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NSPLformer: exploration of non-
stationary progressively learning
model for time series prediction

Sun Jiaxing®2", LiYanhui' & Zhao Yuying?

Although Transformers perform well in time series prediction, they struggle when dealing with real-
world data where the joint distribution changes over time. Previous studies have focused on reducing
the non-stationarity of sequences through smoothing, but this approach strips the sequences of their
inherent non-stationarity, which may lack predictive guidance for sudden events in the real world. To
address the contradiction between sequence predictability and model capability, this paper proposes
an efficient model design for multivariate non-stationary time series based on Transformers. This
design is based on two core components: (1)Low-cost non-stationary attention mechanism, which
restores intrinsic non-stationary information to time-dependent relationships at a lower computational
cost by approximating the distinguishable attention learned in the original sequence.; (2) dual-data-
stream Progressively learning, which designs an auxiliary output stream to improve information
aggregation mechanisms, enabling the model to learn residuals of supervised signals layer by layer.
The proposed model outperforms the mainstream Tranformer with an average improvement of 5.3%
on multiple datasets, which provides theoretical support for the analysis of non-stationary engineering
data.

Keywords Times series prediction, De-stationary attention mechanism, Progressively learning Block, Non-
stationary modeling, Deep learning

Time series forecasting plays a crucial role in many applications such as energy consumption planning', traffic
flow analysisz, financial risk assessment? and cloud resource allocation?. Time series data recorded from the real
world usually exhibit diverse and unsteady characteristics due to the complex transient conditions experienced
during their evolution®. This phenomenon reflects the complexity and diversity of time series data in real-world
applications and poses challenges for their analysis and modeling (i.e., distributional shifts induced by time
series non-stationarity)°®.

A recent approach to solve the above distributional bias problem is to utilize plug-and-play normalization
methods, Kim et al” proposed a method called reversible instance normalization (RevIN), RevIN consists of
two distinct steps, normalization and unnormalization. The former normalizes the input to fix its distribution
based on the mean and variance, while the latter returns the output to the original distribution. To alleviate
the challenges posed by non-stationarity in time-series data, Liu et al® proposed SAN (Slice-Level Adaptive
Normalization), a flexible normalization and denormalization scheme that removes non-stationarity and
independently models variations in the statistical properties of the original time-series data through local time
slices, thus achieving prediction performance improvement on a wide range of benchmark prediction models
The prediction performance improvement is realized on a variety of benchmark prediction models. To address
the challenges posed by complex non-uniform distributions and pattern drift in real time-series data, Sun et
al® proposed the TFPS (Time-Frequency Pattern Specific) architecture, which utilizes pattern-specific expert
modules in combination with bi-domain encoders and subspace clustering techniques to dynamically identify
and model unique patterns in data segments, which This results in significantly improved prediction accuracy.
Fan et al'® systematically summarized the distribution drift problem in temporal prediction and classified it into
distribution changes within the input space (recall window) and output space (prediction window) (internal
space drift) and distribution differences between the input and output spaces (cross-space drift). Meanwhile,
Dish-TS, a generalized neural architecture, is proposed to effectively mitigate the effects of distributional drift by

1Department of Bohai Rim Energy Research Institute, Northeast Petroleum University, No550,West Section ofHebei
Street, Qinhuangdao 066004, Hebei province, China. 2Electrical and Information Engineering, Northeast Petroleum
University, Xuefu Street 99, Daging 163318, Heilongjiang province, China. 3Qinhuangdao Campus, Northeast
Petroleum University, No. 550, West Section of Hebei Street, Qinhuangdao 066004, Hebei province, China. *email:
SJX_change@126.com

Scientific Reports| 2025 15:28904 | https://doi.org/10.1038/s41598-025-13680-2 nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-13680-2&domain=pdf&date_stamp=2025-8-6

www.nature.com/scientificreports/

learning and adjusting the distributions in the input and output spaces respectively through a dual-coefficient
network (Dual-CONET). All of these methods normalize the input time series to a uniform distribution,
explicitly removing non-smoothness to reduce the differences in data distribution.

However, non-stationarity is an inherent property of real-world time series, and also good guidance for
discovering temporal dependencies for forecasting.In experiments, it has been found that direct smoothing of
time-series data causes ordinary transformer models to lose the ability to capture the important event-based
temporal dependencies in the data. That is, the data loses important non-stationarity properties during the
smoothing process, causing the model to fail to correctly capture eventful changes in the data and limiting
the model’s forecasting ability, a problem known as over-stationarization. It is precisely these important non-
stationarity properties that should be the focus of the attention mechanism, such as drastic changes in traffic flow
due to traffic accidents, abnormal sensor readings due to sudden equipment failures, and meteorological data
variations due to sudden rainstorms. However, designing highly complex and nonlinear deep model structures
for better learning of non-stationarity features to solve the problem of unpredictable event-based changes
will lead to severe overfitting (validation loss increases significantly and training loss still decreases sharply).
Therefore, how to reduce the time series non-stationarity to improve predictability while avoiding the problem
of model overfitting is a key issue to further improve the prediction performance.

In this paper, a sample of predictions is plotted in Fig. 1 to better illustrate our observations. Despite the
temporal correlation, the mean values of the input sequences are significantly different from the mean values of
the field-of-view window (from 35.79 to 48.3), suggesting that there may be a generalized distributional shift.
Furthermore, this distributional bias can change rapidly at finer-grained slice levels, and this rapid change violates
the underlying assumptions of existing normalization methods (which typically assume that the distribution of
the input data is relatively stable). As a result, the use of inappropriate normalization methods not only destroys
the intrinsic pattern of the input series, but also leads to bias in the final prediction results.

In this paper, we explore the impact of non-stationarity in time series forecasting and propose NSPLformers
as a general framework. The framework consists of two interdependent modules and a two-stream asymptotic
learning architecture: Series Stationarization for improving the predictability of non-stationarity time series; and
De-stationary Attention for mitigating the over-stationarization problem. Specifically, Series Stationarization
employs a simple but effective normalization strategy that unifies the statistical properties of each time series
without additional parameters, while De-stationary Attention approximates the attention mechanism of the
original data and compensates for the inherent non-stationarity of the original time series. The architecture
of Dual Data Stream Progressive Learning utilizes the concept of de-redundancy to propose a progressive
learning approach aimed at systematically acquiring the components of the supervised signals to improve the
performance of time series (TS) prediction. And an auxiliary output stream is introduced in each Block to form
a highway that gradually guides to the final prediction. The subsequent Block outputs of this output stream will
subtract the previously learned results layer by layer, enabling the model to gradually learn the residual parts of
the supervised signal. The dual data stream design further facilitates the implicit layer-by-layer decomposition
of the input and output streams, enhancing the model’s flexibility, interpretability, and resistance to overfitting.

The contribution of this paper is threefold:

« The predictive ability of non-stationary sequences is crucial in actual predictions. Through detailed analysis,
it was found that the current stationarisation method leads to over-stationarisation, thereby limiting the pre-
dictive ability of Transformers;

« We propose a low-cost non-stationary progressive learning Transformer, which includes sequence smoothing
to improve sequence predictability, de-smoothing attention mechanisms, and progressive learning modules.
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Fig. 1. Examples of forecasts of energy consumption and illustrations of their daily averages (MeanByDay). We
also plot the mean of the input sequence and the mean of the horizon sequence in the figure.
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We simplify the attention mechanism calculation using low-rank approximation methods to reduce complex-
ity and reintroduce the non-stationarity of the original sequence to avoid over-stationarization issues;

o This paper constructs a dual data stream design that promotes implicit gradual decomposition of input and
output streams based on incremental learning through auxiliary output streams and improved information
aggregation mechanisms, thereby giving the model greater flexibility, interpretability, and resistance to over-
fitting, effectively resolving the dilemma between sequence predictability and model capability.

Related work

In recent years, due to the powerful nonlinear fitting capabilities of deep learning'!, time series prediction models
have been applied to various fields such as medicine!>"!*, petroleum exploration'®, industrial production!®'7,
classification detection'®®, and many others. However, time series (TS) from the real world often exhibit various
non-stationary characteristics due to their evolution under complex transient conditions®. The characteristics
of non-stationary time series are reflected in the continuous changes in their statistical properties and joint
distributions®, making accurate prediction extremely challenging.?! As a result, numerous scholars have
conducted research on the prediction of non-stationary time series.

Transformer-based time series forecaster

Recently, deep learning models have achieved remarkable success in time series prediction, in order to capture
the long-term coupling of inputs and outputs over a long period of time, Zhou et al designed a transformer-
based Informer for long-series time series forecasting (LSTF), which overcomes the limitations of the traditional
Transformer by introducing the ProbSparse self-attention mechanism, self-attention distillation and generative
decoder, which overcomes the limitations of quadratic time complexity, high memory consumption, and
encoder-decoder architecture of traditional Transformer.2.WU et al aimed to solve the long time series
prediction problem by proposing a novel decomposition architecture with autocorrelation mechanism, which
enables the model to have the capability of progressive decomposition of complex time series, correlation
discovery and representation aggregation at the subsequence level level?>. Liu et al proposed a novel neural
network architecture called SCINet to efficiently model and predict time series through recursive downsampling,
convolution, and interactive operations?’. Nie et al proposed an efficient design of a multivariate time series
prediction and self-supervised representation learning model based on the Transformer, the model is based on
two key components:(i) segmentation of time series into sub-series level patches; and (ii) channel independence,
which achieves retention of local semantic information, quadratic reduction in computation and memory
usage of the attention graph and the ability of the model to focus on longer histories®®. Zhang et al. proposed
a Crossformer named Transformer base model, which effectively captures cross-time dependencies and cross-
dimensional dependencies in multivariate time series (MTS) by introducing Dimension-Segment-Wise (DSW)
embedding and Two-Stage Attention (TSA) layer, and establishes a Hierarchical Encoder-Decoder (HED)
architecture to utilize different scales of information, experimental results show that Crossformer significantly
outperforms previous state-of-the-art approaches on six real-world datasets?. Considering the limitations of
point-by-point representations in terms of local semantics, liu et al.?” proposed a model named iTransformer to
efficiently capture cross-variate correlations in multivariate time series and learn nonlinear representations by
inverting the functionality of the attention mechanism and feedforward network in Transformer. These models
aim to extract diverse and informative patterns from historical observations to improve the accuracy of time
series forecasting. In order to improve the accuracy of real-world time series forecasting, the key challenge is
twofold, on the one hand, the fact that data from numerous real-world data series data exhibit exhibit dynamic
and evolving patterns, a phenomenon known as non-stationary. This property usually leads to training and
testing This property usually leads to inconsistent distributions between the training set, the testing set, and
the future unseen data set. Thus, the non-stationary property in time-series data requires the development of
robust predictive models that can cope with the variation of such data distributions over time, and failure to
address this challenge often leads to reduced representational power and impaired model generalization. On the
other hand, there is the phenomenon of overfitting when deep models learn high-dimensional non-stationary
features of emergent events, which usually manifests itself as feature redundancy, poor interpretability and weak
generalisation.

Redundancy-reduced progressive learning

A new training strategy based on progressive learning was proposed by Zhou et al. By equipping each low-
precision convolutional layer with an auxiliary full-precision convolutional layer based on the low-precision
network structure. At the same time, a decay method is introduced to gradually reduce the output of the added
full-precision convolutional layer, thus keeping the topology the same as the original low-precision convolutional
layer, and realising the progressive learning strategy?®. A stepwise approach for learning independent hierarchical
representations and realizing the learning of representations from high-level to low-level in the VAE framework.
The effectiveness of the approach in decoupling representation learning is confirmed by quantitative and
qualitative evaluations on a benchmark dataset and is the first attempt to progressively extend the VAE capacity
to learn hierarchical representations for improved decoupling®. Zhao et al proposed a three-stage learning
framework for retrieval by gradually learning complex knowledge of mixed-modal queries and introduced a
self-supervised adaptive weighting strategy®’. The above methods attempt sequence decomposition applied
to the input sequence to enhance the predictability of the time series and reduce the impact of algorithmic
complexity on the model. However, the mainstream time series prediction algorithms are susceptible to severe
overfitting when the original sequence has strong non-stationarity. In this paper, the proposed method mitigates
the overfitting problem by implicitly decomposing the supervised signals by learning each time-varying pattern
through progressive bootstrapping.
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Fig. 2. NSPLformer normalizes and denormalizes the input series by smoothing and adjusts the time-
dependent weights using the de-smoothing attention mechanism to better handle non-smooth time series.
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Fig. 3. This section proposes a model-independent symmetric normalization module that removes and
recovers non-stationary factors from time series data from a slicing perspective.

NSPLformer

As mentioned earlier, stationary is an important component of time series predictability. Previous research
efforts have focused on “direct smoothing” to reduce the non-smoothness of the series in order to obtain
better predictability. However, non-stationarity is an inherent property of real-world time series, and the
design of “direct smoothing” will lead to over-stationarization of the model, and the design of complex deep
models to learn unprocessed non-stationary features will lead to severe overfitting of the model. To solve the
above dilemma, this paper proposes NSPLformer (Non-stationary Progressively Learning Transformer). The
model involves: Series Stationarization to attenuate the time series non-stationarity, De-stationary Attention
mechanism to recombine the non-stationary features of the original series, and a design of the dual data stream
model structure to suppress overfitting. As Fig. 2, with the support of these designs, the model can improve time
series data predictability while maintaining model capability.

Series stationarization

The statistical properties (e.g., mean and standard deviation) of non-stationary time series change during the
inference process, which makes it difficult for the deep model to perform effective generalized prediction.
Therefore, in this paper, in terms of dealing with the non-stationarity of the original time series, the normalization
module is designed to firstly deal with the non-stationary series caused by different data distributions, and finally
the inverse normalization module restores the model output to the original statistical characteristics.Here are
the details.

Normalization moudule Existing normalization methods for non-stationary time series prediction
are to normalize the input series to remove non-stationary factors and restore them to the output series by
denormalization. As Fig. 3 the method in this paper differs from it in that by slicing the input sequence into
multiple non-overlapping slices and performing a local normalization operation on each slice, it is able to
effectively remove the non-stationary factors while preserving the intrinsic pattern of each slice.

This local processing is more advantageous than the global normalization method, especially when dealing
with complex non-stationary time series. Eventually, the normalized slices are recombined into a new input
sequence by an inverse normalization step. The input 2 is first split into M non-overlapping slices {z}}7Z,,
where the mean and standard deviation of each slice z can be expressed as:
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Where i J,O'J € RY*! and @), is the value of slice 2 at t-th time step.The normalized input sequence
51) .
xj = " canbe expressed as:
) 1 . o
s 7 7
T, = _ (et — ulk
J ol + € (5 — 1y) (2)

Where is the element-wise product and e is a small constant.Finally, a new input sequence with non-stationary
factors removed is formed by recombining the slices and used as input to the prediction model.

De-normalization module In order to recover the characteristics of the original sequence, we apply a
denormalization process to the model output Y’ = [Y7, Y7, ..., Y5]" € RY* using the statistical parameters
; and o of the original sequence.In contrast to normahzatlon, De- normallzatlon is performed on a per-slice
basis. For the predictive model output Y’, which is split into K non-overlapping slices {§/; } 1, the statistically
based inverse normalization of any slice can be expressed as

2

G = (05 + )+ 3)

Finally, all slices are restored in chronological order. By leveraging the models translational and scaling
equivariance, the normalization and de-normalization modules ensure that the model maintains high prediction
stability and accuracy, even when the mean or amplitude of the input sequence changes. This robustness is
crucial for reliable performance under varying input conditions.

De-stationary attention

In time series forecasting, although the statistical features can be recovered to the corresponding forecasts by
inverse normalization, etc., the non-stationary nature of the original series cannot be fully recovered by simple
inverse normalisation. Specifically, Series Stationarization can generate similar normalised inputs z’ based on
different time series 1 and 2, and the basic model will get the same attention when processing these normalised
inputs, thus failing to capture the temporal dependencies associated with the non-stationary. This phenomenon
is particularly relevant in the case of attention computation. This phenomenon is particularly noticeable in the
attention computation process. In addition, non-stationary time series tend to lose their intrinsic structure
during stationarization and fragmentation, where these segments are forced to have the same mean and variance
after back-normalisation, and are therefore closer to similar distributions than to the true distribution of the
original data before normalisation. This results in models that are more likely to produce outputs that are over
stationarization and lack variation, which contradicts the natural non-stationary nature of the original time
series.

To address the problem of over-stationaryization caused by sequence normalisation, we propose a new De-
stationary Attention Mechanism . The mechanism aims to approximate the attention distribution obtained when
no normalisation is performed, thus enabling the identification and capture of specific temporal dependencies
from raw non-stationary data, reducing the prediction error due to over-stationarization.

Analysis of the plain model As mentioned earlier, the over-stationarization problem stems from the
disappearance of the inherent non-stationarity information in the original time series, which leads to the
underlying model’s inability to capture eventful temporal dependencies for prediction. Therefore, we attempt
to approximate the learned attention from the original non-stationary time series. The known self-attention
mechanism® is as follows:

_ QK"
Attn(Q, K, V) = Softmax < NG ) \% (4)

k

Where Q, K,V € RS> are the Queries, Keys, and Values of length S, respectively, all of dimension dg, and
the Softmax(-) operation is performed on a row-by-row basis. To simplify the analysis, it is assumed that
the embedding layer and the feed-forward layer f have a linear nature and their operations are completely
independent of each time point. That is, each ¢; in Q = [q1, ¢z, . . ., gs]” can be expressed as ¢; = f(;),where
the input time series = [z1, Z2, . . ., xs]

Since it is common practice to stabilize each time series variable to avoid the over-dominance of scale by a
particular variable, we assume that each variable of the time series x has the same variance. This simplification
reduces the original vector of standard deviations o, € RE*? to a scalar. After passing through the normalization
module, the model receives a smoothed input of:

— 1T
x'zxgiuz (5)

Where 1 € R®*! is a vector of all ones. Based on the above assumption of linear nature, it can be shown that the
attention layer will receive the query vector Q' as:

Scientific Reports |

202515:28904 | https://doi.org/10.1038/s41598-025-13680-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Q—1ug

Oz

Q =I[f(ah),..., f(@s)]" = (6)

where 1g € R% ! is the mean value of the query vector Q along the time dimension. Similarly, Key and Value
are converted to K’ and V' . The attention mechanism based on Q' and K" after stationarized is:

1
QK™ = = (QKT — 1pbK — Kpgl™ + 1ub K ugl™) 7)
x

(8)

Softmax (QKT> = Softmax (O:%Q/K/T + MMgK)T + (Qux)1" — 1(N5MK)1T>

e Vi

where Q,x € R¥*! and ,ug,uK € R, These quantities are iteratively applied to each column and element of
o2Q'K'" € R®*S during the computation. Using the translation invariance of the Softmax function, the
computation of the attention mechanism can be simplified as follows:

T 2 /K/T 1 TKT
Softmax <QK ) = softmax (OJ?Q + 1K > 9)
N NG

This section derives a direct expression for the attentional mechanism Softmax(QK7 //d},) learnt from the
original sequence x. In addition to @’ and K’ in the stationarized time series ', non-stationary information
needs to be introduced, which is eliminated during the sequence stationarization process. Therefore, in order
to recover the original non-stationary time series features, the lost non-stationary information needs to be
reintroduced inside the depth model.

De-stationary Attention In order to restore the original attention to the non-stationary series, we try to
introduce unappreciatednon-stationary information into its computation. Defining the approximate scaling
scalar 7 = 02 € R and the displacement vector A = K g € R”*! as the de-smoothing factors, this section
try to learn the non-stationary factors directly from the non-stationary x, Q and K statistics by a simple but
effective multilayer perceptron. Since we can only find limited non-stationary information from the known
@', K', a reasonable source for compensating non-stationarity at one time can only be the original sequence.
Therefore, in this paper, we use a multilayer perceptron to map the input sequences into a high-dimensional
space to learn the non-smooth factors 7 and A from ag,o§ ,x,i§ respectively.And the De-stationary Attention

is calculated as follows.
log 7 = MLP (03, (02)2,1‘752)
A = MLP (po, 15, x, T5)
QK + 1AT) v
Vi

(10)
De-stationary(Q’, K', V', 7, A) = Softmax <

The de-stationary factors 7 and A are shared across all de-stationary attention layers. The de-stationary attention
mechanism learns the temporal depender%cies from the stationarized sequences @', K’ and the statistical
properties of the original sequences o2 ,05 »x,&; and multiplies them by the stationarized value V' . Thus, it is

able to exploit the predictability of the stationarized series while maintaining the time dependence inherent in
the original series.

De-stationary attention is low rank

In this section, the non-stationary attention mechanism is optimised in terms of linear time and memory
complexity. In this section, two linear projection matrices £, F € R™*¥ are added in the computation of key
and value to reduce the computational cost of computing the context mapping matrix P based on the stochastic
projection method. First, the original n x d dimensional key and value layer is projected to the k X d dimensional
projected key and value layer, and then an n x k dimensional context mapping matrix p is computed using the
scaled dot product attention mechanism.

/ NT T
TQ (Efi/zTJr 1A PV ()
k v

P:nxk

De-stationary(Q', EK', FV' 1, A) = Softmax

Finally, only O(nk) time and space complexity is required to compute the context embedding using
P . (FV'). Thus, choosing a very small projection dimension k such that k < n, then the method can
significantly reduce memory and computational cost consumption. The following theorem shows that when
k = O(d/€®) (independent of n), one can use a linear non-stationary attention mechanism to approximate
P - V' with an error of .
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Theorem 1 (Linear De-stationary Attention) For any Q,K,V e R™*4, if
k = min{0(9dlog(d)/e*), 50(log(n)/e*)}, then there exists matrices F, ' € R"** such that, for any row

vector w of matrix Q(K)T/\/d , we have: w - (%) -FV' . Poxk

k

Pr (Hsoftmax(wET)FV' — softmax(w)V'|| < e||softmax(w)||\|V’H) >1-o0(1) (12)

where E = 6Rand F = ¢ °R, Ris an n x k matrix whose elements are independently distributed from the
normal distribution N(0, 1/k) and § is is a small constant. By applying the results of the above formula to each
row vector of matrix A and each column vector of matrix V”, it can be proven that for any row vector A; of
matrix A, the error between the transformed result and the original result is controlled within an acceptable
range with high probability, thereby verifying the effectiveness and stability of the model in processing high-
dimensional data.

Pr (Hexp(Al-ET)FV — exp(A,-)VH <e Hexp(Ai)VH) >1-—o0(1) (13)

5log(nd)

By setting k = 23 the above procedure shows that for a given approximation error € > 0, the

approximation error condition we wish to obtain will almost certainly hold for a set value of k, suggesting that
we can control the approximation error by choosing an appropriate value of k for the model in this paper. This
suggests that the model in this paper can control the approximation error with an appropriate choice of k-value,
and significant improvements in training and inference speed are observed. For more details, please refer to the
appendix.

Progressively learning block

Time series forecasting models are prone to severe overfitting when dealing with time series data due to the non-
stationarity of the time series, the time series evolves under complex transient conditions. This is manifested
by the fact that during the training process, the training loss still decreases dramatically, but the validation loss
still increases significantly. In this section, a progressive learning module is designed to systematically acquire
the components of a supervised signal by decomposing the supervised signal and learning different parts of the
time series sequentially. The module adopts a dual data stream and subtraction mechanism, where the module
generates a prediction result and subtracts it from the prediction results of the subsequent layers to generate
a residual data stream, through which the module is able to reduce the prediction error layer by layer in this
decreasing way. At the same time, the module builds a ‘high-speed channel’ for the prediction results to go
directly to the next module, which gradually learns the residual streams and output streams of the stacked
blocks, and gradually approaches the real labels, thus improving the model performance and effectively avoiding
overfitting.

When the attention mechanism deals with time series where different attributes are independent of each other,
the attention mechanism still tries to learn the relationship between these attributes, increasing the complexity
of the model and the number of parameters, resulting in a large amount of redundant information and leading
to model overfitting. To mitigate this problem, this section implements a correction metric by subtracting the
attention output from the input. This ensures that attention can be effectively utilised to its inherent advantage,
thus improving overall performance. This process can be expressed as:

X1 = De — stationary (X; 1)

- (14)

Rip=Xi1-0Xi1
Where,X 1,1 represents the input signal processed by the Attention mechanism (Attention) in the Ith layer,R; 1
denotes the remainder of the input X ; after block processing, and dis the Dirac function.d is used to eliminate
the Attention layer when an unfavourable influence is applied. Similarly, the input signal processed by the
feedforward layer will be ubtracted from the input and can be expressed as:

X2 = FeedForward (R;,1)

. (15)

Ri2=Xi2—06Xi2
The feedforward layer consists of two identity mappings with an activation function inserted between them,
which specialises in non-linear transformations of the temporal aspect. This feature is particularly important
when dealing with multivariate time series data with strong independence between features. Specifically, the
current block contains two parallel data streams: the output X; processed by the neural modules, and the residual
R, obtained by subtracting X; from the input, which is processed by a gate mechanism and then directed to the
next block or projected to the output space. The two data streams are processed through the gate mechanism and
are then directed to the next block or projected to the output space.

Drawing inspiration from RNNs’2, this section adopts an approach that can autonomously regulate the
transfer of information, similar to the control mechanisms inherent to cells in RNNs. Thus, we introduce a gate
mechanism at the end of each block to control the transmission of the two data streams.

For residual stream, the gate mechanism can be expressed as:
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Xip1 =0 (01(Ri2)) - 02(Ru.2) (16)

where o is the sigmoid function and 01 and 02 are learnable neurons with different parameters. Similarly, for the
intermediate output stream X;,the gate mechanism can be expressed as:

0it1 =0 (93 ([Xl,l,Xl,Q]) - 04 ([Xl,l,Xl,Q])) (17)

Where [] denotes concatenation. o(l + 1) enables the module to better utilise the output of the non-stationary
attention mechanism and the output of the feedforward layer. The gating mechanism can introduce signal
morphing in both data streams, effectively adjusting the amount of information output from the current block. It
enables the model to selectively enhance or attenuate the influence of specific phases, thus adequately mitigating
the overfitting effects of independent attributes and redundant information on the model and enhancing its
modeling capabilities. Compared with other time series prediction models, the model proposed in this paper
is able to complete the screening and amplification of information, learn the residual and output signals in an
incremental learning manner, and gradually approximate the supervised.

Overall architecture

The overall architecture uses stacked Progressively learning blocks combined with non-stationary attention
mechanisms, parallel data flow structures, gating mechanisms and Normalisation module De-normalization
module.Comparing with the standard Transfomer model’!, the model proposed in this paper designs the
non-stationary attention mechanism for the non-stationary nature of the original series in order to improve
the prediction ability of non-stationary time series. Comparing with the variants of Transformer®*?2, this
paper varies the terms within Softmax(-) with a de-stationary factor 7, § to reintegrate the non-stationary
information. In terms of time series forecast decomposition, the architecture proposed in this paper differs
from Prophet*, N-BEATS?®, Autoformer?®, FEDformer® and Nonstationary Transformers®’ in the sense that
the above methods apply decomposition to the input series to enhance predictability, reduce computational
complexity or ameliorate the adverse effects of non-stationarity. However, these popular methods are susceptible
to significant overfitting when applied to non-stationary TS. The method proposed in this paper employs a
Progressively learning approach to supervise the learning of each time-varying pattern, achieved by implicitly
decomposing the supervised signals, to effectively address the overfitting problem due to the independence of
the original sequence features or non-stationarity.

Experiment
NSPLformer has been comprehensively evaluated on widely-use real-world datasets, covering various mainstream
time series forecasting applications including energy, transportation, electricity, weather, and exchange.

All experiments were implemented in PyTorch and conducted on a single NVIDIA P100 16GB GPU. We
utilised ADAM with initial learning rates of {1073,5 x 107%,107*} and L2 loss for model optimisation.
The batch size was set to 128, and the number of training epochs was fixed at 10. For all models, this paper
tested performance under four prediction lengths T' € {96, 192, 336, 720}, with a lookback window L = 96.
The dataset was split into training, validation, and test sets in a 7:2:1 ratio, with early stopping used to prevent
overfitting, and a random seed of 2025.

Datasets
As shown in Table 1, here are the descriptions of the datasets: (1)Electricity®® records the hourly electricity
consumption of 321 clients from 2012 to 2014. (2)ETT?? contains the time series of oil de-stationary factors
and power load collected by electricity transformers from July 2016 to July 2018. ETTm1 /ETTm?2 are recorded
every 15 minutes, and ETTh1/ETTh2 are recorded every hour. (3)Exchange® collects the panel data of daily
exchange rates from 8 countries from 1990 to 2016. (4)* contains hourly road occupancy rates measured by 862
sensors on San Francisco Bay area freeways from January 2015 to December 2016. (5)*! includes meteorological
time series with 21 weather indicators collected every 10 minutes from the Weather Station of the Max Planck
Biogeochemistry Institute in 2020.(6)Solar documents the solar power generation of 137 photovoltaic (PV)
facilities in the year 2006, with data collected at 10-minute intervals.

This paper employs the Augmented Dickey-Fuller (ADF) test statistic as an indicator to quantitatively
measure the degree of stationarity.

Dataset | Features | Sampling Frequency | Total Observations | ADF Statistic
Exchange |8 1Day 7588 -1.89
ETTm2 7 15Minutes 69680 -6.23
Electricity | 321 1Hour 26304 —-8.48

Traffic 862 1Hour 17544 -15.05
Weather | 21 10Minutes 52695 - 26.66

Solar 137 10Minutes 2920 —-30.40

Table 1. Summary of datasets. Smaller ADF test statistic indicates a more stationary dataset.
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Baselines

Due to the inferior performance of traditional models (such as ARIMA) compared to the latest Transformer-
based models, this paper selects a range of state-of-the-art (SOTA) Transformer-based models as comparative
benchmarks for analysis. These include iTransformer?” , PatchTST%, TimesNet*2, FEDformer?®, Autoformer?
and Informer?2.

Main results

The model presented in this paper maintains state-of-the-art performance across all base-line and prediction
lengths. Notably, the non-stationary asymptotic learning model outperforms other deep models on datasets
with high non-stationarity. As shown in Table 3,the best results are highlighted in red and bold, and the second
best results are highlighted in purple and underlined. iTransformer and PatchTST stand out as the most recent
models recognised for their superior average performance. Compared to these, the paper proposed models show
average performance improvements of 1.5% and 4.5% respectively, achieving significant performance gains.
Achieved performance in multiple dimensional comparisons across the 8 datasets is most excellent/sub-optimal,
with each individual metric showing performance improvements. For example, under the input-prediction-720
setting, the paper proposed model reduces the MSE on the Electricity dataset by 15.7% (0.255—0.215) and
11.9% (0.244—0.235) compared to iTransformer and PatchTST, respectively. Similarly, in traffic flow, the MSE
is reduced from 1.6% (0.433—0.426) and 16.8% (0.512—0.426).The experimental results indicate that the
proposed NSPLformer exhibits superior predictive performance across datasets with varying horizons (Table 2).

Framework generality

This paper applies the framework proposed in this paper to four mainstream Transformers and reports the
performance improvement of each model. As shown Table 3, the approach in this paper continuously improves
the predictive power of different models. Overall, it achieves an average improvement of 50.74% on Transformer,
59.77% on Informer, and 19.28% on Autoformer, making each of them outperform the previous state-of-the-art.
At the same time, the model validates non-stationary Progressively learning Transformer as an effective and

Model Ours iTransformer PatchTST TimesNet DLinear FEDformer

dataset length MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.370 0.393 0.386 0.395 0.414 0.419 0.383 0.401 0.383 0.400 0.395 0.424
E 192 0.424 0.426 0.437 0.424 0.461 0.444 0.435 0.423 0.437 0.431 0.471 0.473
E 336 0.467 0.459 0.479 0.446 0.501 0.466 0.490 0.468 0.479 0.458 0.530 0.499
m 720 0.469 0.471 0.481 0.470 0.499 0.488 0.521 0.500 0.517 0.516 0.579 0.545

avg 0.433 0.473 0.446 0.434 0.469 0.454 0.457 0.448 0.454 0.451 0.494 0.506

96 0.301 0.348 0.288 0.338 0.302 0.348 0.340 0.372 0.333 0.385 0.356 0.395
2 192 0.365 0.391 0.374 0.390 0.388 0.400 0.402 0.414 0.476 0.474 0.427 0.437
E 336 0.424 0.431 0.415 0.426 0.426 0.433 0.451 0.452 0.592 0.543 0.496 0.485
m 720 0.421 0.439 0.420 0.440 0.431 0.446 0.460 0.465 0.829 0.655 0.463 0.474

avg 0.378 0.402 0.374 0.399 0.387 0.407 0.413 0.426 0.558 0.514 0.436 0.448
- 96 0.316 0.347 0.334 0.368 0.328 0.367 0.337 0.374 0.345 0.371 0.378 0.416
g 192 0.361 0.378 0.375 0.392 0.367 0.385 0.374 0.387 0.378 0.388 0.424 0.441
= 336 0.397 0.405 0.424 0.419 0.399 0.410 0.408 0.411 0.411 0.413 0.445 0.460
E 720 0.453 0.441 0.490 0.460 0.454 0.439 0.477 0.45 0.474 0.452 0.541 0.490

avg 0.382 0.393 0.406 0.410 0.387 0.400 0.399 0.406 0.402 0.406 0.447 0.452
~ 96 0.179 0.260 0.180 0.263 0.175 0.258 0.187 0.265 0.193 0.289 0.201 0.287
=} 192 0.243 0.303 0.250 0.309 0.241 0.302 0.248 0.307 0.253 0.364 0.268 0.325
= 336 0.308 0.345 0.311 0.348 0.305 0.343 0.322 0.349 0.368 0.429 0.326 0.364
E 720 0.406 0.412 0.412 0.407 0.402 0.400 0.408 0.404 0.554 0.522 0.419 0.416

avg 0.284 0.330 0.288 0.332 0.281 0.326 0.291 0.331 0.342 0.401 0.304 0.348

96 0.401 0.267 0.395 0.268 0.462 0.295 0.593 0.322 0.65 0.394 0.587 0.365
EEU 192 0.404 0.266 0.417 0.276 0.466 0.296 0.618 0.334 0.596 0.369 0.601 0.371
< 336 0.409 0.269 0.433 0.281 0.482 0.303 0.628 0.335 0.603 0.372 0.618 0.382
& 720 0.426 0.284 0.433 0.283 0.512 0.320 0.640 0.347 0.646 0.392 0.621 0.383

avg 0.410 0.272 0.420 0.277 0.481 0.304 0.620 0.335 0.624 0.382 0.607 0.375
i< 96 0.143 0.235 0.148 0.240 0.180 0.270 0.168 0.271 0.196 0.282 0.194 0.303
S 192 0.161 0.252 0.162 0.253 0.187 0.274 0.183 0.288 0.195 0.285 0.202 0.313
he 336 0.174 0.267 0.178 0.269 0.202 0.293 0.198 0.299 0.211 0.303 0.217 0.325
i’)’ 720 0.215 0.302 0.255 0.316 0.244 0.322 0.219 0.318 0.246 0.329 0.249 0.352
= avg 0.173 0.264 0.186 0.270 0.203 0.290 0.192 0.294 0.212 0.300 0.216 0.323
o 96 0.174 0.209 0.174 0.214 0.177 0.218 0.172 0.220 0.193 0.254 0.216 0.297
Z 192 0.229 0.262 0.221 0.254 0.225 0.259 0.217 0.261 0.236 0.295 0.273 0.333
3 336 0.282 0.301 0.278 0.296 0.278 0.297 0.280 0.305 0.281 0.334 0.338 0.376
§ 720 0.358 0.349 0.358 0.347 0.354 0.348 0.365 0.360 0.346 0.381 0.404 0.423

avg 0.261 0.280 0.258 0.278 0.259 0.281 0.259 0.287 0.264 0.316 0.308 0.357
o 96 0.115 0.241 0.087 0.210 0.088 0.206 0.110 0.234 0.089 0.221 0.149 0.280
g 192 0.217 0.389 0.181 0.302 0.176 0.301 0.226 0.334 0.177 0.314 0.272 0.316
5 336 0.421 0.413 0.335 0.421 0.303 0.400 0.371 0.450 0.315 0.428 0.462 0.429
% 720 0.599 0.426 0.850 0.692 0.902 0.715 0.948 0.751 0.841 0.700 1.196 0.695
M avg 0.338 0.367 0.363 0.406 0.367 0.406 0.414 0.445 0.356 0.416 0.520 0.430

1st count 22 20 7 10 9 9 2 0 1 0 0 0

Table 2. Comparison of different models across various datasets and lengths.
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Solar Energy | Electricity Traffic Weather
Dataset MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE
Transformer | 1.427 | 0.914 | 0.275 | 0.371 | 0.714 | 0.4 0.659 | 0.571
+Ours 0.239 | 0.264 | 0.173 | 0.264 | 0.413 | 0.272 | 0.259 | 0.281
Promotion 77.18% 32.97% 37.08% 55.74%
Informer 1.546 | 0.994 | 0.312 | 0.401 | 0.763 | 0.417 | 0.633 | 0.552
+Ours 0.197 | 0.228 | 0.167 | 0.261 | 0.162 | 0.244 | 0.245 | 0.271
Promotion | 82.16% 40.69% 60.13% 56.10%
Autoformer | 0.427 | 0.399 | 0.225 | 0.336 | 0.627 | 0.378 | 0.339 | 0.379
+Ours 0.391 | 0.369 |0.192 | 0.275 | 0.427 | 0.275 | 0.266 | 0.285
Promotion 7.97% 16.41% 29.57% 23.17%

Table 3. Perform boosting by applying the proposed framework to Transformer and its variants. We report
the average MSE/MAE (illustrated in Table 2) and the relative MSE reduction rate (Promotion) for all the
predicted lengths in our framework.
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Fig. 4. Visualization of ETTm?2 predictions given by different models.

stable framework for a wide range of Transformer-based models, and enhances their non-smooth predictability
and interpretability to achieve advanced performance.

Quality evaluation
In order to explore the role of each module in our proposed framework, we compared the prediction results
of ETTm2 obtained by three models,vanilla Transformer, the one with a non-stationary attention mechanism
and the non-stationary progressive learning model proposed in this paper. In Fig. 4 it is found that these two
modules enhance the non-stationary prediction ability of Transformer from different perspectives. Not only
aligning the statistical properties between each series of inputs facilitates Transformer’s massive generalisation
to out-of-distribution data, but also the attention shows the inherent non-stationary of the real world time series.
To explore the role of each module in our proposed framework, we compare the prediction results of the
three models on the ETTm2 dataset, and the experimental results are shown in Fig. 4, which indicate that
the two modules, the Series Stationarization module and the Attention Mechanism for recombining non-
stationary information, respectively, enhance the non-stationary prediction ability of Transformer from different
perspectives. The Series Stationarization module significantly improves Transformer’s generalisation ability when
dealing with out-of-distribution data by aligning the statistical attributes of each series input. However, as shown
in Fig. 4b , relying on Series stationary alone for training leads to an over-stationarization problem, making
the deep model more inclined to output unvolatile series with significantly high stationary and ignoring non-
stationary properties of real-world data. By introducing a non-stationary attention mechanism and progressively
learning module, the model focuses on the inherent non-stationarity of real-world time series. It is useful to
accurately predict detailed sequence variations, which is crucial in real-world time series forecasting.

Over-stationarization problem

In order to statistically validate the over-stationarisation problem, we trained the Transformer model using the
aforementioned methods and ranked all the predicted time series in chronological order, and subsequently
compared their degree of stationarity with the ground truth (see Fig. 5). The results show that models relying
only on stationarization methods tend to output time series with an unusually high degree of stationarity, i.e.,
the forecasts are too stationary and do not accurately reflect the characteristics of the actual data. In contrast,
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Fig. 5. Relative stationarity defined as the ratio of the ADF test statistic between the model prediction
and ground truth. From left to right, the dataset becomes progressively less stationary (i.e., the dataset
becomes increasingly non-stationary). Models using only stationary methods (left) tend to output overly-
stationarization time series, while our method (right) provides predictions that are much closer to the
smoothness of the actual values.
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Fig. 6. Ablation studies for each component of NSPLformer. all results are averages of all predicted lengths.
The variables X and Y denote the input and output streams, while the symbols ‘+” and ‘-’ denote the addition or
subtraction operations used for stream aggregation. The letter ‘G’ denotes the gating mechanism added to the
output of each block.

the model incorporating De-stationary Attention predicts stationarity that is very close to the true value, with
relative stationary ranging from 97% to 102%. Furthermore, as the stationarity of the time series increases, the
severity of the over-stationary problem also increases. This huge discrepancy in stationary can explain the poor
performance of the Transformer model using only the stationary method. At the same time, it also verifies that
the de-stationary attention, as an internal renovation mechanism, demonstrates a significant effect in mitigating
the over-stationarization problem.

Ablation study

In order to validate the effectiveness of the model components proposed in this paper, comprehensive ablation
studies including component replacement and component removal experiments were conducted as shown in
Fig. 6. In the experiments, the symbols ‘+” and -’ are used to denote addition or subtraction operations during
the aggregation of input or output streams. The results of the study show that the use of subtractive operation
(-X) significantly improves the average performance of the model than additive operation (+X) when only the
input streams are used. For example, on the Electricity dataset, the prediction error was reduced from 0.181 to
0.173, a reduction of 4.4%. In addition, introducing high-speed output streams into the model and changing the
aggregation method of the output streams from addition (+Y) to subtraction (-Y), and integrating the gating
mechanism (G) into the model is expected to further improve the prediction performance. For example, on
the Traffic dataset, the prediction error is reduced from 0.420 to 0.410, a reduction of 2.4%. In summary, the
advantages of integrating these components can significantly improve the overall performance of the model for
different time series prediction tasks.

In order to validate the broad applicability of NSPLformer as a versatile architecture, this study replaced its
original attention mechanisms to observe the change in model performance when novel attention mechanisms
were introduced. Specifically, NSPLformer was chosen as the base model and its original attention mechanisms
were replaced with the following four novel attention mechanisms: Prob-Attention??, Period-Attention*?, Flow-
Attention**, and Auto-Correlation??. The experiments were conducted on the Traffic, Electricity and Weather
datasets, and the evaluation metrics were Mean Squared Error (MSE). The results of the experiments are shown
in Fig. 7, indicating significant changes in model performance when using these novel attention mechanisms.
Specifically, Prob-Attention shows superior performance: the average MSE on the Electricity dataset decreases
from 0.264 to 0.173, a decrease of 34.5%; the average MSE on the Weather dataset decreases from 0.631 to 0.264,
a decrease of 58.2%, which is significantly better than that of the original Full- Attention. period-Attention and
Flow- Attention also show good performance on these datasets. However, the performance improvement of Auto-
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Fig. 7. Ablation studies of NSPLformer using various Attention. All results are averaged across all prediction
lengths. The tick labels of the X-axis are the abbreviation of Attention types.
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Model Architecture | Complexity per Layer | Sequential Operation
NSPLformer O(n-d) o(1)

PatchTST o(w/py-d) |ow

iTransformer O(n? - d) o(1)

DLinear O(n-d) O(n)

FEDformer O(nlogn) O(logn)

Table 4. Complexity analysis comparison table.

Correlation fails to meet expectations, mainly due to the difficulty of its intrinsic autocorrelation mechanism
to capture the subtle change patterns characterised by dramatic fluctuations in attributes. This study provides
new insights and approaches for the application of NSPLformer in time series forecasting tasks. The findings
highlight the potential of integrating advanced attention mechanisms to further enhance model performance
and adapt to complex forecasting scenarios.

Complexity and memory usage comparison analysis

The linear low-rank approximation of the non-stationary attention mechanism significantly reduces
computational complexity by decomposing high-dimensional matrices into low-rank factors, thereby reducing
the computational complexity of self-attention from O(n? - d) to O(n - k - d), where k is much smaller than #.
Thus, the complexity is approximately O(n - d). This method has advantages over other mainstream models, as
shown in Table 4.

Compared to iTransformer, which has a time complexity of O(n? - d), the low-rank approximation effectively
reduces comglexity, enabling more efficient processing of long sequences. PatchTST achieves a complexity
of O((N/P)® - d) (where P is the patch length) by dividing the input sequence into local blocks (patches),
improving parallelism while maintaining a certain level of modelling capability.Compared to PatchTST, which
has a complexity of O((N/P)? - d), NSPLformer further simplifies attention calculations at different scales.
Although TimesNet achieves lower complexity O(n? - d) through a convolutional structure, the linear low-
rank approximation retains the advantage of the attention mechanism in capturing global dependencies.For
FEDformer with a complexity of O(nlogn), low-rank decomposition can be applied to frequency-domain
attention, thereby optimising computations in both the time and frequency domains.In summary, the linear
low-rank approximation of non-stationary attention mechanisms not only improves computational efficiency
but also retains adaptability to non-stationary data and the ability to capture global dependencies, making it
particularly suitable for complex sequence modelling tasks.

The Fig. 8 shows a performance comparison between NSPLformer and the baseline model when processing
the Traffic dataset (862 variables), focusing on prediction accuracy (MSE), training efficiency (ms/iter), and
memory usage (GB).

NSPLformer demonstrates significant advantages in memory optimisation:Memory usage: NSPLformer’s
memory consumption is 3.79 GB, significantly lower than other models (TimesNet: 11.3 GB, FEDformer:
4.86 GB, PatchTST: 8.58 GB), highlighting its lightweight design characteristics.Performance balance: While
maintaining low memory usage, NSPLformer’s MSE value (0.42) outperforms PatchTST (0.51) and FEDformer
(0.61), and is close to iTransformer (0.43), indicating that its prediction accuracy has not significantly decreased
due to resource savings.Training Efficiency: NSPLformer’s training time is 192 ms/iter, which is at an intermediate
level, balancing computational efficiency with model performance.
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Fig. 8. Traffic dataset multi-model computational efficiency comparison analysis.

Conclusion and future work

This paper proposes NSPLformer to address the issues of non-stationarity and severe overfitting faced by deep
models in time series prediction. These two issues interact, exacerbating overfitting due to non-stationarity in
the original data, which further obscures the non-stationary characteristics in the data. To address this issue,
we adopt a segmented stationarity method and introduce an attention mechanism to reintegrate non-stationary
information, while proposing a subtraction-based information aggregation framework. Unlike traditional
methods, which typically mitigate overfitting by suppressing non-stationarity, often leading to excessive
smoothing of the data, our approach directly learns non-stationary features from the original sequence, thereby
improving the stationarity of the sequence. Specifically, we design a progressive learning-based architecture that
processes dual data streams through implicit and stepwise decomposition. In this architecture, the input stream
is progressively decomposed through subtraction operations in multiple residual blocks. This decomposition
mechanism enables the model to better understand and represent the structure of the input sequence, effectively
capturing differences and patterns in the data. Meanwhile, the output stream gradually improves prediction
accuracy at each stage by learning the residuals of the supervision signal layer by layer. By focusing on
reducing prediction error, the model’s data predictability and predictive capability are significantly enhanced.
In experiments, NSPLformer demonstrates outstanding versatility and performance across eight mainstream
analysis tasks, achieving an average performance improvement of 5.3% compared to mainstream models. In the
future, we will further explore large-scale pre-training, lightweight, and real-time deployment methods for time
series, as well as their applications in industries such as healthcare and finance.

Data availability

All datasets used in this study are publicly available and can be downloaded from the following Google Drive
link: https://drive.google.com/file/d/1151QsKvQPcqILT3DwfjCgx8Dsg2rpjot/view. ?This single repository cont
ains the following datasets:? Electricity ET T-small Traffic Exchange Weather Solar Please note that the provided
link is to a publicly shared file on Google Drive. No login or special permissions are required to access these re-
sources. ¢For any issues accessing the datasets, please contact the corresponding author at sjx_change@126.com.

Appendix A: Efficiency of non-stationary transformers

The gain of the method proposed in this paper is shown in the Figs. 9, 10, 11 and 12, where the blue line repre-
sents the ground truth and the orange line represents the visualised comparison of the model predictions under
the input 96-predict-96, 96-predict-192, 96-predict-336, and 96-predict-720 modes, respectively. It is clear that
the non-stationary progressively learning model greatly improves the prediction performance with minimal
additional parameter increase.
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Fig. 9. Visualization of predictions given by models under the input-96-predict-96 setting.
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Fig. 10. Visualization of predictions given by models under the input-96-predict-192 setting.
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Fig. 11. Visualization of predictions given by models under the input-96-predict-336 setting.

Scientific Reports |

202515:28904

| https://doi.org/10.1038/s41598-025-13680-2

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

(a) Vanilla Transformer (b) Transformer+Series Stationarization (c) Ours
1.04 = GroundTruth 0.00 = GroundTruth | .00 = GroundTruth
- Prediction ~— Prediction ~— Prediction
-0.25 -0.25
05
-0.50 -050
0.0
-0.75 -0.75
-05 -1.00 -1.00
i -125 -125
~1.50 -1.50
-15
-1 -175
] 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 80O ] 100 200 300 400 500 600 700 8OO

Fig. 12. Visualization of predictions given by models under the input-96-predict-720 setting.

Appendix B: Progressively learning residuals

To clearly compare the performance of different models in time series forecasting tasks, this study presents
predictive case studies on three representative datasets: Traffic, Electricity, and Weather, as shown in Figs. 13,
14, and 15, respectively. These visualizations are used for qualitative comparisons among various models and to
evaluate their performance in forecasting future sequence changes. The models selected for comparative analy-
sis include: Flowformer (Wu et al., 2022), PatchTST (Nie et al., 2022), DLinear (Zeng et al., 2023), Autoformer
(Wu et al., 2021), Informer (Zhou et al., 2021), and the NSPLformer proposed in this paper. By comparing the
forecasting outcomes of different models, we further validate that the NSPLformer outperforms other models
in predicting future sequence changes. This study provides new insights and methodologies for future research

in this field.
NSPLformer PanchTST Dlinear
= GroundThuth s GroundThuth s GroundThuth
~— Preaktion ~ preaktion ~— Prediction
24 24 21
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04 0 04
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Fig. 13. Prediction cases from the Traffic dataset under the input-96-predict-96 setting.
Scientific Reports| 2025 15:28904 | https://doi.org/10.1038/s41598-025-13680-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

NSPLformer PanchTST Dlinear

E 8225 & 3

|

|

HEEEEEE
|
|

EEEEEREE

g

— GroundTuth — GroundTruth
s ] 5 50 s 100 125 150 s 200 i ] 5 50 " 100 125 150 17 200 o 5 50 s 100 125 150 s 200
Flowformer Autoformer Informer

— GroundThuth 20
- Prediction

— GroundTruth w— GroundTruth
v Prediction

s 100 125 150 175 200

tE & 2 et @

E & g e @

t &2 g 2ct ot
|

s 100 125 150 175 200 ”» 100 125 150 175 200

Fig. 14. Prediction cases from the Electricity dataset under the input-96-predict-96 setting.
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Fig. 15. Prediction cases from the Weather dataset under the input-96-predict-96 setting.
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Appendix C: Proof of Theorem 1
Theorem 2 (Linear De-stationary Attention) For any Q, K,V € R™*%, if

k= min{@ (9d1(2)gd) , 5O (loan)} ,
€ €
Q

.
then there exist matricesE, F € R™** such that for any row vector w of matrix \/K(T , we have:
k

Pr (Hsoftmax(wET)FVWV — softmax(w)VWVH < e ||softmax(w)|| ||VWVH) >1—o0(1).

Proof The main idea of the proof is based on the distributional Johnson-Lindenstrauss lemma*’. We first prove
QW (kW)
k

that for any row vector x € R™ of matrix and column vector y € R™ of matrix VW,

(2-3k

Pr (Hexp(:vET)Fy —exp(z || <e ||exp T||) >1-—2e” (18)
Based on the triangle inequality, write the left-hand side of the objective inequality in the following form:
Hexp (zET)Fy' —exp(x || < ||exp (zET)Fy' —exp(x )RTRyTH 19)

+ ||exp #)R'Ry" — exp(ﬂc)yTH .

Further applications of the Cauchy-Schwarz inequality and the Johnson-Lindenstrauss Lemma, as well as the
Lipschitz continuity of the exponential function in a finite region, yield:

||exp (zET)Fy' —exp(x TH <(I+e |yl ||exp (zET)Fy" —exp(z )RTRyTH
+ Hexp )R Ry' — exp( )yTH (20)
< |jexp(2)R" Ry " —exp(@)y” || + o (llexp(@)]l lyl]) -
Ultimately, by choosing a sufficiently small § = © (%) , we obtain:
llexp(dzR) — exp(z) R|| = o ([lexp(z)]]) - (21)
Applying the above result to any row vector A; of matrix A and any column vector y of matrix V', we have:
Pr (Hexp(AiET)FV' - eXp(Ai)V/H < e|lexp(As)|| HV’H) 1—o(1). (22)

Set k = M . Given that the rank of matrix A is d, select a row submatrix A, € R%4*4 from A, such that

the rank ofAs isalso d. Applying ||exp(ézR) — exp(dz) R|| = o (||lexp(z)]|), and applying the aforementioned

method to the row vectors of A5 and the column vectors of V’, and setting k = gjb&dr), we can obtain for each
row Ag j of As:
Pr (|lexp(AsET)FV' — exp(As)V'|| < ellexp(A)| |[[V']]) > 1= o(1). (23)
Define the matrix I’ € R™*24 as follows:
T ’ T A
r— | ep(AE )FV' | | exp(AsE )FV ) (24)
exp(A)V’ exp(As)V’

For any row A; of matrix A and any column vector y of matrix V”, the application of the above equation follows
this pattern:

||exp(AET)FV' —exp(A

JFV' =T exp(As)V']|. (25)

Since the spectral norm of a matrix is less than or equal to its Frobenius norm, we further have:
< ||lexp(AET)FV — exp(A)V'] ||, - IIT

< 0(d) [|exp(AET)FV' — exp(A)V'||, =

According to Eq. (17), it follows that:
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2d
<e0(d) > [lexp(A)|| |V']| < e0(d) llexp(An)] |[V']) - (27)
i=1

The above procedure shows that for a given approximation error € > 0, the approximation error condition we
wish to obtain will almost certainly hold for a set value of k, suggesting that we can control the approximation
error by choosing an appropriate value of k for the model in this paper. This implies that the proposed model
can effectively control the approximation error with an appropriate choice of k, while achieving significant
improvements in training and inference speed. [J

Appendix D: Statistical significance analysis

This study systematically conducted statistical analyses on all experimental results to ensure the scientific rigor of
the conclusions. Normality tests (Shapiro-Wilk) indicated that the majority of model prediction errors followed
a normal distribution (p > 0.05), with only a few scenarios (e.g., PatchTST in Electricity-MAE, p = 0.0184)
requiring the use of the non-parametric Wilcoxon signed-rank test; the remaining data were subjected to two-
tailed significance tests using the t-test (p < 0.05 as the significance threshold).

The experimental results show that the proposed model NSPLformer significantly outperforms the current
state-of-the-art (SOTA) models in most comparisons. For example, in the ETTh1 and Traffic datasets, NS-
PLformer demonstrates highly significant advantages in both MSE and MAE metrics (p < 0.001), with the
difference from FEDformer reaching an extremely significant level (T' = —46.85, p = 0.0000; T" = —258.50,
p = 0.0000). However, in specific scenarios such as ETTm1-MAE and Weather-MSE, NSPLformer shows no
significant difference from certain models (e.g., PatchTST or TimesNet) (p > 0.05), which may be attributed
to data noise or similar model performance. Additionally, robustness analysis on non-normally distributed
data (e.g., Electricity-MAE) shows that NSPLformer maintains statistical consistency with comparison models
(Wilcoxon p = 0.0625).

In summary, statistical significance tests validate that NSPLformer demonstrates significant performance
advantages in over 85% of comparisons, particularly in complex time series prediction tasks such as Traffic,
ETTml, and Exchange.
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