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Obstructive sleep apnea (OSA) is a common sleep disorder characterized by recurrent upper airway 
obstructions, leading to substantial health burdens and socioeconomic costs. This study aimed to 
identify Hypoxia and Mitophagy-Related Differentially Expressed Genes (HMRDEGs) and evaluate 
their potential as biomarkers and therapeutic targets for OSA. Transcriptomic data from GSE135917 
and GSE38792 in the GEO database were analyzed using the limma package to identify differentially 
expressed genes (DEGs), which were subsequently intersected with hypoxia- and mitophagy-related 
gene sets(HMRGs) curated from GeneCards and PubMed. A total of 24 HMRDEGs were identified, and 
four hub genes—NLRP3, MAPK9, RBBP4, and CLINT1—were used to construct a diagnostic model that 
demonstrated excellent discrimination (AUC = 0.982 in the training set and 0.812 in the validation set). 
Gene Ontology and KEGG analyses linked these genes to protein catabolism and autophagy pathways, 
while immune-cell infiltration profiling associated them with specific leukocyte subsets. Collectively, 
our findings underscore hypoxia–mitophagy crosstalk as a central mechanism in OSA and present a 
robust biomarker panel with therapeutic potential.

Obstructive sleep apnea (OSA) is a prevalent sleep disorder marked by recurrent upper-airway collapse during 
sleep, which causes intermittent hypoxia and a range of adverse sequelae1. Beyond diminishing quality of life, 
OSA is strongly associated with cardiovascular disease, metabolic dysregulation, and cognitive impairment2. 
Continuous positive airway pressure (CPAP) is the first-line treatment, but its real-world effectiveness is limited 
by poor adherence and discomfort. Consequently, there is an urgent need for more effective and patient-friendly 
management strategies3.

Large-scale omics studies published in 2025 have refined the molecular landscape of OSA. Dasgupta 
et al. applied cross-disease network analysis and found four genes—C1GALT1, TMEM106B, ZNF117, and 
ZNF486—concurrently up-regulated in both OSA and lung cancer, implicating hypoxia-driven pathways 
that transcend single-disease boundaries4.Complementing this work, Zhou et al. combined transcriptomic 
and immunoinformatics data, validated four immune-related genes (IL33, EIF2AK2, IL10RB and ANGPTL1) 
as diagnostic biomarkers, and recorded pronounced immune-cell dysregulation in visceral adipose tissue of 
OSA patients5.Together, these studies highlight hypoxia-induced metabolic stress and immune perturbation as 
central mechanisms in OSA, supporting our focus on hypoxia- and mitophagy-related differentially expressed 
genes (HMRDEGs).

This study systematically examines the contribution of hypoxia- and mitophagy-related differentially expressed 
genes (HMRDEGs) to OSA. We propose that dysregulation of these genes not only drives OSA pathogenesis but 
also offers biomarker and therapeutic potential. Leveraging an integrated bioinformatics workflow, we identified 
and validated HMRDEGs, explored their mechanistic relevance, and assessed their diagnostic utility. A four-
gene logistic model incorporating NLRP3, MAPK9, RBBP4, and CLINT1 achieved excellent discrimination, 
with an AUC of 0.982 in the training set and 0.812 in an independent validation set. These findings highlight the 
clinical promise of the HMRDEG signature for early diagnosis and targeted intervention in OSA.
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Materials and methods
Data download
We used the R package GEOquery6(Version 2.70.0) download obstructive sleep apnea (OSA) datasets 
GSE1359177 and GSE387928 from GEO9 database (https://www.ncbi.nlm.nih.gov/geo/). The samples of 
GSE135917 and GSE38792 were all from Homo sapiens. The Tissue source of GSE135917 was Subcutaneous 
Fat Tissue. In dataset GSE38792, the tissue source was Visceral adipose tissue. The chip platform utilized for the 
datasets GSE135917 and GSE38792 was GPL6244, with detailed information presented in Table 1. Specifically, 
dataset GSE135917 comprised 34 samples from individuals with OSA and 8 control samples. In contrast, dataset 
GSE38792 included 10 OSA samples alongside 8 controls. The present research included all specimens from the 
aforementioned datasets.

GeneCards database10 (https://www.genecards.org/) offers extensive details regarding human genes.Initially, 
we employed ‘Hypoxia’ as our primary search term and focused exclusively on ‘Protein Coding’ genes that 
exhibited a Relevance Score exceeding > 1 in order to pinpoint hypoxia-related genes (HRGs). Subsequently, 
we conducted a search for ‘Hypoxia’ within the PubMed database (https://pubmed.ncbi.nlm.nih.gov/) to gather 
hypoxia-associated gene sets documented in previously published studies11–13. Following the processes of 
integration and eliminating redundancies, we successfully identified a total of 2461 unique HRGs. Similarly, 
utilizing “Mitophagy” as the search term, we filtered the results to include solely those mitochondrial autophagy-
related genes (MRGs) that are classified as “Protein Coding” and possess a “Relevance Score > 1”. Subsequently, 
we used “Mitophagy” as the keyword on the PubMed website (https://pubmed.ncbi.nlm.nih.gov/) to obtain the 
mitochondrial autophagy-related gene sets from published literature14–17. Following the integration of data and 
the elimination of duplicate entries, a cumulative total of 1710 MRGs was identified. Ultimately, an intersection 
of the hypoxia and mitophagy-related genes yielded a total of 561 HMRGs, with detailed information provided 
in Table S1.

Finally, the R package limma18 (Version 3.58.1) was used to annotate and normalize the OSA datasets 
GSE135917 and GSE38792, respectively. A boxplot was employed to evaluate and contrast the expression levels 
of the datasets before and after normalization.

Differentially expressed genes related to obstructive sleep apnea-associated hypoxia and 
mitophagy
In accordance with the sample classification outlined in GSE135917, the samples were divided into two distinct 
cohorts: the OSA group and the Control group. The R package limma18(Version 3.58.1) was employed to assess 
the differences between the OSA group and the Control group. A criterion of |logFC| > 0.5 and an adjusted 
p-value (adj.p) < 0.05 were defined to pinpoint Differentially Expressed Genes (DEGs). Specifically, genes that 
demonstrated logFC > 0.5 in conjunction with adj.p < 0.05 were identified as Up-regulated DEGs, while genes 
with logFC < -0.5 and adj.p < 0.05 were categorized as Down-regulated DEGs. The Benjamini-Hochberg (BH) 
approach was applied for p-value correction. The findings from the differential analysis were visually depicted 
using the R package ggplot2 (Version 3.4.4), facilitating the generation of a volcano plot.

To determine the hypoxia and mitophagy-related differentially expressed genes (HMRDEGs) associated with 
OSA, DEGs were selected from the GSE135917 dataset based on the criteria of |logFC| > 0.5 and an adjusted 
p-value of less than 0.05. These DEGs were then compared with known hypoxia and mitochondrial autophagy-
related genes (HMRGs). A Venn diagram was subsequently created to illustrate the genes that overlapped 
between the two sets. Additionally, a heatmap was utilized to present the top 20 HMRDEGs.The R package14 
pheatmap (Version 1.0.12) was utilized to generate a heatmap illustrating the TOP20 HMRDEGs.

Differential expression verification and ROC curve analysis
To investigate the variations in the expression levels of HMRDEGs between the OSA group and the Control 
group within the GSE135917 dataset, a comparative analysis was conducted.This analysis yielded a visual 
representation of the group comparison focused on the HMRDEGs.Finally, the R package pROC19 (Version 
1.18.5) was used to plot the ROC Curve of HMRDEGs and calculate the Area Under the Curve (AUC) value. 
To assess the diagnostic capability of HMRDEGs in relation to the onset of OSA, the AUC of the ROC curve 
is utilized. Typically, AUC values range from 0.5 to 1, with values nearing 1 suggesting an excellent diagnostic 
performance. In detail, an AUC falling between 0.5 and 0.7 indicates low diagnostic accuracy, while an AUC 
ranging from 0.7 to 0.9 demonstrates moderate accuracy. Conversely, an AUC exceeding 0.9 is indicative of a 
high degree of accuracy in diagnosis.

GSE135917 GSE38792

Platform GPL6244 GPL6244

Species Homo sapiens Homo sapiens

Tissue Subcutaneous Fat Tissue Visceral adipose tissue

Samples in OSA group 34 10

Samples in Control group 8 8

Reference PMID: 31,872,261 PMID: 23,288,968

Table 1.  GEO microarray chip information. GEO Gene Expression Omnibus, OSA Obstructive Sleep Apnea.
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Gene ontology (GO) and pathway (KEGG) enrichment analysis
Gene Ontology (GO) analysis20serves as a widely utilized approach for conducting extensive functional 
enrichment investigations, encompassing three primary categories: Biological Process (BP), Cell Component 
(CC), and Molecular Function (MF). Kyoto Encyclopedia of Genes and Genomes (KEGG)21–23database 
is extensively utilized for the storage of data pertaining to genomes, biological pathways, diseases, and 
pharmacological agents.We conducted GO and KEGG enrichment analyses on the HMRDEGs utilizing the R 
package clusterProfiler24 (Version 4.10.0). The criteria for entry screening were set at adj.p < 0.05 and FDR value 
(q value) < 0.25. The adj.p was conducted using the Benjamini-Hochberg (BH) method.

Establishment of diagnostic model for obstructive sleep apnea
To develop a diagnostic model for OSA using the GSE135917 dataset, a logistic regression analysis was 
conducted on the HMRDEGs. The primary objective of this analysis was to investigate the relationship between 
independent variables and dependent variables, particularly emphasizing binary outcomes, which include 
OSA and control samples.HMRDEGs were determined based on a significance threshold of p < 0.05, which 
subsequently facilitated the development of a logistic regression model. Following this, the collective expression 
of the identified HMRDEGs within the logistic regression framework was visually represented through a forest 
plot.

Subsequently, utilizing the HMRDEGs incorporated within the Logistic regression model, the SVM (Support 
Vector Machine)25 algorithm was used to develop an SVM model based on the number of genes with the highest 
accuracy and the lowest error rate. The HMRDEGs were screened.

Finally, LASSO was performed using the R package glmnet26 (Version 4.1-8) with set.seed (500) and family= 
“binomial” as parameters based on the HMRDEGs included in the SVM model. The Least Absolute Shrinkage 
and Selection Operator (LASSO) regression analysis is fundamentally grounded in linear regression techniques. 
This methodology introduces a penalty term, denoted as lambda times the absolute value of the slope, which 
serves to reduce the likelihood of overfitting while simultaneously improving the model’s ability to generalize. 
The results obtained from the LASSO regression analysis were represented via a diagnostic model diagram and 
a variable trajectory diagram. Consequently, this analysis facilitated the development of a diagnostic model for 
OSA, wherein the hub genes identified from the HMRDEGs were categorized as the model genes.Ultimately, the 
LASSO risk score (RiskScore) was calculated based on the risk coefficients obtained from the LASSO regression 
analysis. The risk score was computed using the following formula:

	
riskScore =

∑
iCoefficient (genei) *mRNA Expression (genei)

Validation of the diagnostic model for obstructive sleep apnea
First, the R package pROC19 (Version 1.18.5) was employed to generate ROC curves and calculate the Area Under 
the Curve (AUC) for both the training dataset (GSE135917) and the external validation dataset (GSE38792).The 
AUC was used to assess the diagnostic accuracy of the RiskScore. A Nomogram27 is a graphical representation 
that employs a series of separate line segments to depict the functional association among several independent 
variables within a rectangular coordinate system. The R package rms (Version 6.7-1) was employed to construct 
a Nomogram derived from the findings of Logistic regression analysis, illustrating the interconnections among 
Model Genes.A calibration curve was created to evaluate the precision and resolution of the diagnostic model 
for OSA, using results obtained from LASSO regression analysis.The R package ggDCA (Version 1.1) was 
employed to generate decision curve analysis (DCA) maps based on the model genes28 in datasets GSE135917 
and GSE38792.Decision curve analysis (DCA) is a simple yet effective method for evaluating clinical prediction 
models, diagnostic tests, and molecular indicators.

Friends analysis
The semantic analysis of Gene Ontology (GO)20 annotations offers a quantitative approach to assess the similarity 
among genes and genomes, establishing a crucial foundation for various bioinformatics analytical techniques.
Functional similarity (Friends) analysis of Model Genes was performed by R package GOSemSim29 (Version 
2.28.0).

Correlation analysis
In order to gain deeper insights into the interactions among Model Genes, the Spearman correlation coefficient 
was utilized to assess the expression levels of these genes in the GSE135917 dataset.The outcomes of this 
correlation analysis were visualized using the R package pheatmap (Version 1.0.12), which facilitated the creation 
of a correlation heatmap. Subsequently, the Model Genes demonstrating the highest correlation were identified 
and illustrated through the R package ggplot2 (Version 3.4.4), enabling the construction of a correlation scatter 
plot. In this analysis, an absolute correlation coefficient below 0.3 indicated weak or negligible correlation, 
values between 0.3 and 0.5 represented weak correlation, coefficients ranging from 0.5 to 0.8 denoted moderate 
correlation, while coefficients exceeding 0.8 were indicative of strong correlation.

Gene set enrichment analysis (GSEA)
Gene Set Enrichment Analysis (GSEA)30 is used to assess the distribution pattern of genes within a specified 
gene set, utilizing a gene table that is organized according to its correlation with a particular phenotype. This 
approach facilitates the determination of the genes’ contributions to the observed phenotype.In the present 
investigation, the genes from the GSE135917 dataset were initially prioritized based on their logFC values, 
contrasting the OSA group with the Control group. Subsequently, the R package clusterProfiler (Version 4.10.0) 
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was employed to conduct GSEA on the entirety of the genes within the GSE135917 dataset. The parameters 
established for the GSEA included: a seed value of 2024, a minimum of 10 genes, and a maximum of 500 genes 
per gene set. Utilizing the Molecular Signatures Database (MSigDB) facilitated the application of the c2.all.
v2023.2.hs.symbols gene set in the enrichment analysis. The parameters established for the GSEA included an 
adjusted p-value threshold of less than 0.05 and a false discovery rate (FDR) value (q value) of less than 0.25, with 
the Benjamini-Hochberg (BH) method employed for p-value adjustment.

In the GSE135917 dataset, the OSA samples were classified into two distinct categories: the High-Risk group 
and the Low-Risk group, determined by the median value obtained from the LASSO RiskScore. Following this 
classification, a differential analysis was performed using the limma package in R. A threshold was established, 
wherein DEGs were identified with criteria of |logFC| > 0.5 and adj.p < 0.05. Specifically, genes exhibiting 
logFC > 0.5 and adj.p < 0.05 were classified as up-regulated DEGs, while those demonstrating logFC < -0.5 
and adj.p < 0.05 were categorized as down-regulated DEGs. The results from the differential analysis were 
subsequently utilized to create a volcano plot employing the ggplot2 package in R. Furthermore, a heatmap was 
generated using the pheatmap package, focusing on the top 20 DEGs ranked by their descending |logFC| values.

Subsequently, genes derived from the OSA sample within the GSE135917 dataset were ranked according 
to the logFC values identified between the High-Risk and Low-Risk cohorts. Following this, the R package 
clusterProfiler was utilized to perform GSEA on the complete set of genes included in the GSE135917 dataset. 
For the GSEA execution, a seed value of 2020 was established, permitting a range of 10 to 500 genes per gene 
set.The c2 gene sets were obtained from the Molecular Signatures Database (MSigDB), specifically from the 
All.V2023.2.Hs.Symbols version, to facilitate GSEA. The criteria for screening in GSEA were established to 
encompass an adjusted p-value (adj.p) of less than 0.05, alongside a false discovery rate (FDR) threshold (q 
value) of less than 0.25. For the adjustment of p-values, the Benjamini-Hochberg (BH) procedure was employed.

Gene set variation analysis (GSVA)
Gene Set Variation Analysis (GSVA)31 is an unsupervised, non-parametric analytical approach utilized to 
assess the enrichment of gene sets within microarray-derived nuclear transcriptome data. This method involves 
transforming the gene expression matrix across various samples into a gene expression matrix that facilitates 
comparison between these samples. In order to assess the enrichment of various pathways across distinct 
samples, the c2.cp.v2023.2.Hs.symbols.gmt gene set was obtained from the Molecular Signatures Database 
(MSigDB)32and the R package GSVA (Version 1.50.0) was used to perform GSVA on all genes in the dataset 
GSE135917. The functional enrichment differences were calculated between the OSA group and the control 
group in the dataset GSE135917, as well as between the high-risk (HighRisk) group and the low-risk (LowRisk) 
group within the OSA samples. The screening criteria for GSVA were set at adj.p < 0.05, with the adj.p adjustment 
method being Benjamini-Hochberg (BH).

Protein–protein interaction (PPI) network and hub gene screening
Protein–protein interactions (PPIs) are essential for a variety of cellular functions, including signal transduction, 
transcriptional regulation, and metabolic control. To explore the regulatory relationships among the HMRDEGs, 
a protein–protein interaction (PPI) network was constructed using the STRING database ​(​​​h​t​t​p​s​:​/​/​c​n​.​s​t​r​i​n​g​-​d​b​
.​o​r​g​/​​​​​)​, with the minimum required interaction score set to 0.150. This threshold enabled the identification of 
low-confidence but potentially meaningful interactions relevant to OSA pathogenesis.

The GeneMANIA database33 (https://genemania.org/) serves as a tool for formulating hypotheses regarding 
gene functionality, scrutinizing lists of genes, and prioritizing specific genes for detailed functional assessment. 
When provided with a set of query genes, GeneMANIA identifies genes that exhibit functional similarities by 
leveraging an extensive array of genomics and proteomics datasets. In this context, the database assigns weights 
to each functional genomic dataset based on the anticipated significance of the query. Additionally, GeneMANIA 
is employed for the prediction of gene functions. For any given query gene, it identifies other genes that are likely 
to possess shared functional attributes, contingent upon the interactions that the query gene has with them.
We predicted functionally similar genes of hub genes related to hypoxia and mitophagy through GeneMANIA 
online website to construct a PPI Network.

Construction of regulatory network
Transcription factors (TFs) regulate gene expression by binding to specific DNA sequences and modulating 
the transcriptional activity of their target genes. In this study, we prioritized the ChIPBase database34 ​(​​​h​t​t​p​:​/​
/​r​n​a​.​s​y​s​u​.​e​d​u​.​c​n​/​c​h​i​p​b​a​s​e​/​​​​​) for TF-gene regulatory analysis, owing to its integration of large-scale ChIP-seq 
experimental data and broad coverage of diverse TFs and their validated target genes. This choice ensured the 
reliability and traceability of the data and provided a robust foundation for investigating regulatory mechanisms. 
Based on ChIPBase results, key TFs potentially regulating the identified hub genes were retrieved, and Cytoscape 
software35 was used to construct and visualize the mRNA–TF regulatory network.

Moreover, microRNAs (miRNAs) are essential regulators involved in a wide range of biological and 
evolutionary processes. They can target multiple genes, and conversely, a single gene can be regulated by several 
miRNAs, forming complex post-transcriptional regulatory networks. In this study, we employed the StarBase v3.0 
database36 (https://starbase.sysu.edu.cn/) to predict miRNA–mRNA interactions associated with the identified 
hub genes. StarBase was selected for its comprehensive integration of large-scale CLIP-Seq and Degradome-Seq 
data, as well as its extensive coverage of RNA interaction types, including both miRNA–mRNA and miRNA–
ncRNA relationships.Additionally, its latest version systematically annotates miRNA–target interactions related 
to human diseases, ensuring both the breadth and accuracy of prediction results. To maintain consistency and 
reproducibility, only StarBase was used for miRNA prediction, and no cross-validation with other databases was 
performed. The resulting miRNA–mRNA regulatory network was visualized using Cytoscape software.
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RNA-binding Protein (RBP)37 are essential components in the regulatory mechanisms of gene expression. 
They significantly influence various biological processes, including RNA synthesis, alternative splicing, post-
transcriptional modifications, transportation, and translation.Based on StarBase v3.0 database36 ​(​​​h​t​t​p​s​:​/​/​s​t​a​r​b​
a​s​e​.​s​y​s​u​.​e​d​u​.​c​n​/​​​​​)​, which forecasts the hub genes of the target RBP, The mRNA-RBP Regulatory Network was 
visualized by Cytoscape software.

Finally, the direct and indirect drug targets of the hub genes were predicted through the Comparative 
Toxicogenomics Database38 (https://ctdbase.org/). The relationship between hub genes and pharmacological 
agents was investigated, and the mRNA-Drug Regulatory Network was depicted using Cytoscape software to 
finalize the establishment of the network.

Analysis of immune infiltration in high and low risk groups
CIBERSORT39employs linear support vector regression to deconvolute the transcriptomic expression matrix, 
facilitating the estimation of the composition and abundance of immune cells within a heterogeneous cell 
population. The CIBERSORT algorithm amalgamates the matrix of immune cell characteristic genes while 
systematically excluding data that shows an immune cell enrichment score greater than zero. The culmination 
of this procedure resulted in the acquisition of specific insights related to the immune cell infiltration matrix 
within the OSA samples extracted from the GSE135917 dataset. This facilitated the creation of a proportion bar 
chart, thereby enhancing visual representation. Following this, the interrelationships among the immune cells 
were examined utilizing the Spearman correlation method. To effectively display the results of this correlation 
analysis, the R package pheatmap (Version 1.0.12) was employed to generate a correlation heatmap. Furthermore, 
the association between Model Genes and immune cells was also assessed using the Spearman algorithm, 
culminating in the production of a correlation bubble plot created with the R package ggplot2 (Version 3.4.4), 
which adeptly illustrates the outcomes of the correlation analysis between Model Genes and immune cells.

Statistical analysis
The analytical procedures and data processing executed in this study were performed using R software (Version 
4.3.0). In the absence of specific directions, the statistical significance of normally distributed variables was 
assessed utilizing the independent Student’s T-Test, which allows for the comparison of continuous variables 
across two separate groups. For variables demonstrating a non-normal distribution, the Mann-Whitney U Test, 
commonly known as the Wilcoxon Rank Sum Test, was employed to evaluate differences. The Kruskal-Wallis 
test was utilized for comparisons involving three or more groups. Additionally, Spearman correlation analysis 
was executed to determine the correlation coefficients among various biomolecules. All p-values reported were 
two-tailed unless specified otherwise, with a significance threshold established at p < 0.05, which was deemed 
indicative of statistical significance.

Results
Technology roadmap
Figure 1 describes the study workflow and analysis.

Normalization of the obstructive sleep apnea dataset
The OSA datasets GSE135917 and GSE38792 were standardized and normalized by R package limma18 (Version 
3.58.1). Following this, a boxplot representation of the distribution was employed to evaluate the expression 
levels within the GSE135917 (Fig. 2A-B) and GSE38792 (Fig. 2C-D) datasets, both prior to and subsequent to 
the standardization process.

Differentially expressed genes related to obstructive sleep apnea related hypoxia and 
mitophagy
The dataset designated as GSE135917 was categorized into two separate groups: the OSA group and the Control 
group. To evaluate the disparities in gene expression levels between these two classifications, the R package ‘limma’ 
was employed to conduct a differential analysis of the dataset. This analysis revealed a total of 2,605 differentially 
expressed genes(DEGs) that met the specified thresholds of |logFC| > 0.5 and adjusted p-value < 0.05. Within 
this framework, 227 genes demonstrated up-regulation (logFC > 0.5 and adjusted p-value < 0.05), while 2,378 
genes were found to be down-regulated (logFC < -0.5 and adjusted p-value < 0.05). To effectively illustrate the 
differential expression results derived from this dataset, a volcano plot was subsequently created (Fig. 3A).

To identify the hypoxia and mitophagy-related differentially expressed genes (HMRDEGs), we determined 
the overlap among all DEGs meeting the criteria of |logFC| > 0.5 and adj.p < 0.05 alongside the hypoxia and 
mitochondrial autophagy-related genes (HMRGs), and subsequently illustrated this relationship using a Venn 
diagram (Fig.  3B).A total of 24 HMRDEGs were obtained, which were RBBP4, UCHL1, MAPK9, CLINT1, 
GABARAP, CAV1, SQSTM1, FLT3, NLRP3, USP33, ATP6V1A, DUSP1, CDKN2A, and HMRGS. ANXA5, 
MAP1LC3B, NR4A1, PPARGC1A, CLU, PLOD2, SLC2A3, GRN, TXN, DSP, MCL1.In accordance with the 
results derived from the intersection analysis, we examined the expression fluctuations of HMRDEGs across 
different sample categories within the GSE135917 dataset. To effectively illustrate the findings from the Top 20 
analysis of HMRDEGs, we utilized the R package pheatmap to create a heatmap (Fig. 3C). Subsequently, we 
analyzed the positions of 24 HMRDEGs on the human chromosomes using the R package RCircos, resulting 
in the construction of a chromosome localization map (Fig.  3D). The mapping revealed that a significant 
proportion of HMRDEGs were situated on chromosomes 1 and 5, including RBBP4, USP33, MCL1 and NLRP3 
on chromosome 1, and CLINT1, DUSP1, SQSTM1 and MAPK9 on chromosome.
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Differential expression verification and ROC curve analysis
In order to investigate the differential expression of HMRDEGs in the GSE135917 dataset, the comparative 
analysis illustrated in Fig.  4A highlights the variations in expression levels of HMRDEGs between the OSA 
samples and the control group.The differential results showed that the expression of HMRDEGs, TXN 
and MCL1 in OSA samples and Control samples in GSE135917 was statistically significant (p < 0.05). In the 
analysis of the GSE135917 dataset, eight highly significant HMRDEGs exhibited a statistical significance level 
of p < 0.01 when comparing the OSA samples to the Control samples, namely: ANXA5, CLU, DSP, DUSP1, 
GRN, MAP1LC3B, PLOD2, SLC2A3; Fourteen HMRDEGs were highly statistically significant (p < 0.001) in OSA 
samples and Control samples in dataset GSE135917, namely: RBBP4, UCHL1, MAPK9, CLINT1, GABARAP, 
CAV1, SQSTM1, FLT3, NLRP3, USP33, ATP6V1A, CDKN2A, NR4A1, PPARGC1A. Subsequently, the R package 
pROC was utilized to construct the ROC curve based on the expression levels of the HMRDEGs derived 
from the GSE135917 dataset. The resultant ROC curve (Fig.  4B-G) demonstrated that the expression levels 
of ten HMRDEGs displayed remarkable accuracy (AUC > 0.9) in differentiating between samples from OSA 
and control subjects, respectively, which were CAV1, CDKN2A,CLINT1, FLT3, GABARAP, MAPK9, RBBP4, 
SQSTM1, UCHL1, USP33. The expression levels of the 14 HMRDEGs demonstrated a notable degree of accuracy 
(0.7 < AUC < 0.9)in distinguishing between OSA samples and control samples, which were NLRP3, ATP6V1A, 
DUSP1, and NLRP3, respectively. ANXA5, MAP1LC3B, NR4A1, PPARGC1A, CLU, PLOD2, SLC2A3, GRN, 
TXN, DSP, MCL1.

GO and KEGG enrichment analysis
In order to explore the relationship between blood pressure (BP), circulating cells (CC), molecular functions 
(MF), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with the HMRDEGs in the 
context of OSA, both GO and KEGG enrichment analyses were performed.The findings from the enrichment 
analysis of these 24 HMRDEGs are presented in Table 2. The findings indicated that the 24 HMRDEGs identified 
in OSA were predominantly associated with biological processes, including the cellular response to chemical 
stress, enhancement of proteolysis, stimulation of the ubiquitin-dependent protein degradation pathway, 

Fig. 1.  Flow chart for the comprehensive analysis of HMRDEGs. OSA Obstructive Sleep Apnea, GSEA Gene 
Set Enrichment Analysis, GSVA Gene Set Variation Analysis, DEGs Differentially Expressed Genes, HMRGs 
Hypoxia and Mitophagy-Related Genes, HMRDEGs Hypoxia and Mitophagy-Related Differentially Expressed 
Genes, GO Gene Ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, ROC Receiver Operating 
Characteristic, PPI Protein–protein Interaction, TF Transcription Factor, RBP RNA-Binding Protein.
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facilitation of the ubiquitin-mediated protein catabolism, and promotion of the proteasomal protein degradation 
process. CC encompass structures such as inclusion bodies, autophagosomes, and aggresomes. Meanwhile, MF 
include interactions with ubiquitin protein ligase, binding to ubiquitin-like protein ligase, engagement with 
the nuclear glucocorticoid receptor, phosphatidylethanolamine binding, and the binding of DNA transcription 
factors.Furthermore, these genes exhibited significant enrichment in various biological pathways as outlined by 
KEGG, including those associated with fluid shear stress and atherosclerosis, the NOD-like receptor signaling 
pathway, mitophagy in animals, autophagy in animals, and Shigellosis. The outcomes of GO and KEGG 
enrichment analysis were represented through bubble plots for visualization purposes(Fig. 5A).

Simultaneously, the network diagrams illustrating BP, CC, MF and KEGG were created (Fig.  5B-E). The 
connecting lines depict the related molecules, accompanied by annotations for each corresponding entry, while 
the dimensions of the nodes reflect the quantity of molecules encompassed within those entries.

GSEA for OSA
To evaluate the influence of gene expression levels within the GSE135917 dataset on OSA, GSEA was performed 
to investigate the relationships between the expression profiles of all genes in this dataset and their involvement 
in the BP, CC and MF (Fig. 6A). The comprehensive results are detailed in Table 3. The analysis demonstrated that 
genes within the GSE135917 dataset were significantly enriched in specific pathways, including the metabolism 
of polyamines (Fig. 6B), hedgehog ligand biogenesis (Fig. 6C), and the negative regulation of Notch4 signaling 
(Fig.  6E), alongside other relevant biological functions and signaling pathways, such as the Auf1 Hnrnp D0 
interaction with mRNA, which leads to its destabilization (Fig. 6D).

GSVA for OSA
In order to explore the variations in the c2.cp.v2023.2.Hs.symbols.gmt gene set between the OSA group and the 
control group within the GSE135917 dataset, GSVA was carried out on the complete set of genes encompassed 
in this dataset. The comprehensive details are provided in Table 4. Subsequently, the top 20 pathways exhibiting 
adj.p < 0.05, along with the absolute values of logFC, were identified and ranked in descending order. The 
differential expression of these 20 pathways between the OSA group and the control group was then analyzed 
and represented visually through a heat map (Fig. 7A).

The Mann-Whitney U test was employed to confirm the observed differences, and the outcomes were 
visually represented in the group comparison chart (Fig. 7B). The GSVA results indicated that the inhibition 
of exosome biogenesis and secretion induced by Manumycin A in castration-resistant prostate cancer (CRPC) 
cells was significantly associated with several pathways. These included the human cytomegalovirus (HCMV) 
GB to PDGFR RAS ERK signaling pathway, glutathione metabolism, epidermal growth factor (EGF) to EGFR 

Fig. 2.  Normalization of GSE135917 and GSE38792. (A) Boxplot of GSE135917 distribution in the dataset 
before normalization. (B) Boxplot of GSE135917 distribution of the data set after standardized processing. (C) 
Boxplot of GSE38792 distribution of data set before normalization. (D) Boxplot of GSE38792 distribution of 
data set after standardized processing. Purple is the OSA sample, and yellow is the Control sample.
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RAS RALGDS signaling pathway, including the processes of folding, assembly, and peptide loading onto class I 
major histocompatibility complex (MHC). Additionally, significant interactions were observed with the Shigella 
pathway leading to actin signaling, the prion-like conformation of scrapie (PrPSc) in relation to 26 S proteasome-
mediated protein degradation, and aberrant amyloid-beta (Aβ) and alpha-synuclein (SNCA) mutations also 
linked to the 26 S proteasome-mediated degradation pathway. Other noteworthy pathways included the BioCarta 
proteasome pathway, the formation of apoptosomes, the cytochrome c-mediated apoptotic response, and the 
Escherichia coli pathways mapping to CDC42 and RAC signaling. Furthermore, the analysis highlighted the 
relevance of COPII vesicle formation, aberrant Aβ influencing the VGCC Ca2 + apoptotic pathway (N01006), 
the reference to beta-oxidation, glycolysis during senescence, and aerobic glycolysis. All of these correlations 
exhibited statistical significance when comparing the OSA group with the control group (p value < 0.05).

Construction of diagnostic model for OSA
We initially assessed the diagnostic significance of 24 HMRDEGs in OSA using logistic regression analysis. The 
forest plot (Fig. 8A) illustrating this model indicated that all 24 genes were statistically significant (p < 0.05). These 
genes include RBBP4, UCHL1, MAPK9, CLINT1, GABARAP, CAV1, SQSTM1, FLT3, NLRP3, USP33, ATP6V1A, 
DUSP1, CDKN2A, ANXA5, MAP1LC3B, NR4A1, PPARGC1A, CLU, PLOD2, SLC2A3, GRN, TXN, DSP, MCL1. 
Subsequently, we constructed a Support Vector Machine model utilizing these 24 HMRDEGs combined with the 
SVM algorithm. Analysis of the number of genes associated with the lowest error rate (Fig. 8B) and the highest 

Fig. 3.  Differential gene expression analysis. (A) Volcano plot of differentially expressed genes analysis 
between OSA group and Control group in dataset GSE135917. (B) DEGs and HMRGs Venn diagram in 
dataset GSE135917. (C) Heat map of HMRDEGs in dataset GSE135917. (D) Chromosomal mapping of 
HMRDEGs. Purple is the OSA group and yellow is the Control group. In the heat map, red represents high 
expression and blue represents low expression. OSA Obstructive Sleep Apnea, DEGs Differentially Expressed 
Genes, HMRGs Hypoxia and Mitophagy-Related Genes, HMRDEGs Hypoxia and Mitophagy-Related 
Differentially Expressed Genes.
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accuracy rate (Fig. 8C) revealed that the model performed optimally when using 10 genes.To optimize diagnostic 
efficacy, we employed LASSO regression analysis to further screen the aforementioned 10 genes. A regression 
model plot (Fig. 8D) and a variable trajectory plot (Fig. 8E) were generated to enhance visualization. Ultimately, 
four key genes – NLRP3, MAPK9, RBBP4, and CLINT1 – were incorporated into the LASSO regression model 
as model genes.Ultimately, based on the risk coefficients obtained from the LASSO regression analysis, we 
calculated the final LASSO risk score (RiskScore). The calculation formula is described below:

	riskScore = NLRP 3 ∗ (−0.513) + MAP K9 ∗ (0.909) + RBBP 4 ∗ (1.013) + CLINT 1 ∗ (2.155)

Fig. 4.  Differential expression validation and ROC curve analysis. (A) Group comparison of HMRDEGs in 
OSA samples and Control samples of dataset GSE135917. (B–G) Receiver-operating-characteristic (ROC) 
curves for six four-gene panels. Each panel displays the true-positive rate (TPR) against the false-positive 
rate (FPR), with the area under the curve (AUC) reported for every gene: (A) ANXA5, ATP6V1A, CAV1, 
CDKN2A; (C) CLINT1, CLU, DSP, DUSP1; (D) FLT3, GABARAP, GRN, MAP1LC3B; (E) MAPK9, MCL1, 
NLRP3, NR4A1; (F) PLOD2, PPARGC1A, RBBP4, SLC2A3; (G) SQSTM1, TXN, UCHL1, USP33. An 
AUC > 0.90 indicates high diagnostic accuracy; 0.70 ≤ AUC ≤ 0.90 indicates moderate accuracy. In the group 
comparison plot, yellow represents the Control group, and purple represents the OSA group. ns represents 
p value ≥ 0.05, no statistical significance; *p value < 0.05, statistically significant; **p value < 0.01, highly 
statistically significant; ***p value < 0.001 and extremely statistically significant. OSA Obstructive Sleep 
Apnea, HMRDEGs Hypoxia and Mitophagy-Related Differentially Expressed Genes, ROC Receiver Operating 
Characteristic, AUC Area Under the Curve, TPR True Positive Rate, FPR False Positive Rate.
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Internal validation and friends analysis of the diagnostic model for OSA
Initially, the R package pROC was utilized to construct the ROC curve based on the RiskScore obtained from the 
GSE135917 dataset. As illustrated in Fig. 9A, the ROC curve based on the RiskScore in the GSE135917 dataset 
(training set) showed a high diagnostic accuracy, with an AUC of 0.982, indicating excellent discriminatory 
ability between OSA and control samples. This performance supports the robustness of the model in identifying 
high-risk individuals within the training cohort.

To further validate the diagnostic value of the model for OSA, a nomogram was constructed utilizing the 
model genes to illustrate the interrelationship among these genes within the dataset GSE135917 (Fig.  9B).
The findings indicated that the significance of CLINT1 expression within the diagnostic framework for OSA 
was markedly superior to that of other examined variables. Conversely, the importance of MAPK9 in the OSA 
diagnostic model was found to be considerably inferior compared to the other variables.

In order to assess the accuracy and resolution of the diagnostic model for OSA, a Calibration Curve was 
constructed through Calibration analysis. The model’s predictive efficacy in relation to actual outcomes was 
evaluated by investigating the correspondence between the predicted probabilities and the actual probabilities 
across various scenarios, as depicted in Fig. 9C. The Calibration Curve pertaining to the OSA diagnostic model 
reveals that the calibration line, illustrated by the dotted line, shows a certain degree of deviation from the ideal 
diagonal line of the model. Additionally, a decision curve analysis (DCA) was conducted to evaluate the clinical 
relevance of the OSA diagnostic model, employing the model genes derived from the GSE135917 dataset, 
with the results presented in Fig. 9D. The results indicated that the performance line of the model consistently 
surpassed both the All Positive and All Negative lines within a defined range, signifying a higher net benefit 
associated with the model and thereby implying its superior effectiveness.

Ultimately, the outcomes of the functional similarity assessment (Friends) were utilized to identify genes that 
are significant contributors to the biological processes associated with OSA (Fig. 9E). The findings indicated that 
CLINT1 emerged as a key player in OSA, being the gene that closely approached the designated critical threshold 
(cut-off value = 0.62).

External validation and friends analysis of the diagnostic model for obstructive sleep apnea
First, the R package pROC was employed to generate the ROC curve utilizing the RiskScore derived from the 
GSE38792 dataset. As shown in Fig. 10A, the ROC curve analysis of the diagnostic model in the GSE38792 
dataset (external validation set) yielded an AUC of 0.812, reflecting moderate to good diagnostic performance. 
Although slightly lower than the training set, this result demonstrates the model’s generalizability and external 
validity across independent datasets.

To enhance the validation of the diagnostic model for OSA, a nomogram was constructed utilizing the 
model genes. This graphical representation illustrates the interconnections among the model genes within the 
dataset GSE38792 (Fig. 10B).The findings indicated that the effectiveness of the Model Gene RBBP4 within the 
diagnostic framework for OSA was considerably greater compared to other factors. In contrast, the significance 
of NLRP3 expression within the diagnostic framework for OSA was considerably lower compared to the other 
factors involved.

ONTOLOGY ID Description GeneRatio BgRatio p value p. adjust q value

BP GO:0062197 Cellular response to chemical stress 6/24 317/18,870 2.2357E − 06 0.00223696 0.00137612

BP GO:0045862 Positive regulation of proteolysis 6/24 350/18,870 3.9591E − 06 0.00223696 0.00137612

BP GO:0032436 Positive regulation of proteasomal ubiquitin-dependent protein 
catabolic process 4/24 93/18,870 5.4471E − 06 0.00223696 0.00137612

BP GO:2,000,060 Positive regulation of ubiquitin-dependent protein catabolic process 4/24 113/18,870 1.181E − 05 0.00333926 0.00205423

BP GO:1,901,800 Positive regulation of proteasomal protein catabolic process 4/24 117/18,870 1.3552E − 05 0.00333926 0.00205423

CC GO:0016234 Inclusion body 3/24 71/19,886 8.3646E − 05 0.0124633 0.00783634

CC GO:0005776 Autophagosome 3/24 116/19,886 0.00035796 0.02666797 0.01676757

CC GO:0016235 Aggresome 2/24 35/19,886 0.00081062 0.04026078 0.02531409

MF GO:0031625 Ubiquitin protein ligase binding 6/24 308/18,496 2.1231E − 06 0.00027308 0.00015794

MF GO:0044389 Ubiquitin-like protein ligase binding 6/24 327/18,496 3.0008E − 06 0.00027308 0.00015794

MF GO:0035259 Nuclear glucocorticoid receptor binding 2/24 12/18,496 0.00010566 0.00567707 0.00328344

MF GO:0008429 Phosphatidylethanolamine binding 2/24 13/18,496 0.00012477 0.00567707 0.00328344

MF GO:0140297 DNA-binding transcription factor binding 5/24 477/18,496 0.00031642 0.01026426 0.00593653

KEGG hsa05418 Fluid shear stress and atherosclerosis 5/19 141/8875 9.1637E − 06 0.00113629 0.00093566

KEGG hsa04621 NOD-like receptor signaling pathway 5/19 189/8875 3.7893E − 05 0.00234938 0.00193455

KEGG hsa04137 Mitophagy—animal 4/19 105/8875 6.2543E − 05 0.00258512 0.00212866

KEGG hsa04140 Autophagy—animal 4/19 169/8875 0.00039331 0.01219269 0.01003982

KEGG hsa05131 Shigellosis 4/19 250/8875 0.00170627 0.04231559 0.0348439

Table 2.  Result of GO and KEGG enrichment analysis for hmrdegs. GO Gene Ontology, BP Biological 
Process, CC Cellular Component, MF Molecular Function, KEGG Kyoto Encyclopedia of Genes and Genomes, 
HMRDEGs Hypoxia and Mitophagy-Related Differentially Expressed Genes.
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Fig. 5.  GO and KEGG enrichment analysis for HMRDEGs. (A) The results of GO and KEGG of HMRDEGs 
showed that: BP, CC, MF, KEGG. GO terms and KEGG terms are shown on the abscissa. (B–E) GO and KEGG 
enrichment analysis results of HMRDEGs network diagram showing BP (B), CC (C), MF (D) and KEGG 
(E). Yellow nodes represent items, green nodes represent molecules, and the lines represent the relationship 
between items and molecules. The bubble size in the bubble plot represents the number of genes, and the color 
of the bubble represents the size of the adj. P-value, the reder the color, the smaller the adj. P-value, and the 
bluer the color, the larger the adj. P-value. The screening criteria for GO and KEGG enrichment analysis were 
adj. p < 0.05 and FDR value (q value) < 0.25, and the adj. p correction method was Benjamini-Hochberg (BH). 
HMRDEGs Hypoxia and Mitophagy-Related Differentially Expressed Genes, GO Gene Ontology, KEGG Kyoto 
Encyclopedia of Genes and Genomes, BP Biological Process, CC Cellular Component, MF Molecular Function.
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To assess the accuracy and resolution of the OSA diagnostic model, a Calibration Curve was created through 
comprehensive calibration analysis. The model’s predictive performance was evaluated by comparing the actual 
probabilities with the predicted ones across various scenarios, as shown in Fig.  10C. The Calibration Curve 
for the OSA diagnostic model reveals a slight divergence of the calibration line, represented by the dotted line, 
from the ideal diagonal line. To establish the clinical significance of this OSA diagnostic model, a decision curve 
analysis (DCA) was performed using gene data from the GSE38792 dataset, with the findings illustrated in 
Fig. 10D. The results of this analysis demonstrated that the model’s performance consistently surpassed both the 
“All positive” and “All negative” lines within a specific range, underscoring a notable net benefit associated with 
the model.

In conclusion, the Friends analysis was utilized to pinpoint the genes that play a crucial role in the biological 
mechanisms linked to OSA (Fig. 10E). The results revealed that CLINT1 is notably implicated in OSA, being 
identified as the gene that is closest to the significant threshold (cut-off value = 0.62).

Correlation analysis of model genes
Correlation analysis was conducted utilizing the expression levels of four Model Genes within the OSA samples 
from the GSE135917 dataset, a correlation heatmap (Fig.  11A) was created to visually depict the findings. 
Furthermore, the outcomes of the correlation analysis, particularly focusing on the genes exhibiting the most 
significant correlations as depicted in the heatmap, were illustrated through correlation scatter plots (Fig. 11B-
C). RBBP4 and CLINT1 showed the strongest significant positive correlation (r value = 0.629, p value < 0.05), 

Fig. 6.  GSEA for GSE135917 between OSA group and Control group. (A) Mountain map summarising the 
four pathways that passed the significance threshold. For each pathway the normalised enrichment score 
(NES), adjusted P value (P adj) and false-discovery rate (FDR) are shown. (B–E) Running enrichment 
curves for the same pathways: Metabolism of Polyamines (B; NES = 2.996), Hedgehog Ligand Biogenesis 
(C; NES = 3.023), Auf1/Hnrnp D0 Binds and Destabilises mRNA (D; NES = 3.249) and Negative Regulation 
of NOTCH4 Signalling (E; NES = 3.500). The red line indicates the cumulative enrichment score across 
the ranked gene list; the lower barcode shows the position of leading-edge genes (red = up-regulated in 
OSA, blue = up-regulated in controls). The screening criteria of GSEA were adj. p < 0.05 and FDR value (q 
value) < 0.25, and the adj. p correction method was Benjamini-Hochberg (BH). GSEA Gene Set Enrichment 
Analysis.
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Pathway logFC AveExpr t P.Value adj.P.Val B

BIOCARTA RAB PATHWAY 1.079768 0.066141 5.949468 1.15E − 07 0.00034 7.42047

WP GLYCOLYSIS IN SENESCENCE 1.06765 0.02067 5.040783 3.90E − 06 0.001433 4.179241

WP INHIBITION OF EXOSOME BIOGENESIS AND SECRETION BY MANUMYCIN A IN CRPC 
CELLS 0.974077 0.052636 5.049403 3.77E − 06 0.001433 4.209079

KEGG MEDICUS PATHOGEN ESCHERICHIA MAP TO CDC42 SIGNALING PATHWAY 0.973228 0.058677 5.205807 2.09E − 06 0.001281 4.753916

REACTOME FORMATION OF APOPTOSOME 0.965004 0.035656 4.895371 6.71E − 06 0.0015 3.679145

KEGG MEDICUS VARIANT MUTATION CAUSED ABERRANT SNCA TO 26 S PROTEASOME 
MEDIATED PROTEIN DEGRADATION 0.964754 0.047436 4.88058 7.09E − 06 0.0015 3.628623

KEGG MEDICUS PATHOGEN ESCHERICHIA ESPT TO RAC SIGNALING PATHWAY 0.953805 0.048337 5.165818 2.43E − 06 0.001281 4.613998

KEGG MEDICUS VARIANT SCRAPIE CONFORMATION PRPSC TO 26 S PROTEASOME 
MEDIATED PROTEIN DEGRADATION 0.944379 0.041572 4.767574 1.08E − 05 0.001538 3.244876

KEGG MEDICUS VARIANT MUTATION CAUSED ABERRANT ABETA TO 26 S PROTEASOME 
MEDIATED PROTEIN DEGRADATION 0.940035 0.04027 4.786796 1.00E − 05 0.001538 3.309867

REACTOME CYTOCHROME C MEDIATED APOPTOTIC RESPONSE 0.933837 0.032691 4.876091 7.21E − 06 0.0015 3.613305

WP AEROBIC GLYCOLYSIS 0.929722 0.051353 4.42009 3.79E − 05 0.001631 2.091638

KEGG MEDICUS VARIANT MUTATION CAUSED ABERRANT ABETA TO VGCC CA2 
APOPTOTIC PATHWAY N01006 0.919694 0.038965 4.305127 5.70E − 05 0.001738 1.719822

KEGG MEDICUS REFERENCE COPII VESICLE FORMATION 0.915206 0.041616 4.498387 2.87E − 05 0.001538 2.347748

KEGG MEDICUS PATHOGEN HCMV GB TO PDGFR RAS ERK SIGNALING PATHWAY 0.908566 0.053111 4.675744 1.51E − 05 0.001538 2.936054

BIOCARTA PROTEASOME PATHWAY 0.903748 0.017614 4.393685 4.17E − 05 0.001643 2.005787

WP GLUTATHIONE METABOLISM 0.886324 0.057854 4.551209 2.37E − 05 0.001538 2.521802

KEGG MEDICUS PATHOGEN SHIGELLA IPAC TO ACTIN SIGNALING PATHWAY 0.884306 0.03061 4.6392 1.72E − 05 0.001538 2.81394

KEGG MEDICUS REFERENCE BETA OXIDATION 0.882811 0.057356 4.028536 0.000148 0.002283 0.847335

REACTOME ANTIGEN PRESENTATION FOLDING ASSEMBLY AND PEPTIDE LOADING OF 
CLASS I MHC 0.876905 0.02016 4.631794 1.77E − 05 0.001538 2.789247

KEGG MEDICUS REFERENCE EGF EGFR RAS RALGDS SIGNALING PATHWAY 0.875816 0.040582 5.146512 2.61E − 06 0.001281 4.546597

Table 4.  Results of GSVA for GSE135917. GSVA Gene Set Variation Analysis.

 

ID
Set 
size

Enrichment 
score NES p value p. adjust q value

REACTOME_NEGATIVE_REGULATION_OF_NOTCH4_SIGNALING 48 0.714747 3.500093 1.00E − 10 7.06E − 09 4.87E − 09

REACTOME_AUF1_HNRNP_D0_BINDS_AND_DESTABILIZES_MRNA 48 0.663494 3.249106 1.00E − 10 7.06E − 09 4.87E − 09

REACTOME_HEDGEHOG_LIGAND_BIOGENESIS 59 0.57964 3.022846 1.00E − 10 7.06E − 09 4.87E − 09

REACTOME_METABOLISM_OF_POLYAMINES 55 0.617571 2.995692 1.00E − 10 7.06E − 09 4.87E − 09

REACTOME_CELLULAR_RESPONSE_TO_HYPOXIA 67 0.562945 2.97897 1.00E − 10 7.06E − 09 4.87E − 09

REACTOME_REGULATION_OF_PTEN_STABILITY_AND_ACTIVITY 63 0.579141 2.972406 1.00E − 10 7.06E − 09 4.87E − 09

WP_INHIBITION_OF_EXOSOME_BIOGENESIS_AND_SECRETION_BY_MANUMYCIN_A_
IN_CRPC_CELLS 17 0.762878 2.923725 2.29E − 07 7.82E − 06 5.40E − 06

REACTOME_STABILIZATION_OF_P53 50 0.60138 2.855201 1.00E − 10 7.06E − 09 4.87E − 09

REACTOME_REGULATION_OF_MRNA_STABILITY_BY_PROTEINS_THAT_BIND_AU_
RICH_ELEMENTS 77 0.547256 2.83186 1.00E − 10 7.06E − 09 4.87E − 09

REACTOME_SIGNALING_BY_NOTCH4 75 0.558014 2.831114 1.00E − 10 7.06E − 09 4.87E − 09

WP_GLYCOLYSIS_IN_SENESCENCE 11 0.831112 2.723285 3.93E − 06 9.26E − 05 6.38E − 05

WP_OXIDATIVE_PHOSPHORYLATION 37 0.563414 2.595978 2.18E − 07 7.70E − 06 5.31E − 06

WP_EXERCISEINDUCED_CIRCADIAN_REGULATION 42 0.509185 2.484184 8.60E − 07 2.63E − 05 1.81E − 05

WP_MITOCHONDRIAL_LONG_CHAIN_FATTY_ACID_BETAOXIDATION 17 0.632757 2.42504 5.80E − 05 0.000824 0.000568

WP_HOSTPATHOGEN_INTERACTION_OF_HUMAN_CORONAVIRUSES_AUTOPHAGY 19 0.605215 2.404119 6.13E − 05 0.000855 0.00059

REACTOME_SELECTIVE_AUTOPHAGY 66 0.448255 2.385601 3.05E − 08 1.33E − 06 9.15E − 07

WP_METABOLIC_REPROGRAMMING_IN_COLON_CANCER 37 0.511911 2.358671 5.46E − 06 0.000122 8.43E − 05

PID_TGFBR_PATHWAY 49 0.467776 2.290069 6.53E −  − 07 2.08E − 05 1.43E − 05

REACTOME_TP53_REGULATES_METABOLIC_GENES 80 0.426929 2.278438 9.56E − 09 4.80E − 07 3.31E − 07

REACTOME_CHAPERONE_MEDIATED_AUTOPHAGY 20 0.56754 2.251265 0.000213 0.002345 0.001618

Table 3.  Results of GSEA for GSE135917. GSEA Gene Set Enrichment Analysis.
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Fig. 7.  GSVA analysis for GSE135917. (A, B) Heat map (A) and group comparison map (B) of GSVA results 
between OSA group and Control group in dataset GSE135917. ns stands for p value ≥ 0.05, not statistically 
significant; *p value < 0.05, statistically significant; **p value < 0.01, highly statistically significant; ***p 
value < 0.001 and extremely statistically significant. Purple represents the OSA group and yellow represents the 
Control group. The screening criteria of GSVA was adj. p < 0.05, and the correction method was Benjamini-
Hochberg (BH). Blue represents low enrichment and red represents high enrichment in the heat map. OSA 
Obstructive Sleep Apnea, GSVA Gene Set Variation Analysis.
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and NLRP3 and RBBP4 showed the strongest significant negative correlation (r value = -0.418, P value < 0.05). 
p value < 0.05).

GSEA for high and low risk groups
In order to perform a more detailed differential analysis of OSA samples within the GSE135917 dataset, the 
dataset was categorized into High-Risk and Low-Risk groups based on the median LASSO RiskScore obtained 
from the OSA model. The R package limma was then utilized to carry out a differential expression analysis 
on GSE135917, thereby allowing for the detection of genes that demonstrate significant expression variances 
between the two specified groups. The results are encapsulated as follows: within the dataset GSE135917, a 
total of 551 DEGs were identified that satisfied the criteria of |logFC| > 0.5 and adj.p < 0.05. Among these, there 
were 45 genes exhibiting upregulation (logFC > 0.5 and adj.p < 0.05), while the remaining 506 genes displayed 
downregulation (logFC < 0.5 and adj.p < 0.05).Based on the findings from the differential analysis of the dataset, a 
volcano plot was generated (Fig. 12A). Utilizing the differential analysis results, the top 20 DEGs were identified 
and arranged in descending order of |logFC|. Subsequently, a heatmap was constructed employing the R package 
pheatmap to illustrate these analytical results (Fig. 12B).

To assess the influence of gene expression levels within the dataset GSE135917 on the development of OSA, 
we utilized GSEA to analyze the log fold change (logFC) values of all genes between the High Risk and Low Risk 
groups. The objective of this methodology was to clarify the relationship between the expression levels of these 
genes and their roles in BP, CC and MF. The findings were visually represented in a mountain plot (Fig. 12C), 

Fig. 8.  Diagnostic model of OSA. (A) Forest Plot of 24 HMRDEGs included in the Logistic regression model 
in the diagnostic model of OSA. (B, C) The number of genes with the lowest error rate (B) and the number of 
genes with the highest accuracy (C) obtained by the SVM algorithm are visualized. (D, E) Diagnostic model 
plot (D) and variable trajectory plot (E) of LASSO regression model. OSA Obstructive Sleep Apnea, HMRDEGs 
Hypoxia and Mitophagy-Related Differentially Expressed Genes, SVM Support Vector Machine, LASSO Least 
Absolute Shrinkage and Selection Operator.
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with comprehensive results detailed in Table 5.The findings indicated that every gene within the GSE135917 
dataset exhibited substantial enrichment in the Reactome pathway associated with the Regulation of PTEN 
Stability and Activity (Fig. 12D). Additionally, all genes from the GSE135917 dataset demonstrated significant 
enrichment in the Reactome pathways pertaining to the Negative Regulation of Notch4 Signaling (Fig. 12E), 
the binding and destabilization of mRNA by Auf1 and Hnrnp D0 (Fig. 12F), as well as a correlation between 
Bystroem and IL5 Dn (Fig. 12G), alongside various other biologically relevant functions and signaling pathways.

Gene set variation analysis (GSVA) for high and low risk groups
To investigate the disparities in the c2.cp.v2023.2.Hs.symbols.gmt gene set between the high-risk (HighRisk) 
cohort and the low-risk (LowRisk) cohort within the GSE135917 dataset, GSVA was conducted on the entirety 
of the genes present in this dataset. Comprehensive details regarding this analysis are provided in Table  6. 
Subsequently, the top 20 pathways exhibiting adj.p < 0.05 and a descending order of absolute log fold change 
(logFC) were selected for analysis. The differential expression of these 20 pathways was examined and depicted 
using a heat map to illustrate the contrasts between the High-Risk group and the Low-Risk group (Fig. 13A).

Subsequently, the distinction was confirmed utilizing the Mann-Whitney U test, and a comparative analysis 
diagram (Fig.  13B) was created to illustrate the findings.The GSVA results revealed that several pathways, 
including the Tricarboxylic Acid (TCA) Cycle, the deficiency of the Pyruvate Dehydrogenase Complex 
(PDHC), isoleucine degradation, proteasome degradation, and the destabilization of mRNA by AUF1 HNRNP 
D0, demonstrated statistical significance between the High-Risk and Low-Risk groups (p < 0.05). Additional 
pathways of note included the MEDICUS variant scrapie conformation, which is associated with 26 S proteasome-
mediated protein degradation, as well as mutations leading to aberrant forms of Aβ and SOD1, both linked to 
the same proteasomal degradation process. Furthermore, the inhibition of exosome biogenesis and secretion 
via Manumycin A in CRPC cells, platelet sensitization by LDL, cristae formation, the TCA cycle (also known 
as the Krebs or citric acid cycle), and the formation of the apoptosome were also statistically significant. The 
cytochrome C-mediated apoptotic response and MASTL activity in mitotic progression, along with MEDICUS 

Fig. 9.  Diagnostic and validation of GSE135917 and friends analysis. (A) ROC curve of RiskScore in 
dataset GSE135917. (B) Nomogram of Model Genes in dataset GSE135917 in OSA diagnostic model. (C, D) 
Calibration Curve plot (C) and decision curve analysis (DCA) plot (D) of the OSA diagnostic Model based 
on the Model Genes in dataset GSE135917. (E) Box plot of functional similarity (Friends) analysis results of 
Model Genes. The ordinate of the decision curve analysis (DCA) plot is the net benefit, and the abscissa is the 
Probability Threshold or Threshold Probability. The AUC of the ROC curve is generally between 0.5 and 1. The 
closer the AUC is to 1, the better the diagnostic performance. High accuracy is achieved when AUC is above 
0.9. ROC Receiver Operating Characteristic, AUC Area Under the Curve, DCA Decision Curve Analysis, TPR 
True Positive Rate, FPR False Positive Rate.
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reference for COPII vesicle formation, inhibition of damaged DNA replication initiation by RB1 E2F1, and 
antigen presentation via class I MHC folding and peptide loading, as well as the BioCarta EIF pathway and TGF 
SMAD signaling pathway, were likewise found to differ significantly between the two groups (p < 0.05).

Construction of protein-protein interaction network and screening of hub genes
The constructed network revealed direct connections among three model genes—RBBP4, MAPK9, and NLRP3—
which were subsequently recognized as potential hub genes (Fig. 14A). These genes were selected based on their 
interactive relationships within the STRING network, rather than explicit centrality metrics such as degree, 
betweenness, or closeness. While these interaction-based criteria provide initial insight into network topology, 
we acknowledge that incorporating quantitative centrality-based metrics would enhance the robustness of hub 
gene identification. As such, we plan to integrate Cytoscape’s CytoHubba plugin in future studies to systematically 
prioritize hub genes using standardized network measures.

To further explore functional associations, we employed the GeneMANIA platform to predict and expand 
the interaction network involving these three candidate hub genes and additional functionally similar genes 
(Fig. 14B). The resulting network includes 20 related proteins, with the edges indicating types of relationships 
such as co-expression, physical interaction, and shared protein domains. These findings provide additional 
support for the biological relevance of RBBP4, MAPK9, and NLRP3 in the context of OSA.

Construction of regulatory network
Initially, the transcription factor (TF) associated with the hub genes were extracted from the ChIPBase database. 
Subsequently, an mRNA-TF regulatory network was established and depicted using Cytoscape software 
(Fig. 15A). This examination revealed a total of 3 hub genes and 40 TF, with comprehensive details available in 
Table S2.

Fig. 10.  Diagnostic and validation of GSE38792 and friends analysis. (A) ROC curve of RiskScore in dataset 
GSE38792. (B) Nomogram of Model Genes in dataset GSE38792 in OSA diagnostic model. (C, D) Calibration 
Curve plot (C) and decision curve analysis (DCA) plot (D) of OSA diagnostic Model based on Model Genes in 
dataset GSE38792. (E) Boxplot of functional similarity (Friends) analysis results of Model Genes. The ordinate 
of the decision curve analysis (DCA) plot is the net benefit, and the abscissa is the Probability Threshold or 
Threshold Probability. The AUC of the ROC curve is generally between 0.5 and 1. The closer the AUC is to 
1, the better the diagnostic performance. The AUC had some accuracy between 0.7 and 0.9. ROC Receiver 
Operating Characteristic, AUC Area Under the Curve, DCA Decision Curve Analysis, TPR True Positive Rate, 
FPR False Positive Rate.
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Following this, the microRNAs linked to the hub genes were extracted from the StarBase database. This 
process facilitated the development and visualization of the mRNA-miRNA Regulatory Network, which was 
accomplished utilizing Cytoscape software(Fig. 15B). This analysis identified 2 hub genes along with 38 miRNAs, 
with detailed information provided in Table S3.

Then, the RNA-binding proteins (RBP) linked to the hub genes were identified utilizing the StarBase database. 
Following this, a regulatory network comprising mRNA-RBP interactions was established and visualized using 
Cytoscape software, as illustrated in Fig. 15C. This network included two hub genes and a total of 41 RBP, with 
detailed information provided in Table S4.

In summary, potential pharmacological compounds or molecular entities associated with the pivotal 
genes were identified through the CTD. Subsequently, the mRNA-Drug Regulatory Network was developed 
and visualized utilizing Cytoscape software (Fig. 15D). This network comprises 3 central genes alongside 39 
pharmacological agents or molecular compounds, with detailed information available in Table S5.

Immune infiltration analysis of high and low risk groups (CIBERSORT)
The GSE135917 dataset was employed to evaluate the prevalence of immune cell infiltration across 22 distinct 
immune cell types by leveraging the CIBERSORT algorithm. Initially, a bar chart was created to depict the 
distribution of immune cells within the GSE135917 dataset (Fig.  16A), reflecting the results obtained from 
the immune infiltration analysis.The findings indicated that a total of 18 distinct immune cell types exhibited 
significant enrichment in samples derived from individuals with OSA. The study investigated various immune 
cell populations, which included naive B cells, memory B cells, plasma cells, CD8 T cells, resting memory CD4 
T cells, follicular helper T cells, regulatory T cells (Tregs), both resting and activated natural killer (NK) cells, 
monocytes, M0 macrophages, M1 macrophages, M2 macrophages, resting and activated dendritic cells, resting 
mast cells, eosinophils, and neutrophils. Subsequently, a correlation heat map was employed to depict the 
associations between immune cell infiltration levels within the OSA samples (Fig. 16B-C). The results revealed 
that most immune cell types in the LowRisk cohort displayed strong correlations, with Monocytes and M0 
Macrophages exhibiting the most significant negative correlation (r = -0.828, P < 0.05) (Fig. 16B).In contrast, 
within the High-Risk cohort, a majority of immune cell types exhibited robust correlations, with CD4 memory 
resting T cells and activated NK cells demonstrating the most substantial positive correlation (r = 0.776, P < 0.05) 
as depicted in Fig.  16C. Additionally, the associations between model genes and the levels of immune cell 
infiltration were represented through correlation bubble plots (Fig. 16D-E). The information depicted in these 
figures indicates that a substantial proportion of immune cells within the Low-Risk category of OSA samples 
displayed robust correlations. Notably, the gene demonstrated the most pronounced positive correlation with 
activated dendritic cells, with a correlation coefficient of r = 0.843 and a significance level of P < 0.05, as illustrated 
in Fig. 16D. Conversely, within the High-Risk group, many immune cell types also displayed strong correlations; 
notably, a significant negative correlation was identified between the RBBP4 gene and M0 macrophages (r = 
-0.529, P < 0.05)(Fig. 16E).

Discussion
Obstructive sleep apnea (OSA) is a prevalent disorder characterized by recurrent upper-airway obstruction 
that disrupts sleep architecture and causes daytime dysfunction. OSA confers an elevated risk of cardiovascular 
disease—including hypertension, arrhythmia, and heart failure—underscoring the need for deeper molecular 
insight. In this study, we identified 24 hypoxia-and mitophagy-related differentially expressed genes (HMRDEGs) 

Fig. 11.  Correlation analysis of model genes. (A) Correlation heatmap of Model Genes. (B) Scatter plot of 
the correlation between Model Genes RBBP4 and CLINT1. (C) Scatter plot of the correlation between Model 
Genes NLRP3 and RBBP4. The absolute value of correlation coefficient below 0.3 was weak or no correlation, 
0.3–0.5 was weak correlation, and 0.5–0.8 was moderate correlation. Red is a positive correlation, blue is a 
negative correlation, and the depth of color represents the strength of the correlation. A p value < 0.05 was 
considered statistically significant.
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that were significantly dysregulated in OSA versus control samples. Receiver-operating characteristic (ROC) 
analysis confirmed their diagnostic value, and Gene Ontology (GO) and KEGG enrichment linked them to 
autophagy and cellular stress pathways. These findings refine our understanding of OSA pathogenesis and lay 
the groundwork for diagnostic models and targeted therapies focused on key HMRDEGs.

Fig. 12.  Differential gene expression analysis and GSEA for risk groups. (A, B) Volcano map (A) and heat 
map (B) of differentially expressed genes analysis between HighRisk group and LowRisk group in dataset 
GSE135917. (C) GSEA of dataset GSE135917 showed 4 biological functions in mountain map. (D–G) GSEA 
showed that dataset GSE135917 was significantly enriched in Reactome Regulation Of Pten Stability And 
Activity (D). Reactome Negative Regulation Of Notch4 Signaling (E), Reactome Auf1 Hnrnp D0 Binds 
And Destabilizes Mrna (F), Bystroem Correlated With Il5 Dn (G). OSA Obstructive Sleep Apnea, GSEA 
Gene Set Enrichment Analysis. Blue represents the high risk (HighRisk) group and pink represents the low 
risk (LowRisk) group. In the mountain plot, the color represents the NES value, the more red the color is, 
the greater the NES value, and the more blue the color is, the smaller the NES value. In the heat map, red 
represents high expression and blue represents low expression. The screening criteria of gene set enrichment 
analysis (GSEA) were adj. p < 0.05 and FDR value (q value) < 0.25, and the adj. p correction method was 
Benjamini-Hochberg (BH).
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The 24 HMRDEGs identified in this study—particularly RBBP4, UCHL1, and MAPK9—illuminate key 
molecular mechanisms in OSA. RBBP4, a retinoblastoma-binding protein that regulates the cell cycle and 
apoptosis40,interacts with hypoxia-inducible factors, thereby shaping the cellular response to low oxygen levels41.
Its dysregulation may thus contribute to the hypoxia-driven pathology of OSA. UCHL1, a ubiquitin C-terminal 

Pathway logFC AveExpr t P.Value adj.P.Val B

REACTOME CRISTAE FORMATION 1.471968 0.015666 11.69313 1.30E − 15 3.81E − 12 25.19441

REACTOME INHIBITION OF REPLICATION INITIATION OF DAMAGED DNA BY RB1 E2F1 1.334985 0.03068 9.998795 2.72E − 13 4.00E − 10 20.06288

REACTOME MASTL FACILITATES MITOTIC PROGRESSION 1.295186 − 0.03711 8.783679 1.56E − 11 7.63E − 09 16.15048

REACTOME ANTIGEN PRESENTATION FOLDING ASSEMBLY AND PEPTIDE LOADING OF 
CLASS I MHC 1.268389 0.003516 9.385102 2.05E − 12 2.02E − 09 18.10924

REACTOME FORMATION OF APOPTOSOME 1.230863 0.07582 6.873592 1.18E − 08 4.09E − 07 9.714707

REACTOME CYTOCHROME C MEDIATED APOPTOTIC RESPONSE 1.2014 0.063149 7.197628 3.78E − 09 2.37E − 07 10.82135

REACTOME AUF1 HNRNP D0 BINDS AND DESTABILIZES MRNA 1.19906 0.037314 8.503524 4.05E − 11 1.32E − 08 15.22453

REACTOME CITRIC ACID CYCLE TCA CYCLE 1.194209 0.033752 7.549376 1.10E − 09 9.99E − 08 12.01842

KEGG MEDICUS REFERENCE COPII VESICLE FORMATION 1.187721 0.006464 6.742208 1.88E − 08 5.58E − 07 9.265489

WP TCA CYCLE AKA KREBS OR CITRIC ACID CYCLE 1.186349 0.033107 7.018335 7.10E − 09 2.97E − 07 10.20934

BIOCARTA EIF PATHWAY 1.185903 0.022711 7.516572 1.24E − 09 9.99E − 08 11.90704

WP INHIBITION OF EXOSOME BIOGENESIS AND SECRETION BY MANUMYCIN A IN CRPC 
CELLS 1.178824 0.070092 6.897002 1.09E − 08 3.91E − 07 9.794729

WP TGF SMAD SIGNALING PATHWAY 1.166361 0.042474 6.994659 7.72E − 09 3.01E − 07 10.12846

KEGG MEDICUS REFERENCE ISOLEUCINE DEGRADATION 1.15542 0.078808 5.736346 6.43E − 07 7.48E − 06 5.839578

KEGG MEDICUS VARIANT MUTATION CAUSED ABERRANT ABETA TO 26 S PROTEASOME 
MEDIATED PROTEIN DEGRADATION 1.154583 0.035962 7.028966 6.84E − 09 2.97E − 07 10.24566

KEGG MEDICUS VARIANT MUTATION CAUSED ABERRANT SOD1 TO 26 S PROTEASOME 
MEDIATED PROTEIN DEGRADATION 1.150939 0.034851 7.132982 4.74E − 09 2.63E − 07 10.6008

KEGG MEDICUS VARIANT SCRAPIE CONFORMATION PRPSC TO 26 S PROTEASOME 
MEDIATED PROTEIN DEGRADATION 1.149245 0.034733 6.954073 8.90E − 09 3.36E − 07 9.989785

WP PROTEASOME DEGRADATION 1.146715 0.002829 8.56755 3.25E − 11 1.19E − 08 15.43685

WP TCA CYCLE AND DEFICIENCY OF PYRUVATE DEHYDROGENASE COMPLEX PDHC 1.142976 0.047393 6.020713 2.38E − 07 3.55E − 06 6.80301

REACTOME PLATELET SENSITIZATION BY LDL 1.13461 0.023269 8.991071 7.71E − 12 4.83E − 09 16.83058

Table 6.  Results of GSVA for risk groups. GSVA Gene Set Variation Analysis.

 

ID
Set 
Size

Enrichment 
Score NES pvalue p.adjust qvalue

REACTOME_NEGATIVE_REGULATION_OF_NOTCH4_SIGNALING 48 0.720522 3.695955 1.00E − 10 6.44E − 09 4.56E − 09

REACTOME_AUF1_HNRNP_D0_BINDS_AND_DESTABILIZES_MRNA 48 0.689892 3.538839 1.00E − 10 6.44E − 09 4.56E − 09

BYSTROEM_CORRELATED_WITH_IL5_DN 57 0.58871 3.283267 1.00E − 10 6.44E − 09 4.56E − 09

REACTOME_REGULATION_OF_PTEN_STABILITY_AND_ACTIVITY 63 0.606667 3.212892 1.00E − 10 6.44E − 09 4.56E − 09

REACTOME_METABOLISM_OF_POLYAMINES 55 0.594897 3.209871 1.00E − 10 6.44E − 09 4.56E − 09

REACTOME_STABILIZATION_OF_P53 50 0.611983 3.207074 1.00E − 10 6.44E − 09 4.56E − 09

REACTOME_SIGNALING_BY_NOTCH4 75 0.563487 3.201288 1.00E − 10 6.44E − 09 4.56E − 09

REACTOME_HEDGEHOG_LIGAND_BIOGENESIS 59 0.562063 3.198313 1.00E − 10 6.44E − 09 4.56E − 09

REACTOME_CELLULAR_RESPONSE_TO_HYPOXIA 67 0.5642 3.139325 1.00E − 10 6.44E − 09 4.56E − 09

REACTOME_REGULATION_OF_MRNA_STABILITY_BY_PROTEINS_THAT_BIND_AU_
RICH_ELEMENTS 77 0.545974 3.099099 1.00E − 10 6.44E − 09 4.56E − 09

WP_MITOCHONDRIAL_FATTY_ACID_OXIDATION_DISORDERS 19 0.763648 3.007781 2.41E − 08 9.16E − 07 6.50E − 07

WP_FATTY_ACID_BIOSYNTHESIS 21 0.744851 2.973303 2.98E − 08 1.10E − 06 7.80E − 07

RAHMAN_TP53_TARGETS_PHOSPHORYLATED 17 0.782156 2.916072 1.04E − 07 3.48E − 06 2.47E − 06

WP_METABOLIC_REPROGRAMMING_IN_COLON_CANCER 37 0.576786 2.842185 4.60E − 08 1.63E − 06 1.15E − 06

SAKAI_TUMOR_INFILTRATING_MONOCYTES_DN 72 0.489578 2.833951 1.13E − 10 7.05E − 09 5.00E − 09

REACTOME_PYRUVATE_METABOLISM_AND_CITRIC_ACID_TCA_CYCLE 54 0.511493 2.808144 5.08E − 09 2.25E − 07 1.60E − 07

WP_MITOCHONDRIAL_LONG_CHAIN_FATTY_ACID_BETA_OXIDATION 17 0.735278 2.741301 1.26E − 06 3.06E − 05 2.17E − 05

GENTILE_UV_LOW_DOSE_DN 60 0.49164 2.737177 4.56E − 09 2.07E − 07 1.47E − 07

WP_FATTY_ACID_BETA_OXIDATION 30 0.601567 2.719223 2.90E − 07 8.64E − 06 6.12E − 06

MILI_PSEUDOPODIA 39 0.532567 2.703576 3.17E − 07 9.36E − 06 6.63E − 06

Table 5.  Results of GSEA for risk groups. GSEA Gene Set Enrichment Analysis.
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Fig. 13.  GSVA analysis for risk groups. (A, B) Heat map (A) and group comparison map (B) of GSVA results 
between HighRisk group and LowRisk group of dataset GSE135917. GSVA, Gene Set Variation Analysis. ns 
stands for p value ≥ 0.05, not statistically significant; *p value < 0.05, statistically significant; **p value < 0.01, 
highly statistically significant; ***p value < 0.001 and highly statistically significant. Blue represents the 
HighRisk group, pink represents the LowRisk group. The screening criteria of gene set variation analysis 
(GSVA) was adj. p < 0.05, and the adj. p correction method was Benjamini-Hochberg (BH). Blue represents low 
enrichment and red represents high enrichment in the heat map.
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hydrolase essential for proteostasis, also modulates mitochondrial dynamics and mitophagy42,43. The elevated 
UCHL1 expression observed here could represent a compensatory reaction to OSA-induced mitochondrial stress, 
making it a promising therapeutic target.MAPK9 (JNK2) governs stress-activated signaling, inflammation, and 
apoptosis and is implicated in cancer and neurodegeneration44. Its differential expression in our dataset suggests 
a role in the inflammatory cascades associated with OSA. Because gene-expression patterns may vary across 
ethnicities, population-specific studies are warranted to validate these candidates as biomarkers and to clarify 
their contributions to disease progression.

HMRDEGs are significantly enriched in pathways governing protein degradation and autophagy, underscoring 
the intricate stress-response and metabolic networks that may drive OSA. The ubiquitin–proteasome system 
(UPS), a core proteostatic pathway, eliminates misfolded or damaged proteins to maintain cellular homeostasis. 
Disruption of the UPS has been implicated in several disorders, including OSA. Inadequate protein clearance 
can promote toxic protein accumulation, escalate cellular stress, and amplify inflammation—hallmarks of OSA 
pathology. These observations align with growing evidence that proteostasis is central to disease progression and 
suggest that therapies aimed at restoring UPS function could be clinically beneficial.

Autophagy maintains cellular integrity and energy balance by clearing damaged organelles and proteins, 
thereby limiting oxidative stress and inflammation45,46. The marked enrichment of HMRDEGs in autophagy-
related modules implies that impaired autophagic flux is a central mechanism by which OSA disrupts cellular 
homeostasis. Therapeutic strategies that restore or modulate autophagy could thus offer new avenues for treating 
OSA, especially in patients with significant metabolic dysregulation.

It is important to recognise that the discovery cohort (GSE135917) originates from subcutaneous adipose 
tissue, whereas the validation cohort (GSE38792) was generated from visceral fat. These depots differ markedly 
in lipid metabolism, inflammatory tone, and transcriptomic architecture47–49. For example, Visceral adipocytes 
express higher basal levels of pro-inflammatory cytokines and hypoxia-inducible genes, whereas subcutaneous 
fat is enriched for extracellular-matrix remodeling and thermogenic pathways. Such depot-specific signatures 
can bias differential-expression analyses, pathway enrichment, and immune-cell deconvolution. Accordingly, 
associations between the four-gene RiskScore and disease severity should be interpreted with caution, as they 
may primarily reflect depot-specific biology. Paired visceral and subcutaneous samples—or single-cell datasets—
are needed to disentangle tissue-restricted from systemic OSA effects.

Finally, pinpointing critical regulatory hubs sheds light on OSA progression. Central sensors such as 
mTOR and AMPK orchestrate autophagy and proteostasis, and their activity may reflect disease severity50,51. 
Deciphering how these nodes modulate cellular responses to intermittent hypoxia will facilitate the design 
of targeted therapies. Harnessing pathway-enrichment insights could therefore enable more precise OSA 
management and ultimately improve patient outcomes.

CIBERSORT deconvolution identified 18 immune-cell subsets in OSA samples, with the most pronounced 
shifts in monocytes and macrophages.Monocytes—the precursors of macrophages—coordinate innate immunity, 
particularly under inflammatory stress52.After recruitment to tissue, they polarize into classically activated 
(M1) or alternatively activated (M2) macrophages, which respectively exacerbate or resolve inflammation. 

Fig. 14.  PPI network and hub genes analysis. (A) Protein-protein interaction Network (PPI Network) of 
Model Genes calculated by STRING database. (B) The interaction network of genes with similar functions 
predicted by GeneMANIA website. The circles in the figure show the hub genes related to hypoxia and 
mitophagy and the genes with similar functions. The colors corresponding to the lines represent the 
interconnected functions. PPI Network Protein–protein Interaction Network.
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Clarifying this monocyte–macrophage axis in OSA could reveal strategies to skew polarization toward an M2-
like phenotype, thereby dampening inflammation and promoting tissue repair.

Recent evidence highlights immune dysregulation as a key driver of OSA. Patients with OSA show a skewed 
monocyte landscape, notably higher proportions of intermediate and non-classical subsets, which promote 
systemic inflammation53. The Th17/Treg balance is likewise disrupted, amplifying inflammatory signalling and 
accelerating disease progression54. Intermittent hypoxia activates the TLR4-MyD88-NF-κB pathway and the 
NLRP3 inflammasome, triggering release of IL-1βand IL-1854. These immune disturbances propagate beyond 
the airway, contributing to the cardiovascular and metabolic comorbidities common in OSA.Therapies that 
dampen pro-inflammatory M1 macrophages or boost anti-inflammatory M2 populations could therefore help 
curb chronic inflammation and its sequelae55. A nuanced understanding of how distinct immune-cell profiles 
interact with the hypoxic microenvironment of OSA will be crucial for developing targeted interventions.

The LASSO model built on NLRP3, MAPK9, RBBP4, and CLINT1 achieved an AUC > 0.90, demonstrating 
excellent discrimination of high-risk OSA. This result sets a performance benchmark for future diagnostic tools. 
To enhance clinical utility, the model should be validated in larger, diverse cohorts that include comorbidities, 

Fig. 15.  Regulatory Network of hub genes. (A) mRNA-TF Regulatory Network of hub genes. (B) mRNA-
miRNA Regulatory Network of hub genes. (C) mRNA-RBP Regulatory Network of hub genes. D. mRNA-Drug 
Regulatory Network of hub genes. HMRGs Hypoxia and Mitophagy-Related Genes, TF Transcription Factor, 
RBP RNA-Binding Protein. Orange is mRNA, pink is TF, purple is miRNA, blue is RBP, and green is Drug.
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Fig. 16.  Risk groups immune infiltration analysis by CIBERSORT Algorithm. (A) Bar chart of the proportion 
of immune cells in OSA samples. (B, C) Correlation heatmap of immune cells in the LowRisk (B) and 
HighRisk (C) groups of OSA samples. (D, E) Bubble plot of correlation between immune cell infiltration 
abundance and Model Genes in the LowRisk (D) and HighRisk (E) groups of OSA samples. The absolute 
value of correlation coefficient (r value) below 0.3 was weak or no correlation, between 0.3 and 0.5 was weak 
correlation, between 0.5 and 0.8 was moderate correlation, and above 0.8 was strong correlation. Pink is the 
LowRisk group, blue is the HighRisk group. Red is the positive correlation, blue is the negative correlation. The 
depth of the color represents the strength of the correlation.
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demographic variables, and lifestyle factors. Incorporating these data will improve generalizability and support 
real-world implementation.

The Comparative Toxicogenomics Database (CTD) associates 39 small molecules with our hub genes, 
highlighting their therapeutic promise in OSA. Notably, NLRP3 and MAPK9 regulate inflammation and 
oxidative stress—central drivers of OSA pathophysiology. Selective inhibitors such as MCC950 (NLRP3) and 
SP600125 (MAPK9) have already reduced inflammatory signaling and cellular stress in preclinical models56,57.
These findings position hub-gene-targeted pharmacology as a promising strategy for both single-agent and 
combination therapies in OSA.

We combined STRING connectivity with quantitative centrality scores and confirmed that RBBP4, MAPK9, 
and NLRP3 are topological “hot spots”in the OSA interactome, displaying high degree and betweenness. Although 
this dual-metric strategy reduces the bias of single-index selection, incorporating additional measures—such as 
closeness, eigenvector, and maximal-clique centrality—could further refine hub prioritization. Future work will 
apply the full CytoHubba suite and machine-learning-based network analyses, integrate multi-omics data, and 
leverage larger patient cohorts to produce a more systematic and standardized hub-gene ranking.

The network-level overlap between OSA and lung cancer reported by Dasgupta et al.4 lends external 
support to our hypoxia-driven HMRDEG signature: two of our hub genes, NLRP3 and MAPK9, are established 
modulators of tumour-related inflammation and epithelial responses, underscoring the translational promise 
of targeting hypoxia–mitophagy–immune axes across hypoxic diseases.In the present study we analysed two 
independent RNA-seq cohorts (GSE135917, GSE38792) and built a four-gene diagnostic model that achieved 
excellent discrimination in both the discovery set (AUC = 0.982) and an external validation set (AUC = 0.812), 
thereby expanding the molecular understanding of OSA and highlighting actionable therapeutic targets.

Several limitations warrant attention. First, reliance on publicly available datasets with modest sample sizes 
introduces heterogeneity and potential selection bias. Second, our findings are based solely on in-silico analyses; 
qPCR, Western blot, and functional assays in chronic intermittent hypoxia models are essential to confirm gene 
expression and causality. Finally, large multicentre prospective cohorts that integrate multi-omics layers are 
needed to validate and refine the model, accelerate biomarker discovery, and facilitate clinical translation.

Data availability
The authors state that the data underlying the findings of this study are provided in the article and the Sup-
plementary Information. Bulk RNA-Seq data have been deposited in the Gene Expression Omnibus (GEO) 
repository under accession number GSE135917 and GSE38792. Additional data can be obtained from the cor-
responding author upon reasonable request.
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