

OPEN

Synergistic effects of pollen grains on several vital life parameters of *Amblyseius swirskii* when preying upon *Tetranychus urticae*

Faranak Kourous & Shima Rahmani✉

In this study, the efficiency of two pollens, Bird-of-paradise and Damask rose, was evaluated concerning the life table of the phyto-carnivorous predator *Amblyseius swirskii*, both alone and in combination with the spider mite *Tetranychus urticae* as a natural prey. Results showed that feeding on these pollens significantly increased fecundity and extended the oviposition period (40.29 eggs in 27.4 days, and 35.82 eggs in 21.41 days, respectively) compared to the prey alone (27.20 eggs in 18.40 days). The significantly highest pre-adult duration (6.714 days), adult longevity (71.45 days), fecundity (92.16 eggs/female), and oviposition days (50.3 days) were recorded in the treatment involving Bird-of-paradise + spider mite. The gross (GRR) and net (R_0) reproductive rates in both Damask rose + spider mite (41.99 and 36.49 eggs/individuals) and Bird-of-paradise + spider mite (51.7 and 46.9 eggs/individuals) indicated the highest values, with no significant difference between the two treatments. The significantly highest intrinsic rate ($r = 0.179 \text{ day}^{-1}$) and finite rate of increase ($\lambda = 0.157 \text{ day}^{-1}$) were measured in the treatment of Bird-of-paradise + spider mite. Therefore, the examined pollens induced *A. swirskii* to reproduce significantly for a longer duration. Additionally, each pollen, when mixed with the prey demonstrated additive effects on oviposition and population growth.

Keywords Biocontrol agent, Generalist predator, *Amblyseius swirskii*, *Tetranychus urticae*, Pollen, Mixed diet

Plants supply various nutrients to phyto-carnivorous arthropods such as honeydews, extracts, and pollen grains^{1,2}. Among those nutrients, pollen is the main source of proteins, lipids, amino acids, vitamins, minerals, sterols, and other micronutrients^{3–5}. Pollens also contain carbohydrates, including monosaccharides (sugars) and polysaccharides such as starch and cellulose. Monosaccharides such as glucose and fructose, along with starch, can be utilized as energy sources for the biosynthesis of tissues, proteins, and enzymes⁶. In addition, polysaccharides offer resistance to desiccation in pollen and provide structural support^{7,8}. Thus, pollens can mainly affect life characteristics such as individuals' longevity⁹ by influencing physiological metabolism^{10,11} enhancing immunity¹² tolerating pathogens like bacteria¹³ virus¹⁴ and microsporidia¹⁵ and reducing sensitivity to pesticides¹⁶.

The nutritional composition of pollen grains varies widely among plant species^{17–19}. Total carbohydrate content ranges from 13.92 to 36.59%, reducing sugars from 0.04 to 6.88%, non-reducing sugars from 7.31 to 18.88%, and starch from 2.42 to 22.40%. Protein content shows particularly high variability, ranging from 2.5 to 61%, with an average between 25% and 45%. Lipids range from 1.16 to 20.74%, and total ash from 2.35–4.90%^{3,18,20}. *Phoenix dactylifera* pollen contains 28.80% moisture, 4.57% ash, 1.37% crude fiber, 20.74% fat, 13.41% carbohydrate, and 31.11% protein²¹. Among pollens collected by honeybees, protein content ranged from 7.27 to 7.47% in sedges (*Carex* sp.) to 21.82–24.90% in red dead-nettle (*Lamium purpureum* L.)²².

Indeed, the quality of some pollen grains is better for the pollenophagous than others such as Christmas cactus *Schlumbergera* hybrid, spring crocus *Crocus vernus* Hill, castor bean *Ricinus communis* L., maize, and pine *Pinus sylvestris* L. ranging from highly to amply suitable. On the other hand, some other pollen grains are evaluated bad (e.g. bee pollen), negligible suitability (e.g. common hazel *Corylus avellane* L.), and even toxic or unsuitable for pollen feeders, such as martagon Lily *Lilium martagon* and amaryllis *Hippeastrum* sp., and rose of Sharon *Hibiscus syriacus* L²³. Their undesirable effects may be due to their thick exine²⁴ very long spines on the pollen surface²⁵ repellent odors in the pollen pollenkitt²⁶ and/or toxic allelochemicals such as alkaloids, terpenes, or phenolics^{27,28}.

Department of Plant Protection, SR.C., Islamic Azad University, Tehran, Iran. ✉email: shrahmani@iau.ac.ir

Pollen grains are considered nutritious food for the establishment, increasing larval development, as well as enhancement of survival, and oviposition of general predatory insects and mites as biological control agents^{29–31}. In addition, pollen could aggregate the predators' population in pollen plots to predate efficiently and prevent the predators from cannibalism³². Numerous studies have advised the usage of pollen grains for mass-rearing^{33–37}. Also, several experiments reported that pollen can be a suitable alternative food when prey is rare or absent^{38,39} and help the predators establish their population before enhancing the prey population^{40,41}.

According to habit and food spectrum, mites belonging to the family of Phytoseiidae are classified as specialists (type I, II) and generalists (type III, IV) with subtypes. Unlike type I and II phytoseiid species, type III and IV species receive pollen as a supplementary or alternative food source in practical biocontrol⁴².

Among this important family, although examining pollen alone was the purpose of several studies^{43–46} combining pollen with the main prey was also tested to evaluate the fitness and efficiency of the predators in the laboratory or the field. Adding pollen to cucumbers caused two species of predatory mites, *Iphiseius degenerans* Berlese and *Amblyseius limonicus*, to develop more rapidly and effectively suppress the thrips population⁴⁷. In addition, the presence of pollen on strawberries increased the growth rate of *Amblyseius limonicus* Garman and McGregor, leading to improved control of *Trialeurodes vaporariorum* Westwood⁴⁸. To manage *Tetranychus urticae* Koch, applying maize pollen improved the effectiveness of *Neoseiulus californicus* (McGregor)⁴⁹ and almond pollen enhanced the efficacy of *Amblyseius swirskii* Athias-Henriot⁵⁰.

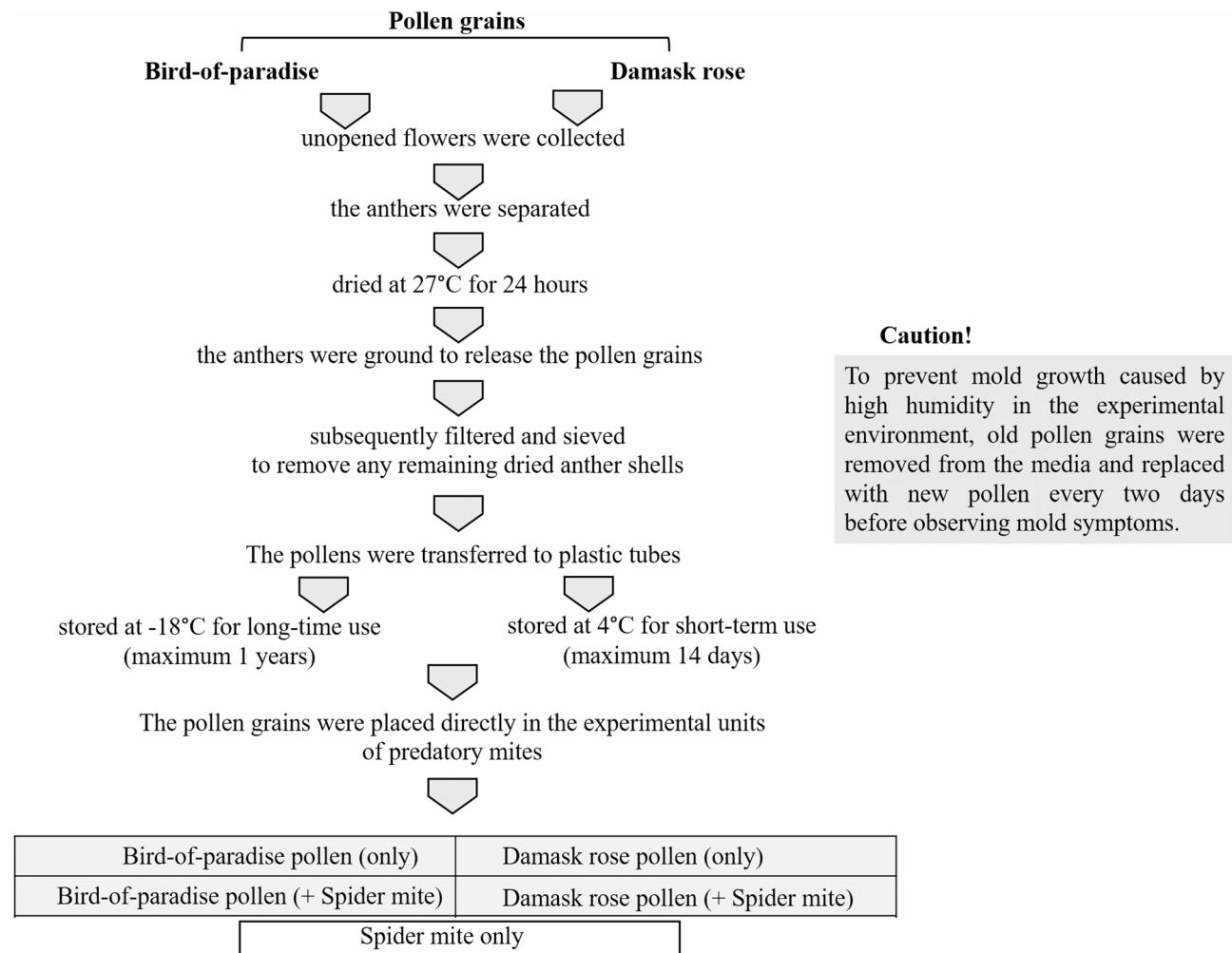
Amblyseius swirskii Athias-Henriot is an important species of phytoseiid mite that was originally discovered in Algeria along the East Mediterranean coast. It was first described in relation to almond trees, specifically *Prunus amygdalus* L⁵¹. This species has a wide distribution, found not only to the Middle Eastern countries, but also in Southern Europe, central Africa, and North America⁵². As a generalist predator sub-type III-b, *A. swirskii* lives on glabrous leaves⁴². This species is associated with over 35 plant families, including ornamental plants, vegetable crops such as cucumbers, peppers, and eggplants, as well as cotton and fruit trees like apples, apricots, and citrus^{53–56}.

Previously, pollens of plants like pine⁵⁷ pistachio, date palm, pomegranate⁵⁸ maize⁵⁹ apricot, soybean, sesame, walnut⁶⁰ royal paulownia, silver birch⁴³ cattail⁶¹ horse chestnut, crocus, hedgehog cactus²³ and apple⁶² were recognized as proper for this phytoseiid species' biology and population parameters. In addition, under greenhouse conditions, the introduction of *A. swirskii* together with apple pollen application led to the best control of adults and immatures of western flower thrips, *Frankliniella occidentalis*⁶³. On the other hand, according to Goleva, I. & Zebitz, C. P. W²³. pollens of lilies, amaryllis, and shrub-althea were definitely incompatible with this predator; Pollens of sunflower, common hazel, and sweetgrass were less suitable as a diet source; And commercial bee pollen was not effective for the mite life-table parameters compared to pure pollen obtained from the plant species.

In this study, we evaluated the compatibility of pollen grains from the Bird-of-paradise (*Caesalpinia gilliesii*, Wall. ex Hook. D.Dietr., Fabaceae) and the Damask rose (*Rosa damascena* Mill., Rosaceae), alone and when combined with the two-spotted spider mite (*Tetranychus urticae* Koch) as natural prey on *A. swirskii*. *R. damascena* is one of the most well-known *Rosa* species, and some of its varieties are crucial for essential oil production and medicinal properties, as well as others widely cultivated as garden roses⁶⁴. In Iran, the cultivation and consumption of this plant are significant, not only as an ornamental plant but also for extracting valuable rose water and rose oil^{65,66}. *C. gilliesii* is native to dry and desert regions of Argentina and Uruguay but is now widely found in other tropical and arid regions worldwide⁶⁷. The pollen from this plant species was a successful diet for the long-term rearing of *A. swirskii* even superior to maize pollen as a highly nutritious diet⁶⁸. Although the efficiency of this pollen was studied as an alternative food, there was no information about its effect when supplemented with natural prey.

To examine the potential synergistic effect of each pollen grain, the biological characteristics and demographic traits of the phytoseiid mite were evaluated. Thus, several parameters involved longevity, development time of all life stages, fecundity, pre-oviposition period, oviposition period, age-specific fecundity, age-specific survival rate, age-stage specific survival rate, and age-stage specific fecundity, intrinsic rate of increase, net reproductive rate, gross reproductive rate, finite rate of growth, and mean generation time, were calculated based on the age-stage two-sex life table procedure.

Materials and methods


Pollen collection

Pollen grains of the Damask rose were collected from the plants in the village of Viduj, Isfahan Province, Iran. This village is well-known for the numerous fields devoted to planting *R. damascena*. Also, pollen grains of the Bird-of-paradise were collected from pesticide-free plants in the urban green spaces of Tehran city, Tehran province, Iran. Since the *C. gilliesii* plant is not native to Iran, only be cultivated in restricted locations. One of the most accessible places was the urban green spaces.

The pollens were dried at room temperature for 24 h, then transferred to plastic tubes and kept at 4 °C for short-term usage (maximum 14 days) or stored at -18 °C for long-term utilization⁶⁹ (Fig. 1).

Mite colonies

The initial *A. swirskii* population was obtained from the Department of Agricultural Entomology, Tarbiat Modares University, Tehran, Iran. The colony was reared in constant laboratory conditions at 25 ± 1 °C, $60 \pm 5\%$ Relative Humidity (RH), and a photoperiod of 16 L: 8D h. The rearing arena was a green plastic sheet ($12 \times 8 \times 0.1$ cm) on a water-soaked sponge ($12 \times 8 \times 5$ cm) inside a water-half-filled Plexiglas box ($23 \times 15 \times 8$ cm). All plastic sheet edges were enclosed with moist tissue paper following Walzer, A. & Schausberger, P⁷⁰. to prevent mites from escaping. Some cotton filament was passed on the plastic sheet as a shelter and egg-laying position⁷¹. The stock colony was fed with eggs and pre-adult stages of *T. urticae*.

Fig. 1. Preparation and preservation of pollen grains belonging to Bird-of-paradise and Damask rose.

The first population of *T. urticae* was collected from a cucumber greenhouse in Shahriar County, Tehran Province, Iran. After species confirmation, the colony was established on common bean, *Phaseolus vulgaris* L. The bean plants were planted sequentially in pots filled with coco peat, perlite, and peat moss (50:10:40) as a medium, in greenhouse conditions at 25 ± 1 °C, and $65 \pm 5\%$ RH. Once the plants reached the five-leaf stage, they were used for infestation by the prey mites. The infestation was carried out by attaching heavily infested leaves to the healthy potted plants, allowing the mites to easily disperse onto the new leaves.

Experimental units, and diets

Each experimental unit was designed similarly to the arena used for establishing the predator colony but on smaller-scale arenas of $3 \times 3 \times 0.1$ cm located on top of a wet sponge ($3 \times 3 \times 3$ cm) placed in a small plastic box ($7 \times 5 \times 4$ cm) containing water. The edges of the green plastic sheets were restricted with moist tissue paper drenched in the water of the tray. In addition, a few threads of cotton were put on the center of each plastic sheet to provide a medium for oviposition.

The diet provided for each treatment was as follows: (a) Spider mite; (b) Bird-of-paradise pollen; (c) Damask rose pollen; (d) Bird-of-paradise pollen + Spider mite; (e) Damask rose pollen + Spider mite. Pollen grains were placed in the experimental arena with a sewing needle every two days. In treatments that included only spider mites or a combination of spider mites and pollen grains, 15 pre-adult individuals of *T. urticae* were introduced into each unit daily using a size 0000 brush.

Biological and life table studies

To assess the effects of the pollens on the predatory mites' biology and demographic parameters, the experiments were started with 50 cohort eggs for each treatment, and each individual was considered one replication. To obtain *A. swirskii* freshly laid eggs, 50 females and males were transferred from the stock colony to the new arenas. After 24 h, each freshly laid egg was put into one experimental unit. The experiments were performed in constant conditions with 25 ± 1 °C temperature, $60 \pm 5\%$ RH, and 16 L: 8D h, and each treatment was served with its diet. The development and survival of the pre-adult stages were monitored every 24 h. After adult emergence,

each female was mated with a male from the same treatment, thus the number of eggs was counted besides the individuals' survivorship. When there were more females than males, or if the males died before the females, the males that developed from the colony were used as a supplement⁷². The daily observation continued until the death of all individuals in each treatment.

Statistical analysis


Data on *A. swirskii* life history and life table parameters were analyzed according to the age stage, two-sex life table theory⁷³ as well as the method described by Chi, H⁷⁴, using the computer program TWOSEX-MSChart⁷⁵. The bootstrap technique (described in a review article by Chi, H. et al.⁷⁶ with 100,000 samples embedded in the same program was used to estimate the variances and standard errors.

The biological parameters included longevity, duration of different life stages, fecundity, adult- and total-preoviposition periods (APOP and TPOP, respectively), and oviposition period. The other life parameters, for which value curves were drawn using Excel, included the age-stage specific survival rate (S_{xj}) (the possibility that a newborn individual will survive to age x and develop to stage j); the age-specific survival rate (I_x) (the probability that a newborn individual of both sexes will survive to age x); the age-specific fecundity (m_x) (the mean number of eggs produced per individual at age x); and the age-stage specific fecundity (f_{xj}) (the mean number of offspring that female individuals of age x at adult stage ($j=5$) produced)⁷⁷. Additionally, the life table parameters estimated using TWOSEX-MSChart were the net reproductive rate (R_0), gross reproductive rate (GRR), finite rate of increase (λ), intrinsic rate of increase (r), and mean generation time (T)⁷⁵. The design of the experiments is shown step by step in Fig. 2.

Results

Survival and duration of different life stages

Eggs and larvae duration was significantly shorter in all pollen-based treatments compared to the spider mite-only diet (Table 1). Protonymph time was longest in the treatments fed Damask rose pollen + spider mite followed by spider mite. This stage duration in the other three treatments showed significantly the shortest time. On the other hand, the deutonymphs fed on Damask rose pollen had significantly the longest duration followed by Bird-of-paradise pollen + spider mite, Bird-of-paradise pollen, Damask rose pollen + spider mite, and spider

Fig. 2. Step-by-step life table experiments designed to test Bird-of-paradise and Damask rose pollen grains, both alone and in combination with spider mites, to measure the biological and ecological parameters of *Amblyseius swirskii*.

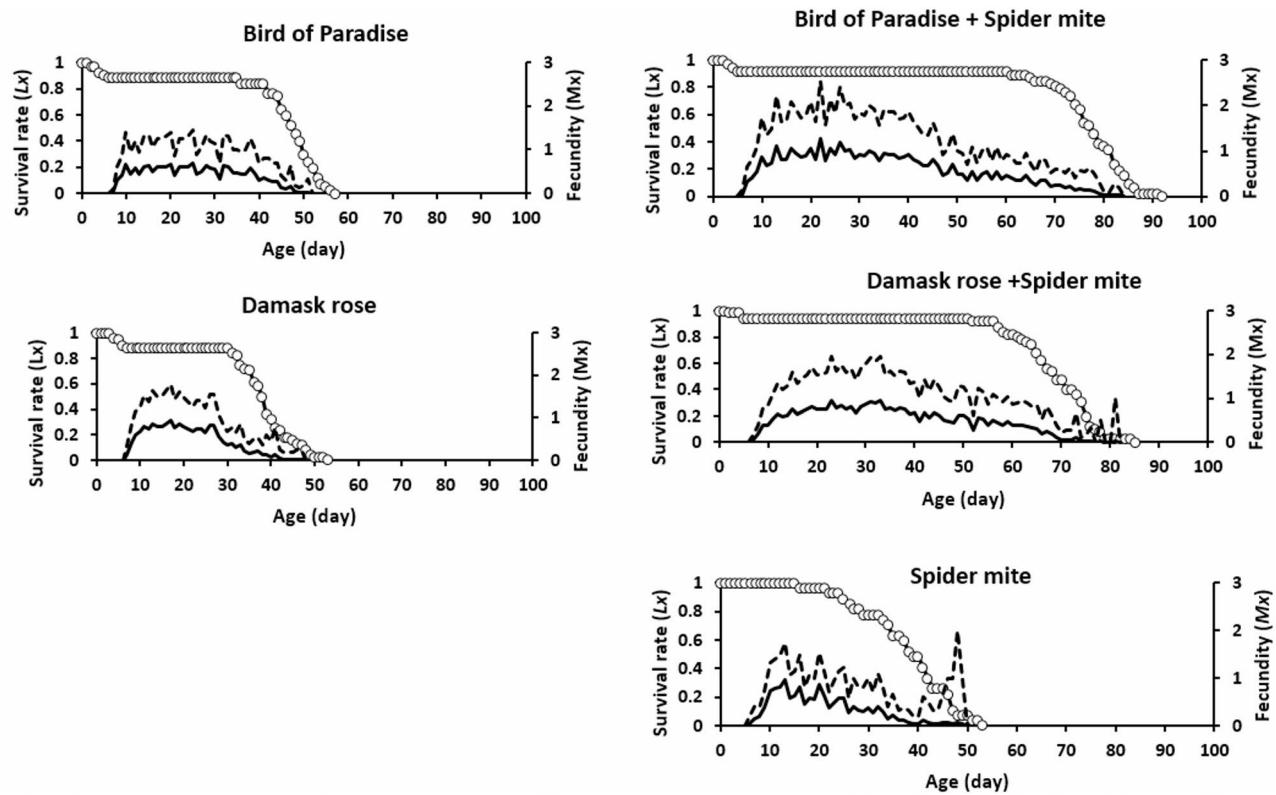
Duration Parameters	Damask rose	Bird-of-paradise	Damask rose + spider mite	Bird-of-paradise + spider mite	Spider mite
Egg (day)	1.49 ± 0.07 ^a	1.548 ± 0.077 ^a	1.44 ± 0.07 ^a	1.478 ± 0.074 ^a	2.185 ± 0.091 ^b
Larva (day)	1.647 ± 0.067 ^a	1.561 ± 0.098 ^a	1.612 ± 0.07 ^a	1.511 ± 0.074 ^a	1.148 ± 0.068 ^b
Protonymph (day)	1.5 ± 0.07 ^c	1.685 ± 0.075 ^c	2.063 ± 0.062 ^a	1.488 ± 0.076 ^c	1.852 ± 0.101 ^b
Deutonymph (day)	2.401 ± 0.073 ^a	2.027 ± 0.097 ^{bc}	2.021 ± 0.08 ^c	2.238 ± 0.074 ^{ab}	1.852 ± 0.101 ^d
Pre-adult duration (day)	7.045 ± 0.121 ^{ab}	6.811 ± 0.107 ^{bc}	7.149 ± 0.125 ^a	6.714 ± 0.113 ^c	7.112 ± 0.212 ^a
Pre-adult survival rate	0.882 ± 0.045 ^a	0.881 ± 0.05 ^a	0.94 ± 0.034 ^a	0.913 ± 0.041 ^a	1 ^a
Adult (day)	32.60 ± 0.783 ^d	41.51 ± 0.819 ^c	62.38 ± 1.037 ^b	71.45 ± 0.889 ^a	30.848 ± 1.76 ^d
Total longevity (day)	39.65 ± 0.798 ^d	48.32 ± 0.796 ^c	69.53 ± 1.033 ^b	78.16 ± 0.994 ^a	37.96 ± 1.747 ^d

Table 1. Duration parameters (\pm SE) of pre-adult and adult stages of *Amblyseius swirskii* fed with immature stages of the spider mite *Tetranychus urticae* as well as pollen grains of Bird-of-paradise and the Damask rose, alone/combined with the spider mite. ($P < 0.05$, paired-bootstrap test). The means (\pm SE) followed by different lowercase letters in the same row are comparisons among different treatments.

Reproduction parameters	Damask rose	Bird-of-paradise	Damask rose + spider mite	Bird-of-paradise + spider mite	Spider mite
Fecundity (eggs/female)	35.82 ± 1.475 ^d	40.29 ± 1.58 ^c	76.03 ± 2.372 ^b	92.16 ± 1.966 ^a	27.20 ± 2.276 ^e
Oviposition (day)	21.41 ± 0.832 ^d	27.4 ± 0.902 ^c	44.57 ± 1.181 ^b	50.3 ± 1.333 ^a	18.40 ± 1.519 ^e
APOP (day)	1.259 ± 0.085 ^b	1.9 ± 0.142 ^a	1.874 ± 0.091 ^a	1.391 ± 2.594 ^b	1.933 ± 0.203 ^a
TOPP (day)	8.408 ± 0.2 ^b	8.6 ± 0.231 ^b	8.958 ± 0.22 ^b	7.783 ± 0.196 ^c	9.069 ± 0.388 ^a

Table 2. Reproduction characteristics (\pm SE) of pre-adult and adult stages of *Amblyseius swirskii* fed with immature stages of the spider mite *Tetranychus urticae* as well as pollen grains of Bird-of-paradise and the Damask rose, alone/combined with the spider mite. ($P < 0.05$, paired-bootstrap test). The means (\pm SE) followed by different lowercase letters in the same row are comparisons among different treatments.

mite treatments. The total pre-adult duration in Damask rose pollen + spider mite, and spider mite treatments was illustrated as significantly longer than other treatments. However, the shortest duration was measured in the predators fed Bird-of-paradise pollen + spider mite. There was no observed significant mortality among treatments during the pre-adult stages. Adult longevity of mites fed on the Bird-of-paradise pollen + spider mite diet was significantly greatest among other treatments followed by those fed Damask rose pollen + spider mite, and Bird-of-paradise pollen diets. There was no significant difference between treatments fed Damask rose pollen and spider mite, which showed the shortest adult duration. The same trend was also calculated for total longevity (Table 1).


Reproductive periods and fecundity

The maximum and minimum fecundity were measured in the females fed Bird-of-paradise pollen + spider mite and spider mite, respectively. Indeed, the phytoseiids ingested Bird-of-paradise pollen + spider mite laid 3.38 times higher than those preyed on *T. urticae*. On the other hand, the Bird-of-paradise pollen + spider mite treatment females oviposited during the longest duration compared to other treatments (Table 2). Again, the females fed on spider mites reproduced during the shortest time. The total pre-oviposition period in mites fed on Damask rose pollen, Bird-of-paradise pollen, and Damask rose pollen + spider mite was significantly shorter than those fed Bird-of-paradise pollen + spider mite, and spider mite only. On the other hand, the total pre-oviposition time in the treatment fed on spider mites was significantly the longest. Females in the treatments involved Bird-of-paradise pollen, Damask rose pollen + spider mite, and spider mite only oviposited their eggs around 2 days after adulthood, while adult females in the treatments Damask rose pollen and Bird-of-paradise pollen + spider mite could lay their eggs sooner than others (Table 2).

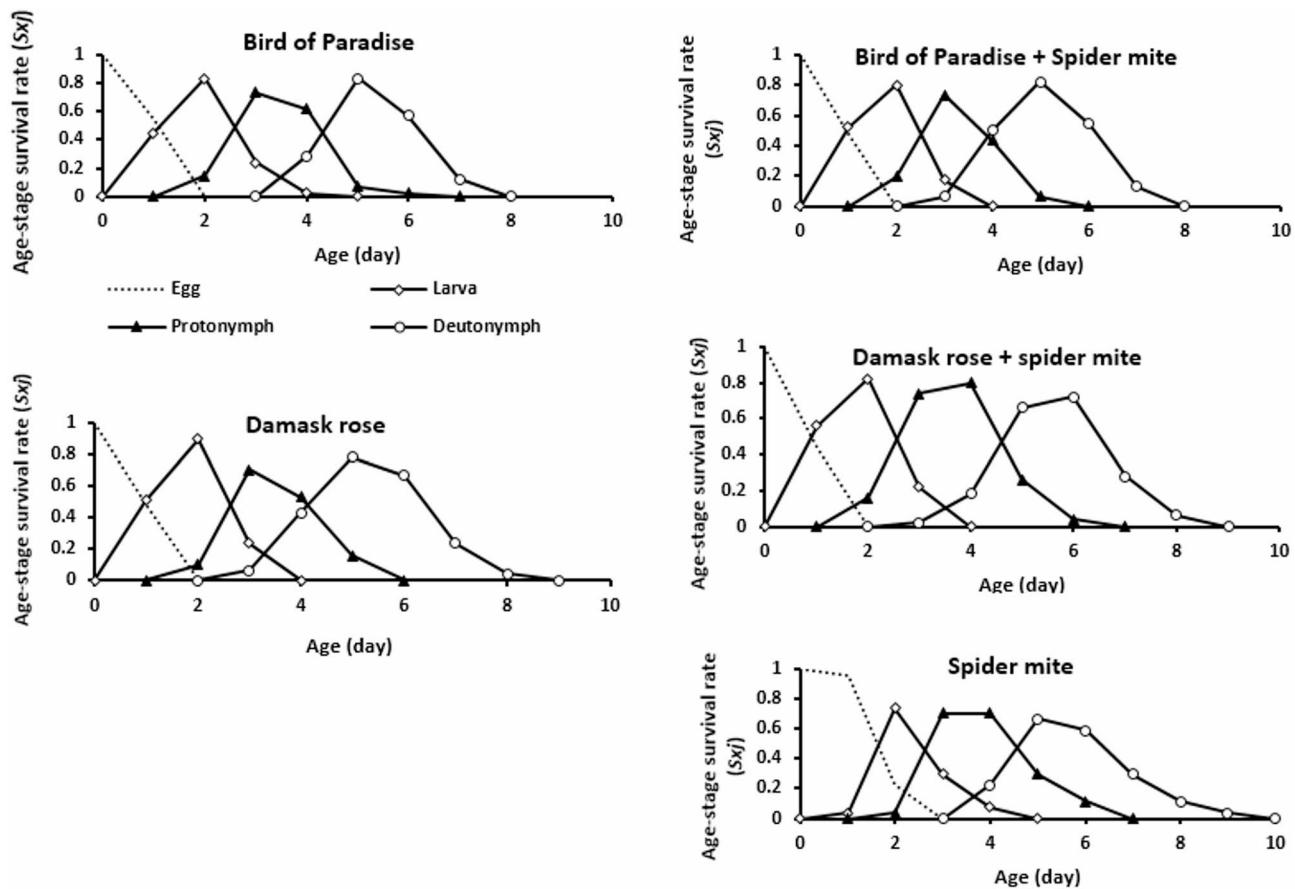
Survival and fecundity curves

A. swirskii survived and oviposited successfully while feeding pollen grains, alone and in combination with the spider mite (Figs. 3, 4 and 5). There was up to 12% mortality when the pre-adult individuals fed on the pollens. Also, the mortality in both treatments fed pollens plus *T. urticae* was less than 10%. On the other hand, juvenile mortality in the predators fed on the spider mites was zero. (Fig. 3). All individuals belonging to the treatments fed Damask rose pollen as well as the spider mites died on the 53rd day. In addition, all mites fed Bird-of-paradise pollen solely died on the 57th day. However, the treatments fed on Damask rose pollen plus spider mites and Bird-of-paradise pollen combined with spider mites died on the 85th and 92nd days, respectively (Fig. 3). Mites in the combined diets started laying eggs from the 6th until the 83rd day in Bird-of-paradise pollen + spider mites, and from the 7th until the 81st day in Damask rose pollen + spider mites (Fig. 3).

Variations in developmental rates among eggs, larvae, protonymph, and deutonymph caused some overlap between different stages (Fig. 4). The maximum number of deutonymphs was observed on the 6th day in the Damask rose pollen + spider mite treatment, but on the 5th day in the other treatments (Fig. 4).

Fig. 3. Age-specific survival rate (L_x), age-stage specific fecundity (f_x) and age-specific fecundity (m_x) of *Amblyseius swirskii* fed with immature stages of the spider mite *Tetranychus urticae* as well as pollen grains of Bird-of-paradise and the Damask rose, alone/combined with the spider mite.

According to Fig. 5, all females fed pollen-based diets lived longer than those that preyed upon spider mites only. In the treatment of Damask rose pollen + spider mites, females died 6 days after the males' mortality. On the other hand, the males in the treatment fed on spider mite died 2 days after the death of all females. Additionally, the survival rate of the females in all treatments from the 10th day to several days later was higher than the male survival rate. However, there was no difference between male and female survival rates in the predators fed on Damask rose pollen + spider mites from the 10th to the 56th day (Fig. 5).


Population growth parameters

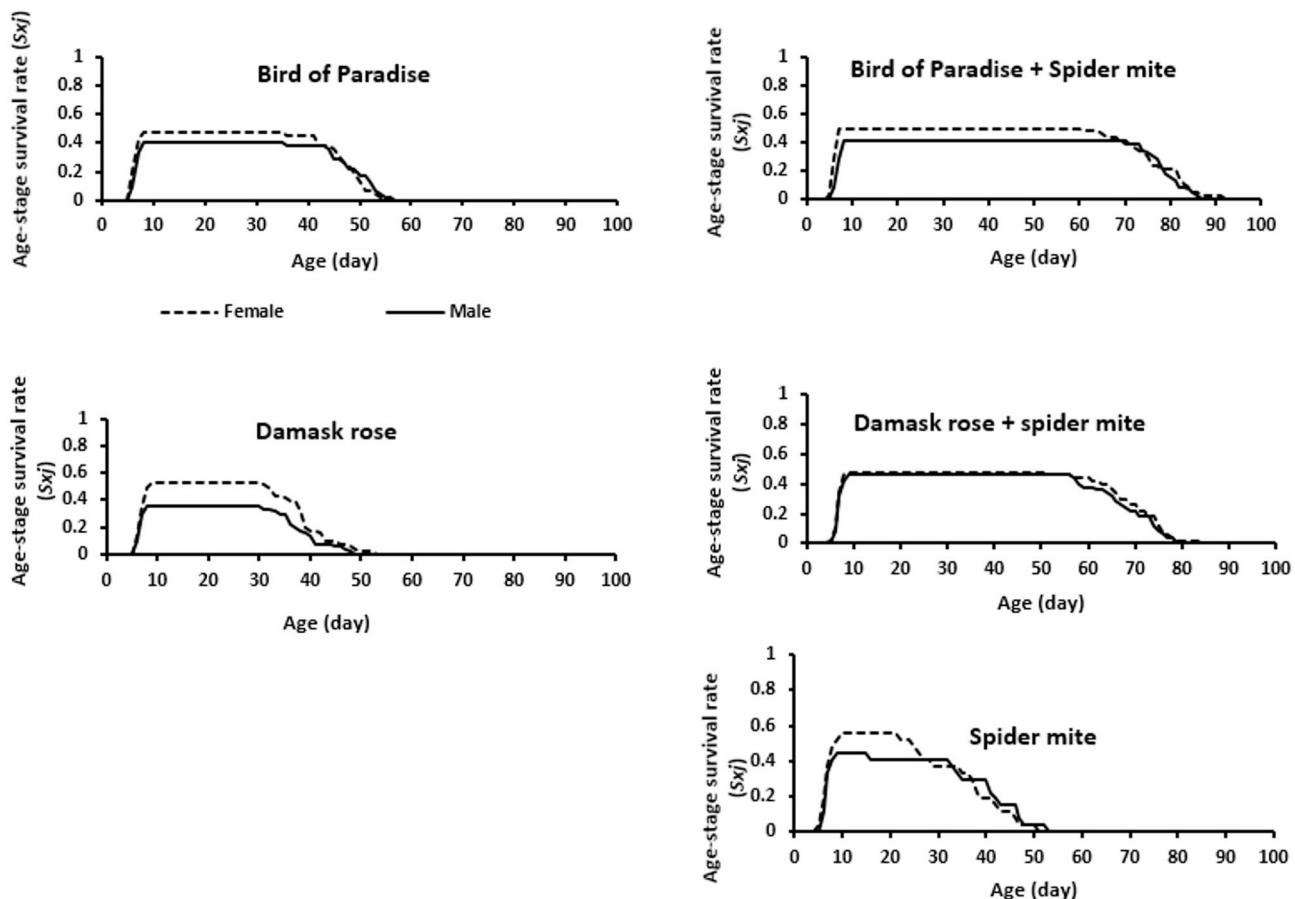
All life table parameters of *A. swirskii* illustrated significant differences among different diets as shown in Table 3. The significantly highest intrinsic (r), and finite rate of increase (λ) were calculated in the treatments fed on Bird-of-paradise pollen + spider mite. However, both parameters in the phytoseiids fed with Bird-of-paradise pollen showed significantly the lowest values. The gross (GRR) and net reproductive rate (R_0) in Bird-of-paradise pollen + spider mite, and Damask rose pollen + spider mite, were significantly greater than other treatments. On the other hand, there was no significant difference among Damask rose pollen, Bird-of-paradise pollen, and spider mite treatments. The longest mean generation time (T) value was measured in mites fed on Damask rose pollen + spider mite, followed by two treatments of Bird-of-paradise pollen and Bird-of-paradise pollen + spider mite, but the significantly shortest duration was calculated in both treatments of Damask rose pollen and spider mite.

Discussion

This study examined the nutritional values of two types of pollen grains, each combined with the natural prey *T. urticae*, on the biology and life table parameters of *A. swirskii*. Additionally, the results were compared with the efficacy of the prey and each type of pollen alone.

This study confirmed that *A. swirskii* by feeding on Bird-of-paradise and Damask rose could survive, develop, and reproduce. Numerous studies have been dedicated to the population increase of the generalist predators including *A. swirskii* while feeding on different pollen grains belonging to diverse plant families^{23,44,46,57–60,62,78–81}. It is reported that *A. swirskii* can establish, develop, and oviposit when fed on pollens of various species of the Rosaceae family^{44,58,60,63,80,82}. Since generally pollens originating from plant species categorized at the same family level have similar results while offering to predatory mites as a food source⁸³ we expected that Damask rose pollen would be appropriate for the growth and development of *A. swirskii*. On the other hand, Kadkhodazadeh, F. et al.⁵⁸ were unable to rear *A. swirskii* with Damask rose pollens as a diet. In their study, the protonymphs

Fig. 4. Age-stage survival rate (S_{xj}) of pre-adult *Amblyseius swirskii* fed with immature stages of the spider mite *Tetranychus urticae* as well as pollen grains of Bird-of-paradise and the Damask rose, alone/combined with the spider mite.


and deutonymphs could not complete their life duration may be because of the toxic or volatile metabolites or pesticide residues applied on the flowers before pollen collecting.

Bird-of-paradise belongs to the Fabaceae family. Although the efficiency of pollen grains in this family is reported to be lower than that of other families, such as Poaceae⁸⁴ it is important to study their pollen quality more thoroughly due to the diverse species within the family. *C. gilliesii* is known for its fast growth and requires about 8 h of sunlight each day. It is also drought-tolerant⁸⁵ making it an excellent water-wise option for landscaping. Additionally, it has the potential to be successfully cultivated in various countries with ample sunny conditions. A multigenerational study using *C. gilliesii* pollen as an alternative food has introduced it as a promising diet for the population growth of *A. swirskii*⁶⁸.

Based on the results, *A. swirskii* fed on both pollen types, with approximately 90% of immature individuals surviving to reach adulthood and successfully reproduce. The durations of the egg, larvae, and protonymph stages in both treatments were nearly identical. Due to the shorter deutonymph period of the Bird-of-paradise pollen treatment, the total immature time in this treatment was also shorter. Since a diet with lower quality delays the development of an organism⁸⁶ Bird-of-paradise pollen could be considered more appropriate than the other one. Although females of this treatment started to oviposit 0.64 days later, they laid more eggs and had a longer oviposition duration compared to those fed on Damask rose pollen.

Pollen grains from plants such as cattail⁸⁰ pepper⁸⁷ (Kumar et al. 2014), maize^{23,80,82} date palm^{78,80} and almond^{44,82} have been reported as suitable for the development and population growth of *A. swirskii*, playing a promising role in mass rearing and as alternative or supplementary food for field establishment of this phytoseiid mite. A comparison between these commercially important pollen grains and the pollens from Damask rose and Bird-of-paradise, based on several biological and ecological parameters, emphasizes that both pollens in the current study are appropriate for the survival and growth of the *A. swirskii* population. Differences in the bioecological values of these pollens may arise from various factors, including the plant species or cultivars, the experimental conditions, and the methods used to prepare and preserve the pollens.

If pollen from plants can be easily obtained from local sources or regional supplier, the production and release of *A. swirskii* could become more cost-effective and efficient⁷⁸. The availability of the two plants, Damask rose and Bird-of-paradise, in sunny regions of countries including Iran, can be a positive point for their use as alternative or supplementary food.

Fig. 5. Age-stage survival rate (S_{xj}) of adult *Amblyseius swirskii* fed with immature stages of the spider mite *Tetranychus urticae* as well as pollen grains of Bird-of-paradise and the Damask rose, alone/combined with the spider mite.

Parameters	Damask rose	Bird-of-paradise	Damask rose + spider mite	Bird-of-paradise + spider mite	Spider mite
GRR (eggs/individual)	23.46 ± 3.139^b	22.56 ± 3.563^b	41.99 ± 6.102^a	51.7 ± 7.497^a	19.12 ± 4.460^b
R_0 (eggs/individual)	18.97 ± 2.623^b	19.19 ± 3.188^b	36.49 ± 5.483^a	46.09 ± 6.909^a	15.12 ± 2.883^b
r (day^{-1})	0.168 ± 0.01^{ab}	0.146 ± 0.011^b	0.152 ± 0.009^{ab}	0.179 ± 0.011^a	0.156 ± 0.014^{ab}
λ (day^{-1})	1.183 ± 0.012^{ab}	1.157 ± 0.013^b	1.163 ± 0.011^{ab}	1.196 ± 0.013^a	1.169 ± 0.016^{ab}
T (day)	17.48 ± 0.333^c	20.15 ± 0.469^b	23.75 ± 0.637^a	21.35 ± 0.522^b	17.30 ± 0.806^c

Table 3. Demographic parameters (\pm SE) of *Amblyseius swirskii* fed with pollen grains of Bird-of-paradise and the Damask rose, alone/combined with immature stages of the spider mite *Tetranychus urticae*. ($P < 0.05$, paired-bootstrap test). The means (\pm SE) followed by different lowercase letters in the same row are comparisons among different treatments.

When Bird-of-paradise pollen was used with the spider mites as a mixture diet, the intrinsic rate of the mite population growth was calculated as the highest value among the treatments. This food significantly reduced premature duration, increased adult longevity, and enhanced fecundity during the longest time, compared to using Bird-of-paradise pollen alone and other diets. Several studies have indicated greater profits of mixed diets for predators' fitness^{38,50,63,79,88}.

Regardless of the superior effect of Bird-of-paradise pollen combined with *T. urticae*, the effect of Damask rose plus spider mite on the net reproductive rate (r) was not significantly different from this pollen alone and *T. urticae* as natural prey. The same outcome was obtained from the study conducted by Riahi, E. et al.⁵⁰ that this important life table statistic in *A. swirskii* consumed almond pollen alone and mixed with *T. urticae* was the same.

Indeed, pollen diets improve the development and reproduction of phyto-carnivorous mites when added to the animal diet by providing the essential nutrients sufficient for the mite's life parameters. At the same time, when the predator rears on only the pollen, it can also develop its biological parameters, thus the pollen as a

consequence shows an important role in the life table but does not contain the essential nutrients sufficiently provided by the animal diet³⁸.

In a biological control system, supplementing pollen while releasing *A. swirskii* causes the pest reduction or elimination without needing multiple releases of the predator. This approach minimizes costs and saves time⁸⁹. Both pollens in this study may potentially increase the predator's establishment at the early stages of the crop when pest abundance is still low^{90–92}. This procedure could be highly efficient, especially for managing *T. urticae* before the population outbreak and producing dense webs, which is a hurdle to the generalist predators⁹³. Exogenous Damask rose and Bird-of-paradise pollens can be applied through spraying, dusting, or point source applications in the crop²³. The pollen supplementation in a system where prey is available increases the predatory reproductive capacity, followed by improving the pest control^{94,95}.

Conclusion

In conclusion, while *T. urticae* can be preyed on by *A. swirskii* as a biocontrol agent, both pollen grains of Bird-of-paradise and Damask rose have adequate nutritional values to guarantee phytoseiid development and reproduction when the prey is rare or absent. Each pollen has the potential to establish the predator in the field or greenhouse wherever it is possible to infest with *T. urticae*. Therefore, predators will be able to increase their population before the outbreak of the pest mites and control the pests by keeping their population at non-damaging levels. Moreover, in the presence of the mite pest, the efficiency of predators can be enhanced by the nutritional contents of the pollen grains from Bird-of-paradise and Damask rose. For selecting the best pollen, Bird-of-paradise is recommended as the most suitable supplementary food to promote the growth of the predatory population in areas affected by spider mites. This plant thrives easily, particularly in sunny areas. It is recommended to cultivate it in and around croplands with appropriate environmental considerations. During the flowering season, pollen can be collected and stored at low temperatures. When needed, this pollen can be sprayed onto the crops.

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Received: 13 February 2025; Accepted: 25 July 2025

Published online: 30 September 2025

References

- Wäckers, F. L., Romeis, J. & Van Rijn, P. Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. *Annu. Rev. Entomol.* **52**, 301–323. <https://doi.org/10.1146/annurev.ento.52.110405.091352> (2007).
- He, X., Kiær, L. P., Jensen, P. M. & Sigsgaard, L. The effect of floral resources on predator longevity and fecundity: A systematic review and meta-analysis. *Biol. Control.* **153**, 104476. <https://doi.org/10.1016/j.biocntrol.2020.104476> (2021).
- Stanley, R. G. & Linskens, H. F. *Pollen: Biology, biochemistry, management* (Springer, 1974).
- Roulston, T. H. & Buchmann, S. L. A. phylogenetic reconsideration of the pollen starch-pollination correlation. *Evol. Ecol. Res.* **2**, 627–643 (2000).
- Thakur, M. & Nanda, V. Composition and functionality of bee pollen: a review. *Trends Food Sci. Technol.* **98**, 82–106. <https://doi.org/10.1016/j.tifs.2020.02.001> (2020).
- Bertonecelj, J., Lilek, N. & Korošec, M. Bee pollen carbohydrates composition and functionality. In *Pollen Chemistry & Biotechnology* (eds Ecem Bayram, N. et al.) (Springer, 2023). https://doi.org/10.1007/978-3-031-47563-4_3.
- Franchi, G. G., Bellani, L., Nepi, M. & Pacini, E. Types of carbohydrate reserves in pollen: localization, systematic distribution and ecophysiological significance. *Flora* **191**, 143–159. [https://doi.org/10.1016/S0367-2530\(17\)30706-5](https://doi.org/10.1016/S0367-2530(17)30706-5) (1996).
- Ferreira, C., Torres, B. B. & Terra, W. R. Substrate specificities of midgut β -glycosidases from insects of different orders. *Comp. Biochem. Physiol. B Biochem. Mol. Biol.* **119**, 219–225. [https://doi.org/10.1016/S0305-0491\(97\)00310-6](https://doi.org/10.1016/S0305-0491(97)00310-6) (1998).
- Haydak, M. H. Honey bee nutrition. *Annu. Rev. Entomol.* **15**, 143–156. <https://doi.org/10.1146/annurev.en.15.010170.001043> (1970).
- Ament, S. A. et al. Mechanisms of stable lipid loss in a social insect. *J. Exp. Biol.* **214**, 3808–3821. <https://doi.org/10.1242/jeb.060244> (2011).
- Alaux, C., Dantec, C., Parrinello, H. & Le Conte, Y. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees. *BMC Genom.* **12**, 496. <https://doi.org/10.1186/1471-2164-12-496> (2011).
- Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. *Biol. Lett.* **6**, 562–565. <https://doi.org/10.1098/rsbl.2009.0986> (2010).
- Rinderer, T. E., Rothenbuhler, W. C. & Gochnauer, T. A. The influence of pollen on the susceptibility of honey-bee larvae to *Bacillus* larvae. *J. Invertebr. Pathol.* **23**, 347–350. [https://doi.org/10.1016/0022-2011\(74\)90100-1](https://doi.org/10.1016/0022-2011(74)90100-1) (1974).
- Degradi-Hoffman, G., Chen, Y., Huang, E. & Huang, M. H. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (*Apis mellifera* L.). *J. Insect Physiol.* **56**, 1184–1191. <https://doi.org/10.1016/j.jinsphys.2010.03.017> (2010).
- Rinderer, T. E. & Elliott, K. D. Worker honey bee response to infection with *Nosema apis*. *J. Econ. Entomol.* **70**, 431–433. <https://doi.org/10.1093/jee/70.4.431> (1977).
- Wahl, O. & Ulm, K. Influence of pollen feeding and physiological condition on pesticide sensitivity of the honey bee *Apis mellifera Carnica*. *Oecologia* **59**, 106–128. <https://doi.org/10.1007/BF00388082> (1983).
- Herbert, E. W. Jr & Shimanuki, H. Chemical composition and nutritive value of bee-collected and bee-stored pollen. *Apidologie* **9**, 33–40. <https://doi.org/10.1051/apido:19780103> (1978).
- Roulston, T. H. & Cane, J. H. Pollen nutritional content and digestibility for animals. *Plant. Syst. Evol.* **222**, 187–209. <https://doi.org/10.1007/BF00984102> (2000).
- Odoux, J. F. et al. Territorial biodiversity and consequences on physico-chemical characteristics of pollen collected by honey bee colonies. *Apidologie* **43**, 561–575. <https://doi.org/10.1007/s13592-012-0125-1> (2012).
- Frias, B. E. D., Barbosa, C. D. & Laurencio, A. P. Pollen nutrition in honey bees (*Apis mellifera*): impact on adult health. *Apidologie* **47**, 15–25. <https://doi.org/10.1007/s13592-015-0373-y> (2016).
- Hassan, H. M. Chemical composition and nutritional value of palm pollen grains. *Global J. Biotechnol. Biochem.* **6**, 1–7 (2011).

22. Cimbirtoglu, S. & Güney, F. Pollen preference of honeybees depending on protein contents. *Bee Stud.* **13**, 1–4. <https://doi.org/10.51458/BSTD.2021.10> (2021).
23. Goleva, I. & Zebitz, C. P. W. Suitability of different pollen as alternative food for the predatory mite *Amblyseius swirskii* (Acari, Phytoseiidae). *Exp. Appl. Acarol.* **61**, 259–283. <https://doi.org/10.1007/s10493-013-9700-z> (2013).
24. Bibi, N., Manzoor, H. & Naveed, A. Palynological study of some cultivated species of genus *Hibiscus* from West frontier Province (N.W.F.P) Pakistan Noreen. *Pak J. Bot.* **40**, 1561–1569 (2008).
25. Shaheen, N., Khan, M. A., Hayat, M. Q. & Yasmin, G. Pollen morphology of 14 species of *Abutilon* and *Hibiscus* of the family malvaceae (sensu stricto). *J. Med. Plants Res.* **3**, 921–929 (2009). <https://academicjournals.org/journal/JMPR/article-abstract/39D8F4515332>
26. Dobson, H. E. M. & Bergström, G. The ecology and evolution of pollen odors. *Plant. Syst. Evol.* **222**, 63–87. <https://doi.org/10.1007/bf00984096> (2000).
27. Adler, L. S. The ecological significance of toxic nectar. *Oikos* **91**, 409–420. <https://doi.org/10.1034/j.1600-0706.2000.910301.x> (2000).
28. Adler, L. S. & Wink, M. Transfer of Quinolizidine alkaloids from hosts to hemiparasites in two *Castilleja-Lupinus* associations: analysis of floral and vegetative tissues. *Biochem. Syst. Ecol.* **29**, 551–561. [https://doi.org/10.1016/s0305-1978\(00\)00090-9](https://doi.org/10.1016/s0305-1978(00)00090-9) (2001).
29. Vandekerckhove, B. & De Clercq, P. Pollen as an alternative or supplementary food for the Mirid predator *Macrolophus Pygmaeus*. *Biol. Control* **53**, 238–242. <https://doi.org/10.1016/j.bioc.2010.01.005> (2010).
30. Liu, J. F. & Zhang, Z. Q. Development, survival and reproduction of a new Zealand strain of *Amblydromalus limonicus* (Acari: Phytoseiidae) on *Typha orientalis* pollen, *Epeorus Kuehniella* eggs, and an artificial diet. *Int. J. Acarol.* <https://doi.org/10.1080/01647954.2016.1273972> (2017).
31. Sun, Y., Chen, M., Hao, Y., Wang, S. & Zhang, C. Canola bee pollen is an effective artificial diet additive for improving larval development of predatory coccinellids: a lesson from *Harmonia Axyridis*. *Pest Manag Sci.* **80**, 2920–2928. <https://doi.org/10.1002/ps.8000> (2024).
32. Cottrell, T. E. & Yeargan, K. V. Effect of pollen on *Coleomegilla maculata* (Coleoptera: Coccinellidae) population density, predation, and cannibalism in sweet corn. *Environ. Entomol.* **27**, 1402–1410. <https://doi.org/10.1093/ee/27.6.1402> (1998).
33. James, D. G. Pollen, mould mites and fungi: improvements to mass rearing of *Typhlodromus Doreenae* and *Amblyseius victoriensis*. *Exp. Appl. Acarol.* **17**, 271–276. <https://doi.org/10.1007/BF02337276> (1993).
34. Shih, C. Automatic mass-rearing of *Amblyseius womersleyi* (Acari: phytoseiidae). *Exp. Appl. Acarol.* **25**, 425–440. <https://doi.org/10.1023/A:1017978017990> (2001).
35. Khanamani, M., Fathipour, Y., Talebi, A. A. & Mehrabadi, M. Quantitative analysis of long-term mass rearing of *Neoseiulus Californicus* (Acari: Phytoseiidae) on almond pollen. *J. Econ. Entomol.* **110**, 1442–1450. <https://doi.org/10.1093/jee/tox116> (2017).
36. Pourbahram, P., Hajiqanbar, H., Yazdanpanah, S. & Fathipour, Y. Generation-dependent demography and predation capacity of *Amblyseius swirskii* (Acari: Phytoseiidae) fed on saffron pollen. *Int. J. Acarol.* **48**, 669–678. <https://doi.org/10.1080/01647954.2023.2171481> (2022).
37. Eini, N., Jafari, S., Fathipour, Y. & Prager, S. M. Experienced generation-dependent functional and numerical responses of *Neoseiulus Californicus* (Acari: Phytoseiidae) long-term reared on Thorn Apple pollen. *Acarologia* **63**, 539–552. <https://doi.org/10.24349/igs-90ic> (2023).
38. Sarwar, M. Comparative life history characteristics of the mite predator *Neoseiulus Cucumeris* (Oudemans) (Acari: Phytoseiidae) on mites and pollen diets. *Int. J. Pest Manag.* **62**, 140–148. <https://doi.org/10.1080/09670874.2016.1146806> (2016).
39. Soltaniyan, A., Kheradmand, K., Fathipour, Y. & Shirdel, D. Suitability of pollen from different plant species as alternative food sources for *Neoseiulus Californicus* (Acari: Phytoseiidae) in comparison with a natural prey. *J. Econ. Entomol.* **111**, 2046–2052. <https://doi.org/10.1093/jee/toy172> (2018).
40. van Rijn, P. C. J., Van Houten, Y. M. & Sabelis, M. W. How plants benefit from providing food to predators even when it is also edible to herbivores. *Ecology* **83**, 2664–2679. [https://doi.org/10.1890/0012-9658\(2002\)083](https://doi.org/10.1890/0012-9658(2002)083) (2002). [2664:hpbfpf]2.0.co;2.
41. Nomikou, M., Janssen, A. & Sabelis, M. W. Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources. *Exp. Appl. Acarol.* **31**, 15–26. <https://doi.org/10.1023/b:appa.0000005142.31959.e8> (2003).
42. McMurtry, J. A., De Moraes, G. J. & Sourassou, N. F. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. *Syst. Appl. Acarol.* **18**, 297. <https://doi.org/10.11158/saa.18.4.1> (2013).
43. Goleva, I., Gerken, S. & Zebitz, C. P. Influence of pollen feeding on body weight and body size of the predatory mite *Amblyseius swirskii* (Acari, Phytoseiidae). *J. Plant. Dis. Prot.* **121**, 219–222. <https://doi.org/10.1007/bf03356514> (2014).
44. Ansari-Shiri, H., Fathipour, Y., Hajiqanbar, H., Riahi, E. & Riddick, E. W. Quality control of the predatory mite *Amblyseius swirskii* during long-term rearing on almond *Prunus amygdalus* pollen. *Arthropod Plant. Interact.* **16**, 645–655. <https://doi.org/10.1007/s1829-022-09929-6> (2022).
45. Eini, N., Jafari, S., Fathipour, Y. & Zalucki, M. P. How pollen grains of 23 plant species affect performance of the predatory mite *Neoseiulus californicus*. *BioControl* **67**, 173–187. <https://doi.org/10.1007/s10526-022-10129-7> (2022).
46. Hadadi, A., Fathipour, Y., Hajiqanbar, H. & Riahi, E. Long-term effects of cattail pollen on development, population growth potential, and predation capacity of *Amblyseius swirskii* (Acari: Phytoseiidae). *Biocontrol Sci. Technol.* **32**, 1403–1416. <https://doi.org/10.1080/09583157.2022.2134555> (2022).
47. Van Rijn, P. C. J., Van Houten, Y. M. & Sabelis, M. W. Pollen improves thrips control with predatory mites. *IOBC/WPRS Bull.* **22**, 209–212 (1999).
48. Hoogerbrugge, H., van Houten, Y. M., Knapp, M. & Bolckmans, K. Biological control of thrips and whitefly on strawberries with *Amblydromalus limonicus* and *Amblyseius swirskii*. *IOBC/WPRS Bull.* **68**, 65–69 (2011).
49. Khanamani, M., Fathipour, Y., Talebi, A. A. & Mehrabadi, M. How pollen supplementary diet affect life table and predation capacity of *Neoseiulus Californicus* on two-spotted spider mite. *Syst. Appl. Acarol.* **22**, 135–147. <https://doi.org/10.11158/saa.22.1.14> (2017).
50. Riahi, E., Fathipour, Y., Talebi, A. A. & Mehrabadi, M. Linking life table and consumption rate of *Amblyseius swirskii* (Acari: Phytoseiidae) in presence and absence of different pollens. *Ann. Entomol. Soc.* **110**, 244–253 (2017a).
51. Athias-Henriot, C. *Amblyseius swirskii*, Un nouveau phytoseiide Voisin d' A. *andersoni* (Acaris Anactinotriches). *Ann. Ec. Natl. Agric. Alger.* **3**, 1–7 (1962).
52. Demite, P. R., de Moraes, G. J., McMurtry, J. A., Denmark, H. A. & Castilho, R. Oct de C. Phytoseiidae database. (2014). www.lea.esalq.usp.br/phytoseiidae (accessed 20 (2014).
53. Calvo, F. J., Bolckmans, K. & Belda, J. E. Control of bemisia tabaci and *Frankliniella occidentalis* in cucumber by *Amblyseius swirskii*. *BioControl* **56**, 185–192. <https://doi.org/10.1007/s10526-010-9319-5> (2011).
54. Calvo, F. J., Bolckmans, K. & Belda, J. E. Biological control-based IPM in sweet pepper greenhouses using *Amblyseius swirskii* (Acari: Phytoseiidae). *Biocontrol Sci. Technol.* **22**, 1398–1416. <https://doi.org/10.1080/09583157.2012.731494> (2012).
55. Küttük, H. Performance of the predator *Amblyseius swirskii* (Acari: Phytoseiidae) on greenhouse eggplants in the absence and presence of pine *Pinus brutia* (Pinales:Pinaceae) pollen. *Entomol. Res.* **47**, 263–269. <https://doi.org/10.1111/1748-5967.12222> (2017).
56. EPPO (European and Mediterranean Plant Protection Organization.) Biological control agents safely used in the EPPO region. **PM6/003**(5), 34 pp. (2021).
57. Küttük, H. Performance of the predator *Amblyseius swirskii* (Athias-Henriot) (Acari: Phytoseiidae) on plastic greenhouse pepper sprayed vs unsprayed pine pollen. *Derim* **35**, 135–140. <https://doi.org/10.16882/derim.2018.396951> (2018).

58. Kadkhodazadeh, F., Asadi, M. & Khanamani, M. Suitability of different pollen grains and *Tetranychus urticae* as food for the predatory mite, *Amblyseius swirskii* (Acari: Phytoseiidae). *Persian J. Acarol.* **10**, 321–334. <https://doi.org/10.22073/pja.v10i3.66952> (2021).
59. Lamlom, M., Fahim, S. F. & Momen, F. M. The effects of maize pollen on development and population growth potential of *Amblyseius swirskii* and *Cydnoseius negevi* (Acari: Phytoseiidae) in subsequent generations. *Persian J. Acarol.* **13**, 115–130. <https://doi.org/10.22073/pja.v13i1.82742> (2024).
60. Fadaei, E., Hakimtabar, M., Seiedy, M. & Sarraf Moaieri, H. Effects of different diets on biological parameters of the predatory mite *Amblyseius swirskii* (Acari: Phytoseiidae). *Int. J. Acarol.* <https://doi.org/10.1080/01647954.2018.1525428> (2018).
61. Park, H., Shipp, L., Buitenhuis, R. & Ahn, J. J. Life history parameters of a commercially available *Amblyseius swirskii* (Acari: Phytoseiidae) fed on cattail (*Typha latifolia*) pollen and tomato russet mite (*Aculops lycopersici*). *J. Asia Pac. Entomol.* **14**, 497–501. <https://doi.org/10.1016/j.aspen.2011.07.010> (2011).
62. Delisle, J. F., Brodeur, J. & Shipp, L. Evaluation of various types of supplemental food for two species of predatory mites, *Amblyseius swirskii* and *Neoseiulus Cucumeris* (Acari: Phytoseiidae). *Exp. Appl. Acarol.* **65**, 483–494. <https://doi.org/10.1007/s10493-014-9862-3> (2014).
63. Delisle, J. F., Shipp, L. & Brodeur, J. Apple pollen as a supplemental food source for the control of Western flower thrips by two predatory mites, *Amblyseius swirskii* and *Neoseiulus Cucumeris* (Acari: Phytoseiidae), on potted chrysanthemum. *Exp. Appl. Acarol.* **65**, 495–509. <https://doi.org/10.1007/s10493-014-9863-2> (2015).
64. Shabbir, F., Hanif, M. A., Ayub, M. A., Jilani, M. I. & Rahman, S. Damask Rose. In *Medicinal plants of South Asia* (eds Hanif, M. A. et al.) 217–230 (Elsevier, 2020). <https://doi.org/10.1016/B978-0-08-102659-5.00017-3>.
65. Tabaei-Aghdaei, S. R. et al. Morphological and oil content variations amongst Damask Rose (*Rosa Damascena* Mill.) landraces from different regions of Iran. *Sci. Hortic.* **113**, 44–48. <https://doi.org/10.1016/j.scienta.2007.01.010> (2007).
66. Mahboubi, M. *Rosa Damascena* as holy ancient herb with novel applications. *J. Tradit Complement. Med.* **6**, 10e16 (2016).
67. Mirakbari, S. M. & Shirazi, M. H. Poisoning with tasty and sweet seed pods of bird of paradise plant *Caesalpinia gilliesii*. *Wilderness Environ. Med.* **30**, 99–100. <https://doi.org/10.1016/j.wem.2018.09.001> (2019).
68. Yazdanpanah, S., Pourbaram, P. & Fathipour, Y. Bird-of-paradise, Thorn Apple and maize pollens are promising alternative diets for the long-term rearing of predatory mite *Amblyseius swirskii* (Acari: Phytoseiidae). *Syst. Appl. Acarol.* **28**, 1678–1690. <https://doi.org/10.11158/saa.28.10.8> (2023).
69. Riahi, E., Fathipour, Y., Talebi, A. A. & Mehrabadi, M. Natural diets vs factitious prey: comparative effects on development, fecundity and life table of *Amblyseius swirskii* (Acari: Phytoseiidae). *Syst. Appl. Acarol.* **22**, 711–723. (2017). <https://doi.org/10.11158/saa.22.5.10>
70. Walzer, A. & Schausberger, P. Cannibalism and interspecific predation in the phytoseiid mites *phytoseiulus persimilis* and *Neoseiulus californicus*: predation rates and effects on reproduction and juvenile development. *BioControl* **43**, 457–468. <https://doi.org/10.1023/A:1009980401662> (1999).
71. Faraji, F., Janssen, A. & Sabelis, M. Predatory mites avoid ovipositing near counter attacking prey. *Exp. Appl. Acarol.* **25**, 613–623. <https://doi.org/10.1023/A:1016100212909> (2001).
72. Cao, K. et al. Two-sex life table analysis of the predator *Arma chinensis* (Hemiptera: Pentatomidae) and the prediction of its ability to suppress populations of *Scopula subpunctaria* (Lepidoptera: Geometridae). *Agriculture* **13**, 1254. <https://doi.org/10.3390/agriculture13061254> (2023).
73. Chi, H. & Liu, H. Two new methods for the study of insect population ecology. *Bull. Inst. Zool. Acad. Sin.* **24**, 225–240 (1985).
74. Chi, H. Life-table analysis incorporating both sexes and variable development rate among individuals. *Environ. Entomol.* **17**, 26–34. <https://doi.org/10.1093/ee/17.1.26> (1988).
75. Chi, H. & TWOSEX-MSChart: A computer program for the age-stage, two-sex life table analysis. (2024). Retrieved from <http://140.120.197.173/Ecology/prod02.htm> (Version 2024.05.07).
76. Chi, H. et al. Advances in theory, data analysis, and application of the age-stage, two-sex life table for demographic research, biological control, and pest management. *Entomol. Gen.* **43**, 705–732. <https://doi.org/10.1127/entomologia/2023/2048> (2023).
77. Ning, S., Zhang, W., Sun, Y. & Feng, J. Development of insect life tables: comparison of two demographic methods of *Delia antiqua* (Diptera: Anthomyiidae) on different hosts. *Sci. Rep.* **7**, 4821. <https://doi.org/10.1038/s41598-017-05041-5> (2017).
78. Rahmani Piyani, A., Shishehbor, P., Kocheili, F. & Riddick, E. W. Comparison of natural prey *Tetranychus turkestanii*, date palm pollen, and bee pollen diets on development, reproduction, and life table parameters of the predator *Amblyseius swirskii*. *Acarologia* **61**, 890–900. <https://doi.org/10.24349/G9ed-QB9h> (2021).
79. Xin, T. R. & Zhang, Z. –Q. Suitability of pollen as an alternative food source for different developmental stages of *Amblyseius herbiculus* (Chant) (Acari: Phytoseiidae) to facilitate predation on whitefly eggs. *Acarologia* **61**, 790–801. <https://doi.org/10.24349/bIV1-2heN> (2021).
80. Barzkar, M., Shishehbor, P., Habibpour, B., Hemmat, A. & Riahi, E. Development, survival, and reproduction of *Amblyseius swirskii* (Athias-Henriot) (Acari: Phytoseiidae) feeding on different pollen grains. *Acarologia* **63**, 1062–1071. <https://doi.org/10.24349/izm-p-v7mc> (2023).
81. Khademi, S., Askarianzadeh, A. & Saeedizadeh, A. Effect of pollen diets on life table parameters of *Amblyseius swirskii*, *typhlodromus bagdasarjani*, and *phytoseiulus persimilis* (Acari: Phytoseiidae). *Int. J. Acarol.* **10**, 1–9. <https://doi.org/10.22073/pja.v10i3.66952> (2025).
82. Nemati, A. & Riahi, E. Does feeding on pollen grains affect the performance of *Amblyseius swirskii* (Acari: Phytoseiidae) during subsequent generations?. *Bull. Entomol. Res.* <https://doi.org/10.1017/S0007485319000804> (2019).
83. Van Rijn, P. C. J. & Tanigoshi, L. K. Pollen as food for the predatory mites *Iphiseius degenerans* and *Neoseiulus Cucumeris* (Acari: Phytoseiidae): dietary range and life history. *Exp. Appl. Acarol.* **23**, 785–802. <https://doi.org/10.1023/A:1006227704122> (1999).
84. Fernandes, V. J. et al. Effects of fabaceae and Poaceae pollen accessibility and traits on the pollinivory of adult *Chrysoperla externa* (Hagen) (Neuroptera: Chrysopidae). *Neotrop. Entomol.* **52**, 945–955. <https://doi.org/10.1007/s13744-023-01072-y> (2023).
85. Kizi, M. S. B. Some aspects of *Caesalpinia gilliesii* and David's buddleia (*Buddleia davidii*), breeding technology. (2024). <https://doi.org/10.5281/zenodo.14184132>
86. Snyder, W. E., Joseph, S. B., Preziosi, R. F. & Moore, A. J. Nutritional benefits of cannibalism for the lady beetle *Harmonia Axyridis* (Coleoptera: Coccinellidae) when prey quality is poor. *Environ. Entomol.* **29**, 1173–1179. <https://doi.org/10.1603/0046-225x-29.6.1173> (2000).
87. Kumar, V. et al. Effect of pollens of various ornamental pepper cultivars on the development and reproduction of *Amblyseius swirskii* (Acari: Phytoseiidae). *Fla. Entomol.* **97**, 367–373 (2014).
88. Soltaniyan, A., Kheradmand, K., Fathipour, Y. & Shirdel, D. Supplementation of natural prey with pollen grains exerts an influence on the life table parameters of *Neoseiulus californicus*. *Bull. Entomol. Res.* **110**, 535–541. <https://doi.org/10.1017/S000748532000005X> (2020).
89. Lopez, L. Meet *Amblyseius swirskii* (Acari: Phytoseiidae): a commonly used predatory mite in vegetable crops. *J. Integr. Pest Manag.* **14** (1), 20. <https://doi.org/10.1093/jipm/pmad018> (2023).
90. McMurtry, J. A. & Croft, B. A. Life-styles of phytoseiid mites and their roles in biological control. *Annu. Rev. Entomol.* **42**, 291–321. <https://doi.org/10.1146/annurev.ento.42.1.291> (1997).
91. Calvo, F. J., Knapp, M., van Houten, Y. M., Hoogerbrugge, H. & Belda, J. E. *Amblyseius swirskii*: what made this predatory mite such a successful biocontrol agent? *Exp. Appl. Acarol.* **65**, 419–433. <https://doi.org/10.1007/s10493-014-9873-0> (2015).

92. Lopez, L., Smith, H. A., Hoy, M. A. & Cave, R. D. Dispersal of *Amblyseius swirskii* (Acari: Phytoseiidae) on high-tunnel bell peppers in presence or absence of *Polyphagotarsonemus latus* (Acari: Tarsonemidae). *J. Insect Sci.* **17**, 1–7 (2017).
93. Messelink, G. J., van Maanen, R., van Holstein-Saj, R., Sabelis, M. W. & Janssen, A. Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. *Biocontrol* **55**, 387–398 (2010).
94. Nomikou, M., Sabelis, M. W. & Janssen, A. Pollen subsidies promote whitefly control through the numerical response of predatory mites. *BioControl* **55**, 253–260 (2010).
95. Schuldiner-Harpaz, T., Coll, M. & Weintraub, P. G. Prey and pollen food choice depends on previous diet in an omnivorous predatory mite. *Environ. Entomol.* **45**, 995–998. <https://doi.org/10.1093/ee/nvw063> (2016).

Acknowledgements

This study is part of an MSc thesis and was partially supported by the Science and Research Branch, Islamic Azad University, Tehran, Iran.

Author contributions

Farank Kourous prepared the materials and collected and analyzed the data. Shima Rahmani (corresponding author) contributed to the study's conception, design, and data analysis and also wrote the manuscript.

Funding

This study was partially funded by the Science and Research Branch, Islamic Azad University, Tehran, Iran, as an MSc thesis.

Declarations

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to S.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025, corrected publication 2025