 
To minimize dietary influences on EEG activity, all recordings took place in the morning, with participants 
instructed to abstain from eating or drinking (except water) beforehand40.

EEG data were collected using the Neuroscan Synamps2 acquisition system and a 32-channel (30 EEG + 2 
EOG) Quick-Cap (Compumedics, NC, USA). Electrodes were positioned according to the extended international 
10/20 system, with linked mastoids as reference. The placement of the 30 EEG electrodes is shown in Fig. 1.

During recordings, participants were lying in a relaxed supine position in a dimly lit laboratory room. 
EEG was recorded for 10 min with eyes closed and 5 min with eyes open across 30 EEG channels. Electrode 
impedance was maintained below 10 kΩ. EEG data were recorded at a sampling rate of 1 kHz, within a frequency 
range of 0.3–200 Hz.

EEG data preprocessing
All calculations were performed using MATLAB software (The MathWorks, Inc.). Initially, the eyes-closed 
EEG recordings were divided into 20.48-second segments, and segments with apparent artifacts were identified 
through visual inspection. Next, the full eyes closed EEG data were re-referenced using the Reference Electrode 
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Standardization Technique (REST), which is a reliable method for low-density EEG montages and facilitates 
comparability across laboratories41–43. To remove baseline fluctuations and high-frequency noise, Parks–
McClellan forward-backward filters were applied, yielding a frequency bandwidth of 2–47  Hz for further 
analysis. Absolute power in each frequency band was computed using the original sampling rate of 1 kHz, while 
EEG data were downsampled to 200 Hz for nonlinear measure calculations. After filtering (and downsampling), 
the EEG signals were divided into 20.48-second non-overlapping segments again, with segment lengths defined 
as 20,480 samples (for absolute power calculations) and 4096 samples (for nonlinear measures). The first 12 
clean segments were selected for the computation of the following EEG measures, resulting in 12 values for each 
measure per subject and per recording session.

Calculation of EEG measures
Absolute power of EEG frequency bands
The absolute power P for each frequency band was calculated directly from a filtered EEG signal using a time-
domain approach. Each frequency band was first extracted using a Parks–McClellan forward-backward bandpass 
filter. In this study, the absolute powers of the traditional theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and 
gamma (30–47 Hz) frequency bands were calculated for each subject according to

Fig. 1.  Locations of the 30 EEG electrodes corresponding to the channels used in this study, positioned 
according to the extended international 10/20 system.
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P = 1

n

∑
n
i=1x2 (i) ,� (1)

where x(i) was the filtered EEG signal segment with the length n (20,480 samples) at sample i.

Higuchi’s fractal dimension
HFD is used to quantify the complexity of EEG signals, providing a measure of scale invariance or self-similarity 
across multiple temporal scales. The method, originally proposed by Higuchi14, estimates the fractal dimension 
within the interval [1,2] of a time series by analyzing its length at different scales. A higher HFD value indicates 
greater signal complexity, while a lower value reflects more regular and predictable neural activity. The HFD was 
calculated with the parameter kmax = 8 according to the algorithm presented in14. For the calculation of HFD for 
an EEG signal segment with the length n (4096 samples), a time series Xm

k  is formed for each scale factor k as in

	 Xm
k = {x (m) , x (m + k) , x (m + 2k) , . . . } , m = 1, 2, . . . , k,� (2)

where k represents the step size and m is the starting index of each subseries. The length of each subseries Lk(m) 
is calculated as in

	
Lk (m) = 1
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k

⌊
n−m

k

⌋ ,� (3)

The
⌊

n−m
k

⌋
 term n−1

k ⌊ n−m
k ⌋  normalizes the subseries length and ensures that the length Lk (m) is expressed 

by the average number of points in the subseries and therefore comparable across all scale factors k (see44 for a 
step-by-step illustration). Lk (m) The mean length for each k is obtained by averaging across all subseries as in

	
L (k) = 1

k

∑
k
m=1Lk (m) .� (4)

The fractal dimension is estimated by fitting a linear regression line to the logarithmic plot of L (k) versus 1/k, 
where the slope of this resulting log–log line corresponds to Higuchi’s fractal dimension.

Lempel–Ziv complexity
LZC is a measure of sequence complexity, quantifying the rate at which new patterns emerge as a sequence 
progresses19. It is used to assess signal randomness and complexity, with higher LZC values indicating more 
irregular and complex signals, while lower values suggest more repetitive or structured patterns. To calculate 
LZC, first, EEG signal segment x(i) of length 4096 samples is binarized into Bi using threshold T, which in this 
study was the median of the EEG signal segment to minimize the impact of outliers. Samples below the median 
get a new value of zero, others one as in

	
Bi =

{ 1, if Si ≥ T
0, if Si < T .� (5)

Second, the binary sequence is scanned from left to right to find new patterns. A new pattern is detected whenever 
a substring is encountered that has not appeared previously in the sequence during left-to-right parsing. The 
complexity counter C (n) increases each time a new pattern is encountered. Finally, LZC is normalized to avoid 
variations due to segment length as in

	
LZCnorm = C (n)

Cmax (n) ,� (6)

where Cmax (n) is the theoretical maximum complexity for a completely random sequence of length n, 
approximated as n/log2 (n). This normalization ensures that LZC values range between 0 (completely regular 
signal) and 1 (maximally complex, random signal).

Detrended fluctuation analysis
DFA was calculated according to the method described by Peng et al.17,18. First, the cumulative sum of the mean-
centered EEG signal segment x(i), with the length of N (4096 samples) was calculated to generate an integrated 
time series as in

	
y (k) =

∑
k
i=1 [x( i) − x̄],� (7)

where k gets a value from 1 to N and x̄ is the arithmetic mean of the signal segment x(i). Second, the integrated 
signal y(k) is divided into n equal nonoverlapping windows of a length ranging from 4 to 200 samples. In each 
window n, the local trend is estimated using a least-squares linear fit ŷn (k), which fits the data y(k), and the 
local trend is subtracted from the data. Average fluctuations are given by
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F (n) =

√
1
K

∑
K
k=1[y (k) − ŷn (k)]2.� (8)

Here, K is the number of nonoverlapping windows of length n. These average fluctuations are calculated for 
all window lengths. A log-log plot of F(n) versus n, reveals a linear scaling, characterized by the slope of the 
line, which represents the scaling exponent α. This exponent reflects the presence and strength of long-range 
temporal correlations in the signal: α = 0.5 indicates white noise (no correlation), while α > 0.5 suggests persistent 
correlations.

In-phase matrix profile
The pMP method captures the self-similarity of the EEG signal by considering only the in-phase subsegments, 
making it sensitive to the periodicity of alpha waves and other frequency fluctuations in the EEG signal. First, 
a one-second subsegment (200 samples) was extracted from a 4096-sample EEG segment, and its Euclidean 
distance to all other subsegments within the same segment was calculated, generating a distance profile (DP). 
This process was then repeated for the next subsegment, continuing in a sliding window manner until a DP was 
obtained for each subsegment.

From each DP, the smallest Euclidean distances corresponding to the most in-phase subsegments were 
extracted. In-phase subsegments are defined as those with minimal phase shift and the highest waveform 
similarity to the reference window, based on time-domain Euclidean distance. The median of these in-phase 
distance values was then calculated for each DP, forming a pMP vector (pMPvec). The median was used to 
ensure robustness against outliers in the signal.

Finally, the mean of the pMPvec is computed to obtain the overall pMP value for the EEG segment. This 
value reflects the degree of temporal regularity and self-similarity in the signal, where lower values indicate more 
consistent recurring patterns.​ The calculation process is explained in detail in12.

Statistical analysis
Since we calculated 12 values for each measure for every EEG channel in each recording of each participant, we 
subsequently used the median of these 12 values.

With 12 monthly recordings for nine subjects, we utilized the intraclass correlation coefficient (ICC)45,46 to 
assess the reliability of repeated EEG measurements. ICC quantifies the proportion of total variance attributable 
to differences between subjects, providing a measure of the stability and consistency of EEG measures over 
time. When applied to datasets with multiple measurements per subject, ICC evaluates the degree of agreement 
among repeated observations within individuals relative to overall variability. A high ICC indicates that an EEG 
measure is relatively consistent within individuals across repeated sessions and shows greater variability between 
individuals than within individuals. We employed a two-way mixed-effects model (average measures, absolute 
agreement)45,47 for all 30 channels, ensuring that both systematic subject differences and measurement error 
were accounted for in assessing temporal stability.

ICC was calculated as in

	
ICC = MSR − MSE

MSR + MSC − MSE
n

,� (9)

where MSR is the mean square for subjects (i.e., between-subject variance), MSC is the mean square for repeated 
measurements (i.e., between-measurement variance), MSE is the mean square error, and n is the number of 
subjects.

We employed the Kruskal–Wallis test (α = 0.05) for data analysis48. The Kruskal–Wallis test is a nonparametric 
alternative to ANOVA to determine whether there are significant differences between three or more groups (in 
this case, subjects). Unlike ANOVA, the Kruskal–Wallis test does not assume a normal distribution of the data 
and is not sensitive to unequal variances. If a significant difference is detected between any of the subjects, a 
post-hoc test can be conducted to determine which subjects are different from each other. In this study, we 
employed the Dunn test (α = 0.05) to determine how many subject pairs were statistically different from each 
other49. As with 9 subjects, we had 9(9 − 1)/2 = 36 unique pairwise comparisons, we used the Šidák correction50 
of the probability (p) values as in

	 p∗ = 1 − (1 − p)m,� (10)

where m is the number of comparisons and p∗ is the corrected p-value.
For each participant, we calculated the annual mean and standard deviation for each measure, as well as the 

maximum relative difference ( rDif ), which indicates the largest deviation from the annual mean as in

	
rDif =

∣∣∣vmax − v̄

v̄

∣∣∣ ∗ 100,� (11)

where vmax is the most extreme monthly measurement across the year for a given subject, and v̄ is that subject’s 
annual average.
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Results
Intraclass correlation coefficients for EEG measures
Figure 2 presents the intraclass correlation coefficients (ICCs) for EEG band powers and nonlinear measures, 
while detailed ICCs for all EEG measures across all 30 channels are provided in Supplementary Table S1. Based 
on the classification proposed by Koo and Li47, we considered ICCs to indicate excellent reliability when the 
lower bound (LB) of the 95% confidence interval (CI) exceeded 0.9.

Band power measures
The data in Fig. 2 demonstrate that lower-frequency EEG bands, theta and alpha, exhibited reliability classified 
as excellent over one year across all 30 EEG channels. The lowest ICCs were 0.979, 95% CI [0.952, 0.994] in 
P4 for theta power and 0.964, 95% CI [0.917, 0.990] in O2 for alpha power, indicating high reliability over 
time. Beta power demonstrated excellent ICCs across 27 channels, with slightly lower values in three temporal 
channels (TP7, T8, TP8). The lowest ICC was observed at TP8 (0.908, 95% CI [0.786, 0.975]), still indicative of 
good reliability. For gamma power, ICCs were excellent in 17 channels in the center of the head but lower in 13 
peripheral channels, including the prefrontal area, with the lowest ICC at FT8 (0.756, 95% CI [0.424, 0.935]).

A slight reduction in ICCs observed in a few temporal channels in the beta band, and more notably lower ICCs 
across several peripheral channels in the gamma band, may be influenced by the presence of electromyographic 
(EMG) activity. EMG signals, resulting from muscle contractions, are commonly associated with movements 
such as swallowing, chewing, or speaking, but can also be present at a low level during resting state without overt 
motion51. Although relaxation can help minimize such activity, the spectral overlap between EMG and the beta 
and gamma frequency bands complicates the effective removal of these artifacts. EMG activity typically spans 
the 15–300 Hz range, with most power concentrated at the lower end52,53.

In this study, muscle artifacts related to conscious movement were excluded from the EEG recordings. 
However, some low-level muscle tension, which is difficult to detect through visual inspection, may have 
remained in channels positioned over the temporalis and frontalis muscles. Tonic muscle activity, referring to the 
continuous low-level contraction of muscles even in a relaxed state, can contribute to subtle EEG interference. 
Unlike phasic muscle activity, which is associated with voluntary movements, tonic muscle activity persists at 
a baseline level and can be influenced by factors such as posture, alertness, and individual muscle tone51. In 
EEG recordings, this may appear as low-amplitude, high-frequency activity, particularly in frontal and temporal 
regions where muscles like the frontalis and temporalis are located.

Nonlinear measures
All nonlinear EEG measures (HFD, LZC, DFA, and pMP) exhibited excellent reliability (ICC  95% CI LB > 
0.9)  across all EEG channels (Fig.  2). The lowest ICC among these measures was observed for pMP, with a 
value of 0.960, 95% CI [0.908, 0.989] in the occipital channel Oz. LZC demonstrated a slightly higher ICC of 
0.967, 95% CI [0.922, 0.991] in T7, while DFA and HFD showed the highest reliability with the lowest ICC of 
0.986, 95% CI [0.967, 0.996] in O2 and 0.978, 95% CI [0.949, 0.994] in T7, respectively. Although pMP had 
slightly lower ICCs in the occipital region, they remained within the excellent reliability range. Given that pMP 
is influenced by alpha oscillations12 and alpha power is strongest in occipital areas, variability in alpha activity 
may have contributed to this observation.

While beta power showed slightly reduced ICCs in only a few temporal channels, gamma power exhibited 
more widespread reductions (ICC  95% CI LBs  ≤  0.9  in 13 channels), particularly in peripheral temporal, 
frontotemporal, and prefrontal areas. These reductions may, at least in part, reflect the potential influence of 
residual EMG activity. Nevertheless, given the overall excellent reliability across measures, any channel may 
be used for further analysis, while it may be advisable to avoid regions that are more prone to muscle-related 
influences.

Individual variability of EEG measures
To investigate person-specific EEG dynamics over time, we examined the individual temporal variability of EEG 
measures across one year, as presented in Fig. 3; Tables 1 and 2. The figure displays the EEG measure values 
recorded throughout the year, along with the annual mean and standard deviation for the parietal channel P3. 
This channel was selected as an example due to its consistent reliability in resting-state EEG, low susceptibility 
to muscle artifacts, and its well-established role in reflecting stable, individual differences in neural activity, 
particularly within parietal regions involved in cognitive processing54,55.

As illustrated in Fig. 3, EEG measure values for each subject fluctuate around a distinct annual mean, with 
variability ranges that are specific to the individual. These subject-specific patterns give rise to clearly separable 
clusters in the data, with the extent of variability differing across individuals. A Kruskal–Wallis test confirmed 
that at least one of the clusters was statistically different from the others for each measure (p ≤ 1.1 × 10–15).

Statistically significant differences were observed between 14 and 16 subject pairs out of 36 pairwise 
comparisons, depending on the measure, using Dunn’s test with Šidák p-value correction. There was no 
considerable difference in statistical significance between EEG band power and nonlinear measures. Specifically, 
theta power differed significantly in 15 pairs, alpha power in 16 pairs, and beta and gamma power in 14 pairs. 
Among nonlinear measures, significant differences were observed in 14 pairs for HFD and LZC, and in 15 
pairs for DFA and pMP, out of 36 comparisons. These results indicate that, regardless of the type of measure, 
individual EEG profiles are characterized by distinct annual means and specific fluctuation ranges, supporting 
the idea of temporally stable neural individuality.

Compared to EEG frequency band powers, nonlinear EEG measures show relatively higher temporal stability 
on the individual scale (Tables  1 and 2). Among the band power measures, theta power shows the greatest 
individual fluctuation, with a single recording maximally differing from the annual mean by an average across 
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Fig. 2.  Intraclass correlation coefficients for EEG measures across all 30 EEG channels (n = 9), including theta, 
alpha, beta, and gamma absolute powers, as well as nonlinear measures: Higuchi’s fractal dimension (HFD), 
Lempel–Ziv complexity (LZC), detrended fluctuation analysis (DFA), and in-phase Matrix Profile (pMP).
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all subjects of 66% (ranging from 24 to 163%, depending on the subject). This is followed by alpha power, which 
maximally fluctuates by an average of 64%, with individual variation ranging from 27 to 152%. Beta and gamma 
power exhibit lower variability, with average maximal deviations of 32% and 30%, respectively. Individual 
maximal fluctuations range from 11 to 53% for beta power and 12–57% for gamma power.

Among nonlinear measures, DFA and LZC show the largest individual fluctuations, with average maximal 
deviations of 23% and 10%, respectively (ranging from 5 to 54% for DFA and 4–22% for LZC, depending on 
the subject). HFD and pMP exhibit the lowest variability, with average maximal deviations of 4% and 6%, 
respectively. Individual maximal variation ranges from 2 to 8% for HFD and 0–19% for pMP.

Fig. 3.  Interindividual and intraindividual variability in EEG measures across one year for each subject 1–9 
and the group G (n = 9). Blue dots represent 12 individual monthly values; black dashes show subject-specific 
annual means. Error bars for subjects 1–9 represent within-subject standard deviations. For group G, yellow 
dots represent the annual mean of each subject, the black dash shows the group-level mean, and error bars 
indicate the standard deviation.
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When examining individual subjects separately, it is evident that subject S4 shows significantly greater 
variability, with an average maximal fluctuation of 53% across all measures. In contrast, subjects S1 and S5 
exhibit considerably lower variability, with an average maximal fluctuation of 17%. This further emphasizes the 
strong individuality in EEG measures.

As shown in Fig. 3; Tables 1 and 2, intra-individual annual variation is generally smaller than inter-individual 
variation, apart from a few exceptions. Notably, in the theta frequency band, subjects S2 and S4 exhibit annual 
variability comparable in magnitude to that observed between individuals. In subject S4, the variability within 
the alpha band markedly exceeds inter-individual differences, while in the beta band, it is again of comparable 
magnitude. For most nonlinear measures (HFD, LZC, DFA), intra-individual variation remains lower than the 
variation across subjects, with no exceptions. However, in the case of pMP, subject S4 again exhibits greater 
variability than the group.

Discussion
In this study, we tested whether EEG measures, while differing between individuals, remain temporally stable 
within the same person across one year, and if nonlinear measures are temporally more stable at the individual 
level compared to absolute band powers. For this, we investigated the reliability and long-term temporal stability 
of EEG band powers and nonlinear EEG measures across 12 months in healthy individuals. Our findings largely 
support the hypothesis of individual temporal stability, though some nuances remain.

A key finding of this study is the strong individual specificity of EEG measures, with each subject’s values 
remaining tightly grouped within their own subject-specific range. This largely supports the concept that EEG 
measures may serve as neural fingerprints — remaining principally stable within individuals while differing 
significantly between them34–36 — although some individuals exhibited fluctuations that challenge the 
assumption of consistent intra-individual stability.

Regarding the reliability of EEG measures, our findings align with previous research15,33, showing that lower-
frequency bands (theta and alpha) are the most reliable across sessions. Beta power shows only slightly reduced 
ICCs in a few temporal channels. Gamma power, in turn, shows a more pronounced decrease in reliability in 

HFD LZC DFA pMP

Mean SD rDif Mean SD rDif Mean SD rDif Mean SD rDif

Subject 1 1.43 0.01 2 0.58 0.01 4 0.71 0.02 5 18.93 0.08 1

Subject 2 1.18 0.01 3 0.43 0.01 8 0.40 0.04 16 16.95 0.38 6

Subject 3 1.34 0.02 4 0.53 0.02 12 0.65 0.06 15 18.52 0.22 2

Subject 4 1.18 0.03 6 0.43 0.05 19 0.23 0.05 52 15.28 1.56 19

Subject 5 1.45 0.02 3 0.62 0.02 4 0.60 0.03 9 18.77 0.13 2

Subject 6 1.24 0.04 8 0.49 0.05 22 0.31 0.07 54 16.44 0.86 9

Subject 7 1.34 0.03 4 0.55 0.02 7 0.36 0.04 22 17.31 0.69 9

Subject 8 1.37 0.06 7 0.57 0.03 9 0.52 0.10 30 18.37 0.65 7

Subject 9 1.65 0.03 4 0.65 0.03 11 0.85 0.04 7 19.36 0.05 0

Group 1.35 0.15 22 0.54 0.08 21 0.51 0.20 65 17.77 1.35 14

Table 2.  Annual mean values, standard deviations, and relative maximal differences from the annual mean 
(rDif, %) of Higuchi’s fractal dimension (HFD), Lempel–Ziv complexity (LZC), detrended fluctuation analysis 
(DFA), and in-phase matrix profile (pMP) calculated for nine subjects in channel P3 and for the group (n = 9).

 

Theta Alpha Beta Gamma

Meana SDa rDif Meana SDa rDif Meana SDa rDif Meana SDa rDif

Subject 1 46.93 9.48 48 55.73 9.19 27 68.97 6.48 20 8.69 1.18 31

Subject 2 643.66 201.24 88 912.09 196.03 35 115.89 12.61 21 8.91 0.76 19

Subject 3 62.10 25.90 120 110.14 26.05 58 61.86 10.15 39 5.98 0.35 12

Subject 4 396.86 228.87 163 2119.96 1015.02 98 194.81 45.43 42 10.05 1.41 27

Subject 5 34.29 4.90 24 80.81 18.97 50 89.63 6.07 11 10.00 1.39 37

Subject 6 58.90 16.73 50 945.82 395.22 72 85.79 20.80 52 12.54 2.87 57

Subject 7 88.54 16.45 30 517.02 124.77 43 180.43 20.73 20 21.92 2.26 20

Subject 8 44.60 8.49 43 245.04 189.06 152 102.30 28.56 53 10.36 1.19 18

Subject 9 16.96 2.94 27 11.26 2.41 43 21.92 4.16 32 14.03 2.99 49

Group 154.76 217.10 316 555.32 688.71 282 102.40 55.33 90 11.39 4.56 92

Table 1.  Annual mean values, standard deviations, and relative maximal differences from the annual mean 
(rDif, %) of theta, alpha, beta, and gamma absolute power calculated for nine subjects in channel P3 and for 
the group (n = 9). a Values must be multiplied by 10³ to obtain the correct magnitude in µV².
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several channels. Nevertheless, reliability remained high overall, with our lowest observed mean ICC being 
0.935 (in the gamma band), which is substantially higher than the ICC of 0.77 for absolute power reported by 
Gudmundsson et al.33. Põld et al.15 similarly reported ICCs of 0.80 for gamma and 0.87 for alpha relative power, 
which is consistent with our results. The reduced reliability in the peripheral channels in gamma and beta bands 
may be explained by low-level tonic EMG activity that spectrally overlaps with these frequency ranges and is 
not fully removed by standard preprocessing51–53. Although we aimed to obtain EEG recordings free of visible 
artefacts, the potential influence of subtle tonic EMG activity, particularly in high-frequency bands, was not 
directly investigated in this study. Nevertheless, it should be kept in mind when interpreting gamma and beta 
activity in longitudinal analyses, especially in muscle-prone regions.

For nonlinear measures, our results also indicate higher reliability than previously reported. Gudmundsson 
et al.33 found an ICC of 0.70 for LZC, and Põld et al.15 reported ICCs of 0.81 for HFD and 0.84 for DFA. In 
contrast, we observed consistently excellent ICCs above 0.96 (95% CI LBs ≥ 0.908) across all EEG channels for all 
nonlinear measures. Notably, these measures showed minimal differences between channels, suggesting reduced 
sensitivity to possible slight EMG input and highlighting their robustness across the spatial domain. Although 
the study by Põld et al.15 assessed long-term stability over three years, the use of only two recordings per subject 
may have contributed to slightly lower ICCs. Gudmundsson et al.33 included 19 recordings over two months, 
but the older age of participants could have increased intra-individual variability. Our study, using monthly 
recordings over one year in a younger cohort, showed that nonlinear measures remained highly reliable across 
all sessions, reinforcing their potential for individualized longitudinal monitoring.

While all EEG measures demonstrated excellent test–retest reliability in all or most channels, high reliability 
does not necessarily equate to high temporal stability. Therefore, we separately quantified intra-individual 
variation by calculating the maximum relative differences from each subject’s mean across 12 monthly recordings. 
This allowed us to directly assess how much a person’s EEG measure fluctuated over time, regardless of between-
subject differences. These analyses revealed that although many participants demonstrated stable EEG patterns, 
a few (most notably participant S4) exhibited fluctuations over time that were comparable to or greater than the 
variability observed between individuals. Thus, EEG measures cannot universally be assumed to be temporally 
stable at the individual level, even if group-level reliability appears excellent.

While methodological aspects, such as recording conditions and electrode placement, were carefully 
controlled, intrinsic physiological factors still contribute to variability. Individual differences in hormonal 
levels, neuroanatomy, and overall brain physiology may result in varying degrees of natural fluctuation in EEG 
measures. Additionally, lifestyle factors such as sleep patterns, diet, and physical activity can subtly modulate 
EEG signals, affecting their stability over time40.

Although subject S4 was considered healthy by self-report at the time of the study, such variability may still 
reflect transient changes in mental state or the early signs of psychological shifts that were not yet subjectively 
perceived. Psychological states and mental health conditions are known to affect EEG patterns, as shown in 
previous group studies4–13. High levels of stress, anxiety, depression, and other mental states or psychiatric 
disorders are known to alter brain activity patterns, potentially leading to deviations from typical EEG 
signatures. Identifying the sources of EEG variability — whether due to intrinsic traits, temporary states, or early 
pathological changes — will be critical for tailoring analysis strategies.

Equally important is the ability to estimate, in advance, the expected range of normal variability for a given 
individual. Achieving this requires identifying the key individual factors that contribute to greater variability in 
EEG measures in the healthy state. Such person-specific variability profiles could help distinguish between brain 
disorder-related fluctuations and those indicative of normal neuropsychological changes. In future applications, 
developing heuristics to detect high-variability profiles without the need for long-term tracking will enhance 
efficiency and individualization. In high variability cases, alternative EEG measures or a combination of measures 
for individualized baseline approaches may be required.

The second hypothesis proposed that nonlinear EEG measures would exhibit better intra-individual temporal 
stability than traditional band power measures. Our results strongly support this hypothesis.

While all EEG measures demonstrated excellent test–retest reliability in channel P3, intra-individual 
temporal stability in the same channel, assessed as maximum relative difference from the individual’s mean, was 
substantially smaller for nonlinear measures. For instance, mean deviations across subjects for theta and alpha 
power were 66% and 64%, respectively, compared to only 4% for HFD and 6% pMP.

These results are further supported by findings from Põld et al.15, who observed very low relative changes in 
nonlinear measures at a group level in a test-retest study over three years: 0.18% for HFD and 0.49% for DFA. In 
comparison, their relative band power measures showed relative changes from 0.72% up to 2.28%. The fact that 
nonlinear measures in our study showed such small variability even across 12 sessions strengthens the conclusion 
that they are temporally more stable than traditional band power measures. Põld et al.15 demonstrated that 
nonlinear measures are not only reliable but also temporally more stable at the group level. The present study 
confirms that these measures are likewise both reliable and highly temporally stable at the individual level. In 
contrast, band power measures appear more vulnerable to transient fluctuations and may not provide reliable 
baselines for individual monitoring.

Current findings highlight the importance of an individualized approach to EEG interpretation, moving beyond 
reliance on fixed population-level norms. Rather than comparing individuals to group averages, establishing 
person-specific baselines under stable conditions allows for more accurate identification of meaningful neural 
changes versus natural fluctuations56. Our results emphasize that such individualized baselining is essential for 
reliable longitudinal monitoring. Notably, nonlinear EEG measures provide a particularly strong foundation for 
this approach, as they exhibit greater resistance to temporal variability than traditional band power measures. 
This stability makes them promising candidates for biomarkers intended to track brain function over extended 
periods.
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Despite the strong temporal stability observed, the small sample size (nine male participants) limits the 
generalizability of our findings. Future studies should validate these results in larger, more diverse populations 
and assess how EEG stability is affected by factors such as age, sex, and individual differences in cognitive 
functioning. Additionally, a clinically applicable EEG measure must balance long-term stability with sensitivity 
to dynamic physiological states. Future research should explore this balance to determine which EEG measures 
are most suitable for clinical applications. Since various biological and lifestyle-related factors can influence 
natural variability in EEG measures, it is essential to account for individual-specific differences, even in the 
absence of overt psychological stress or neurological conditions. Deviations from a healthy psychological 
state and overall mental well-being are precisely the types of changes that are intended to be detected through 
the establishment of a baseline for EEG variability. Even when working with self-reported healthy subjects, 
future protocols should include a clinician-led screening to confirm the absence of neurological or psychiatric 
conditions. Future work should also establish how segment length influences stability and sensitivity of single-
channel EEG measures. Varying window sizes will clarify the minimum duration that still yields stable resting-
state estimates, and whether longer windows narrow or widen the normative range. Finally, as all recordings 
were conducted in controlled laboratory conditions, it remains unclear how real-world factors (e.g., time of 
day, environmental stressors, or diet) influence EEG stability. Future studies should assess EEG reliability in 
naturalistic settings to improve its applicability for longitudinal monitoring.

Conclusion
This study confirmed that EEG band power measures are highly reliable over long-term recordings and that 
nonlinear measures demonstrate comparable levels of reliability. However, nonlinear measures showed greater 
temporal stability across sessions, making them potentially more suitable for assessing brain state over time, 
provided they also demonstrate sufficient sensitivity to meaningful neural changes. These findings support 
the use of nonlinear EEG measures in individualized, longitudinal monitoring frameworks. Furthermore, 
establishing personalized baselines, rather than relying on normative population averages, appears essential for 
accurate interpretation of EEG data. Given the overall high reliability across EEG channels, researchers have 
flexibility in channel selection, although peripheral channels may be best avoided to minimize the influence of 
artifacts.

Data availability
The raw EEG data generated and analyzed during the current study are not publicly available due to data protec-
tion and ethical restrictions. However, derived data supporting the findings of this study (including computed 
measures) are available from the corresponding author upon reasonable request.
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