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Polygenic insight identifies
precision biomarkers decoding
protein catabolism and autophagy
pathways in obstructive sleep
apnea

Xiaoying Ke®%23, Min Huang'?3, Yingying Zheng’>3 & Guohao Chen:%:3*¢

Obstructive sleep apnea (OSA) is a common sleep disorder characterized by recurrent upper airway
obstructions, leading to substantial health burdens and socioeconomic costs. This study aimed to
identify Hypoxia and Mitophagy-Related Differentially Expressed Genes (HMRDEGs) and evaluate
their potential as biomarkers and therapeutic targets for OSA. Transcriptomic data from GSE135917
and GSE38792 in the GEO database were analyzed using the limma package to identify differentially
expressed genes (DEGs), which were subsequently intersected with hypoxia- and mitophagy-related
gene sets(HMRGs) curated from GeneCards and PubMed. A total of 24 HMRDEGs were identified, and
four hub genes—NLRP3, MAPK9, RBBP4, and CLINT1—were used to construct a diagnostic model that
demonstrated excellent discrimination (AUC=0.982 in the training set and 0.812 in the validation set).
Gene Ontology and KEGG analyses linked these genes to protein catabolism and autophagy pathways,
while immune-cell infiltration profiling associated them with specific leukocyte subsets. Collectively,
our findings underscore hypoxia—mitophagy crosstalk as a central mechanism in OSA and present a
robust biomarker panel with therapeutic potential.

Obstructive sleep apnea (OSA) is a prevalent sleep disorder marked by recurrent upper-airway collapse during
sleep, which causes intermittent hypoxia and a range of adverse sequelae!. Beyond diminishing quality of life,
OSA is strongly associated with cardiovascular disease, metabolic dysregulation, and cognitive impairment?.
Continuous positive airway pressure (CPAP) is the first-line treatment, but its real-world effectiveness is limited
by poor adherence and discomfort. Consequently, there is an urgent need for more effective and patient-friendly
management strategies’.

Large-scale omics studies published in 2025 have refined the molecular landscape of OSA. Dasgupta
et al. applied cross-disease network analysis and found four genes—CIGALT1, TMEMI106B, ZNF117, and
ZNF486—concurrently up-regulated in both OSA and lung cancer, implicating hypoxia-driven pathways
that transcend single-disease boundaries®.Complementing this work, Zhou et al. combined transcriptomic
and immunoinformatics data, validated four immune-related genes (IL33, EIF2AK2, ILIORB and ANGPTLI)
as diagnostic biomarkers, and recorded pronounced immune-cell dysregulation in visceral adipose tissue of
OSA patients®. Together, these studies highlight hypoxia-induced metabolic stress and immune perturbation as
central mechanisms in OSA, supporting our focus on hypoxia- and mitophagy-related differentially expressed
genes (HMRDEGs).

This study systematically examines the contribution of hypoxia- and mitophagy-related differentially expressed
genes (HMRDEGs) to OSA. We propose that dysregulation of these genes not only drives OSA pathogenesis but
also offers biomarker and therapeutic potential. Leveraging an integrated bioinformatics workflow, we identified
and validated HMRDEGs, explored their mechanistic relevance, and assessed their diagnostic utility. A four-
gene logistic model incorporating NLRP3, MAPKY9, RBBP4, and CLINT1 achieved excellent discrimination,
with an AUC of 0.982 in the training set and 0.812 in an independent validation set. These findings highlight the
clinical promise of the HMRDEG signature for early diagnosis and targeted intervention in OSA.
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Materials and methods

Data download

We used the R package GEOquery®(Version 2.70.0) download obstructive sleep apnea (OSA) datasets
GSE1359177 and GSE38792% from GEQ° database (https://www.ncbi.nlm.nih.gov/geo/). The samples of
GSE135917 and GSE38792 were all from Homo sapiens. The Tissue source of GSE135917 was Subcutaneous
Fat Tissue. In dataset GSE38792, the tissue source was Visceral adipose tissue. The chip platform utilized for the
datasets GSE135917 and GSE38792 was GPL6244, with detailed information presented in Table 1. Specifically,
dataset GSE135917 comprised 34 samples from individuals with OSA and 8 control samples. In contrast, dataset
GSE38792 included 10 OSA samples alongside 8 controls. The present research included all specimens from the
aforementioned datasets.

GeneCards database!® (https://www.genecards.org/) offers extensive details regarding human genes.Initially,
we employed ‘Hypoxia’ as our primary search term and focused exclusively on ‘Protein Coding’ genes that
exhibited a Relevance Score exceeding>1 in order to pinpoint hypoxia-related genes (HRGs). Subsequently,
we conducted a search for ‘Hypoxia’ within the PubMed database (https://pubmed.ncbi.nlm.nih.gov/) to gather
hypoxia-associated gene sets documented in previously published studies'!*. Following the processes of
integration and eliminating redundancies, we successfully identified a total of 2461 unique HRGs. Similarly,
utilizing “Mitophagy” as the search term, we filtered the results to include solely those mitochondrial autophagy-
related genes (MRGs) that are classified as “Protein Coding” and possess a “Relevance Score>1”. Subsequently,
we used “Mitophagy” as the keyword on the PubMed website (https://pubmed.ncbi.nlm.nih.gov/) to obtain the
mitochondrial autophagy-related gene sets from published literature'*-'”. Following the integration of data and
the elimination of duplicate entries, a cumulative total of 1710 MRGs was identified. Ultimately, an intersection
of the hypoxia and mitophagy-related genes yielded a total of 561 HMRGs, with detailed information provided
in Table S1.

Finally, the R package limma'® (Version 3.58.1) was used to annotate and normalize the OSA datasets
GSE135917 and GSE38792, respectively. A boxplot was employed to evaluate and contrast the expression levels
of the datasets before and after normalization.

Differentially expressed genes related to obstructive sleep apnea-associated hypoxia and
mitophagy

In accordance with the sample classification outlined in GSE135917, the samples were divided into two distinct
cohorts: the OSA group and the Control group. The R package limma'#(Version 3.58.1) was employed to assess
the differences between the OSA group and the Control group. A criterion of |logFC| > 0.5 and an adjusted
p-value (adj.p) <0.05 were defined to pinpoint Differentially Expressed Genes (DEGs). Specifically, genes that
demonstrated logFC>0.5 in conjunction with adj.p <0.05 were identified as Up-regulated DEGs, while genes
with logFC < -0.5 and adj.p<0.05 were categorized as Down-regulated DEGs. The Benjamini-Hochberg (BH)
approach was applied for p-value correction. The findings from the differential analysis were visually depicted
using the R package ggplot2 (Version 3.4.4), facilitating the generation of a volcano plot.

To determine the hypoxia and mitophagy-related differentially expressed genes (HMRDEGs) associated with
OSA, DEGs were selected from the GSE135917 dataset based on the criteria of |logFC| > 0.5 and an adjusted
p-value of less than 0.05. These DEGs were then compared with known hypoxia and mitochondrial autophagy-
related genes (HMRGs). A Venn diagram was subsequently created to illustrate the genes that overlapped
between the two sets. Additionally, a heatmap was utilized to present the top 20 HMRDEGs.The R package'
pheatmap (Version 1.0.12) was utilized to generate a heatmap illustrating the TOP20 HMRDEGs.

Differential expression verification and ROC curve analysis

To investigate the variations in the expression levels of HMRDEGs between the OSA group and the Control
group within the GSE135917 dataset, a comparative analysis was conducted.This analysis yielded a visual
representation of the group comparison focused on the HMRDEGs.Finally, the R package pROC! (Version
1.18.5) was used to plot the ROC Curve of HMRDEGs and calculate the Area Under the Curve (AUC) value.
To assess the diagnostic capability of HMRDEGs in relation to the onset of OSA, the AUC of the ROC curve
is utilized. Typically, AUC values range from 0.5 to 1, with values nearing 1 suggesting an excellent diagnostic
performance. In detail, an AUC falling between 0.5 and 0.7 indicates low diagnostic accuracy, while an AUC
ranging from 0.7 to 0.9 demonstrates moderate accuracy. Conversely, an AUC exceeding 0.9 is indicative of a
high degree of accuracy in diagnosis.

GSE135917 GSE38792
Platform GPL6244 GPL6244
Species Homo sapiens Homo sapiens
Tissue Subcutaneous Fat Tissue | Visceral adipose tissue
Samples in OSA group 34 10
Samples in Control group | 8 8
Reference PMID: 31,872,261 PMID: 23,288,968

Table 1. GEO microarray chip information. GEO Gene Expression Omnibus, OSA Obstructive Sleep Apnea.
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Gene ontology (GO) and pathway (KEGG) enrichment analysis

Gene Ontology (GO) analysis®’serves as a widely utilized approach for conducting extensive functional
enrichment investigations, encompassing three primary categories: Biological Process (BP), Cell Component
(CC), and Molecular Function (MF). Kyoto Encyclopedia of Genes and Genomes (KEGG)*'"*}database
is extensively utilized for the storage of data pertaining to genomes, biological pathways, diseases, and
pharmacological agents.We conducted GO and KEGG enrichment analyses on the HMRDEGs utilizing the R
package clusterProfiler** (Version 4.10.0). The criteria for entry screening were set at adj.p <0.05 and FDR value
(q value) <0.25. The adj.p was conducted using the Benjamini-Hochberg (BH) method.

Establishment of diagnostic model for obstructive sleep apnea

To develop a diagnostic model for OSA using the GSE135917 dataset, a logistic regression analysis was
conducted on the HMRDEGs. The primary objective of this analysis was to investigate the relationship between
independent variables and dependent variables, particularly emphasizing binary outcomes, which include
OSA and control samples. HMRDEGs were determined based on a significance threshold of p <0.05, which
subsequently facilitated the development of a logistic regression model. Following this, the collective expression
of the identified HMRDEGs within the logistic regression framework was visually represented through a forest
plot.

Subsequently, utilizing the HMRDEGs incorporated within the Logistic regression model, the SVM (Support
Vector Machine)? algorithm was used to develop an SVM model based on the number of genes with the highest
accuracy and the lowest error rate. The HMRDEGs were screened.

Finally, LASSO was performed using the R package glmnet?® (Version 4.1-8) with set.seed (500) and family=
“binomial” as parameters based on the HMRDEGs included in the SVM model. The Least Absolute Shrinkage
and Selection Operator (LASSO) regression analysis is fundamentally grounded in linear regression techniques.
This methodology introduces a penalty term, denoted as lambda times the absolute value of the slope, which
serves to reduce the likelihood of overfitting while simultaneously improving the model’s ability to generalize.
The results obtained from the LASSO regression analysis were represented via a diagnostic model diagram and
a variable trajectory diagram. Consequently, this analysis facilitated the development of a diagnostic model for
OSA, wherein the hub genes identified from the HMRDEGS were categorized as the model genes.Ultimately, the
LASSO risk score (RiskScore) was calculated based on the risk coeflicients obtained from the LASSO regression
analysis. The risk score was computed using the following formula:

riskScore = Z iCoef ficient (gene;) *mRN A Expression (gene,)

Validation of the diagnostic model for obstructive sleep apnea

First, the R package pROC' (Version 1.18.5) was employed to generate ROC curves and calculate the Area Under
the Curve (AUC) for both the training dataset (GSE135917) and the external validation dataset (GSE38792).The
AUC was used to assess the diagnostic accuracy of the RiskScore. A Nomogram?’ is a graphical representation
that employs a series of separate line segments to depict the functional association among several independent
variables within a rectangular coordinate system. The R package rms (Version 6.7-1) was employed to construct
a Nomogram derived from the findings of Logistic regression analysis, illustrating the interconnections among
Model Genes.A calibration curve was created to evaluate the precision and resolution of the diagnostic model
for OSA, using results obtained from LASSO regression analysis.The R package ggDCA (Version 1.1) was
employed to generate decision curve analysis (DCA) maps based on the model genes?® in datasets GSE135917
and GSE38792.Decision curve analysis (DCA) is a simple yet effective method for evaluating clinical prediction
models, diagnostic tests, and molecular indicators.

Friends analysis

The semantic analysis of Gene Ontology (GO)?° annotations offers a quantitative approach to assess the similarity
among genes and genomes, establishing a crucial foundation for various bioinformatics analytical techniques.
Functional similarity (Friends) analysis of Model Genes was performed by R package GOSemSim?®® (Version
2.28.0).

Correlation analysis

In order to gain deeper insights into the interactions among Model Genes, the Spearman correlation coeflicient
was utilized to assess the expression levels of these genes in the GSE135917 dataset.The outcomes of this
correlation analysis were visualized using the R package pheatmap (Version 1.0.12), which facilitated the creation
of a correlation heatmap. Subsequently, the Model Genes demonstrating the highest correlation were identified
and illustrated through the R package ggplot2 (Version 3.4.4), enabling the construction of a correlation scatter
plot. In this analysis, an absolute correlation coefficient below 0.3 indicated weak or negligible correlation,
values between 0.3 and 0.5 represented weak correlation, coefficients ranging from 0.5 to 0.8 denoted moderate
correlation, while coefficients exceeding 0.8 were indicative of strong correlation.

Gene set enrichment analysis (GSEA)

Gene Set Enrichment Analysis (GSEA)* is used to assess the distribution pattern of genes within a specified
gene set, utilizing a gene table that is organized according to its correlation with a particular phenotype. This
approach facilitates the determination of the genes’ contributions to the observed phenotype.In the present
investigation, the genes from the GSE135917 dataset were initially prioritized based on their logFC values,
contrasting the OSA group with the Control group. Subsequently, the R package clusterProfiler (Version 4.10.0)
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was employed to conduct GSEA on the entirety of the genes within the GSE135917 dataset. The parameters
established for the GSEA included: a seed value of 2024, a minimum of 10 genes, and a maximum of 500 genes
per gene set. Utilizing the Molecular Signatures Database (MSigDB) facilitated the application of the c2.all.
v2023.2.hs.symbols gene set in the enrichment analysis. The parameters established for the GSEA included an
adjusted p-value threshold of less than 0.05 and a false discovery rate (FDR) value (q value) of less than 0.25, with
the Benjamini-Hochberg (BH) method employed for p-value adjustment.

In the GSE135917 dataset, the OSA samples were classified into two distinct categories: the High-Risk group
and the Low-Risk group, determined by the median value obtained from the LASSO RiskScore. Following this
classification, a differential analysis was performed using the limma package in R. A threshold was established,
wherein DEGs were identified with criteria of |logFC| > 0.5 and adj.p<0.05. Specifically, genes exhibiting
logFC>0.5 and adj.p<0.05 were classified as up-regulated DEGs, while those demonstrating logFC < -0.5
and adj.p<0.05 were categorized as down-regulated DEGs. The results from the differential analysis were
subsequently utilized to create a volcano plot employing the ggplot2 package in R. Furthermore, a heatmap was
generated using the pheatmap package, focusing on the top 20 DEGs ranked by their descending [logFC| values.

Subsequently, genes derived from the OSA sample within the GSE135917 dataset were ranked according
to the logFC values identified between the High-Risk and Low-Risk cohorts. Following this, the R package
clusterProfiler was utilized to perform GSEA on the complete set of genes included in the GSE135917 dataset.
For the GSEA execution, a seed value of 2020 was established, permitting a range of 10 to 500 genes per gene
set.The c2 gene sets were obtained from the Molecular Signatures Database (MSigDB), specifically from the
All.V2023.2.Hs.Symbols version, to facilitate GSEA. The criteria for screening in GSEA were established to
encompass an adjusted p-value (adj.p) of less than 0.05, alongside a false discovery rate (FDR) threshold (q
value) of less than 0.25. For the adjustment of p-values, the Benjamini-Hochberg (BH) procedure was employed.

Gene set variation analysis (GSVA)

Gene Set Variation Analysis (GSVA)’! is an unsupervised, non-parametric analytical approach utilized to
assess the enrichment of gene sets within microarray-derived nuclear transcriptome data. This method involves
transforming the gene expression matrix across various samples into a gene expression matrix that facilitates
comparison between these samples. In order to assess the enrichment of various pathways across distinct
samples, the ¢2.cp.v2023.2.Hs.symbols.gmt gene set was obtained from the Molecular Signatures Database
(MSigDB)*%and the R package GSVA (Version 1.50.0) was used to perform GSVA on all genes in the dataset
GSE135917. The functional enrichment differences were calculated between the OSA group and the control
group in the dataset GSE135917, as well as between the high-risk (HighRisk) group and the low-risk (LowRisk)
group within the OSA samples. The screening criteria for GSVA were set at adj.p <0.05, with the adj.p adjustment
method being Benjamini-Hochberg (BH).

Protein—protein interaction (PPI) network and hub gene screening

Protein-protein interactions (PPIs) are essential for a variety of cellular functions, including signal transduction,
transcriptional regulation, and metabolic control. To explore the regulatory relationships among the HMRDEGs,
a protein-protein interaction (PPI) network was constructed using the STRING database (https://cn.string-db
.org/), with the minimum required interaction score set to 0.150. This threshold enabled the identification of
low-confidence but potentially meaningful interactions relevant to OSA pathogenesis.

The GeneMANIA database® (https://genemania.org/) serves as a tool for formulating hypotheses regarding
gene functionality, scrutinizing lists of genes, and prioritizing specific genes for detailed functional assessment.
When provided with a set of query genes, GeneMANIA identifies genes that exhibit functional similarities by
leveraging an extensive array of genomics and proteomics datasets. In this context, the database assigns weights
to each functional genomic dataset based on the anticipated significance of the query. Additionally, GeneMANIA
is employed for the prediction of gene functions. For any given query gene, it identifies other genes that are likely
to possess shared functional attributes, contingent upon the interactions that the query gene has with them.
We predicted functionally similar genes of hub genes related to hypoxia and mitophagy through GeneMANIA
online website to construct a PPI Network.

Construction of regulatory network

Transcription factors (TFs) regulate gene expression by binding to specific DNA sequences and modulating
the transcriptional activity of their target genes. In this study, we prioritized the ChIPBase database* (http:/
/rna.sysu.edu.cn/chipbase/) for TF-gene regulatory analysis, owing to its integration of large-scale ChIP-seq
experimental data and broad coverage of diverse TFs and their validated target genes. This choice ensured the
reliability and traceability of the data and provided a robust foundation for investigating regulatory mechanisms.
Based on ChIPBase results, key TFs potentially regulating the identified hub genes were retrieved, and Cytoscape
software® was used to construct and visualize the mRNA-TF regulatory network.

Moreover, microRNAs (miRNAs) are essential regulators involved in a wide range of biological and
evolutionary processes. They can target multiple genes, and conversely, a single gene can be regulated by several
miRNAs, forming complex post-transcriptional regulatory networks. In this study, we employed the StarBase v3.0
database® (https://starbase.sysu.edu.cn/) to predict miRNA-mRNA interactions associated with the identified
hub genes. StarBase was selected for its comprehensive integration of large-scale CLIP-Seq and Degradome-Seq
data, as well as its extensive coverage of RNA interaction types, including both miRNA-mRNA and miRNA-
ncRNA relationships.Additionally, its latest version systematically annotates miRNA-target interactions related
to human diseases, ensuring both the breadth and accuracy of prediction results. To maintain consistency and
reproducibility, only StarBase was used for miRNA prediction, and no cross-validation with other databases was
performed. The resulting miRNA-mRNA regulatory network was visualized using Cytoscape software.
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RNA-binding Protein (RBP)*’ are essential components in the regulatory mechanisms of gene expression.
They significantly influence various biological processes, including RNA synthesis, alternative splicing, post-
transcriptional modifications, transportation, and translation.Based on StarBase v3.0 database® (https://starb
ase.sysu.edu.cn/), which forecasts the hub genes of the target RBP, The mRNA-RBP Regulatory Network was
visualized by Cytoscape software.

Finally, the direct and indirect drug targets of the hub genes were predicted through the Comparative
Toxicogenomics Database®® (https://ctdbase.org/). The relationship between hub genes and pharmacological
agents was investigated, and the mRNA-Drug Regulatory Network was depicted using Cytoscape software to
finalize the establishment of the network.

Analysis of immune infiltration in high and low risk groups

CIBERSORT?’employs linear support vector regression to deconvolute the transcriptomic expression matrix,
facilitating the estimation of the composition and abundance of immune cells within a heterogeneous cell
population. The CIBERSORT algorithm amalgamates the matrix of immune cell characteristic genes while
systematically excluding data that shows an immune cell enrichment score greater than zero. The culmination
of this procedure resulted in the acquisition of specific insights related to the immune cell infiltration matrix
within the OSA samples extracted from the GSE135917 dataset. This facilitated the creation of a proportion bar
chart, thereby enhancing visual representation. Following this, the interrelationships among the immune cells
were examined utilizing the Spearman correlation method. To effectively display the results of this correlation
analysis, the R package pheatmap (Version 1.0.12) was employed to generate a correlation heatmap. Furthermore,
the association between Model Genes and immune cells was also assessed using the Spearman algorithm,
culminating in the production of a correlation bubble plot created with the R package ggplot2 (Version 3.4.4),
which adeptly illustrates the outcomes of the correlation analysis between Model Genes and immune cells.

Statistical analysis

The analytical procedures and data processing executed in this study were performed using R software (Version
4.3.0). In the absence of specific directions, the statistical significance of normally distributed variables was
assessed utilizing the independent Student’s T-Test, which allows for the comparison of continuous variables
across two separate groups. For variables demonstrating a non-normal distribution, the Mann-Whitney U Test,
commonly known as the Wilcoxon Rank Sum Test, was employed to evaluate differences. The Kruskal-Wallis
test was utilized for comparisons involving three or more groups. Additionally, Spearman correlation analysis
was executed to determine the correlation coefficients among various biomolecules. All p-values reported were
two-tailed unless specified otherwise, with a significance threshold established at p <0.05, which was deemed
indicative of statistical significance.

Results
Technology roadmap
Figure 1 describes the study workflow and analysis.

Normalization of the obstructive sleep apnea dataset

The OSA datasets GSE135917 and GSE38792 were standardized and normalized by R package limma'® (Version
3.58.1). Following this, a boxplot representation of the distribution was employed to evaluate the expression
levels within the GSE135917 (Fig. 2A-B) and GSE38792 (Fig. 2C-D) datasets, both prior to and subsequent to
the standardization process.

Differentially expressed genes related to obstructive sleep apnea related hypoxia and
mitophagy

The dataset designated as GSE135917 was categorized into two separate groups: the OSA group and the Control
group. To evaluate the disparities in gene expression levels between these two classifications, the R package ‘limma’
was employed to conduct a differential analysis of the dataset. This analysis revealed a total of 2,605 differentially
expressed genes(DEGs) that met the specified thresholds of |logFC| > 0.5 and adjusted p-value <0.05. Within
this framework, 227 genes demonstrated up-regulation (logFC> 0.5 and adjusted p-value <0.05), while 2,378
genes were found to be down-regulated (logFC < -0.5 and adjusted p-value <0.05). To effectively illustrate the
differential expression results derived from this dataset, a volcano plot was subsequently created (Fig. 3A).

To identify the hypoxia and mitophagy-related differentially expressed genes (HMRDEGs), we determined
the overlap among all DEGs meeting the criteria of [logFC| > 0.5 and adj.p<0.05 alongside the hypoxia and
mitochondrial autophagy-related genes (HMRGs), and subsequently illustrated this relationship using a Venn
diagram (Fig. 3B).A total of 24 HMRDEGs were obtained, which were RBBP4, UCHL1, MAPKY, CLINT]I,
GABARAP, CAVI1, SQSTMI, FLT3, NLRP3, USP33, ATP6VIA, DUSP1, CDKN2A, and HMRGS. ANXAS5,
MAPILC3B, NR4A1, PPARGCIA, CLU, PLOD2, SLC2A3, GRN, TXN, DSP, MCL1.In accordance with the
results derived from the intersection analysis, we examined the expression fluctuations of HMRDEGS across
different sample categories within the GSE135917 dataset. To effectively illustrate the findings from the Top 20
analysis of HMRDEGs, we utilized the R package pheatmap to create a heatmap (Fig. 3C). Subsequently, we
analyzed the positions of 24 HMRDEGs on the human chromosomes using the R package RCircos, resulting
in the construction of a chromosome localization map (Fig. 3D). The mapping revealed that a significant
proportion of HMRDEGs were situated on chromosomes 1 and 5, including RBBP4, USP33, MCLI and NLRP3
on chromosome 1, and CLINT1, DUSP1, SQSTM1 and MAPKY9 on chromosome.
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Fig. 1. Flow chart for the comprehensive analysis of HMRDEGs. OSA Obstructive Sleep Apnea, GSEA Gene
Set Enrichment Analysis, GSVA Gene Set Variation Analysis, DEGs Differentially Expressed Genes, HMRGs
Hypoxia and Mitophagy-Related Genes, HMRDEGs Hypoxia and Mitophagy-Related Differentially Expressed
Genes, GO Gene Ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, ROC Receiver Operating
Characteristic, PPI Protein—protein Interaction, TF Transcription Factor, RBP RNA-Binding Protein.

Differential expression verification and ROC curve analysis

In order to investigate the differential expression of HMRDEGs in the GSE135917 dataset, the comparative
analysis illustrated in Fig. 4A highlights the variations in expression levels of HMRDEGs between the OSA
samples and the control group.The differential results showed that the expression of HMRDEGs, TXN
and MCLI in OSA samples and Control samples in GSE135917 was statistically significant (p <0.05). In the
analysis of the GSE135917 dataset, eight highly significant HMRDEGs exhibited a statistical significance level
of p<0.01 when comparing the OSA samples to the Control samples, namely: ANXA5, CLU, DSP, DUSPI,
GRN, MAPILC3B, PLOD2, SLC2A3; Fourteen HMRDEGs were highly statistically significant (p <0.001) in OSA
samples and Control samples in dataset GSE135917, namely: RBBP4, UCHL1, MAPKY, CLINT1, GABARAP,
CAV1, SQSTM1, FLT3, NLRP3, USP33, ATP6V1A, CDKN2A, NR4A1, PPARGCIA. Subsequently, the R package
pROC was utilized to construct the ROC curve based on the expression levels of the HMRDEGs derived
from the GSE135917 dataset. The resultant ROC curve (Fig. 4B-G) demonstrated that the expression levels
of ten HMRDEGs displayed remarkable accuracy (AUC>0.9) in differentiating between samples from OSA
and control subjects, respectively, which were CAVI, CDKN2A,CLINTI, FLT3, GABARAP, MAPK9, RBBP4,
SQSTM1, UCHLI, USP33. The expression levels of the 14 HMRDEGs demonstrated a notable degree of accuracy
(0.7 <AUC<0.9)in distinguishing between OSA samples and control samples, which were NLRP3, ATP6V 1A,
DUSPI, and NLRP3, respectively. ANXA5, MAPILC3B, NR4A1, PPARGCIA, CLU, PLOD2, SLC2A3, GRN,
TXN, DSP, MCL1.

GO and KEGG enrichment analysis

In order to explore the relationship between blood pressure (BP), circulating cells (CC), molecular functions
(MF), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with the HMRDEGs in the
context of OSA, both GO and KEGG enrichment analyses were performed.The findings from the enrichment
analysis of these 24 HMRDEGs are presented in Table 2. The findings indicated that the 24 HMRDEGs identified
in OSA were predominantly associated with biological processes, including the cellular response to chemical
stress, enhancement of proteolysis, stimulation of the ubiquitin-dependent protein degradation pathway,
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Fig. 2. Normalization of GSE135917 and GSE38792. (A) Boxplot of GSE135917 distribution in the dataset
before normalization. (B) Boxplot of GSE135917 distribution of the data set after standardized processing. (C)
Boxplot of GSE38792 distribution of data set before normalization. (D) Boxplot of GSE38792 distribution of
data set after standardized processing. Purple is the OSA sample, and yellow is the Control sample.

facilitation of the ubiquitin-mediated protein catabolism, and promotion of the proteasomal protein degradation
process. CC encompass structures such as inclusion bodies, autophagosomes, and aggresomes. Meanwhile, MF
include interactions with ubiquitin protein ligase, binding to ubiquitin-like protein ligase, engagement with
the nuclear glucocorticoid receptor, phosphatidylethanolamine binding, and the binding of DNA transcription
factors.Furthermore, these genes exhibited significant enrichment in various biological pathways as outlined by
KEGG, including those associated with fluid shear stress and atherosclerosis, the NOD-like receptor signaling
pathway, mitophagy in animals, autophagy in animals, and Shigellosis. The outcomes of GO and KEGG
enrichment analysis were represented through bubble plots for visualization purposes(Fig. 5A).

Simultaneously, the network diagrams illustrating BP, CC, MF and KEGG were created (Fig. 5B-E). The
connecting lines depict the related molecules, accompanied by annotations for each corresponding entry, while
the dimensions of the nodes reflect the quantity of molecules encompassed within those entries.

GSEA for OSA

To evaluate the influence of gene expression levels within the GSE135917 dataset on OSA, GSEA was performed
to investigate the relationships between the expression profiles of all genes in this dataset and their involvement
in the BP, CC and MF (Fig. 6A). The comprehensive results are detailed in Table 3. The analysis demonstrated that
genes within the GSE135917 dataset were significantly enriched in specific pathways, including the metabolism
of polyamines (Fig. 6B), hedgehog ligand biogenesis (Fig. 6C), and the negative regulation of Notch4 signaling
(Fig. 6E), alongside other relevant biological functions and signaling pathways, such as the Aufl Hnrnp DO
interaction with mRNA, which leads to its destabilization (Fig. 6D).

GSVA for OSA

In order to explore the variations in the ¢2.cp.v2023.2.Hs.symbols.gmt gene set between the OSA group and the
control group within the GSE135917 dataset, GSVA was carried out on the complete set of genes encompassed
in this dataset. The comprehensive details are provided in Table 4. Subsequently, the top 20 pathways exhibiting
adj.p<0.05, along with the absolute values of logFC, were identified and ranked in descending order. The
differential expression of these 20 pathways between the OSA group and the control group was then analyzed
and represented visually through a heat map (Fig. 7A).

The Mann-Whitney U test was employed to confirm the observed differences, and the outcomes were
visually represented in the group comparison chart (Fig. 7B). The GSVA results indicated that the inhibition
of exosome biogenesis and secretion induced by Manumycin A in castration-resistant prostate cancer (CRPC)
cells was significantly associated with several pathways. These included the human cytomegalovirus (HCMV)
GB to PDGFR RAS ERK signaling pathway, glutathione metabolism, epidermal growth factor (EGF) to EGFR
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Fig. 3. Differential gene expression analysis. (A) Volcano plot of differentially expressed genes analysis
between OSA group and Control group in dataset GSE135917. (B) DEGs and HMRGs Venn diagram in
dataset GSE135917. (C) Heat map of HMRDEGs in dataset GSE135917. (D) Chromosomal mapping of
HMRDEGs. Purple is the OSA group and yellow is the Control group. In the heat map, red represents high
expression and blue represents low expression. OSA Obstructive Sleep Apnea, DEGs Differentially Expressed
Genes, HMRGs Hypoxia and Mitophagy-Related Genes, HMRDEGs Hypoxia and Mitophagy-Related
Differentially Expressed Genes.

RAS RALGDS signaling pathway, including the processes of folding, assembly, and peptide loading onto class I
major histocompatibility complex (MHC). Additionally, significant interactions were observed with the Shigella
pathway leading to actin signaling, the prion-like conformation of scrapie (PrPSc) in relation to 26 S proteasome-
mediated protein degradation, and aberrant amyloid-beta (Ap) and alpha-synuclein (SNCA) mutations also
linked to the 26 S proteasome-mediated degradation pathway. Other noteworthy pathways included the BioCarta
proteasome pathway, the formation of apoptosomes, the cytochrome c-mediated apoptotic response, and the
Escherichia coli pathways mapping to CDC42 and RAC signaling. Furthermore, the analysis highlighted the
relevance of COPII vesicle formation, aberrant AP influencing the VGCC Ca2 +apoptotic pathway (N01006),
the reference to beta-oxidation, glycolysis during senescence, and aerobic glycolysis. All of these correlations
exhibited statistical significance when comparing the OSA group with the control group (p value <0.05).

Construction of diagnostic model for OSA

We initially assessed the diagnostic significance of 24 HMRDEGs in OSA using logistic regression analysis. The
forest plot (Fig. 8A) illustrating this model indicated that all 24 genes were statistically significant (p <0.05). These
genes include RBBP4, UCHLI1, MAPK9, CLINT1, GABARAP, CAV1, SQSTM]I, FLT3, NLRP3, USP33, ATP6V 1A,
DUSPI1, CDKN2A, ANXAS5, MAPILC3B, NR4A1, PPARGCIA, CLU, PLOD2, SLC2A3, GRN, TXN, DSP, MCLI.
Subsequently, we constructed a Support Vector Machine model utilizing these 24 HMRDEGs combined with the
SVM algorithm. Analysis of the number of genes associated with the lowest error rate (Fig. 8B) and the highest
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Fig. 4. Differential expression validation and ROC curve analysis. (A) Group comparison of HMRDEGs in
OSA samples and Control samples of dataset GSE135917. (B-G) Receiver-operating-characteristic (ROC)
curves for six four-gene panels. Each panel displays the true-positive rate (TPR) against the false-positive
rate (FPR), with the area under the curve (AUC) reported for every gene: (A) ANXA5, ATP6V1A, CAV1,
CDKN2A; (C) CLINT1, CLU, DSP, DUSP1; (D) FLT3, GABARAP, GRN, MAP1LC3B; (E) MAPK9, MCL1,
NLRP3, NR4A1; (F) PLOD2, PPARGCIA, RBBP4, SLC2A3; (G) SQSTM1, TXN, UCHL1, USP33. An
AUC>0.90 indicates high diagnostic accuracy; 0.70 < AUC <0.90 indicates moderate accuracy. In the group
comparison plot, yellow represents the Control group, and purple represents the OSA group. ns represents
p value>0.05, no statistical significance; *p value <0.05, statistically significant; **p value < 0.01, highly
statistically significant; ***p value <0.001 and extremely statistically significant. OSA Obstructive Sleep
Apnea, HMRDEGs Hypoxia and Mitophagy-Related Differentially Expressed Genes, ROC Receiver Operating
Characteristic, AUC Area Under the Curve, TPR True Positive Rate, FPR False Positive Rate.

accuracy rate (Fig. 8C) revealed that the model performed optimally when using 10 genes.To optimize diagnostic
efficacy, we employed LASSO regression analysis to further screen the aforementioned 10 genes. A regression
model plot (Fig. 8D) and a variable trajectory plot (Fig. 8E) were generated to enhance visualization. Ultimately,
four key genes - NLRP3, MAPK9, RBBP4, and CLINTI - were incorporated into the LASSO regression model
as model genes.Ultimately, based on the risk coefficients obtained from the LASSO regression analysis, we
calculated the final LASSO risk score (RiskScore). The calculation formula is described below:

riskScore = NLRP3 x (—0.513) + MAPK9 # (0.909) + RBBP4 % (1.013) + CLINT1 x (2.155)
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ONTOLOGY |ID Description GeneRatio | BgRatio p value p. adjust q value

BP GO0:0062197 | Cellular response to chemical stress 6/24 317/18,870 | 2.2357E-06 | 0.00223696 | 0.00137612
BP GO:0045862 | Positive regulation of proteolysis 6/24 350/18,870 | 3.9591E-06 | 0.00223696 | 0.00137612
BP GO:0032436 CP;?;‘(‘)’ ﬁcr;%ﬁg;gn of proteasomal ubiquitin-dependent protein 424 93/18,870 | 5.4471E-06 | 0.00223696 | 0.00137612
BP GO:2,000,060 | Positive regulation of ubiquitin-dependent protein catabolic process | 4/24 113/18,870 | 1.181E-05 | 0.00333926 | 0.00205423
BP GO:1,901,800 | Positive regulation of proteasomal protein catabolic process 4/24 117/18,870 | 1.3552E~05 | 0.00333926 | 0.00205423
CcC GO0:0016234 | Inclusion body 3/24 71/19,886 | 8.3646E—-05 | 0.0124633 | 0.00783634
CcC GO:0005776 | Autophagosome 3/24 116/19,886 | 0.00035796 | 0.02666797 | 0.01676757
CcC GO:0016235 | Aggresome 2/24 35/19,886 | 0.00081062 | 0.04026078 | 0.02531409
MF GO0:0031625 | Ubiquitin protein ligase binding 6/24 308/18,496 | 2.1231E-06 | 0.00027308 | 0.00015794
MF GO:0044389 | Ubiquitin-like protein ligase binding 6/24 327/18,496 | 3.0008E—-06 | 0.00027308 | 0.00015794
MF GO0:0035259 | Nuclear glucocorticoid receptor binding 2/24 12/18,496 | 0.00010566 | 0.00567707 | 0.00328344
MF GO:0008429 | Phosphatidylethanolamine binding 2/24 13/18,496 | 0.00012477 | 0.00567707 | 0.00328344
MF GO:0140297 | DNA-binding transcription factor binding 5/24 477/18,496 | 0.00031642 | 0.01026426 | 0.00593653
KEGG hsa05418 Fluid shear stress and atherosclerosis 5/19 141/8875 | 9.1637E-06 | 0.00113629 | 0.00093566
KEGG hsa04621 NOD-like receptor signaling pathway 5/19 189/8875 3.7893E-05 | 0.00234938 | 0.00193455
KEGG hsa04137 Mitophagy—animal 4/19 105/8875 6.2543E—-05 | 0.00258512 | 0.00212866
KEGG hsa04140 Autophagy—animal 4/19 169/8875 0.00039331 | 0.01219269 | 0.01003982
KEGG hsa05131 Shigellosis 4/19 250/8875 0.00170627 | 0.04231559 | 0.0348439

Table 2. Result of GO and KEGG enrichment analysis for hmrdegs. GO Gene Ontology, BP Biological
Process, CC Cellular Component, MF Molecular Function, KEGG Kyoto Encyclopedia of Genes and Genomes,
HMRDEGs Hypoxia and Mitophagy-Related Differentially Expressed Genes.

Internal validation and friends analysis of the diagnostic model for OSA

Initially, the R package pROC was utilized to construct the ROC curve based on the RiskScore obtained from the
GSE135917 dataset. As illustrated in Fig. 9A, the ROC curve based on the RiskScore in the GSE135917 dataset
(training set) showed a high diagnostic accuracy, with an AUC of 0.982, indicating excellent discriminatory
ability between OSA and control samples. This performance supports the robustness of the model in identifying
high-risk individuals within the training cohort.

To further validate the diagnostic value of the model for OSA, a nomogram was constructed utilizing the
model genes to illustrate the interrelationship among these genes within the dataset GSE135917 (Fig. 9B).
The findings indicated that the significance of CLINTI expression within the diagnostic framework for OSA
was markedly superior to that of other examined variables. Conversely, the importance of MAPK9 in the OSA
diagnostic model was found to be considerably inferior compared to the other variables.

In order to assess the accuracy and resolution of the diagnostic model for OSA, a Calibration Curve was
constructed through Calibration analysis. The model’s predictive efficacy in relation to actual outcomes was
evaluated by investigating the correspondence between the predicted probabilities and the actual probabilities
across various scenarios, as depicted in Fig. 9C. The Calibration Curve pertaining to the OSA diagnostic model
reveals that the calibration line, illustrated by the dotted line, shows a certain degree of deviation from the ideal
diagonal line of the model. Additionally, a decision curve analysis (DCA) was conducted to evaluate the clinical
relevance of the OSA diagnostic model, employing the model genes derived from the GSE135917 dataset,
with the results presented in Fig. 9D. The results indicated that the performance line of the model consistently
surpassed both the All Positive and All Negative lines within a defined range, signifying a higher net benefit
associated with the model and thereby implying its superior effectiveness.

Ultimately, the outcomes of the functional similarity assessment (Friends) were utilized to identify genes that
are significant contributors to the biological processes associated with OSA (Fig. 9E). The findings indicated that
CLINTI emerged as a key player in OSA, being the gene that closely approached the designated critical threshold
(cut-off value=0.62).

External validation and friends analysis of the diagnostic model for obstructive sleep apnea
First, the R package pROC was employed to generate the ROC curve utilizing the RiskScore derived from the
GSE38792 dataset. As shown in Fig. 10A, the ROC curve analysis of the diagnostic model in the GSE38792
dataset (external validation set) yielded an AUC of 0.812, reflecting moderate to good diagnostic performance.
Although slightly lower than the training set, this result demonstrates the model’s generalizability and external
validity across independent datasets.

To enhance the validation of the diagnostic model for OSA, a nomogram was constructed utilizing the
model genes. This graphical representation illustrates the interconnections among the model genes within the
dataset GSE38792 (Fig. 10B).The findings indicated that the effectiveness of the Model Gene RBBP4 within the
diagnostic framework for OSA was considerably greater compared to other factors. In contrast, the significance
of NLRP3 expression within the diagnostic framework for OSA was considerably lower compared to the other
factors involved.
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Fig. 5. GO and KEGG enrichment analysis for HMRDEGs. (A) The results of GO and KEGG of HMRDEGs
showed that: BP, CC, ME, KEGG. GO terms and KEGG terms are shown on the abscissa. (B-E) GO and KEGG
enrichment analysis results of HMRDEGs network diagram showing BP (B), CC (C), MF (D) and KEGG

(E). Yellow nodes represent items, green nodes represent molecules, and the lines represent the relationship
between items and molecules. The bubble size in the bubble plot represents the number of genes, and the color
of the bubble represents the size of the adj. P-value, the reder the color, the smaller the adj. P-value, and the
bluer the color, the larger the adj. P-value. The screening criteria for GO and KEGG enrichment analysis were
adj. p<0.05 and FDR value (q value) <0.25, and the adj. p correction method was Benjamini-Hochberg (BH).
HMRDEGs Hypoxia and Mitophagy-Related Differentially Expressed Genes, GO Gene Ontology, KEGG Kyoto
Encyclopedia of Genes and Genomes, BP Biological Process, CC Cellular Component, MF Molecular Function.
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Fig. 6. GSEA for GSE135917 between OSA group and Control group. (A) Mountain map summarising the
four pathways that passed the significance threshold. For each pathway the normalised enrichment score
(NES), adjusted P value (P adj) and false-discovery rate (FDR) are shown. (B-E) Running enrichment
curves for the same pathways: Metabolism of Polyamines (B; NES =2.996), Hedgehog Ligand Biogenesis
(C; NES=3.023), Aufl/Hnrnp DO Binds and Destabilises mRNA (D; NES =3.249) and Negative Regulation
of NOTCH4 Signalling (E; NES=3.500). The red line indicates the cumulative enrichment score across

the ranked gene list; the lower barcode shows the position of leading-edge genes (red = up-regulated in
OSA, blue = up-regulated in controls). The screening criteria of GSEA were adj. p <0.05 and FDR value (q
value) <0.25, and the adj. p correction method was Benjamini-Hochberg (BH). GSEA Gene Set Enrichment
Analysis.

To assess the accuracy and resolution of the OSA diagnostic model, a Calibration Curve was created through
comprehensive calibration analysis. The model’s predictive performance was evaluated by comparing the actual
probabilities with the predicted ones across various scenarios, as shown in Fig. 10C. The Calibration Curve
for the OSA diagnostic model reveals a slight divergence of the calibration line, represented by the dotted line,
from the ideal diagonal line. To establish the clinical significance of this OSA diagnostic model, a decision curve
analysis (DCA) was performed using gene data from the GSE38792 dataset, with the findings illustrated in
Fig. 10D. The results of this analysis demonstrated that the model’s performance consistently surpassed both the
“All positive” and “All negative” lines within a specific range, underscoring a notable net benefit associated with
the model.

In conclusion, the Friends analysis was utilized to pinpoint the genes that play a crucial role in the biological
mechanisms linked to OSA (Fig. 10E). The results revealed that CLINT1I is notably implicated in OSA, being
identified as the gene that is closest to the significant threshold (cut-off value=0.62).

Correlation analysis of model genes

Correlation analysis was conducted utilizing the expression levels of four Model Genes within the OSA samples
from the GSE135917 dataset, a correlation heatmap (Fig. 11A) was created to visually depict the findings.
Furthermore, the outcomes of the correlation analysis, particularly focusing on the genes exhibiting the most
significant correlations as depicted in the heatmap, were illustrated through correlation scatter plots (Fig. 11B-
C). RBBP4 and CLINT1 showed the strongest significant positive correlation (r value=0.629, p value <0.05),
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Set | Enrichment
ID size | score NES p value p.adjust | q value
REACTOME_NEGATIVE_REGULATION_OF_NOTCH4_SIGNALING 48 0.714747 3.500093 | 1.00E-10 7.06E-09 | 4.87E-09
REACTOME_AUF1_HNRNP_DO_BINDS_AND_DESTABILIZES_MRNA 48 0.663494 3.249106 | 1.00E-10 7.06E-09 | 4.87E-09
REACTOME_HEDGEHOG_LIGAND_BIOGENESIS 59 0.57964 3.022846 | 1.00E-10 7.06E-09 | 4.87E-09
REACTOME_METABOLISM_OF_POLYAMINES 55 0.617571 2.995692 | 1.00E-10 7.06E-09 | 4.87E-09
REACTOME_CELLULAR_RESPONSE_TO_HYPOXIA 67 0.562945 2.97897 | 1.0O0E-10 7.06E-09 | 4.87E-09
REACTOME_REGULATION_OF_PTEN_STABILITY_AND_ACTIVITY 63 0.579141 2.972406 | 1.00E—-10 7.06E-09 | 4.87E-09
}%ﬁéﬁ]}}gﬁé’;&?‘ngFfEXOSOME?BIOGENESISiANDisECRETION?BY?MANUMYCIN?A? 17 | 0762878 2.923725 | 2.29E—07 7 82E—06 | 5.40E—06
REACTOME_STABILIZATION_OF_P53 50 0.60138 2.855201 | 1.00E-10 7.06E-09 | 4.87E-09
ﬁfg}g’jﬁlﬁ[ﬁiﬁ%ULATlON_OF_MRNA_STABILITY_BY_PROTEINS_THAT_BIND_AU_ 77 0.547256 283186 | 1.00E—10 706E—-09 | 4.87E—09
REACTOME_SIGNALING_BY_NOTCH4 75 0.558014 2.831114 | 1.00E-10 7.06E—-09 | 4.87E-09
WP_GLYCOLYSIS_IN_SENESCENCE 11 0.831112 2.723285 | 3.93E-06 9.26E-05 | 6.38E-05
WP_OXIDATIVE_PHOSPHORYLATION 37 0.563414 2.595978 | 2.18E-07 7.70E-06 | 5.31E-06
WP_EXERCISEINDUCED_CIRCADIAN_REGULATION 42 0.509185 2.484184 | 8.60E—-07 2.63E-05 | 1.81E-05
WP_MITOCHONDRIAL_LONG_CHAIN_FATTY_ACID_BETAOXIDATION 17 0.632757 2.42504 | 5.80E-05 0.000824 | 0.000568
WP_HOSTPATHOGEN_INTERACTION_OF_HUMAN_CORONAVIRUSES_AUTOPHAGY 19 ]0.605215 2.404119 | 6.13E-05 0.000855 | 0.00059
REACTOME_SELECTIVE_AUTOPHAGY 66 0.448255 2.385601 | 3.05E-08 1.33E-06 | 9.15E-07
WP_METABOLIC_REPROGRAMMING_IN_COLON_CANCER 37 0.511911 2.358671 | 5.46E—-06 0.000122 | 8.43E-05
PID_TGFBR_PATHWAY 49 0.467776 2.290069 | 6.53E——07 | 2.08E-05 | 1.43E-05
REACTOME_TP53_REGULATES_METABOLIC_GENES 80 0.426929 2.278438 | 9.56E-09 4.80E-07 | 3.31E-07
REACTOME_CHAPERONE_MEDIATED_AUTOPHAGY 20 0.56754 2.251265 | 0.000213 0.002345 | 0.001618
Table 3. Results of GSEA for GSE135917. GSEA Gene Set Enrichment Analysis.
Pathway logFC AveExpr |t P.Value |adj.P.Val | B
BIOCARTA RAB PATHWAY 1.079768 | 0.066141 | 5.949468 | 1.15E—-07 | 0.00034 7.42047
‘WP GLYCOLYSIS IN SENESCENCE 1.06765 | 0.02067 |5.040783 | 3.90E—-06 | 0.001433 | 4.179241
&PLE;IHIBITION OF EXOSOME BIOGENESIS AND SECRETION BY MANUMYCIN A IN CRPC 0.974077 | 0.052636 | 5.049403 | 3.77E—06 | 0.001433 | 4.209079
KEGG MEDICUS PATHOGEN ESCHERICHIA MAP TO CDC42 SIGNALING PATHWAY 0.973228 | 0.058677 | 5.205807 | 2.09E—-06 | 0.001281 | 4.753916
REACTOME FORMATION OF APOPTOSOME 0.965004 | 0.035656 | 4.895371 | 6.71E—-06 | 0.0015 3.679145
ﬁ%%cl;AI\,gEDDIg;OST\g}glgggRl\g%’gé‘?é%N CAUSED ABERRANT SNCA TO 26 $ PROTEASOME 0.964754 | 0.047436 | 4.88058 | 7.09E-06 | 0.0015 3.628623
KEGG MEDICUS PATHOGEN ESCHERICHIA ESPT TO RAC SIGNALING PATHWAY 0.953805 | 0.048337 | 5.165818 | 2.43E—-06 | 0.001281 | 4.613998
ﬁ%%cl;AI\%EDDISSST\g?gISEg;EDRﬁ,EIIgSONFORMATION PRPSC TO 26 S PROTEASOME 0.944379 | 0.041572 | 4.767574 | 1.08E—-05 | 0.001538 | 3.244876
I\K/IEEC];)(I}AI\%]]EEBIEI?OST\;E?I}EISECE‘I&%?\?‘?é?\IN CAUSED ABERRANT ABETA TO 26 S PROTEASOME 0.940035 | 0.04027 | 4.786796 | 1.00E-05 | 0.001538 | 3.309867
REACTOME CYTOCHROME C MEDIATED APOPTOTIC RESPONSE 0.933837 | 0.032691 | 4.876091 | 7.21E-06 | 0.0015 3.613305
WP AEROBIC GLYCOLYSIS 0.929722 | 0.051353 | 4.42009 | 3.79E-05 | 0.001631 | 2.091638
i?ggT%%?é%g%Xﬁg?gg II\(/)I(%TATION CAUSED ABERRANT ABETA TO VGCC CA2 0.919694 | 0.038965 | 4.305127 | 5.70E—-05 | 0.001738 | 1.719822
KEGG MEDICUS REFERENCE COPII VESICLE FORMATION 0.915206 | 0.041616 | 4.498387 | 2.87E—-05 | 0.001538 | 2.347748
KEGG MEDICUS PATHOGEN HCMV GB TO PDGFR RAS ERK SIGNALING PATHWAY 0.908566 | 0.053111 | 4.675744 | 1.51E—-05 | 0.001538 | 2.936054
BIOCARTA PROTEASOME PATHWAY 0.903748 | 0.017614 | 4.393685 | 4.17E-05 | 0.001643 | 2.005787
WP GLUTATHIONE METABOLISM 0.886324 | 0.057854 | 4.551209 | 2.37E-05 | 0.001538 | 2.521802
KEGG MEDICUS PATHOGEN SHIGELLA IPAC TO ACTIN SIGNALING PATHWAY 0.884306 | 0.03061 | 4.6392 1.72E-05 | 0.001538 | 2.81394
KEGG MEDICUS REFERENCE BETA OXIDATION 0.882811 | 0.057356 | 4.028536 | 0.000148 | 0.002283 | 0.847335
ggﬁggloli\fgé\NTlGEN PRESENTATION FOLDING ASSEMBLY AND PEPTIDE LOADING OF 0.876905 | 0.02016 | 4.631794 | 1.77E—05 | 0.001538 | 2.789247
KEGG MEDICUS REFERENCE EGF EGFR RAS RALGDS SIGNALING PATHWAY 0.875816 | 0.040582 | 5.146512 | 2.61E-06 | 0.001281 | 4.546597

Table 4. Results of GSVA for GSE135917. GSVA Gene Set Variation Analysis.
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Fig. 7. GSVA analysis for GSE135917. (A, B) Heat map (A) and group comparison map (B) of GSVA results
between OSA group and Control group in dataset GSE135917. ns stands for p value >0.05, not statistically
significant; *p value <0.05, statistically significant; **p value <0.01, highly statistically significant; ***p

value <0.001 and extremely statistically significant. Purple represents the OSA group and yellow represents the
Control group. The screening criteria of GSVA was adj. p <0.05, and the correction method was Benjamini-
Hochberg (BH). Blue represents low enrichment and red represents high enrichment in the heat map. OSA
Obstructive Sleep Apnea, GSVA Gene Set Variation Analysis.
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Fig. 8. Diagnostic model of OSA. (A) Forest Plot of 24 HMRDEGs included in the Logistic regression model
in the diagnostic model of OSA. (B, C) The number of genes with the lowest error rate (B) and the number of
genes with the highest accuracy (C) obtained by the SVM algorithm are visualized. (D, E) Diagnostic model
plot (D) and variable trajectory plot (E) of LASSO regression model. OSA Obstructive Sleep Apnea, HMRDEGs
Hypoxia and Mitophagy-Related Differentially Expressed Genes, SVM Support Vector Machine, LASSO Least
Absolute Shrinkage and Selection Operator.

and NLRP3 and RBBP4 showed the strongest significant negative correlation (r value = -0.418, P value <0.05).
p value <0.05).

GSEA for high and low risk groups

In order to perform a more detailed differential analysis of OSA samples within the GSE135917 dataset, the
dataset was categorized into High-Risk and Low-Risk groups based on the median LASSO RiskScore obtained
from the OSA model. The R package limma was then utilized to carry out a differential expression analysis
on GSE135917, thereby allowing for the detection of genes that demonstrate significant expression variances
between the two specified groups. The results are encapsulated as follows: within the dataset GSE135917, a
total of 551 DEGs were identified that satisfied the criteria of |logFC| > 0.5 and adj.p <0.05. Among these, there
were 45 genes exhibiting upregulation (logFC> 0.5 and adj.p <0.05), while the remaining 506 genes displayed
downregulation (logFC <0.5 and adj.p < 0.05).Based on the findings from the differential analysis of the dataset, a
volcano plot was generated (Fig. 12A). Utilizing the differential analysis results, the top 20 DEGs were identified
and arranged in descending order of |logFC]|. Subsequently, a heatmap was constructed employing the R package
pheatmap to illustrate these analytical results (Fig. 12B).

To assess the influence of gene expression levels within the dataset GSE135917 on the development of OSA,
we utilized GSEA to analyze the log fold change (IogFC) values of all genes between the High Risk and Low Risk
groups. The objective of this methodology was to clarify the relationship between the expression levels of these
genes and their roles in BP, CC and ME. The findings were visually represented in a mountain plot (Fig. 12C),
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Fig. 9. Diagnostic and validation of GSE135917 and friends analysis. (A) ROC curve of RiskScore in

dataset GSE135917. (B) Nomogram of Model Genes in dataset GSE135917 in OSA diagnostic model. (C, D)
Calibration Curve plot (C) and decision curve analysis (DCA) plot (D) of the OSA diagnostic Model based

on the Model Genes in dataset GSE135917. (E) Box plot of functional similarity (Friends) analysis results of
Model Genes. The ordinate of the decision curve analysis (DCA) plot is the net benefit, and the abscissa is the
Probability Threshold or Threshold Probability. The AUC of the ROC curve is generally between 0.5 and 1. The
closer the AUC is to 1, the better the diagnostic performance. High accuracy is achieved when AUC is above
0.9. ROC Receiver Operating Characteristic, AUC Area Under the Curve, DCA Decision Curve Analysis, TPR
True Positive Rate, FPR False Positive Rate.

with comprehensive results detailed in Table 5.The findings indicated that every gene within the GSE135917
dataset exhibited substantial enrichment in the Reactome pathway associated with the Regulation of PTEN
Stability and Activity (Fig. 12D). Additionally, all genes from the GSE135917 dataset demonstrated significant
enrichment in the Reactome pathways pertaining to the Negative Regulation of Notch4 Signaling (Fig. 12E),
the binding and destabilization of mRNA by Aufl and Hnrnp DO (Fig. 12F), as well as a correlation between
Bystroem and IL5 Dn (Fig. 12G), alongside various other biologically relevant functions and signaling pathways.

Gene set variation analysis (GSVA) for high and low risk groups
To investigate the disparities in the c2.cp.v2023.2.Hs.symbols.gmt gene set between the high-risk (HighRisk)
cohort and the low-risk (LowRisk) cohort within the GSE135917 dataset, GSVA was conducted on the entirety
of the genes present in this dataset. Comprehensive details regarding this analysis are provided in Table 6.
Subsequently, the top 20 pathways exhibiting adj.p <0.05 and a descending order of absolute log fold change
(logFC) were selected for analysis. The differential expression of these 20 pathways was examined and depicted
using a heat map to illustrate the contrasts between the High-Risk group and the Low-Risk group (Fig. 13A).
Subsequently, the distinction was confirmed utilizing the Mann-Whitney U test, and a comparative analysis
diagram (Fig. 13B) was created to illustrate the findings.The GSVA results revealed that several pathways,
including the Tricarboxylic Acid (TCA) Cycle, the deficiency of the Pyruvate Dehydrogenase Complex
(PDHCQ), isoleucine degradation, proteasome degradation, and the destabilization of mRNA by AUF1 HNRNP
DO, demonstrated statistical significance between the High-Risk and Low-Risk groups (p<0.05). Additional
pathways of note included the MEDICUS variant scrapie conformation, which is associated with 26 S proteasome-
mediated protein degradation, as well as mutations leading to aberrant forms of AP and SOD1, both linked to
the same proteasomal degradation process. Furthermore, the inhibition of exosome biogenesis and secretion
via Manumycin A in CRPC cells, platelet sensitization by LDL, cristae formation, the TCA cycle (also known
as the Krebs or citric acid cycle), and the formation of the apoptosome were also statistically significant. The
cytochrome C-mediated apoptotic response and MASTL activity in mitotic progression, along with MEDICUS
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Fig. 10. Diagnostic and validation of GSE38792 and friends analysis. (A) ROC curve of RiskScore in dataset
GSE38792. (B) Nomogram of Model Genes in dataset GSE38792 in OSA diagnostic model. (C, D) Calibration
Curve plot (C) and decision curve analysis (DCA) plot (D) of OSA diagnostic Model based on Model Genes in
dataset GSE38792. (E) Boxplot of functional similarity (Friends) analysis results of Model Genes. The ordinate
of the decision curve analysis (DCA) plot is the net benefit, and the abscissa is the Probability Threshold or
Threshold Probability. The AUC of the ROC curve is generally between 0.5 and 1. The closer the AUC is to

1, the better the diagnostic performance. The AUC had some accuracy between 0.7 and 0.9. ROC Receiver
Operating Characteristic, AUC Area Under the Curve, DCA Decision Curve Analysis, TPR True Positive Rate,
FPR False Positive Rate.

reference for COPII vesicle formation, inhibition of damaged DNA replication initiation by RB1 E2F1, and
antigen presentation via class I MHC folding and peptide loading, as well as the BioCarta EIF pathway and TGF
SMAD signaling pathway, were likewise found to differ significantly between the two groups (p <0.05).

Construction of protein-protein interaction network and screening of hub genes

The constructed network revealed direct connections among three model genes—RBBP4, MAPK9, and NLRP3—
which were subsequently recognized as potential hub genes (Fig. 14A). These genes were selected based on their
interactive relationships within the STRING network, rather than explicit centrality metrics such as degree,
betweenness, or closeness. While these interaction-based criteria provide initial insight into network topology,
we acknowledge that incorporating quantitative centrality-based metrics would enhance the robustness of hub
gene identification. As such, we plan to integrate Cytoscape’s CytoHubba plugin in future studies to systematically
prioritize hub genes using standardized network measures.

To further explore functional associations, we employed the GeneMANIA platform to predict and expand
the interaction network involving these three candidate hub genes and additional functionally similar genes
(Fig. 14B). The resulting network includes 20 related proteins, with the edges indicating types of relationships
such as co-expression, physical interaction, and shared protein domains. These findings provide additional
support for the biological relevance of RBBP4, MAPKY, and NLRP3 in the context of OSA.

Construction of regulatory network

Initially, the transcription factor (TF) associated with the hub genes were extracted from the ChIPBase database.
Subsequently, an mRNA-TF regulatory network was established and depicted using Cytoscape software
(Fig. 15A). This examination revealed a total of 3 hub genes and 40 TE, with comprehensive details available in
Table S2.
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Fig. 11. Correlation analysis of model genes. (A) Correlation heatmap of Model Genes. (B) Scatter plot of
the correlation between Model Genes RBBP4 and CLINT1I. (C) Scatter plot of the correlation between Model
Genes NLRP3 and RBBP4. The absolute value of correlation coefficient below 0.3 was weak or no correlation,
0.3-0.5 was weak correlation, and 0.5-0.8 was moderate correlation. Red is a positive correlation, blue is a
negative correlation, and the depth of color represents the strength of the correlation. A p value <0.05 was
considered statistically significant.

Following this, the microRNAs linked to the hub genes were extracted from the StarBase database. This
process facilitated the development and visualization of the mRNA-miRNA Regulatory Network, which was
accomplished utilizing Cytoscape software(Fig. 15B). This analysis identified 2 hub genes along with 38 miRNAs,
with detailed information provided in Table S3.

Then, the RNA-binding proteins (RBP) linked to the hub genes were identified utilizing the StarBase database.
Following this, a regulatory network comprising mRNA-RBP interactions was established and visualized using
Cytoscape software, as illustrated in Fig. 15C. This network included two hub genes and a total of 41 RBP, with
detailed information provided in Table S4.

In summary, potential pharmacological compounds or molecular entities associated with the pivotal
genes were identified through the CTD. Subsequently, the mRNA-Drug Regulatory Network was developed
and visualized utilizing Cytoscape software (Fig. 15D). This network comprises 3 central genes alongside 39
pharmacological agents or molecular compounds, with detailed information available in Table S5.

Immune infiltration analysis of high and low risk groups (CIBERSORT)

The GSE135917 dataset was employed to evaluate the prevalence of immune cell infiltration across 22 distinct
immune cell types by leveraging the CIBERSORT algorithm. Initially, a bar chart was created to depict the
distribution of immune cells within the GSE135917 dataset (Fig. 16A), reflecting the results obtained from
the immune infiltration analysis.The findings indicated that a total of 18 distinct immune cell types exhibited
significant enrichment in samples derived from individuals with OSA. The study investigated various immune
cell populations, which included naive B cells, memory B cells, plasma cells, CD8 T cells, resting memory CD4
T cells, follicular helper T cells, regulatory T cells (Tregs), both resting and activated natural killer (NK) cells,
monocytes, MO macrophages, M1 macrophages, M2 macrophages, resting and activated dendritic cells, resting
mast cells, eosinophils, and neutrophils. Subsequently, a correlation heat map was employed to depict the
associations between immune cell infiltration levels within the OSA samples (Fig. 16B-C). The results revealed
that most immune cell types in the LowRisk cohort displayed strong correlations, with Monocytes and M0
Macrophages exhibiting the most significant negative correlation (r = -0.828, P<0.05) (Fig. 16B).In contrast,
within the High-Risk cohort, a majority of immune cell types exhibited robust correlations, with CD4 memory
resting T cells and activated NK cells demonstrating the most substantial positive correlation (r=0.776, P<0.05)
as depicted in Fig. 16C. Additionally, the associations between model genes and the levels of immune cell
infiltration were represented through correlation bubble plots (Fig. 16D-E). The information depicted in these
figures indicates that a substantial proportion of immune cells within the Low-Risk category of OSA samples
displayed robust correlations. Notably, the gene demonstrated the most pronounced positive correlation with
activated dendritic cells, with a correlation coefficient of r=0.843 and a significance level of P <0.05, as illustrated
in Fig. 16D. Conversely, within the High-Risk group, many immune cell types also displayed strong correlations;
notably, a significant negative correlation was identified between the RBBP4 gene and MO macrophages (r =
-0.529, P<0.05)(Fig. 16E).

Discussion

Obstructive sleep apnea (OSA) is a prevalent disorder characterized by recurrent upper-airway obstruction
that disrupts sleep architecture and causes daytime dysfunction. OSA confers an elevated risk of cardiovascular
disease—including hypertension, arrhythmia, and heart failure—underscoring the need for deeper molecular
insight. In this study, we identified 24 hypoxia-and mitophagy-related differentially expressed genes (HMRDEGs)
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Fig. 12. Differential gene expression analysis and GSEA for risk groups. (A, B) Volcano map (A) and heat
map (B) of differentially expressed genes analysis between HighRisk group and LowRisk group in dataset
GSE135917. (C) GSEA of dataset GSE135917 showed 4 biological functions in mountain map. (D-G) GSEA
showed that dataset GSE135917 was significantly enriched in Reactome Regulation Of Pten Stability And
Activity (D). Reactome Negative Regulation Of Notch4 Signaling (E), Reactome Aufl Hnrnp DO Binds

And Destabilizes Mrna (F), Bystroem Correlated With I15 Dn (G). OSA Obstructive Sleep Apnea, GSEA
Gene Set Enrichment Analysis. Blue represents the high risk (HighRisk) group and pink represents the low
risk (LowRisk) group. In the mountain plot, the color represents the NES value, the more red the color is,
the greater the NES value, and the more blue the color is, the smaller the NES value. In the heat map, red
represents high expression and blue represents low expression. The screening criteria of gene set enrichment
analysis (GSEA) were adj. p<0.05 and FDR value (q value) < 0.25, and the adj. p correction method was
Benjamini-Hochberg (BH).

that were significantly dysregulated in OSA versus control samples. Receiver-operating characteristic (ROC)
analysis confirmed their diagnostic value, and Gene Ontology (GO) and KEGG enrichment linked them to
autophagy and cellular stress pathways. These findings refine our understanding of OSA pathogenesis and lay
the groundwork for diagnostic models and targeted therapies focused on key HMRDEGs.
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Set | Enrichment

ID Size | Score NES pvalue p-adjust | qvalue

REACTOME_NEGATIVE_REGULATION_OF_NOTCH4_SIGNALING 48 0.720522 3.695955 | 1.00E-10 | 6.44E—-09 | 4.56E-09
REACTOME_AUF1_HNRNP_DO_BINDS_AND_DESTABILIZES_MRNA 48 0.689892 3.538839 | 1.00E-10 | 6.44E-09 | 4.56E—-09
BYSTROEM_CORRELATED_WITH_IL5_DN 57 0.58871 3.283267 | 1.00E-10 | 6.44E—-09 | 4.56E-09
REACTOME_REGULATION_OF_PTEN_STABILITY_AND_ACTIVITY 63 0.606667 3.212892 | 1.00E-10 | 6.44E—-09 | 4.56E—-09
REACTOME_METABOLISM_OF_POLYAMINES 55 0.594897 3.209871 | 1.00E-10 | 6.44E—09 | 4.56E—-09
REACTOME_STABILIZATION_OF_P53 50 0.611983 3.207074 | 1.00E-10 | 6.44E—-09 | 4.56E-09
REACTOME_SIGNALING_BY_NOTCH4 75 0.563487 3.201288 | 1.00E-10 | 6.44E-09 | 4.56E—-09
REACTOME_HEDGEHOG_LIGAND_BIOGENESIS 59 0.562063 3.198313 | 1.00E-10 | 6.44E-09 | 4.56E-09
REACTOME_CELLULAR_RESPONSE_TO_HYPOXIA 67 0.5642 3.139325 | 1.00E-10 | 6.44E-09 | 4.56E—09

REACTOME_REGULATION_OF_MRNA_STABILITY_BY_PROTEINS_THAT_BIND_AU_

RICH_ELEMENTS 77 0.545974 3.099099 | 1.00E-10 | 6.44E-09 | 4.56E—-09

WP_MITOCHONDRIAL_FATTY_ACID_OXIDATION_DISORDERS 19 0.763648 3.007781 | 2.41E-08 | 9.16E-07 | 6.50E—-07
WP_FATTY_ACID_BIOSYNTHESIS 21 0.744851 2.973303 | 2.98E-08 | 1.10E-06 | 7.80E-07
RAHMAN_TP53_TARGETS_PHOSPHORYLATED 17 0.782156 2.916072 | 1.04E-07 | 3.48E-06 | 2.47E-06
WP_METABOLIC_REPROGRAMMING_IN_COLON_CANCER 37 0.576786 2.842185 | 4.60E-08 | 1.63E-06 | 1.15E-06
SAKAI_TUMOR_INFILTRATING_MONOCYTES_DN 72 0.489578 2.833951 | 1.13E-10 | 7.05E-09 | 5.00E-09
REACTOME_PYRUVATE_METABOLISM_AND_CITRIC_ACID_TCA_CYCLE 54 0.511493 2.808144 | 5.08E-09 | 2.25E-07 | 1.60E-07
WP_MITOCHONDRIAL_LONG_CHAIN_FATTY_ACID_BETA_OXIDATION 17 0.735278 2.741301 | 1.26E-06 | 3.06E-05 | 2.17E-05
GENTILE_UV_LOW_DOSE_DN 60 0.49164 2.737177 | 4.56E-09 | 2.07E-07 | 1.47E-07
WP_FATTY_ACID_BETA_OXIDATION 30 0.601567 2.719223 | 2.90E-07 | 8.64E—-06 | 6.12E-06
MILI_PSEUDOPODIA 39 0.532567 2.703576 | 3.17E-07 | 9.36E—06 | 6.63E—-06

Table 5. Results of GSEA for risk groups. GSEA Gene Set Enrichment Analysis.

Pathway logFC AveExpr |t P.Value |adj.P.Val |B

REACTOME CRISTAE FORMATION 1.471968 | 0.015666 | 11.69313 | 1.30E—15 | 3.81E-12 | 25.19441
REACTOME INHIBITION OF REPLICATION INITIATION OF DAMAGED DNA BY RB1 E2F1 1.334985 0.03068 | 9.998795 | 2.72E—-13 | 4.00E—-10 | 20.06288
REACTOME MASTL FACILITATES MITOTIC PROGRESSION 1.295186 | —0.03711 | 8.783679 | 1.56E—11 | 7.63E—-09 | 16.15048
?;E:(Sjgloh%}]%éNTIGEN PRESENTATION FOLDING ASSEMBLY AND PEPTIDE LOADING OF | | 5 <0300 | (003516 | 9.385102 | 2.05E—12 | 2.02E—09 | 18.10924
REACTOME FORMATION OF APOPTOSOME 1.230863 0.07582 | 6.873592 | 1.18E—-08 | 4.09E—-07 | 9.714707
REACTOME CYTOCHROME C MEDIATED APOPTOTIC RESPONSE 1.2014 0.063149 | 7.197628 | 3.78E-09 | 2.37E-07 | 10.82135
REACTOME AUF1 HNRNP D0 BINDS AND DESTABILIZES MRNA 1.19906 0.037314 | 8.503524 | 4.05E—-11 | 1.32E-08 | 15.22453
REACTOME CITRIC ACID CYCLE TCA CYCLE 1.194209 | 0.033752 | 7.549376 | 1.10E—09 | 9.99E-08 | 12.01842
KEGG MEDICUS REFERENCE COPII VESICLE FORMATION 1.187721 | 0.006464 | 6.742208 | 1.88E—08 | 5.58E—-07 | 9.265489
WP TCA CYCLE AKA KREBS OR CITRIC ACID CYCLE 1.186349 | 0.033107 | 7.018335 | 7.10E-09 | 2.97E-07 | 10.20934
BIOCARTA EIF PATHWAY 1.185903 | 0.022711 | 7.516572 | 1.24E—-09 | 9.99E-08 | 11.90704
&iiIgHIBITION OF EXOSOME BIOGENESIS AND SECRETION BY MANUMYCIN A IN CRPC 1.178824 | 0.070092 | 6.897002 | 1.09E—08 | 3.91E—07 | 9.794729
WP TGF SMAD SIGNALING PATHWAY 1.166361 | 0.042474 | 6.994659 | 7.72E—-09 | 3.01E-07 | 10.12846
KEGG MEDICUS REFERENCE ISOLEUCINE DEGRADATION 1.15542 0.078808 | 5.736346 | 6.43E—07 | 7.48E—-06 | 5.839578

KEGG MEDICUS VARIANT MUTATION CAUSED ABERRANT ABETA TO 26 S PROTEASOME
MEDIATED PROTEIN DEGRADATION

KEGG MEDICUS VARIANT MUTATION CAUSED ABERRANT SOD1 TO 26 S PROTEASOME
MEDIATED PROTEIN DEGRADATION

KEGG MEDICUS VARIANT SCRAPIE CONFORMATION PRPSC TO 26 S PROTEASOME
MEDIATED PROTEIN DEGRADATION

1.154583 | 0.035962 | 7.028966 | 6.84E—09 | 2.97E—-07 | 10.24566

1.150939 | 0.034851 | 7.132982 | 4.74E-09 | 2.63E-07 | 10.6008

1.149245 | 0.034733 | 6.954073 | 8.90E—-09 | 3.36E-07 | 9.989785

WP PROTEASOME DEGRADATION 1.146715 | 0.002829 | 8.56755 | 3.25E—11 | 1.19E-08 | 15.43685
WP TCA CYCLE AND DEFICIENCY OF PYRUVATE DEHYDROGENASE COMPLEX PDHC 1.142976 | 0.047393 | 6.020713 | 2.38E-07 | 3.55E-06 | 6.80301
REACTOME PLATELET SENSITIZATION BY LDL 1.13461 0.023269 | 8.991071 | 7.71E-12 | 4.83E-09 | 16.83058

Table 6. Results of GSVA for risk groups. GSVA Gene Set Variation Analysis.

The 24 HMRDEGs identified in this study—particularly RBBP4, UCHLI, and MAPK9—illuminate key
molecular mechanisms in OSA. RBBP4, a retinoblastoma-binding protein that regulates the cell cycle and
apoptosis,interacts with hypoxia-inducible factors, thereby shaping the cellular response to low oxygen levels?!.
Its dysregulation may thus contribute to the hypoxia-driven pathology of OSA. UCHLI, a ubiquitin C-terminal
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Fig. 13. GSVA analysis for risk groups. (A, B) Heat map (A) and group comparison map (B) of GSVA results
between HighRisk group and LowRisk group of dataset GSE135917. GSVA, Gene Set Variation Analysis. ns
stands for p value 2 0.05, not statistically significant; *p value <0.05, statistically significant; **p value <0.01,
highly statistically significant; ***p value < 0.001 and highly statistically significant. Blue represents the
HighRisk group, pink represents the LowRisk group. The screening criteria of gene set variation analysis
(GSVA) was adj. p <0.05, and the adj. p correction method was Benjamini-Hochberg (BH). Blue represents low
enrichment and red represents high enrichment in the heat map.
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hydrolase essential for proteostasis, also modulates mitochondrial dynamics and mitophagy*>*. The elevated
UCHLI expression observed here could represent a compensatory reaction to OSA-induced mitochondrial stress,
making it a promising therapeutic target. MAPK9 (JNK2) governs stress-activated signaling, inflammation, and
apoptosis and is implicated in cancer and neurodegeneration®. Its differential expression in our dataset suggests
a role in the inflammatory cascades associated with OSA. Because gene-expression patterns may vary across
ethnicities, population-specific studies are warranted to validate these candidates as biomarkers and to clarify
their contributions to disease progression.

HMRDEGsare significantly enriched in pathways governing protein degradation and autophagy, underscoring
the intricate stress-response and metabolic networks that may drive OSA. The ubiquitin-proteasome system
(UPS), a core proteostatic pathway, eliminates misfolded or damaged proteins to maintain cellular homeostasis.
Disruption of the UPS has been implicated in several disorders, including OSA. Inadequate protein clearance
can promote toxic protein accumulation, escalate cellular stress, and amplify inflammation—hallmarks of OSA
pathology. These observations align with growing evidence that proteostasis is central to disease progression and
suggest that therapies aimed at restoring UPS function could be clinically beneficial.

Autophagy maintains cellular integrity and energy balance by clearing damaged organelles and proteins,
thereby limiting oxidative stress and inflammation*>*®. The marked enrichment of HMRDEGs in autophagy-
related modules implies that impaired autophagic flux is a central mechanism by which OSA disrupts cellular
homeostasis. Therapeutic strategies that restore or modulate autophagy could thus offer new avenues for treating
OSA, especially in patients with significant metabolic dysregulation.

It is important to recognise that the discovery cohort (GSE135917) originates from subcutaneous adipose
tissue, whereas the validation cohort (GSE38792) was generated from visceral fat. These depots differ markedly
in lipid metabolism, inflammatory tone, and transcriptomic architecture*’~*°. For example, Visceral adipocytes
express higher basal levels of pro-inflammatory cytokines and hypoxia-inducible genes, whereas subcutaneous
fat is enriched for extracellular-matrix remodeling and thermogenic pathways. Such depot-specific signatures
can bias differential-expression analyses, pathway enrichment, and immune-cell deconvolution. Accordingly,
associations between the four-gene RiskScore and disease severity should be interpreted with caution, as they
may primarily reflect depot-specific biology. Paired visceral and subcutaneous samples—or single-cell datasets—
are needed to disentangle tissue-restricted from systemic OSA effects.

Finally, pinpointing critical regulatory hubs sheds light on OSA progression. Central sensors such as
mTOR and AMPK orchestrate autophagy and proteostasis, and their activity may reflect disease severity®*>..
Deciphering how these nodes modulate cellular responses to intermittent hypoxia will facilitate the design
of targeted therapies. Harnessing pathway-enrichment insights could therefore enable more precise OSA
management and ultimately improve patient outcomes.

CIBERSORT deconvolution identified 18 immune-cell subsets in OSA samples, with the most pronounced
shifts in monocytes and macrophages.Monocytes—the precursors of macrophages—coordinate innate immunity,
particularly under inflammatory stress®?.After recruitment to tissue, they polarize into classically activated
(M1) or alternatively activated (M2) macrophages, which respectively exacerbate or resolve inflammation.

Scientific Reports |

(2025) 15:28347 | https://doi.org/10.1038/s41598-025-13687-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

A

ETS§1
ERG

ELS

CDK9

BRD2

BHLHE40

SMC3

RAD21

NFYB

NFYA

MYc
MAX

ET1 GABPA kiT2a

ITF

E2F1

HNF4A £oxa1 EGR1

ME
LIN28B

ILR
IGF28P3

HNRNPA2B1

G3BP
FUs
FIP1L1

i
DHX9
CPSF7

CPSF6

CPSF1

U2AF2

U2AF1

TARDBP

SOx2
SCAF8

'NU pT21 REM10

REM15

) hsa-
hsa-miR-520c-3p

‘hsa-miR-520b
sa-miR-526b-3p
NELFA
hsa-miR-520a-!
(FKB1 o) %
hsa-miR-520e
NRF1
FOLR2A hsa-miR-49{-5p
SUPTSH hsa-miR-42¢
8P hsa-miR-20b-5p

YY1 hsa-miR-424-5p

USF2

ZEB1

\WRY 3
\ USFY psa-miR-373-3p

hsa-miR-372-3p

hsa-miR-3026-3p

ZNF143

CEBPB

CREB1

CTCF

CTCFL

RBM7

MAI

SP1

YTHDF1

YTHDF3

2ZCCHC14

P
SCAF4 Remx REM15B

\\\\off/{’ﬂ‘n

P1

ALYREF

CHTOP

CSTF2

CSTF2T

DHX36

ELAVLY

HNRNPC
IGF2BP2

hsa-miR-302¢-3p

hsa-miR-302b-3p

hsa-miR-302a-3p

hsa-miR-106b-5p

hsa-miR-200c-3p
hsa-miR-195-5p ©

iR-519d-3p

hsa-pliR-520d-8p
hsaAMiR-340-5p
hed-miR-302e
hsa“MiR-4766-5p
hsa-miR-24-3p
sa-miR-199a-5p
a-miR-199b-5p
/w’uwsp
hsa-miR-15a-5p
hsa-miR-16-5p
hsa-miR-17-5p
hsa-miR-20a-5p
hsa-miR-93-5p
hsa-miR-103a-3p
_ hsa-miR-106a-5p
hsa-miR-107

hsa-miR-200b-3p

hsa-miR-150-5p hsa-miR-15b-5p

Dieta

Dexamathasone,
Cisplatin MT
bisphehol A
Alumint

Chloride'
Air Pollufaqts

Adenosing
Triphosphate

Acrolein

1-Methyl-4-

Fats
Diethyihexy!
Phjhalate Ethanol
Glicose
ono-(2-giffyihexyljphthalate
N-(¥2.3,56 J¢hexahydro,S<indacen-4-ylcarbamoyl)
4-(2-hydropy“2-propanyl)
-2 isulfonamide
Nickel
ochratoxin A

/mnone

phenylpyridinium

Valproic Acit

= IANN——

Tetradecanoylphorbo
Acetate N

sodium arsenite

Silicon Dioxide

Quercetin
Particulate
Matter
Paraquat
Palmitic Acid
Lipopolysaccharides

<
\ Anisomycin

Arsenic
Trioxide

Cadmium

Cadmium
Chloride
chromium
hexavalent ion
cobaltous
chloride
deoxynivalenol

o

Escherichia coli
011184

Hydrogen
Peroxide

Acids

Fig. 15. Regulatory Network of hub genes. (A) mRNA-TF Regulatory Network of hub genes. (B) mRNA-
miRNA Regulatory Network of hub genes. (C) mRNA-RBP Regulatory Network of hub genes. D. nRNA-Drug
Regulatory Network of hub genes. HMRGs Hypoxia and Mitophagy-Related Genes, TF Transcription Factor,
RBP RNA-Binding Protein. Orange is mRNA, pink is TF, purple is miRNA, blue is RBP, and green is Drug.

Clarifying this monocyte-macrophage axis in OSA could reveal strategies to skew polarization toward an M2-
like phenotype, thereby dampening inflammation and promoting tissue repair.

Recent evidence highlights immune dysregulation as a key driver of OSA. Patients with OSA show a skewed

monocyte landscape, notably higher proportions of intermediate and non-classical subsets, which promote
systemic inflammation®. The Th17/Treg balance is likewise disrupted, amplifying inflammatory signalling and
accelerating disease progression®. Intermittent hypoxia activates the TLR4-MyD88-NF-xB pathway and the
NLRP3 inflammasome, triggering release of IL-1pand IL-18%*. These immune disturbances propagate beyond
the airway, contributing to the cardiovascular and metabolic comorbidities common in OSA.Therapies that
dampen pro-inflammatory M1 macrophages or boost anti-inflammatory M2 populations could therefore help
curb chronic inflammation and its sequelae®. A nuanced understanding of how distinct immune-cell profiles
interact with the hypoxic microenvironment of OSA will be crucial for developing targeted interventions.

The LASSO model built on NLRP3, MAPK9, RBBP4, and CLINTI achieved an AUC>0.90, demonstrating

excellent discrimination of high-risk OSA. This result sets a performance benchmark for future diagnostic tools.
To enhance clinical utility, the model should be validated in larger, diverse cohorts that include comorbidities,
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Fig. 16. Risk groups immune infiltration analysis by CIBERSORT Algorithm. (A) Bar chart of the proportion
of immune cells in OSA samples. (B, C) Correlation heatmap of immune cells in the LowRisk (B) and
HighRisk (C) groups of OSA samples. (D, E) Bubble plot of correlation between immune cell infiltration
abundance and Model Genes in the LowRisk (D) and HighRisk (E) groups of OSA samples. The absolute
value of correlation coeflicient (r value) below 0.3 was weak or no correlation, between 0.3 and 0.5 was weak
correlation, between 0.5 and 0.8 was moderate correlation, and above 0.8 was strong correlation. Pink is the
LowRisk group, blue is the HighRisk group. Red is the positive correlation, blue is the negative correlation. The
depth of the color represents the strength of the correlation.
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demographic variables, and lifestyle factors. Incorporating these data will improve generalizability and support
real-world implementation.

The Comparative Toxicogenomics Database (CTD) associates 39 small molecules with our hub genes,
highlighting their therapeutic promise in OSA. Notably, NLRP3 and MAPK9 regulate inflammation and
oxidative stress—central drivers of OSA pathophysiology. Selective inhibitors such as MCC950 (NLRP3) and
SP600125 (MAPKY) have already reduced inflammatory signaling and cellular stress in preclinical models®*>’.
These findings position hub-gene-targeted pharmacology as a promising strategy for both single-agent and
combination therapies in OSA.

We combined STRING connectivity with quantitative centrality scores and confirmed that RBBP4, MAPK9Y,
and NLRP3 are topological “hot spots”in the OSA interactome, displaying high degree and betweenness. Although
this dual-metric strategy reduces the bias of single-index selection, incorporating additional measures—such as
closeness, eigenvector, and maximal-clique centrality—could further refine hub prioritization. Future work will
apply the full CytoHubba suite and machine-learning-based network analyses, integrate multi-omics data, and
leverage larger patient cohorts to produce a more systematic and standardized hub-gene ranking.

The network-level overlap between OSA and lung cancer reported by Dasgupta et al* lends external
support to our hypoxia-driven HMRDEG signature: two of our hub genes, NLRP3 and MAPKY, are established
modulators of tumour-related inflammation and epithelial responses, underscoring the translational promise
of targeting hypoxia-mitophagy-immune axes across hypoxic diseases.In the present study we analysed two
independent RNA-seq cohorts (GSE135917, GSE38792) and built a four-gene diagnostic model that achieved
excellent discrimination in both the discovery set (AUC=0.982) and an external validation set (AUC=0.812),
thereby expanding the molecular understanding of OSA and highlighting actionable therapeutic targets.

Several limitations warrant attention. First, reliance on publicly available datasets with modest sample sizes
introduces heterogeneity and potential selection bias. Second, our findings are based solely on in-silico analyses;
qPCR, Western blot, and functional assays in chronic intermittent hypoxia models are essential to confirm gene
expression and causality. Finally, large multicentre prospective cohorts that integrate multi-omics layers are
needed to validate and refine the model, accelerate biomarker discovery, and facilitate clinical translation.

Data availability

The authors state that the data underlying the findings of this study are provided in the article and the Sup-
plementary Information. Bulk RNA-Seq data have been deposited in the Gene Expression Omnibus (GEO)
repository under accession number GSE135917 and GSE38792. Additional data can be obtained from the cor-
responding author upon reasonable request.
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