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Although Transformers perform well in time series prediction, they struggle when dealing with real-
world data where the joint distribution changes over time. Previous studies have focused on reducing 
the non-stationarity of sequences through smoothing, but this approach strips the sequences of their 
inherent non-stationarity, which may lack predictive guidance for sudden events in the real world. To 
address the contradiction between sequence predictability and model capability, this paper proposes 
an efficient model design for multivariate non-stationary time series based on Transformers. This 
design is based on two core components: (1)Low-cost non-stationary attention mechanism, which 
restores intrinsic non-stationary information to time-dependent relationships at a lower computational 
cost by approximating the distinguishable attention learned in the original sequence.; (2) dual-data-
stream Progressively learning, which designs an auxiliary output stream to improve information 
aggregation mechanisms, enabling the model to learn residuals of supervised signals layer by layer.
The proposed model outperforms the mainstream Tranformer with an average improvement of 5.3% 
on multiple datasets, which provides theoretical support for the analysis of non-stationary engineering 
data.

Keywords  Times series prediction, De-stationary attention mechanism, Progressively learning Block, Non-
stationary modeling, Deep learning

Time series forecasting plays a crucial role in many applications such as energy consumption planning1, traffic 
flow analysis2, financial risk assessment3 and cloud resource allocation4. Time series data recorded from the real 
world usually exhibit diverse and unsteady characteristics due to the complex transient conditions experienced 
during their evolution5. This phenomenon reflects the complexity and diversity of time series data in real-world 
applications and poses challenges for their analysis and modeling (i.e., distributional shifts induced by time 
series non-stationarity)6.

A recent approach to solve the above distributional bias problem is to utilize plug-and-play normalization 
methods, Kim et al7 proposed a method called reversible instance normalization (RevIN), RevIN consists of 
two distinct steps, normalization and unnormalization. The former normalizes the input to fix its distribution 
based on the mean and variance, while the latter returns the output to the original distribution. To alleviate 
the challenges posed by non-stationarity in time-series data, Liu et al8 proposed SAN (Slice-Level Adaptive 
Normalization), a flexible normalization and denormalization scheme that removes non-stationarity and 
independently models variations in the statistical properties of the original time-series data through local time 
slices, thus achieving prediction performance improvement on a wide range of benchmark prediction models 
The prediction performance improvement is realized on a variety of benchmark prediction models. To address 
the challenges posed by complex non-uniform distributions and pattern drift in real time-series data, Sun et 
al9 proposed the TFPS (Time-Frequency Pattern Specific) architecture, which utilizes pattern-specific expert 
modules in combination with bi-domain encoders and subspace clustering techniques to dynamically identify 
and model unique patterns in data segments, which This results in significantly improved prediction accuracy.
Fan et al10 systematically summarized the distribution drift problem in temporal prediction and classified it into 
distribution changes within the input space (recall window) and output space (prediction window) (internal 
space drift) and distribution differences between the input and output spaces (cross-space drift). Meanwhile, 
Dish-TS, a generalized neural architecture, is proposed to effectively mitigate the effects of distributional drift by 
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learning and adjusting the distributions in the input and output spaces respectively through a dual-coefficient 
network (Dual-CONET). All of these methods normalize the input time series to a uniform distribution, 
explicitly removing non-smoothness to reduce the differences in data distribution.

However, non-stationarity is an inherent property of real-world time series, and also good guidance for 
discovering temporal dependencies for forecasting.In experiments, it has been found that direct smoothing of 
time-series data causes ordinary transformer models to lose the ability to capture the important event-based 
temporal dependencies in the data. That is, the data loses important non-stationarity properties during the 
smoothing process, causing the model to fail to correctly capture eventful changes in the data and limiting 
the model’s forecasting ability, a problem known as over-stationarization. It is precisely these important non-
stationarity properties that should be the focus of the attention mechanism, such as drastic changes in traffic flow 
due to traffic accidents, abnormal sensor readings due to sudden equipment failures, and meteorological data 
variations due to sudden rainstorms. However, designing highly complex and nonlinear deep model structures 
for better learning of non-stationarity features to solve the problem of unpredictable event-based changes 
will lead to severe overfitting (validation loss increases significantly and training loss still decreases sharply). 
Therefore, how to reduce the time series non-stationarity to improve predictability while avoiding the problem 
of model overfitting is a key issue to further improve the prediction performance.

In this paper, a sample of predictions is plotted in Fig. 1 to better illustrate our observations. Despite the 
temporal correlation, the mean values of the input sequences are significantly different from the mean values of 
the field-of-view window (from 35.79 to 48.3), suggesting that there may be a generalized distributional shift. 
Furthermore, this distributional bias can change rapidly at finer-grained slice levels, and this rapid change violates 
the underlying assumptions of existing normalization methods (which typically assume that the distribution of 
the input data is relatively stable). As a result, the use of inappropriate normalization methods not only destroys 
the intrinsic pattern of the input series, but also leads to bias in the final prediction results.

In this paper, we explore the impact of non-stationarity in time series forecasting and propose NSPLformers 
as a general framework. The framework consists of two interdependent modules and a two-stream asymptotic 
learning architecture: Series Stationarization for improving the predictability of non-stationarity time series; and 
De-stationary Attention for mitigating the over-stationarization problem. Specifically, Series Stationarization 
employs a simple but effective normalization strategy that unifies the statistical properties of each time series 
without additional parameters, while De-stationary Attention approximates the attention mechanism of the 
original data and compensates for the inherent non-stationarity of the original time series. The architecture 
of Dual Data Stream Progressive Learning utilizes the concept of de-redundancy to propose a progressive 
learning approach aimed at systematically acquiring the components of the supervised signals to improve the 
performance of time series (TS) prediction. And an auxiliary output stream is introduced in each Block to form 
a highway that gradually guides to the final prediction. The subsequent Block outputs of this output stream will 
subtract the previously learned results layer by layer, enabling the model to gradually learn the residual parts of 
the supervised signal. The dual data stream design further facilitates the implicit layer-by-layer decomposition 
of the input and output streams, enhancing the model’s flexibility, interpretability, and resistance to overfitting.

The contribution of this paper is threefold:

•	 The predictive ability of non-stationary sequences is crucial in actual predictions. Through detailed analysis, 
it was found that the current stationarisation method leads to over-stationarisation, thereby limiting the pre-
dictive ability of Transformers;

•	 We propose a low-cost non-stationary progressive learning Transformer, which includes sequence smoothing 
to improve sequence predictability, de-smoothing attention mechanisms, and progressive learning modules. 

Fig. 1.  Examples of forecasts of energy consumption and illustrations of their daily averages (MeanByDay). We 
also plot the mean of the input sequence and the mean of the horizon sequence in the figure.
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We simplify the attention mechanism calculation using low-rank approximation methods to reduce complex-
ity and reintroduce the non-stationarity of the original sequence to avoid over-stationarization issues;

•	 This paper constructs a dual data stream design that promotes implicit gradual decomposition of input and 
output streams based on incremental learning through auxiliary output streams and improved information 
aggregation mechanisms, thereby giving the model greater flexibility, interpretability, and resistance to over-
fitting, effectively resolving the dilemma between sequence predictability and model capability.

Related work
In recent years, due to the powerful nonlinear fitting capabilities of deep learning11, time series prediction models 
have been applied to various fields such as medicine12–14 , petroleum exploration15, industrial production16,17, 
classification detection1819, and many others. However, time series (TS) from the real world often exhibit various 
non-stationary characteristics due to their evolution under complex transient conditions5. The characteristics 
of non-stationary time series are reflected in the continuous changes in their statistical properties and joint 
distributions20, making accurate prediction extremely challenging.21 As a result, numerous scholars have 
conducted research on the prediction of non-stationary time series.

Transformer-based time series forecaster
Recently, deep learning models have achieved remarkable success in time series prediction, in order to capture 
the long-term coupling of inputs and outputs over a long period of time, Zhou et al designed a transformer-
based Informer for long-series time series forecasting (LSTF), which overcomes the limitations of the traditional 
Transformer by introducing the ProbSparse self-attention mechanism, self-attention distillation and generative 
decoder, which overcomes the limitations of quadratic time complexity, high memory consumption, and 
encoder-decoder architecture of traditional Transformer.22.WU et al aimed to solve the long time series 
prediction problem by proposing a novel decomposition architecture with autocorrelation mechanism, which 
enables the model to have the capability of progressive decomposition of complex time series, correlation 
discovery and representation aggregation at the subsequence level level23. Liu et al proposed a novel neural 
network architecture called SCINet to efficiently model and predict time series through recursive downsampling, 
convolution, and interactive operations24. Nie et al proposed an efficient design of a multivariate time series 
prediction and self-supervised representation learning model based on the Transformer, the model is based on 
two key components:(i) segmentation of time series into sub-series level patches; and (ii) channel independence, 
which achieves retention of local semantic information, quadratic reduction in computation and memory 
usage of the attention graph and the ability of the model to focus on longer histories25. Zhang et al. proposed 
a Crossformer named Transformer base model, which effectively captures cross-time dependencies and cross-
dimensional dependencies in multivariate time series (MTS) by introducing Dimension-Segment-Wise (DSW) 
embedding and Two-Stage Attention (TSA) layer, and establishes a Hierarchical Encoder-Decoder (HED) 
architecture to utilize different scales of information, experimental results show that Crossformer significantly 
outperforms previous state-of-the-art approaches on six real-world datasets26. Considering the limitations of 
point-by-point representations in terms of local semantics, liu et al.27 proposed a model named iTransformer to 
efficiently capture cross-variate correlations in multivariate time series and learn nonlinear representations by 
inverting the functionality of the attention mechanism and feedforward network in Transformer. These models 
aim to extract diverse and informative patterns from historical observations to improve the accuracy of time 
series forecasting. In order to improve the accuracy of real-world time series forecasting, the key challenge is 
twofold, on the one hand, the fact that data from numerous real-world data series data exhibit exhibit dynamic 
and evolving patterns, a phenomenon known as non-stationary. This property usually leads to training and 
testing This property usually leads to inconsistent distributions between the training set, the testing set, and 
the future unseen data set. Thus, the non-stationary property in time-series data requires the development of 
robust predictive models that can cope with the variation of such data distributions over time, and failure to 
address this challenge often leads to reduced representational power and impaired model generalization. On the 
other hand, there is the phenomenon of overfitting when deep models learn high-dimensional non-stationary 
features of emergent events, which usually manifests itself as feature redundancy, poor interpretability and weak 
generalisation.

Redundancy-reduced progressive learning
A new training strategy based on progressive learning was proposed by Zhou et al. By equipping each low-
precision convolutional layer with an auxiliary full-precision convolutional layer based on the low-precision 
network structure. At the same time, a decay method is introduced to gradually reduce the output of the added 
full-precision convolutional layer, thus keeping the topology the same as the original low-precision convolutional 
layer, and realising the progressive learning strategy28. A stepwise approach for learning independent hierarchical 
representations and realizing the learning of representations from high-level to low-level in the VAE framework. 
The effectiveness of the approach in decoupling representation learning is confirmed by quantitative and 
qualitative evaluations on a benchmark dataset and is the first attempt to progressively extend the VAE capacity 
to learn hierarchical representations for improved decoupling29. Zhao et al proposed a three-stage learning 
framework for retrieval by gradually learning complex knowledge of mixed-modal queries and introduced a 
self-supervised adaptive weighting strategy30. The above methods attempt sequence decomposition applied 
to the input sequence to enhance the predictability of the time series and reduce the impact of algorithmic 
complexity on the model. However, the mainstream time series prediction algorithms are susceptible to severe 
overfitting when the original sequence has strong non-stationarity. In this paper, the proposed method mitigates 
the overfitting problem by implicitly decomposing the supervised signals by learning each time-varying pattern 
through progressive bootstrapping.
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NSPLformer
As mentioned earlier, stationary is an important component of time series predictability. Previous research 
efforts have focused on “direct smoothing” to reduce the non-smoothness of the series in order to obtain 
better predictability. However, non-stationarity is an inherent property of real-world time series, and the 
design of “direct smoothing” will lead to over-stationarization of the model, and the design of complex deep 
models to learn unprocessed non-stationary features will lead to severe overfitting of the model. To solve the 
above dilemma, this paper proposes NSPLformer (Non-stationary Progressively Learning Transformer). The 
model involves: Series Stationarization to attenuate the time series non-stationarity, De-stationary Attention 
mechanism to recombine the non-stationary features of the original series, and a design of the dual data stream 
model structure to suppress overfitting. As Fig. 2, with the support of these designs, the model can improve time 
series data predictability while maintaining model capability.

Series stationarization
The statistical properties (e.g., mean and standard deviation) of non-stationary time series change during the 
inference process, which makes it difficult for the deep model to perform effective generalized prediction. 
Therefore, in this paper, in terms of dealing with the non-stationarity of the original time series, the normalization 
module is designed to firstly deal with the non-stationary series caused by different data distributions, and finally 
the inverse normalization module restores the model output to the original statistical characteristics.Here are 
the details.

Normalization moudule  Existing normalization methods for non-stationary time series prediction 
are to normalize the input series to remove non-stationary factors and restore them to the output series by 
denormalization. As Fig. 3 the method in this paper differs from it in that by slicing the input sequence into 
multiple non-overlapping slices and performing a local normalization operation on each slice, it is able to 
effectively remove the non-stationary factors while preserving the intrinsic pattern of each slice.

This local processing is more advantageous than the global normalization method, especially when dealing 
with complex non-stationary time series. Eventually, the normalized slices are recombined into a new input 
sequence by an inverse normalization step. The input xi is first split into M non-overlapping slices {xi

j}M
j=1, 

where the mean and standard deviation of each slice xi
j  can be expressed as:

Fig. 3.  This section proposes a model-independent symmetric normalization module that removes and 
recovers non-stationary factors from time series data from a slicing perspective.

 

Fig. 2.  NSPLformer normalizes and denormalizes the input series by smoothing and adjusts the time-
dependent weights using the de-smoothing attention mechanism to better handle non-smooth time series.
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Where µi
j , σi

j ∈ RC×1 and xi
j,t is the value of slice xi

j  at t-th time step.The normalized input sequence 
x̄i

j =
xi

j −µi

σi
 can be expressed as:

	
x̄i

j = 1
σi

j + ϵ
· (xi

j − µi
j)2

� (2)

Where  is the element-wise product and ϵ is a small constant.Finally, a new input sequence with non-stationary 
factors removed is formed by recombining the slices and used as input to the prediction model.

De-normalization module  In order to recover the characteristics of the original sequence, we apply a 
denormalization process to the model output Y′ = [Y ′

1 , Y ′
2 , . . . , Y ′

O]T ∈ RO×C  using the statistical parameters 
µi

j  and σi
j  of the original sequence.In contrast to normalization, De-normalization is performed on a per-slice 

basis. For the predictive model output Y′, which is split into K non-overlapping slices {ȳi
j}K

j=1, the statistically 
based inverse normalization of any slice can be expressed as

	 ŷi
j = ȳi

j · (σi
j + ϵ) + µi

j � (3)

Finally, all slices are restored in chronological order. By leveraging the model’s translational and scaling 
equivariance, the normalization and de-normalization modules ensure that the model maintains high prediction 
stability and accuracy, even when the mean or amplitude of the input sequence changes. This robustness is 
crucial for reliable performance under varying input conditions.

De-stationary attention
In time series forecasting, although the statistical features can be recovered to the corresponding forecasts by 
inverse normalization, etc., the non-stationary nature of the original series cannot be fully recovered by simple 
inverse normalisation. Specifically, Series Stationarization can generate similar normalised inputs x′ based on 
different time series x1 and x2, and the basic model will get the same attention when processing these normalised 
inputs, thus failing to capture the temporal dependencies associated with the non-stationary. This phenomenon 
is particularly relevant in the case of attention computation. This phenomenon is particularly noticeable in the 
attention computation process. In addition, non-stationary time series tend to lose their intrinsic structure 
during stationarization and fragmentation, where these segments are forced to have the same mean and variance 
after back-normalisation, and are therefore closer to similar distributions than to the true distribution of the 
original data before normalisation. This results in models that are more likely to produce outputs that are over 
stationarization and lack variation, which contradicts the natural non-stationary nature of the original time 
series.

To address the problem of over-stationaryization caused by sequence normalisation, we propose a new De-
stationary Attention Mechanism . The mechanism aims to approximate the attention distribution obtained when 
no normalisation is performed, thus enabling the identification and capture of specific temporal dependencies 
from raw non-stationary data, reducing the prediction error due to over-stationarization.

Analysis of the plain model As mentioned earlier, the over-stationarization problem stems from the 
disappearance of the inherent non-stationarity information in the original time series, which leads to the 
underlying model’s inability to capture eventful temporal dependencies for prediction. Therefore, we attempt 
to approximate the learned attention from the original non-stationary time series. The known self-attention 
mechanism31 is as follows:

	
Attn(Q, K, V ) = Softmax

(
QKT

√
dk

)
V � (4)

Where Q, K, V ∈ RS×dk  are the Queries, Keys, and Values of length S, respectively, all of dimension dk , and 
the Softmax(·) operation is performed on a row-by-row basis. To simplify the analysis, it is assumed that 
the embedding layer and the feed-forward layer f have a linear nature and their operations are completely 
independent of each time point. That is, each qi in Q = [q1, q2, . . . , qS ]T  can be expressed as qi = f(xi),where 
the input time series x = [x1, x2, . . . , xS ]T .

Since it is common practice to stabilize each time series variable to avoid the over-dominance of scale by a 
particular variable, we assume that each variable of the time series x has the same variance. This simplification 
reduces the original vector of standard deviations σx ∈ RC×1 to a scalar. After passing through the normalization 
module, the model receives a smoothed input of:

	
x′ = x − 1µT

x

σx

� (5)

Where 1 ∈ RS×1 is a vector of all ones. Based on the above assumption of linear nature, it can be shown that the 
attention layer will receive the query vector Q′ as:
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Q′ = [f(x′

1), . . . , f(x′
S)]T =

Q − 1µT
Q

σx

� (6)

where µQ ∈ Rdk×1 is the mean value of the query vector Q along the time dimension. Similarly, Key and Value 
are converted to K′ and V ′ . The attention mechanism based on Q′ and K′ after stationarized is:

	
Q′K′T = 1

σ2
x

(
QKT − 1µT

QK − KµQ1T + 1µT
QKµQ1T

)
� (7)

	
Softmax

(
QKT

√
dk

)
= Softmax

(
σ2

xQ′K′T + 1(µT
QK)T + (QµK)1T − 1(µT

QµK)1T

√
dk

)
� (8)

where QµK ∈ RS×1 and µT
QµK ∈ R,These quantities are iteratively applied to each column and element of 

σ2
xQ′K′T ∈ RS×S  during the computation. Using the translation invariance of the Softmax function, the 

computation of the attention mechanism can be simplified as follows:

	
Softmax

(
QKT

√
dk

)
= softmax

(
σ2

xQ′K′T + 1µT
QKT

√
dk

)
� (9)

This section derives a direct expression for the attentional mechanism Softmax(QKT /
√

dk) learnt from the 
original sequence x. In addition to Q′ and K′ in the stationarized time series x′, non-stationary information 
needs to be introduced, which is eliminated during the sequence stationarization process. Therefore, in order 
to recover the original non-stationary time series features, the lost non-stationary information needs to be 
reintroduced inside the depth model.

De-stationary Attention In order to restore the original attention to the non-stationary series, we try to 
introduce unappreciatednon-stationary information into its computation. Defining the approximate scaling 
scalar τ = σ2

x ∈ R+ and the displacement vector ∆ = KµQ ∈ RS×1 as the de-smoothing factors, this section 
try to learn the non-stationary factors directly from the non-stationary x, Q and K statistics by a simple but 
effective multilayer perceptron. Since we can only find limited non-stationary information from the known 
Q′, K′, a reasonable source for compensating non-stationarity at one time can only be the original sequence. 
Therefore, in this paper, we use a multilayer perceptron to map the input sequences into a high-dimensional 
space to learn the non-smooth factors τ  and ∆ from σ2

x,σi
j

2,x,x̄i
j  respectively.And the De-stationary Attention 

is calculated as follows.

	

log τ = MLP
(
σ2

x, (σi
j)2, x, xi

j

)

∆ = MLP
(
µx, µi

j , x, xi
j

)

De-stationary(Q′, K′, V ′, τ, ∆) = Softmax
(

τQ′K′T + 1∆T

√
dk

)
V ′

� (10)

The de-stationary factors τ  and ∆ are shared across all de-stationary attention layers. The de-stationary attention 
mechanism learns the temporal dependencies from the stationarized sequences Q′, K′ and the statistical 
properties of the original sequences σ2

x ,σi
j

2,x,x̄i
j  and multiplies them by the stationarized value V ′ . Thus, it is 

able to exploit the predictability of the stationarized series while maintaining the time dependence inherent in 
the original series.

De-stationary attention is low rank
In this section, the non-stationary attention mechanism is optimised in terms of linear time and memory 
complexity. In this section, two linear projection matrices E, F ∈ Rn×K  are added in the computation of key 
and value to reduce the computational cost of computing the context mapping matrix P based on the stochastic 
projection method. First, the original n × d dimensional key and value layer is projected to the k × d dimensional 
projected key and value layer, and then an n × k dimensional context mapping matrix p̄ is computed using the 
scaled dot product attention mechanism.

	

De-stationary(Q′, EK′, F V ′, τ, ∆) = Softmax




τQ′(EK′)T + 1∆T

√
dk︸ ︷︷ ︸

P :n×k


 · F V ′︸︷︷︸

k×d

� (11)

Finally, only O(nk) time and space complexity is required to compute the context embedding using 
P̃ · (F V ′). Thus, choosing a very small projection dimension k such that k ≪ n, then the method can 
significantly reduce memory and computational cost consumption. The following theorem shows that when 
k = O(d/ϵ2) (independent of n), one can use a linear non-stationary attention mechanism to approximate 
P̃ · V ′ with an error of ϵ.
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Theorem 1  (Linear De-stationary Attention) For any Q, K, V ∈ Rn×d, if 
k = min{θ(9d log(d)/ϵ2), 5θ(log(n)/ϵ2)}, then there exists matrices E, F ∈ Rn×k  such that, for any row 

vector w of matrix Q(K)T /
√

dk , we have: w ·
(

Q(K)T√
dk

)
· F V ′ · Pn×k

	 Pr
(
∥softmax(wET )F V ′ − softmax(w)V ′∥ ≤ ϵ∥softmax(w)∥∥V ′∥

)
> 1 − o(1)� (12)

where E = δR and F = e−δR, R is an n × k matrix whose elements are independently distributed from the 
normal distribution N(0, 1/k) and δ is is a small constant. By applying the results of the above formula to each 
row vector of matrix A and each column vector of matrix V ′, it can be proven that for any row vector Ai of 
matrix A, the error between the transformed result and the original result is controlled within an acceptable 
range with high probability, thereby verifying the effectiveness and stability of the model in processing high-
dimensional data.

	 Pr
(∥∥exp(AiE

T )F V − exp(Ai)V
∥∥ ≤ ϵ ∥exp(Ai)V ∥

)
> 1 − o(1)� (13)

By setting k = 5 log(nd)
ϵ2 − ϵ3 , the above procedure shows that for a given approximation error ϵ > 0, the 

approximation error condition we wish to obtain will almost certainly hold for a set value of k, suggesting that 
we can control the approximation error by choosing an appropriate value of k for the model in this paper. This 
suggests that the model in this paper can control the approximation error with an appropriate choice of k-value, 
and significant improvements in training and inference speed are observed. For more details, please refer to the 
appendix.

Progressively learning block
Time series forecasting models are prone to severe overfitting when dealing with time series data due to the non-
stationarity of the time series, the time series evolves under complex transient conditions. This is manifested 
by the fact that during the training process, the training loss still decreases dramatically, but the validation loss 
still increases significantly. In this section, a progressive learning module is designed to systematically acquire 
the components of a supervised signal by decomposing the supervised signal and learning different parts of the 
time series sequentially. The module adopts a dual data stream and subtraction mechanism, where the module 
generates a prediction result and subtracts it from the prediction results of the subsequent layers to generate 
a residual data stream, through which the module is able to reduce the prediction error layer by layer in this 
decreasing way. At the same time, the module builds a ‘high-speed channel’ for the prediction results to go 
directly to the next module, which gradually learns the residual streams and output streams of the stacked 
blocks, and gradually approaches the real labels, thus improving the model performance and effectively avoiding 
overfitting.

When the attention mechanism deals with time series where different attributes are independent of each other, 
the attention mechanism still tries to learn the relationship between these attributes, increasing the complexity 
of the model and the number of parameters, resulting in a large amount of redundant information and leading 
to model overfitting. To mitigate this problem, this section implements a correction metric by subtracting the 
attention output from the input. This ensures that attention can be effectively utilised to its inherent advantage, 
thus improving overall performance. This process can be expressed as:

	

X̃l,1 = De − stationary (Xl,1)
Rl,1 = Xl,1 − δX̃l,1

� (14)

Where,X̂l,1 represents the input signal processed by the Attention mechanism (Attention) in the lth layer,Rl,1 
denotes the remainder of the input Xl,1 after block processing, and δis the Dirac function.δ is used to eliminate 
the Attention layer when an unfavourable influence is applied. Similarly, the input signal processed by the 
feedforward layer will be ubtracted from the input and can be expressed as:

	

X̃l,2 = FeedForward (Rl,1)
Rl,2 = Xl,2 − δX̃l,2

� (15)

The feedforward layer consists of two identity mappings with an activation function inserted between them, 
which specialises in non-linear transformations of the temporal aspect. This feature is particularly important 
when dealing with multivariate time series data with strong independence between features. Specifically, the 
current block contains two parallel data streams: the output X̃l processed by the neural modules, and the residual 
R̃l obtained by subtracting X̃l from the input, which is processed by a gate mechanism and then directed to the 
next block or projected to the output space. The two data streams are processed through the gate mechanism and 
are then directed to the next block or projected to the output space.

Drawing inspiration from RNNs32, this section adopts an approach that can autonomously regulate the 
transfer of information, similar to the control mechanisms inherent to cells in RNNs. Thus, we introduce a gate 
mechanism at the end of each block to control the transmission of the two data streams.

For residual stream, the gate mechanism can be expressed as:
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	 Xl+1 = σ (θ1(Rl,2)) · θ2(Rl,2)� (16)

where σ is the sigmoid function and θ1 and θ2 are learnable neurons with different parameters. Similarly, for the 
intermediate output stream X̃l,the gate mechanism can be expressed as:

	 oi+1 = σ
(
θ3

(
[X̂l,1, X̂l,2]

)
· θ4

(
[X̂l,1, X̂l,2]

))
� (17)

Where [] denotes concatenation. o(l + 1) enables the module to better utilise the output of the non-stationary 
attention mechanism and the output of the feedforward layer. The gating mechanism can introduce signal 
morphing in both data streams, effectively adjusting the amount of information output from the current block. It 
enables the model to selectively enhance or attenuate the influence of specific phases, thus adequately mitigating 
the overfitting effects of independent attributes and redundant information on the model and enhancing its 
modeling capabilities. Compared with other time series prediction models, the model proposed in this paper 
is able to complete the screening and amplification of information, learn the residual and output signals in an 
incremental learning manner, and gradually approximate the supervised.

Overall architecture
The overall architecture uses stacked Progressively learning blocks combined with non-stationary attention 
mechanisms, parallel data flow structures, gating mechanisms and Normalisation module De-normalization 
module.Comparing with the standard Transfomer model31, the model proposed in this paper designs the 
non-stationary attention mechanism for the non-stationary nature of the original series in order to improve 
the prediction ability of non-stationary time series. Comparing with the variants of Transformer33,22, this 
paper varies the terms within Softmax(·) with a de-stationary factor τ , δ to reintegrate the non-stationary 
information. In terms of time series forecast decomposition, the architecture proposed in this paper differs 
from Prophet34, N-BEATS35, Autoformer23, FEDformer36 and Nonstationary Transformers37 in the sense that 
the above methods apply decomposition to the input series to enhance predictability, reduce computational 
complexity or ameliorate the adverse effects of non-stationarity. However, these popular methods are susceptible 
to significant overfitting when applied to non-stationary TS. The method proposed in this paper employs a 
Progressively learning approach to supervise the learning of each time-varying pattern, achieved by implicitly 
decomposing the supervised signals, to effectively address the overfitting problem due to the independence of 
the original sequence features or non-stationarity.

Experiment
NSPLformer has been comprehensively evaluated on widely-use real-world datasets, covering various mainstream 
time series forecasting applications including energy, transportation, electricity, weather, and exchange.

All experiments were implemented in PyTorch and conducted on a single NVIDIA P100 16GB GPU. We 
utilised ADAM with initial learning rates of {10−3, 5 × 10−4, 10−4} and L2 loss for model optimisation. 
The batch size was set to 128, and the number of training epochs was fixed at 10. For all models, this paper 
tested performance under four prediction lengths T ∈ {96, 192, 336, 720}, with a lookback window L = 96. 
The dataset was split into training, validation, and test sets in a 7:2:1 ratio, with early stopping used to prevent 
overfitting, and a random seed of 2025.

Datasets
As shown in Table 1, here are the descriptions of the datasets: (1)Electricity38 records the hourly electricity 
consumption of 321 clients from 2012 to 2014. (2)ETT22 contains the time series of oil de-stationary factors 
and power load collected by electricity transformers from July 2016 to July 2018. ETTm1 /ETTm2 are recorded 
every 15 minutes, and ETTh1/ETTh2 are recorded every hour. (3)Exchange39 collects the panel data of daily 
exchange rates from 8 countries from 1990 to 2016. (4)40 contains hourly road occupancy rates measured by 862 
sensors on San Francisco Bay area freeways from January 2015 to December 2016. (5)41 includes meteorological 
time series with 21 weather indicators collected every 10 minutes from the Weather Station of the Max Planck 
Biogeochemistry Institute in 2020.(6)Solar documents the solar power generation of 137 photovoltaic (PV) 
facilities in the year 2006, with data collected at 10-minute intervals.

This paper employs the Augmented Dickey-Fuller (ADF) test statistic as an indicator to quantitatively 
measure the degree of stationarity.

Dataset Features Sampling Frequency Total Observations ADF Statistic

Exchange 8 1Day 7588 − 1.89

ETTm2 7 15Minutes 69680 − 6.23

Electricity 321 1Hour 26304 − 8.48

Traffic 862 1Hour 17544 − 15.05

Weather 21 10Minutes 52695 − 26.66

Solar 137 10Minutes 2920 − 30.40

Table 1.  Summary of datasets. Smaller ADF test statistic indicates a more stationary dataset.
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Baselines
Due to the inferior performance of traditional models (such as ARIMA) compared to the latest Transformer-
based models, this paper selects a range of state-of-the-art (SOTA) Transformer-based models as comparative 
benchmarks for analysis. These include iTransformer27 , PatchTST25, TimesNet42, FEDformer36, Autoformer23 
and Informer22.

Main results
The model presented in this paper maintains state-of-the-art performance across all base-line and prediction 
lengths. Notably, the non-stationary asymptotic learning model outperforms other deep models on datasets 
with high non-stationarity. As shown in Table 3,the best results are highlighted in red and bold, and the second 
best results are highlighted in purple and underlined. iTransformer and PatchTST stand out as the most recent 
models recognised for their superior average performance. Compared to these, the paper proposed models show 
average performance improvements of 1.5% and 4.5% respectively, achieving significant performance gains. 
Achieved performance in multiple dimensional comparisons across the 8 datasets is most excellent/sub-optimal, 
with each individual metric showing performance improvements. For example, under the input-prediction-720 
setting, the paper proposed model reduces the MSE on the Electricity dataset by 15.7% (0.255−→0.215) and 
11.9% (0.244−→0.235) compared to iTransformer and PatchTST, respectively. Similarly, in traffic flow, the MSE 
is reduced from 1.6% (0.433−→0.426) and 16.8% (0.512−→0.426).The experimental results indicate that the 
proposed NSPLformer exhibits superior predictive performance across datasets with varying horizons (Table 2).

Framework generality
This paper applies the framework proposed in this paper to four mainstream Transformers and reports the 
performance improvement of each model. As shown Table 3, the approach in this paper continuously improves 
the predictive power of different models. Overall, it achieves an average improvement of 50.74% on Transformer, 
59.77% on Informer, and 19.28% on Autoformer, making each of them outperform the previous state-of-the-art. 
At the same time, the model validates non-stationary Progressively learning Transformer as an effective and 

Table 2.  Comparison of different models across various datasets and lengths.
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stable framework for a wide range of Transformer-based models, and enhances their non-smooth predictability 
and interpretability to achieve advanced performance.

Quality evaluation
In order to explore the role of each module in our proposed framework, we compared the prediction results 
of ETTm2 obtained by three models,vanilla Transformer, the one with a non-stationary attention mechanism 
and the non-stationary progressive learning model proposed in this paper. In Fig. 4 it is found that these two 
modules enhance the non-stationary prediction ability of Transformer from different perspectives. Not only 
aligning the statistical properties between each series of inputs facilitates Transformer’s massive generalisation 
to out-of-distribution data, but also the attention shows the inherent non-stationary of the real world time series.

To explore the role of each module in our proposed framework, we compare the prediction results of the 
three models on the ETTm2 dataset, and the experimental results are shown in Fig.  4, which indicate that 
the two modules, the Series Stationarization module and the Attention Mechanism for recombining non-
stationary information, respectively, enhance the non-stationary prediction ability of Transformer from different 
perspectives. The Series Stationarization module significantly improves Transformer’s generalisation ability when 
dealing with out-of-distribution data by aligning the statistical attributes of each series input. However, as shown 
in Fig. 4b , relying on Series stationary alone for training leads to an over-stationarization problem, making 
the deep model more inclined to output unvolatile series with significantly high stationary and ignoring non-
stationary properties of real-world data. By introducing a non-stationary attention mechanism and progressively 
learning module, the model focuses on the inherent non-stationarity of real-world time series. It is useful to 
accurately predict detailed sequence variations, which is crucial in real-world time series forecasting.

Over-stationarization problem
In order to statistically validate the over-stationarisation problem, we trained the Transformer model using the 
aforementioned methods and ranked all the predicted time series in chronological order, and subsequently 
compared their degree of stationarity with the ground truth (see Fig. 5). The results show that models relying 
only on stationarization methods tend to output time series with an unusually high degree of stationarity, i.e., 
the forecasts are too stationary and do not accurately reflect the characteristics of the actual data. In contrast, 

Fig. 4.  Visualization of ETTm2 predictions given by different models.

 

Dataset

Solar Energy Electricity Traffic Weather

MSE MAE MSE MAE MSE MAE MSE MAE

Transformer 1.427 0.914 0.275 0.371 0.714 0.4 0.659 0.571

+Ours 0.239 0.264 0.173 0.264 0.413 0.272 0.259 0.281

Promotion 77.18% 32.97% 37.08% 55.74%

Informer 1.546 0.994 0.312 0.401 0.763 0.417 0.633 0.552

+Ours 0.197 0.228 0.167 0.261 0.162 0.244 0.245 0.271

Promotion 82.16% 40.69% 60.13% 56.10%

Autoformer 0.427 0.399 0.225 0.336 0.627 0.378 0.339 0.379

+Ours 0.391 0.369 0.192 0.275 0.427 0.275 0.266 0.285

Promotion 7.97% 16.41% 29.57% 23.17%

Table 3.  Perform boosting by applying the proposed framework to Transformer and its variants. We report 
the average MSE/MAE (illustrated in Table 2) and the relative MSE reduction rate (Promotion) for all the 
predicted lengths in our framework.
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the model incorporating De-stationary Attention predicts stationarity that is very close to the true value, with 
relative stationary ranging from 97% to 102%. Furthermore, as the stationarity of the time series increases, the 
severity of the over-stationary problem also increases. This huge discrepancy in stationary can explain the poor 
performance of the Transformer model using only the stationary method. At the same time, it also verifies that 
the de-stationary attention, as an internal renovation mechanism, demonstrates a significant effect in mitigating 
the over-stationarization problem.

Ablation study
In order to validate the effectiveness of the model components proposed in this paper, comprehensive ablation 
studies including component replacement and component removal experiments were conducted as shown in 
Fig. 6. In the experiments, the symbols ‘+’ and ‘-’ are used to denote addition or subtraction operations during 
the aggregation of input or output streams. The results of the study show that the use of subtractive operation 
(-X) significantly improves the average performance of the model than additive operation (+X) when only the 
input streams are used. For example, on the Electricity dataset, the prediction error was reduced from 0.181 to 
0.173, a reduction of 4.4%. In addition, introducing high-speed output streams into the model and changing the 
aggregation method of the output streams from addition (+Y) to subtraction (-Y), and integrating the gating 
mechanism (G) into the model is expected to further improve the prediction performance. For example, on 
the Traffic dataset, the prediction error is reduced from 0.420 to 0.410, a reduction of 2.4%. In summary, the 
advantages of integrating these components can significantly improve the overall performance of the model for 
different time series prediction tasks.

In order to validate the broad applicability of NSPLformer as a versatile architecture, this study replaced its 
original attention mechanisms to observe the change in model performance when novel attention mechanisms 
were introduced. Specifically, NSPLformer was chosen as the base model and its original attention mechanisms 
were replaced with the following four novel attention mechanisms: Prob-Attention22, Period-Attention43, Flow-
Attention44, and Auto-Correlation23. The experiments were conducted on the Traffic, Electricity and Weather 
datasets, and the evaluation metrics were Mean Squared Error (MSE). The results of the experiments are shown 
in Fig. 7, indicating significant changes in model performance when using these novel attention mechanisms. 
Specifically, Prob-Attention shows superior performance: the average MSE on the Electricity dataset decreases 
from 0.264 to 0.173, a decrease of 34.5%; the average MSE on the Weather dataset decreases from 0.631 to 0.264, 
a decrease of 58.2%, which is significantly better than that of the original Full- Attention. period-Attention and 
Flow-Attention also show good performance on these datasets. However, the performance improvement of Auto-

Fig. 6.  Ablation studies for each component of NSPLformer. all results are averages of all predicted lengths. 
The variables X and Y denote the input and output streams, while the symbols ‘+’ and ‘-’ denote the addition or 
subtraction operations used for stream aggregation. The letter ‘G’ denotes the gating mechanism added to the 
output of each block.

 

Fig. 5.  Relative stationarity defined as the ratio of the ADF test statistic between the model prediction 
and ground truth. From left to right, the dataset becomes progressively less stationary (i.e., the dataset 
becomes increasingly non-stationary). Models using only stationary methods (left) tend to output overly-
stationarization time series, while our method (right) provides predictions that are much closer to the 
smoothness of the actual values.
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Correlation fails to meet expectations, mainly due to the difficulty of its intrinsic autocorrelation mechanism 
to capture the subtle change patterns characterised by dramatic fluctuations in attributes. This study provides 
new insights and approaches for the application of NSPLformer in time series forecasting tasks. The findings 
highlight the potential of integrating advanced attention mechanisms to further enhance model performance 
and adapt to complex forecasting scenarios.

Complexity and memory usage comparison analysis
The linear low-rank approximation of the non-stationary attention mechanism significantly reduces 
computational complexity by decomposing high-dimensional matrices into low-rank factors, thereby reducing 
the computational complexity of self-attention from O(n2 · d) to O(n · k · d), where k is much smaller than n. 
Thus, the complexity is approximately O(n · d). This method has advantages over other mainstream models, as 
shown in Table 4.

Compared to iTransformer, which has a time complexity of O(n2 · d), the low-rank approximation effectively 
reduces complexity, enabling more efficient processing of long sequences. PatchTST achieves a complexity 
of O((N/P )2 · d) (where P is the patch length) by dividing the input sequence into local blocks (patches), 
improving parallelism while maintaining a certain level of modelling capability.Compared to PatchTST, which 
has a complexity of O((N/P )2 · d), NSPLformer further simplifies attention calculations at different scales. 
Although TimesNet achieves lower complexity O(n2 · d) through a convolutional structure, the linear low-
rank approximation retains the advantage of the attention mechanism in capturing global dependencies.For 
FEDformer with a complexity of O(n log n), low-rank decomposition can be applied to frequency-domain 
attention, thereby optimising computations in both the time and frequency domains.In summary, the linear 
low-rank approximation of non-stationary attention mechanisms not only improves computational efficiency 
but also retains adaptability to non-stationary data and the ability to capture global dependencies, making it 
particularly suitable for complex sequence modelling tasks.

The Fig. 8 shows a performance comparison between NSPLformer and the baseline model when processing 
the Traffic dataset (862 variables), focusing on prediction accuracy (MSE), training efficiency (ms/iter), and 
memory usage (GB).

NSPLformer demonstrates significant advantages in memory optimisation:Memory usage: NSPLformer’s 
memory consumption is 3.79 GB, significantly lower than other models (TimesNet: 11.3 GB, FEDformer: 
4.86 GB, PatchTST: 8.58 GB), highlighting its lightweight design characteristics.Performance balance: While 
maintaining low memory usage, NSPLformer’s MSE value (0.42) outperforms PatchTST (0.51) and FEDformer 
(0.61), and is close to iTransformer (0.43), indicating that its prediction accuracy has not significantly decreased 
due to resource savings.Training Efficiency: NSPLformer’s training time is 192 ms/iter, which is at an intermediate 
level, balancing computational efficiency with model performance.

Model Architecture Complexity per Layer Sequential Operation

NSPLformer O(n · d) O(1)

PatchTST O
(

(N/P )2 · d
)

O(1)

iTransformer O(n2 · d) O(1)

DLinear O(n · d) O(n)

FEDformer O(n log n) O(log n)

Table 4.  Complexity analysis comparison table.

 

Fig. 7.  Ablation studies of NSPLformer using various Attention. All results are averaged across all prediction 
lengths. The tick labels of the X-axis are the abbreviation of Attention types.
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Conclusion and future work
This paper proposes NSPLformer to address the issues of non-stationarity and severe overfitting faced by deep 
models in time series prediction. These two issues interact, exacerbating overfitting due to non-stationarity in 
the original data, which further obscures the non-stationary characteristics in the data. To address this issue, 
we adopt a segmented stationarity method and introduce an attention mechanism to reintegrate non-stationary 
information, while proposing a subtraction-based information aggregation framework. Unlike traditional 
methods, which typically mitigate overfitting by suppressing non-stationarity, often leading to excessive 
smoothing of the data, our approach directly learns non-stationary features from the original sequence, thereby 
improving the stationarity of the sequence. Specifically, we design a progressive learning-based architecture that 
processes dual data streams through implicit and stepwise decomposition. In this architecture, the input stream 
is progressively decomposed through subtraction operations in multiple residual blocks. This decomposition 
mechanism enables the model to better understand and represent the structure of the input sequence, effectively 
capturing differences and patterns in the data. Meanwhile, the output stream gradually improves prediction 
accuracy at each stage by learning the residuals of the supervision signal layer by layer. By focusing on 
reducing prediction error, the model’s data predictability and predictive capability are significantly enhanced. 
In experiments, NSPLformer demonstrates outstanding versatility and performance across eight mainstream 
analysis tasks, achieving an average performance improvement of 5.3% compared to mainstream models. In the 
future, we will further explore large-scale pre-training, lightweight, and real-time deployment methods for time 
series, as well as their applications in industries such as healthcare and finance.

Data availability
All datasets used in this study are publicly available and can be downloaded from the following Google Drive 
link: https://driv​e.google.com​/file/d/1l51​QsKvQPcqILT​3DwfjCgx8Dsg2rpjot/view. ?This single repository ​c​o​n​t​
a​i​n​s the following datasets:? Electricity ETT-small Traffic Exchange Weather Solar Please note that the provided 
link is to a publicly shared file on Google Drive. No login or special permissions are required to access these re-
sources. ?For any issues accessing the datasets, please contact the corresponding author at sjx_change@126.com.

Appendix A: Efficiency of non-stationary transformers
The gain of the method proposed in this paper is shown in the Figs. 9, 10, 11 and 12, where the blue line repre-
sents the ground truth and the orange line represents the visualised comparison of the model predictions under 
the input 96-predict-96, 96-predict-192, 96-predict-336, and 96-predict-720 modes, respectively. It is clear that 
the non-stationary progressively learning model greatly improves the prediction performance with minimal 
additional parameter increase.

Fig. 8.  Traffic dataset multi-model computational efficiency comparison analysis.
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Fig.  11.  Visualization of predictions given by models under the input-96-predict-336 setting.

 

Fig. 10.  Visualization of predictions given by models under the input-96-predict-192 setting.

 

Fig. 9.  Visualization of predictions given by models under the input-96-predict-96 setting.
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Appendix B: Progressively learning residuals
To clearly compare the performance of different models in time series forecasting tasks, this study presents 
predictive case studies on three representative datasets: Traffic, Electricity, and Weather, as shown in Figs. 13, 
14, and 15, respectively. These visualizations are used for qualitative comparisons among various models and to 
evaluate their performance in forecasting future sequence changes. The models selected for comparative analy-
sis include: Flowformer (Wu et al., 2022), PatchTST (Nie et al., 2022), DLinear (Zeng et al., 2023), Autoformer 
(Wu et al., 2021), Informer (Zhou et al., 2021), and the NSPLformer proposed in this paper. By comparing the 
forecasting outcomes of different models, we further validate that the NSPLformer outperforms other models 
in predicting future sequence changes. This study provides new insights and methodologies for future research 
in this field.

Fig.  13.  Prediction cases from the Traffic dataset under the input-96-predict-96 setting.

 

Fig.  12.  Visualization of predictions given by models under the input-96-predict-720 setting.

 

Scientific Reports |        2025 15:28904 15| https://doi.org/10.1038/s41598-025-13680-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig.  15.  Prediction cases from the Weather dataset under the input-96-predict-96 setting.

 

Fig.  14.  Prediction cases from the Electricity dataset under the input-96-predict-96 setting.
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Appendix C: Proof of Theorem 1
Theorem 2  (Linear De-stationary Attention) For any Q, K, V ∈ Rn×d, if

	
k = min

{
Θ

(9d log d

ϵ2

)
, 5Θ

( log n

ϵ2

)}
,

then there exist matricesE, F ∈ Rn×k  such that for any row vector w of matrix QK⊤√
dk

, we have:

	 Pr
(∥∥softmax(wE⊤)F V W V − softmax(w)V W V

∥∥ ≤ ϵ ∥softmax(w)∥
∥∥V W V

∥∥)
> 1 − o(1).

Proof  The main idea of the proof is based on the distributional Johnson–Lindenstrauss lemma45. We first prove 

that for any row vector x ∈ Rn of matrix QW Q(KW K )⊤√
dk

 and column vector y ∈ Rn of matrix V W V ,

	 Pr
(∥∥exp(xE⊤)F y⊤ − exp(x)y⊤∥∥ ≤ ϵ

∥∥exp(x)y⊤∥∥)
> 1 − 2e− (ϵ2−ϵ3)k

4 .� (18)

Based on the triangle inequality, write the left-hand side of the objective inequality in the following form:

	

∥∥exp(xE⊤)F y⊤ − exp(x)y⊤∥∥ ≤
∥∥exp(xE⊤)F y⊤ − exp(x)R⊤Ry⊤∥∥
+

∥∥exp(x)R⊤Ry⊤ − exp(x)y⊤∥∥ .
� (19)

Further applications of the Cauchy-Schwarz inequality and the Johnson-Lindenstrauss Lemma, as well as the 
Lipschitz continuity of the exponential function in a finite region, yield:

	

∥∥exp(xE⊤)F y⊤ − exp(x)y⊤∥∥ ≤ (1 + ϵ) ∥y∥
∥∥exp(xE⊤)F y⊤ − exp(x)R⊤Ry⊤∥∥

+
∥∥exp(x)R⊤Ry⊤ − exp(x)y⊤∥∥

≤
∥∥exp(x)R⊤Ry⊤ − exp(x)y⊤∥∥ + o (∥exp(x)∥ ∥y∥) .

� (20)

Ultimately, by choosing a sufficiently small δ = Θ
(

1
n

)
, we obtain:

	 ∥exp(δxR) − exp(δx)R∥ = o (∥exp(x)∥) .� (21)

Applying the above result to any row vector Ai of matrix A and any column vector y of matrix V ′, we have:

	 Pr
(∥∥exp(AiE

⊤)F V ′ − exp(Ai)V ′∥∥ ≤ ϵ ∥exp(Ai)∥
∥∥V ′∥∥)

1 − o(1).� (22)

Set k = 5 log(nd)
ϵ2−ϵ3 . Given that the rank of matrix A is d, select a row submatrix As ∈ R2d×d from A, such that 

the rank of As is also d. Applying ∥exp(δxR) − exp(δx)R∥ = o (∥exp(x)∥), and applying the aforementioned 
method to the row vectors of As and the column vectors of V ′, and setting k = 9 log(nd)

ϵ2−ϵ3 , we can obtain for each 
row As,j  of As:

	 Pr
(∥∥exp(AsE⊤)F V ′ − exp(As)V ′∥∥ ≤ ϵ ∥exp(As)∥

∥∥V ′∥∥)
> 1 − o(1).� (23)

Define the matrix Γ ∈ Rn×2d as follows:

	
Γ =

[
exp(AE⊤)F V ′

exp(A)V ′

]
·
[

exp(AsE⊤)F V ′

exp(As)V ′

]−1

.� (24)

For any row Ai of matrix A and any column vector y of matrix V ′, the application of the above equation follows 
this pattern:

	
∥∥exp(AE⊤)F V ′ − exp(A)V ′∥∥ =

∥∥Γi exp(AsE⊤)F V ′ − Γ exp(As)V ′∥∥ .� (25)

Since the spectral norm of a matrix is less than or equal to its Frobenius norm, we further have:

	

≤
∥∥[exp(AsE⊤)F V ′ − exp(As)V ′]⊤

∥∥
2

· ∥Γ∥

≤ Θ(d)
∥∥exp(AsE⊤)F V ′ − exp(As)V ′∥∥

F
.
� (26)

According to Eq. (17), it follows that:
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≤ ϵΘ(d)

2d∑
i=1

∥exp(As)∥
∥∥V ′∥∥ ≤ ϵΘ(d) ∥exp(As)∥

∥∥V ′∥∥ .� (27)

The above procedure shows that for a given approximation error ϵ > 0, the approximation error condition we 
wish to obtain will almost certainly hold for a set value of k, suggesting that we can control the approximation 
error by choosing an appropriate value of k for the model in this paper. This implies that the proposed model 
can effectively control the approximation error with an appropriate choice of k, while achieving significant 
improvements in training and inference speed. □

Appendix D: Statistical significance analysis
This study systematically conducted statistical analyses on all experimental results to ensure the scientific rigor of 
the conclusions. Normality tests (Shapiro-Wilk) indicated that the majority of model prediction errors followed 
a normal distribution (p > 0.05), with only a few scenarios (e.g., PatchTST in Electricity-MAE, p = 0.0184) 
requiring the use of the non-parametric Wilcoxon signed-rank test; the remaining data were subjected to two-
tailed significance tests using the t-test (p < 0.05 as the significance threshold).
The experimental results show that the proposed model NSPLformer significantly outperforms the current 
state-of-the-art (SOTA) models in most comparisons. For example, in the ETTh1 and Traffic datasets, NS-
PLformer demonstrates highly significant advantages in both MSE and MAE metrics (p ≤ 0.001), with the 
difference from FEDformer reaching an extremely significant level (T = −46.85, p = 0.0000; T = −258.50, 
p = 0.0000). However, in specific scenarios such as ETTm1-MAE and Weather-MSE, NSPLformer shows no 
significant difference from certain models (e.g., PatchTST or TimesNet) (p ≥ 0.05), which may be attributed 
to data noise or similar model performance. Additionally, robustness analysis on non-normally distributed 
data (e.g., Electricity-MAE) shows that NSPLformer maintains statistical consistency with comparison models 
(Wilcoxon p = 0.0625).
In summary, statistical significance tests validate that NSPLformer demonstrates significant performance 
advantages in over 85% of comparisons, particularly in complex time series prediction tasks such as Traffic, 
ETTm1, and Exchange.
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