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Lightweight grape leaf disease
recognition method based on
transformer framework
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Grape disease image recognition is an important part of agricultural disease detection. Accurately
identifying diseases allows for timely prevention and control at an early stage, which plays a crucial
role in reducing yield losses. This study addresses the problems in grape leaf disease recognition
under small-sample conditions, such as the difficulty in capturing multi-scale features, the minuteness
of features, and the weak adaptability of traditional data augmentation methods. It proposes a
solution that combines a multi-scale feature hybrid fusion architecture with data augmentation.

The innovation of this study lies in the following four dimensions: (1) Utilize generative models to
enhance the cross-category data balancing ability under small-sample conditions and enrich the
sample information in the dataset. (2) Innovatively propose the LVT Block, a multi-scale information
perception hybrid module based on the Ghost and Transformer structures. This module can effectively
acquire and fuse multi-scale information and global information in the feature map. (3) Use the dense
connection method to combine the LVT Block and the MARI Block to propose a new architecture,

the DLVT Block. By fusing multi-scale information and global information, it improves the richness

of feature information. It also uses the MARI to enhance the model’s perception of disease areas and
constructs an end-to-end lightweight model, DLVTNet, using the DLVT Block. Experiments show that
this method achieves an average recognition rate of 98.48% on the New Plant Diseases Dataset. The
number of parameters is reduced to 42.7% of that of MobileNetV4, and it maintains an accuracy of
96.12% in the tomato leaf disease test. This paper embeds pathological features into the generative
adversarial process, which can effectively alleviate the problem of insufficient samples in intelligent
agricultural detection. It provides a new method system with strong interpretability and excellent
generalization performance for disease detection.
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According to relevant data, grapes, as an important economic crop, are widely cultivated around the world and
have a broad range of applications. However, during the cultivation period, grapes are susceptible to various
diseases caused by bacteria, fungi, and pests, which significantly reduce yield and affect daily cultivation
practices'. This existing challenge has a severe impact on global grape cultivation. Early identification and
management of grape diseases can effectively reduce cultivation losses and improve crop quality?. Nevertheless,
the diversity of grape diseases and the complexity of their conditions pose significant difficulties in disease
detection®. For a long time, the primary method for grape disease detection has been manual inspection, which
is time-consuming and subject to the subjectivity and expertise of the inspector, affecting the accuracy of disease
identification. Therefore, developing an effective and rapid method for disease identification holds substantial
practical value. This need provides an opportunity for the application of computer-aided diagnostic systems in
agriculture. By utilizing image processing, machine learning, and deep learning technologies, various feature
extraction methods can meet the practical requirements of disease detection. However, the research prospects
for automatic grape disease detection are not optimistic due to limitations in dataset acquisition, the subtlety
of disease defects, uneven distribution, significant differences between similar diseases, and subtle distinctions
between different diseases, making it a challenging task.

In past research, vision-based detection methods have been introduced into grape disease detection and have
achieved numerous results. However, early disease identification methods primarily relied on image processing
and machine learning techniques, which often required manual design of parameter feature extractors. In recent
years, with the advancement of artificial intelligence technology, deep network models with powerful capabilities
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have emerged, based on the stacking of multiple layers of artificial neurons. These methods have been applied
to agricultural leaf disease detection and have effectively identified tomato diseases. Unlike traditional machine
learning methods, deep learning-based network models can autonomously learn the relationships between
different samples in the dataset and output appropriate recognition results for input images without manual
design. Although these models increase the number of parameters and training time, they offer stronger
recognition capabilities and self-iterative abilities compared to machine learning models*. However, the training
of deep learning models mainly depends on the input training data, and practical constraints often lead to data
imbalance issues due to insufficient sample sizes, as well as significant intra-class variations in disease samples at
different stages, severely limiting the recognition performance of deep learning models.

The structure of the text consists of related work, Materials and Methods, Experimental results and analysis,
and Conclusions and Discussion. The related work section delves into existing research achievements in the
field; the Materials and Methods section provides a detailed description of the research work; the Experimental
results and analysis section primarily validates and analyzes the contributions of this paper; finally, the Results
and Discussion section concludes the paper and summarizes the limitations of the study.

Related works

The following section reviews relevant research on agricultural leaf disease classification and grape leaf disease
classification, which integrates machine learning and deep learning structures. These studies are discussed and
analyzed in detail in the subsections.

Machine learning methods

Machine learning methods have been widely applied in agricultural visual disease detection. These methods can
autonomously extract features from images using designed feature extractors, such as Gabor filters, gray-level
co-occurrence matrices, local binary patterns, and wavelet transforms. Additionally, classification algorithms
like K-nearest neighbors, decision trees, random forests, and support vector machines (SVM) are used to
classify the extracted features. Relevant research in agriculture is summarized below. Zhang et al. proposed a
novel genetic algorithm-based SVM (GA-SVM) for the classification of corn diseases. The genetic algorithm
automatically optimizes the penalty factor and kernel function, and the extracted features are input into the GA-
SVM classification model using the rotation orthogonal method, achieving better performance than traditional
SVM models’.

Pan et al. introduced a citrus surface defect recognition method based on KF-2D-Renyi and ABC-SVM. The
method uses the dark channel prior (DCP) technique for image defogging, followed by the Kent-based firefly
algorithm to optimize the 2D-Renyi threshold segmentation algorithm for citrus surface defect segmentation.
The resulting vectors are input into the SVM for classification, achieving high accuracy in identifying eight
types of citrus surface defects®. Ustad et al. developed a grapevine disease classification system based on image
processing. The K-means clustering algorithm is used to extract disease regions from images, and features such
as color and shape are extracted. SVM is then employed for classification, effectively identifying Black rot and
Downy mildew’. Phookronghin et al. utilized self-organizing feature maps (SOFM) to extract grape leaf disease
regions and implemented a two-level simplified fuzzy ARTMAP (2L-SFAM) for grape leaf disease recognition
and classification®. Mohammed et al. established an artificial intelligence technique for grape leaf disease
detection and classification. The K-means algorithm is used for segmentation, and texture features are extracted
from the segmented grape leaves. Multiple SVMs and Bayesian classifiers are then employed to determine the
type of grape leaf disease®. Alishba et al. proposed a grape leaf disease recognition system that combines local
contrast haze reduction (LCHR) and LAB color conversion to select the optimal channel. Canonical correlation
analysis (CCA) is used to extract disease features, and a multi-class SVM is employed to identify three types
of grape diseases!®. Pranjali et al. used K-means clustering to extract color and texture features from lesion
regions in leaf images and combined them with SVM for disease detection, achieving an accuracy of 88.89%!!.
Jaisakthi et al. also utilized SVM for grape leaf disease recognition. The authors combined global thresholding
and supervised methods for detailed segmentation of disease regions and tested multiple machine learning
algorithms, with SVM achieving a recognition accuracy of 93%!2.

Although machine learning-based detection methods have played a crucial role in leaf disease detection
and yielded numerous research outcomes, these methods still require manual design of feature extraction
techniques, such as K-means, global thresholding, and 2D-Renyi, for extracting features like color and shape.
This limits their practical application in effectively identifying samples with complex disease characteristics.
Consequently, researchers have gradually shifted their focus to deep learning-based detection methods, which
enable end-to-end detection systems and significantly enhance the versatility of automatic detection algorithms.

Deep learning methods

With the further development of disease recognition technology, deep learning-based methods have become
powerful tools for detecting agricultural leaf diseases. Researchers have attempted to combine models such as
AlexNet, VGG, ResNet, and MobileNet with transfer learning techniques to achieve disease recognition, yielding
numerous research outcomes.

Chen et al. proposed a tomato leaf disease recognition framework based on ABCK-BWTR and B-ARNet. The
framework uses binary wavelet transform combined with Retinex denoising to enhance images, optimizes KSW
to separate leaves from the background, and employs a dual-channel residual attention network for recognition'>.
Goncharov et al. improved the deep Siamese network and single-layer perceptron classifier, expanding the
database to include five groups of grape, corn, and wheat images, effectively increasing plant disease detection
accuracy to 96%!4. Bao et al. designed a lightweight SimpleNet model for wheat head disease detection in natural
scene images. The model connects the downsampled feature maps output from inverted residual blocks with

Scientific Reports |

(2025) 15:28974 | https://doi.org/10.1038/s41598-025-13689-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

the average pooled feature maps of the input inverted residual blocks, achieving fusion of features at different
depths and reducing the loss of detailed disease features during downsampling, achieving an accuracy of
96.71%15. Atila et al. investigated the use of the EfficientNet architecture for plant leaf disease classification on
the PlantVillage dataset, achieving high classification accuracy on both the original and augmented datasets
using transfer learning'®. Atila et al. studied the use of the EfficientNet architecture for the classification of plant
leaf diseases on the PlantVillage dataset, and achieved high classification accuracy on both the original and
enhanced datasets through transfer learning methods!’. Fang et al. proposed a new network architecture, HCA-
MFFNet, which utilizes hard coordinated attention (HCA) allocated at different spatial scales and multi-feature
fusion techniques to effectively identify corn leaf diseases in complex backgrounds, achieving a recognition
accuracy of 97.75% '8. Zhang et al. introduced the asymptotic non-local means algorithm (ANLM) to reduce
image noise interference and proposed a multi-channel auto-guided recursive attention network (M-AORANet)
to address tomato leaf disease recognition issues to some extent!®. Sharma et al. proposed a deeper lightweight
multi-class model, DLMC-Net, for plant leaf disease detection. The model introduces collective blocks and
channel layers to avoid gradient vanishing issues and outperforms other network models in detecting various
plant leaf diseases?. In deep learning-based network models, improving attention mechanisms can effectively
enhance model recognition performance. Zhao et al. integrated the SE-Net attention mechanism into the
ResNet-50 model to help extract effective channel information and combined it with a multi-scale feature
extraction module for tomato disease recognition?!. Zhao et al. embedded the CBAM attention mechanism
into the Inception network model to identify corn, potato, and tomato diseases?’. Zeng et al. proposed a self-
attention convolutional neural network (SACNN) and added it to a basic network for crop disease recognition,
achieving good recognition results on the MK-D2 dataset®. Chen et al. proposed an attention module (LSAM)
for MobileNet V2, forming the Mobile-Atten model, which achieved an average recognition accuracy of 98.48%
for rice diseases in complex backgrounds 2*. Miaomiao et al. proposed a joint convolutional neural network
architecture, United-Model, based on ensemble methods, achieving grape disease recognition with an average
accuracy of 99.17% on the validation set?. Suo et al. combined Gaussian filtering, Sobel smoothing, Laplacian
operators, and the CoAtNet network to propose the coordinated attention shuffle mechanism-asymmetric multi-
scale fusion module network model (CASM-AMFMNet), achieving effective recognition of grape leaf diseases®.
Liu proposed a CNN model combining Inception structure and dense connection strategy, which outperformed
GoogLeNet and ResNet-34 in grape disease recognition?”. Cai et al. used binary wavelet transform combined
with variable threshold methods and NL-means improved MSR algorithm (VN-BWT) to enhance grape leaf
images and proposed a novel Siamese network (Siamese DWOAM-DRNet) with dual-branch residual modules
(DRM) and dual-factor weight optimization attention mechanism (DWOAM), enhancing the ability to classify
grape leaf diseases in complex backgrounds®®. Alsubai et al. developed a hybrid deep learning model for grape
disease classification based on improved Salp Swarm optimization. The model first employs median filtering
for preprocessing, then introduces dilated residual networks and clipped neural network gated recurrent
units, enabling effective classification of four types of grape diseases”. Alishba Adeel et al. proposed a grape
disease detection method combining deep learning models with machine learning techniques. Specifically, they
utilized pre-trained AlexNet and ResNet101 models for feature extraction through transfer learning, followed
by classification using least squares support vector machines (LS-SVM)*. Ren et al. integrated Adown and
CGBlock structures to enhance the model’s ability to extract global information while significantly reducing
computational resource consumption. The model achieves an accuracy of 94.7% while maintaining lightweight

performance’!.

Transformer methods

In recent years, Transformers have been increasingly applied in various fields, demonstrating their powerful
ability to capture long-range dependencies and effectively focus on disease locations in different regions of
images®?. Researchers have applied Transformers in agricultural and grape leaf visual detection, achieving
certain results.

Vallabhajosyula et al. combined Transformers with the ResNet-9 model for leaf disease classification and
detection, showing superior performance to mainstream CNN models®®. Wei Li integrated the CBAM attention
mechanism and Transformer framework into ResNet-50, achieving high-precision tomato recognition and
effective classification on the PlantDoc dataset®. Chen et al. addressed the challenge of tomato leaf disease
recognition by first using CyTrGan to generate a certain number of sample images to enrich the dataset. They
then employed a densely connected CNN network with Transformer structure, experimentally verifying effective
tomato disease recognition®. Han et al. used a dual-channel Swin Transformer for image detection, with one
channel receiving the initial image input and the other receiving edge information input, demonstrating effective
recognition of lignified leaf diseases®. Hu et al. proposed a hybrid framework, FOTCA, to address the poor
performance of Transformers on small and medium-sized datasets. The framework uses adaptive Fourier
neural operators and Transformer architecture to effectively extract global features, achieving effective disease
recognition®. Li et al. improved the MobileViT model with residual structures to obtain the PMVT model and
integrated the CBAM attention mechanism into the ViT encoder. The model was tested on datasets including
wheat, coffee, and rice, achieving excellent recognition accuracy®.

Karthik et al. proposed a novel dual-track feature fusion network, GrapeLeafNet, which uses InceptionResNet
and CBAM for local feature extraction and Shuffle-Transformer for global feature extraction, achieving high
recognition capability for grape leaf disease detection®. Li et al. proposed an improved YOLOV 5s-based apple
leaf detection method, incorporating Transformers and the CBAM attention mechanism to reduce interference
from invalid background information and enhance the expression of disease features. The experimental results
achieved an average recognition accuracy of 84.3% and demonstrated strong robustness*’. Liu et al. proposed
an optimized Efficient Swin Transformer model, introducing a token generator and feature fusion aggregation
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mechanism to reduce the number of tokens processed. The method exhibits strong recognition performance, with
recognition accuracy improving by 4.29% compared to the original Swin Transformer*!. Zhang et al. proposed a
feature extraction mechanism combining Transformers and Diffusion for jujube tree disease detection in desert
areas, achieving lightweight model design and excellent recognition capability with a recognition accuracy
of 93%*2. Li et al. proposed a Transformer-based multimodal detection method, integrating RGB images,
hyperspectral images, and environmental sensor readings to build a multimodal dataset, achieving a recognition
accuracy of 94%*. Lu et al. embedded the Transformer framework into the GhostNet network to enhance CNN
model recognition performance in complex background leaf images and proposed the GeT network model,
which achieved a recognition accuracy of 98.14%%*. Karthik et al. proposed a dual-path network combining Swin
Transformer and Group Shuffle Residual DeformNet. This network effectively extracts local and global features
from image samples, and achieves a recognition accuracy of 98.6% through cross-dimensional interaction®.

In agricultural visual inspection, existing methods have gradually evolved from traditional machine learning
methods to those combining deep learning and the Transformer architecture. As visual inspection technology
advances, the details of leaf disease detection are being increasingly explored. There has been a shift from
manually-designed feature extraction algorithms to automatically-designed ones, and from considering disease
recognition of the entire image to taking into account the relationships between distributed disease features
within the image, aiming for more accurate leaf disease recognition over time.

This paper summarizes the existing research foundation and aims to address the issues in current agricultural
visual inspection algorithms, including data imbalance, large inter-class differences, small differences between
different classes, uneven disease features, tiny feature defects, and large model sizes. Based on these problems,
this study fills several research gaps. First, a data augmentation method using deep learning technology is
proposed to solve the problems of data imbalance and small sample size. Generative adversarial networks can
be used to generate new image samples, enriching the dataset with diverse disease images. Second, a lightweight
neural network model called DLV TNet is introduced. This model combines Ghost modules and the Transformer,
which can capture multi-scale and global information from sample images. While achieving model lightweight,
it enhances the model’s ability to detect complex and subtle defects. Then, in the DLVT Block, the obtained multi-
scale and global information is concatenated in the channel dimension through dense connections to enhance
the richness of information. Subsequently, the MARI Block embedded with the MELA attention mechanism is
used to process the feature maps, thereby improving the accuracy of the model in disease classification. The main
contributions of this study lie in using a generative network model to process small-sample datasets to enrich
the sample information of the dataset, and introducing multi-scale information and a lightweight Transformer
structure to enhance the model’s ability to locate disease defects.

Materials and methods

Image datasets and preprocessing

The grape leaf disease dataset used in this study comes from the publicly available plant disease classification
dataset New Plant Diseases Dataset on Kaggle (https://www.kaggle.com/datasets/vipoooool/new-plant-diseas
es-dataset). Grape leaf images from this dataset were selected as the image dataset for this study. The dataset
includes images of three types of grape leaf diseases as well as healthy leaves, totaling 7222 images, divided into
four categories. The images have been resized to 256 x 256 pixels and processed using oversampling. Sample
images from the dataset are shown in Fig. 1.

Image preprocessing
In this section, the research mainly focuses on the problems of dataset imbalance, large inter-class differences,
and small differences between different classes in leaf disease images. Affected by real-world conditions, it is
difficult to collect sufficient samples for all categories during dataset acquisition, which makes it challenging for
the model to learn comprehensively. Moreover, in existing methods for leaf visual inspection, although various
data augmentation methods such as image processing, mixup, and generative adversarial networks are used,
they mainly focus on the issue of differences in the number of categories. However, they do not address the
problem that leaf diseases have different feature distribution patterns due to the influence of the onset time. We
use the generative adversarial network model to enrich the dataset information based on the existing dataset
samples. This is to compensate for the representations of diseases at different onset stages and make the sample
distribution of the dataset more reasonable.

In the field of agricultural disease detection, the recognition performance of deep learning (DL) models
relies on high-quality and diverse training data, which helps models better learn data distributions and reduce

(b) (d)

Fig. 1. Grape leaf dataset sample examples: a Black Measles, b Black rot, ¢ Leaf blight, d Healthy.
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Fig. 2. The image results processed by different processing methods: a original image, b image enhancement
image, ¢ FastGAN generated image.

Original dataset | 1888 1920 1692 1722
Image Processing | 3000 3000 3000 3000
FastGAN dataset | 3000 3000 3000 3000
train 2400 2400 2400 2400
test 600 600 600 600

Table 1. Comparison of samples before and after data augmentation and the number of training and test sets.

overfitting. In practical applications, datasets with rich and diverse data enable models to perform more stably
when processing input information. However, traditional image enhancement methods, such as rotation,
mirroring, and contrast adjustment, can only make simple adjustments to the spatial layout or contrast features
of images, making it difficult to effectively simulate the changes in characteristic diseases at different time stages.
In the case of grape leaf disease detection, the significant differences in disease manifestation caused by varying
onset times make the effect of traditional data augmentation methods limited in enriching disease dataset
information. Additionally, the influence of real-world environmental factors leads to significant differences
in the number of images of different diseases in the dataset, causing the model to overlearn categories with
more samples during training and misclassify categories with fewer samples, thereby affecting the models
generalization ability and practical application performance.

With the continuous development of generative models, they have been widely applied in processing small-
sample datasets. Generative network models can generate new sample information based on existing data,
effectively alleviating the problem of data insufficiency. Among various generative models, FastGAN stands
out due to its advantages of fast training, low computational resource requirements, and excellent generation
effects, making it particularly advantageous in data augmentation?®. Therefore, this study employs the FastGAN
adversarial generative network to enhance the existing dataset, increasing the diversity and balancing the class
distribution of image data.

The different processing methods applied to the dataset are illustrated in Fig. 2. During the experiment, the
augmented dataset was divided into training and testing sets in an 8:2 ratio, as shown in Table 1. Table 1 details
the number of samples in the grape leaf disease dataset used in this study, where “Original Dataset” represents
grape leaf images of different categories from the publicly available New Plant Diseases Dataset; “Image
Processing” represents the dataset expanded using image processing methods; and “FastGAN” represents the
dataset generated using the FastGAN adversarial generative network with different sample counts.
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To visually observe the distribution of dataset samples, this study employs the T-SNE algorithm for
visualization analysis, with results shown in Fig. 3. Figure 3a—c respectively display the sample distributions of
the original dataset, the image processing dataset, and the adversarial generation network dataset. As observed in
the figures, the original dataset exhibits disordered sample distributions, with healthy leaf samples (represented
in green) primarily located in the right and upper-left regions, indicating significant inter-class differences.
Other studies (represented in red, blue, and orange) show similarly disordered distributions for different disease
samples.

In Fig. 3b, although image processing techniques were used to enhance the dataset, the sample distributions
remain disordered. Healthy leaf samples are distributed in the upper and central regions, suggesting that even
after image processing, the dataset still suffers from large intra-class differences and small inter-class differences.
This indicates that traditional image enhancement methods have limited effectiveness in improving dataset
distributions and are unable to adequately address the issue of data diversity in agricultural disease detection.

However, in Fig. 3¢, the dataset processed by the FastGAN generative adversarial network model shows an
obvious clustering phenomenon of different samples in their respective regions, and the distribution is more
reasonable. This phenomenon confirms our conjecture. Compared with traditional image processing methods,
using a generative model to compensate for the missing information in the dataset can optimize the sample
distribution of the dataset and highlight the boundaries between different categories in the high-dimensional
space.

In addition, this method can also effectively enrich the disease representations at different stages. As shown
in the “Black Rot” in Fig. 2¢, images of the early and late stages of the disease are generated. We believe that by
processing the dataset in this way, the full-time-period expression of diseases can be enriched, which helps the
model fully learn disease defects.

DLVTNet model body framework
In this section, we summarize the agricultural visual inspection methods and conduct research based on the
existing problems of uneven distribution of disease features and tiny disease features. A neural network model
named DLVTNet is proposed. This model combines Convolutional Neural Networks (CNNs) and Transformers,
and it is mainly composed of a DLVT Block (Dense-connected Light-weight Vision Transformer Block) and a
Down Sample (downsampling module).

This model is capable of recognizing and detecting diseases on grape leaves. As shown in Fig. 4, the DLVT
Block uses dense connections to connect the LVT Block (Lightweight Vision Transformer Block) and the MAIR
Block (Multi-scale Attention Inverted Residual Block) to increase the reuse of input image information®’.
Additionally, within the LVT Block, the Ghost Module is used to extract multi-scale information from images,
and the LVT FFN enhances the model’s nonlinear capabilities. Furthermore, self-attention mechanisms are used
only in the final LVT Block to reduce the computational resources required by the model. Within the DLVTNet
model structure, the DLVT Block is primarily used to extract features from images, followed by downsampling
operations performed by the DS Block structure. In this model, the first layer of the downsampling module
uses a 4 x4 convolutional layer to acquire spatial features from a larger receptive field. To avoid losing detailed
features of the input image due to the use of large convolutional kernels, the second and third layers of the
downsampling module use 2 x 2 convolutional layers for downsampling.

Dense-connected lightweight vision transformer block
In the detection of agricultural leaf diseases, the main difficulties lie in the complex and diverse presentation of
disease features, as well as the problems of small and unevenly distributed disease features, which pose challenges
to leaf disease recognition. To address this issue, we designed a structure called DLVT Block. By combining the
CNN + Transformer structure, it can extract important defect regions in the image and enhance the model’s
attention to tiny defects in the image. This module is mainly composed of the LVT module with a Transformer
structure and the MAIR module with a convolutional neural network structure, and uses a dense connection
method to connect the output of each layer to the input of the next layer along the channel dimension.

As shown in Fig. 5, the DLVT module structure consists of three LVT modules and one MAIR module. The
first three LVT modules do not add the self-attention mechanism. Instead, they enhance the image representation

(a) Original Dataset (b) Image Processing () FastGAN

Fig. 3. Visualization results of T-SNE on different data-augmented datasets. a Original dataset, b image
processing dataset, and ¢ GastGAN dataset.
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Fig. 5. DLVT Block structure.

ability through the Ghost Module and the LVT Feed-Forward Network (LVT FEN). Then, the LVT module 3
with the self-attention mechanism added is used to extract the global information in the image. Finally, using
the dense connection method, before the MAIR module extracts local feature information from the input, the
outputs of the first three LVT modules are connected to the input of the DLVT module along the channel
dimension.

Lightweight vision transformer block
In this section, a multi-scale lightweight Transformer architecture proposed in this paper is mainly introduced.
The aim is to increase the richness of information obtained by the model. Meanwhile, the long-range dependency
of the self-attention mechanism is utilized to obtain the positions of tiny defects in the image and enhance the
model’s attention to tiny defects. The Transformer architecture is mainly composed of a self-attention mechanism
and a feed-forward network (FFN). The self-attention mechanism can effectively extract global information
from the input, while the feed-forward network enhances the expression ability of the input image features.
Among them, Swin Transformer uses the W-MSA module based on the shifted window multi-head self-
attention mechanism to replace the global attention mechanism in the Vision Transformer (VIT). Then, a two-
layer multi-layer perceptron (MLP) with a Gelu non-linear activation function is used in the middle to enrich
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the image features extracted by W-MSA, as shown in Fig. 6a. To achieve a lightweight Transformer model,
EfficientFormer proposes a new attention variant called GroupAttention, which is combined with a deep-
learning-based Token interaction structure and a linear feed-forward network (FFN) to form a new Transformer
module, as shown in Fig. 6b.

To further lightweight the Transformer model, this paper proposes a new Transformer Block structure,
mainly consisting of Ghost model, CLSHSA, and LVT FFN, as shown in Fig. 6c. Among them, Token
Interaction is mainly responsible for local feature aggregation or conditional position embedding, CLSHSA is
mainly responsible for modeling global context, and LVT FFN is mainly responsible for channel interaction. By
combining Token Interaction and CLSHSA, local and global dependencies are captured in a lightweight manner.
To reduce computational redundancy in the neural network model, CLSHSA is not used in the first and second
LVT Blocks, but dense connections are used to input the first two layers of LVT Block into the last LVT Block
to obtain global feature information from multi-level features of the input image, and then the obtained feature
information is passed to the last layer of MARI Block. In the LVT block, there are two situations depending
on the stage. In each DLVT Block, the first two LVT Blocks do not include CLSHSA, but instead use dense
connections to uniformly input the output images obtained from the first two LVT Blocks into the last LVT
Block with CLSHSA, which helps to better capture multi-level features of the input image.

The Ghost module and LVT FFN structures are shown in Fig. 7. Figure 7a shows the ghost module,
which mainly processes input data at multiple scales to introduce more local inductive bias. In its structure,
a 1x1 convolution is first used to compress the number of channels of the input image, then depth-separable
convolution is used to generate more feature maps, and different feature maps are concatenated together to
generate new outputs. This method can effectively reduce the number of parameters and computational cost
required for calculation while generating rich feature maps.

LVT FFN mainly consists of two 1x 1 convolutions and a Relu non-linear activation function, which can
further non-linearly map and extract high-level features from the input feature maps, as shown in Fig. 7b. First,
when the feature map passes through the first layer of 1x1 convolution, it can expand the number of image
channels. After passing through the non-linear activation function, it then passes through the second 1x1
convolution to integrate the image channels to retain important image feature information channels.

Channel lightweight single-head self-attention

In the Transformer architecture, global information extraction from input data is primarily achieved through
the self-attention mechanism. In self-attention, this is accomplished by calculating the relationships between
each element in the input image and other elements to extract global feature information. Initially, the image
features are processed through linear transformations to obtain three matrices: Q (Query), K (Key), and V
(Value). The matrices K and Q are used to compute the attention weights, while V represents the values used
for weighted summation to obtain the final output. However, due to the quadratic computational complexity
of self-attention relative to the size of the image, neural network models using Transformer structures require
substantial computational resources. As a result, many lightweight methods for the self-attention mechanism
have been proposed.

Figure 8 shows the design of various single-head attention mechanisms. Figure 8a shows a single-head self-
attention mechanism that retains all channels of the input image, then calculates the weights of the self-attention
mechanism and weights the values in the image. However, this method considers all image channels when
calculating K and Q, resulting in some computational redundancy. Figure 8b shows a lightweight single-head
self-attention mechanism proposed in the SHViT model. In this attention mechanism, a pre-convolution method
is used to split the input image channels into two parts. One part of the channel images uses a self-attention
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Fig. 6. Different Vision Transformer architectures. a Swin Transformer, b EfficientVit, and ¢ DLVTNet.

Scientific Reports |

(2025) 15:28974 | https://doi.org/10.1038/s41598-025-13689-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Linear

[ BatchNorm ]

Relu [ BatchNorm ]

Relu

Conv 3x3 ]
1 Linear

BatchNorm ]

l Relu [ BatchNorm ]
concat A— l
(a) Ghost Module (b) LVT FFN

Fig. 7. Structure diagram of Ghost module and LVT FFN. a Ghost Module and b LVT FFN.
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Fig. 8. Different single-head attention mechanisms and lightweight methods: a traditional single-head self-
attention mechanisms and b SHVIT’s improved single-head self-attention mechanisms.

mechanism to obtain global information. The other part of the channel images is not processed. Finally, the
feature maps obtained from both parts are concatenated.

In this paper, to achieve a lightweight Transformer structure, a single-head self-attention mechanism
combined with CNN channel attention, called CLSHSA, is proposed. The inspiration primarily comes from the
fact that the matrices Q and K in self-attention mechanism calculations generate significant redundancy, and the
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channel dependency of matrices Q and K is lower than that of matrix V when processing images*. The CLSHSA
structure is shown in Fig. 9a. Before calculating the matrices K and Q, the input image has its channel dimensions
reduced using a CL Block (Channel Lightweight Block). Self- Attention is then used to weight the input matrix V,
thereby extracting global information and achieving a lightweight processing of the self-attention mechanism®.
The computation of CLSHSA is illustrated in Eqgs. 1, 2, and 3.

In the CL Block, the main components are a fully connected layer, pooling layer, Sigmoid activation function,
and ReLU activation function, as shown in Fig. 9b. The data input to the CL Block undergoes global pooling
first, followed by two fully connected layers and the ReLU activation function to obtain the channel weight
information of the image. The Sigmoid function is then used to generate a weight vector to apply weighting
to the image channels. Finally, another fully connected layer integrates the weighted channel information and
removes redundant channel information, achieving lightweight processing of the self-attention mechanism.

X, = CL(X) (1)
T

Attention(Q,, K, V) = Softmax (Q\T/;i: ) \% (2)

CLSHSA(X) = Attention(XW?, XWX, xw") 3)

Multi-scale attention inverted residual block

The MAIR Block is located at the last step of the DLVT Block. Its purpose is to form the CNN structure in
the model by combining the multi-scale attention mechanism and the inverted residual block. It combines the
previously extracted multi-scale information and the information focusing on tiny regions to extract the defect
positions in the model and constrain the important channels. The structure is illustrated in Fig. 10a and mainly
consists of two 1x 1 pointwise convolutions, one 3x3 depthwise convolution, Batch Normalization, and the
Multi-scale Efficient Local Attention (MELA) mechanism. The input image first undergoes a 1x 1 pointwise
convolution to expand the image’s expressiveness, then the expanded channels are processed with depthwise
convolution, and ReLU activation function is applied to enhance the non-linear expression of image features.
Finally, a second pointwise convolution integrates the number of channels, and the integrated image is fed into
the MELA attention mechanism.

In this paper, to effectively extract local feature information from images after concatenation, a Multi-scale
Efficient Local Attention (MELA) mechanism is proposed. MELA is inspired by the CA (Coordinate Attention)
and ELA (Efficient Local Attention) mechanisms. It obtains spatial weights for different regions of the image
based on horizontal and spatial positional information of the input image™®. ELA, utilizing the coordinate
positional information approach from CA, redesigns the attention mechanism structure to achieve a lightweight
implementation without dimensionality reduction. The structure is shown in Fig. 10b. The goal of this paper is
to achieve effective extraction of features with uneven spatial distribution. To this end, a multi-scale attention
mechanism, MELA, is constructed, with its structure illustrated in Fig. 10c.

The image input to the MELA attention mechanism is processed in two parts. One part uses average pooling
with kernels of (H, 1) and (1, W) to extract horizontal and vertical feature vectors, respectively. These extracted
feature vectors are then processed using a 3x3 convolutional layer and Batch Normalization, with Sigmoid
calculating the spatial weights of the input image in the horizontal and vertical directions. In the other part, the
input image is directly processed using a 3 x 3 convolutional layer and Batch Normalization, followed by Sigmoid
to obtain the spatial weights of the image. These weights are combined with the horizontal and vertical weights

—
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Fig. 9. Structure of CLSHSA attention mechanism. a CLSHSA and b CL Block.
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Fig. 10. Schematic diagram of the structure of the MAIR Block. a MAIR Block, b ELA attention mechanism,
and ¢ MELA attention mechanism.

of the image to perform weighted processing. This method effectively focuses on disease areas in the image by
combining the weights at different locations and the multi-scale weights of the entire image.

In the MELA attention mechanism, to obtain attention weights at different scales, the input representations
of height h and width w in channel c are first obtained using pooling kernels of (H, 1) and (1, W) along the
vertical and horizontal directions, respectively. The calculation process is shown in Eqgs. 4 and 5.

ch=w D xe(hi) )
0<i < h
- 1
ze (W) =¢ Z xe (h,w) (5)
0<i < w

where z. represents the encoding result of average pooling in the c-th channel in the horizontal direction w
and vertical direction h; x. represents the feature value of the c-th channel at height h and width w in the
feature map. To effectively utilize the obtained feature vectors, we apply one-dimensional convolution (convld)
to process information in the horizontal and vertical directions. The processed information is then enhanced
using Batch Normalization (BN), and finally, the attention weights are computed using the Sigmoid function.
The calculation process is shown in Eqs. 6 and 7. In these equations, F%, and F} represent the convolution
operations with 3 x 3 kernels in the horizontal and vertical directions, respectively.

g"=sigmoid (Bx (Fa (")))

g"'=sigmoid (By (Fu (2)))

(6)
(7)

Then, to obtain multi-scale global weights, the input image feature information is processed using a convolution
operation F3 with a 3x 3 kernel and Batch Normalization B>, followed by the calculation of weights using the
Sigmoid function. The calculation method is shown in Eq. 8.

g° = sigmoid (B2 (F2 (z))) (8)
Finally, the obtained weights " and g* and multi-scale weights g° are used to weight the input image, resulting
shown in Eq. 9.
.. .. h /.. W o/ e S [+ s

y(17J) = Xc (17J) X gc (la.]) X gc (17.]) Xg (la.]) (9)
where y is the final output of MELA. Inspired by CA attention and ELA attention, MELA can effectively combine
spatial position information and multi-scale information to find regions of interest in the image, improving
accuracy.
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Experimental results and analysis

Experimental design

The computer used in this paper runs on Windows 11 operating system, using a 12th Gen Intel(R) Core(TM)
i7-12,700 (2.10 GHz) processor. GPU acceleration is used for model training and testing, with an NVIDIA
GeForce RTX 3060 (12G) GPU. The software environment uses Python 3.9.13, PyTorch 1.13.1, and CUDA 11.6
framework. Additionally, in training the neural network model, Adam is set as the optimizer, the learning rate is
set to 0.000001, the number of iterations is set to epochs =200, and the batch size is set to 16.

Evaluation indicators
In this study, precision, recall, accuracy, and F1 score are used to evaluate the recognition effect of different
models on the grape leaf dataset. The calculation methods are shown in Egs. 10, 11, 12, and 13.

iy TP
Precision = W (10)
TP

Recall = m (11)

TP+ TN
A = 12
Y = TPYFN+FP+ TN (12

2TP

F1 (13)

TOTPfFP+FN

where TP (True Positive) represents the number of positive samples correctly predicted as positive by the model;
TN (True Negative) represents the number of negative samples correctly predicted as negative by the model;
FP (False Positive) represents the number of negative samples incorrectly predicted as positive by the model;
FN (False Negative) represents the number of positive samples incorrectly predicted as negative by the model.

In this study, precision represents the proportion of samples correctly judged as positive by the network
model. Recall measures the proportion of positive samples correctly identified by the network model among the
actual positive samples. Accuracy represents the proportion of total samples correctly classified by the network
model. The F1 score comprehensively considers precision and recall, and is the harmonic mean of precision and
recall. In addition, two parameters, Flops (floating-point operations) and Params (number of parameters), are
introduced to evaluate the size of the model. The larger these two parameters, the more computational resources
the model requires.

Model performance testing

In this study, to comprehensively evaluate the recognition ability of the model, we conducted a series of
experiments under different batch sizes to determine the optimal batch size for training and verify the
generalization performance of the model. In the experiments, we trained the model using three different batch
sizes (8, 16, and 32) for comparison. Significantly different model performances were observed. Interestingly,
when the batch size was 16, the average recognition accuracy of the model reached 98.48%, and the highest
recognition accuracy reached 99.79%. Additionally, the experimental data showed that when the batch size was
32, the average recognition accuracy was 98.88%, while when the batch size was 8, the average recognition
accuracy was 98.33%. Although the accuracy slightly decreased when the batch size was 8, the maximum
difference in the highest recognition accuracy among different batch sizes was only 0.38%. The average highest
recognition accuracy across the three batch sizes reached 99.60% (Table 2).

After determining the training batch size, we selected the parameter of batch=16 to train the model. Each
time we trained the model, we re-divided the dataset at a ratio of 8:2. The best average recognition accuracy
could reach 98.58%, and the worst recognition accuracy could reach 98.27%. This issue was mainly due to the
influence of dataset division. The difference in the number of easily recognizable samples in the test-set samples
led to variations in recognition accuracy. However, the overall recognition accuracy of the model could still
reach a relatively high level. Finally, the batch size had a certain impact on the model’s recognition accuracy;
however, the impact on the model performance was minimal, and the model consistently demonstrated high-
level performance under different conditions.

Considering the influence of dataset division on the model training results, a more comprehensive evaluation
of the model’s learning ability on the grape dataset was needed. To address this issue, we adopted the K-fold
cross-validation method in the study to estimate the model performance while avoiding overfitting and variance.
This method could divide the dataset into k parts according to the given parameter k. We used (k-1) parts to
train the model and the remaining 1 part for model testing, thereby effectively verifying the model’s recognition
ability for the entire dataset. In our experiment, we used the standard value K= 10, trained the model 10 times,
and calculated the average accuracy value each time, as shown in Fig. 11. Among them, the highest average
accuracy value of the model learning was 98.64%, the lowest average accuracy value was 98.11%, the variance
was 0.53%, and the overall average was 98.43%.

In addition, to reduce the influence of outliers, we also used the Trimmed Mean method to reduce the impact
of outliers and improve the evaluation stability, and its value was 98.45%. After cross-experiment verification,
the arithmetic mean was 98.41%, and the Trimmed Mean value of 98.45% was lower than the model accuracy
value we used. This was mainly because in cross-validation, we set K=10, and the test-set in the model testing
accounted for only 10%. However, the difference between the values obtained by our 8:2 division method and
the Trimmed Mean was not significant, and the variance of the average recognition accuracy was only 0.03. This
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Methods Accuracy | Precision | Recall | F1 score | Top Acc | Flop(G) | Params (M) | Times (ms)
ConvNext V2 95.89 96.02 95.98 | 95.97 96.41 4.45 27.79° 28
InceptionNext 93.81 92.75 92.73 | 92.72 95.74 4.20 28.04 32
DenseNet121 98.30 98.06 98.06 | 98.04 99.71 2.83 7.89 37
ResNet50 97.71 97.70 97.69 | 97.65 99.75 4.13 25.55 14
EfficientNet V2 95.73 95.59 95.52 | 95.39 98.16 2.85 21.305 26
Mobilenet V4 88.16 88.14 88.05 | 87.50 93.78 0.18 2.46 6.9
GhostNetV2 91.55 94.47 91.61 |91.46 94.07 0.18 4.87 23
Deit3 95.95 95.92 95.89 | 95.82 98.62 4.24 21.97 7
EfficientFormer V2 96.82 96.11 96.09 | 96.06 99.04 1.23 12.63 23
MobileVit V2 93.45 92.64 92.58 |92.55 96.20 1.41 4.87 14
SwinTransformer V2 | 96.29 96.29 96.23 | 96.18 98.25 4.51 28.33 17
TinyVit 96.20 95.54 95.43 | 95.46 97.70 1.19 12.07 10
CaitNet 93.43 92.89 93.44 | 92.87 98.54 8.63 46.82 15
MvitV2 80.86 80.56 80.58 | 80.31 89.97 3.97 24.07 17
DLVTNet 98.48 98.48 98.47 | 98.46 99.79 0.49 1.05 8

Table 2. Comparison of average Accuracy, Precision, Recall, F1 score, Times, Flop and Params of different
network models.
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Fig. 11. K-fold cross—validation data graph and model training data comparison chart.

proved that our model could fully learn the information in the dataset and achieve accurate results. Moreover,
in this round, we obtained the highest recognition accuracy of the model, 99.79%, so we used it as the main
comparison parameter to compare with the other data presented in this paper.

Comparative experiments of different network models

In this study, to test the recognition performance of the DLVT model, comparison experiments were conducted
using existing mainstream image classification models. The comparative models discussed in this paper mainly
include CNN models such as ConvNextV25!, EfficientNetV2°2, MobileNetV4>3, ResNet50%, DenseNet121°°,
InceptionNext*’,and GhostNetV2¥, as well as Transformer models such as Deit3%, EfficientFormerV2%,
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MobileVitV2%, Swin TransformerV2°®!, TinyVit®2, CaitNet®?, and MvitV2%%. The evaluation results of the
comparative experiments are shown in Table 3. Among the 15 network models participating in the experiment,
six models achieved an average recognition accuracy of over 96%: EfficientFormer, Swin Transformer, ResNet,
DenseNet, TinyVit, and DLVTNet. Among these, DenseNet and DLVTNet achieved average recognition
accuracies of over 98%. we also tested the model inference time. Under the same device conditions, DLV TNet
achieves a single inference time of 8 ms, which is better than most of the models participating in the comparison
experiment. Moreover, the average accuracy and model size of our proposed model are superior to those of
MobileNet V4 (6.9 ms) and DeiT3 (7 ms). This indicates that the lightweight Transformer structure we proposed
has stronger practical application capabilities compared with the existing mainstream Transformer structures,
verifying the rationality of our design concept.

In addition, in the experiments, our proposed model outperforms DenseNet121 by 0.18 in terms of accuracy
and 0.42 in terms of the Fl-score. Considering that the DenseNet model mainly uses a pure convolutional
approach, although it enhances the information reuse through its unique Dense connection method, it still faces
certain difficulties when dealing with the free and tiny defects in grape leaf images. We will further verify this
idea in the follow-up research.

Table 3 reflects the Flops and Params required for the different network models in the comparison experiment,
which can be used to evaluate the computational resources required by each model. Of the 12 neural network
models participating in the comparison experiment, only MobileNet V3 has a smaller Flops requirement
than DLVTNet. However, MobileNet V3’s Params requirement is four times that of DLVTNet, and its average
recognition accuracy is only 88.16%. DLV TNet requires only 0.49G of Flops, making it the second smallest after
MobileNet, and it has the smallest Params requirement among the models tested, with a maximum difference
of up to 28 times compared to others. Despite this, DLVTNet has the highest average recognition accuracy
and Recall, with parameters of 98.48, 98.48, 98.47, and 98.46, respectively, as highlighted in black and bold in
Table 3. Figure 12 shows the accuracy curve comparison of the network models in the parameter comparison
experiment. Figure 12a compares the accuracy curves of DLVTNet and CNN models, while Fig. 12b compares
those of LVTNet and Transformer models, marking the peak recognition accuracy curve. As shown in Fig. 12a,
the recognition accuracy of the DLVTNet model can reach up to 99.79%. In addition, the accuracy curve of
our model is pink. It is clearly superior to the existing lightweight CNN and lightweight Transformer models in
terms of convergence speed, and its recognition ability is also comparable to that of large-scale SOTA models.
Meanwhile, from the figure, we can observe that the accuracy curve of the model trained with the optimized
dataset is smoother. Compared with the curves obtained from training with other datasets (as shown in Fig. 20),
our dataset is more conducive to the full learning of the model.

In addition, to effectively express the recognition accuracy of the LDVTNet model for grape diseases, this
paper also conducted confusion matrix tests on the models appearing in Table 2, and the test results are shown in
Fig. 13. In the confusion matrix, B M, B R, H, and L B correspond to black_measles, black_rot, healthy, and leaf_
blight, respectively, which are the four categories of grape leaves. These are abbreviations of the first letters of the
grape diseases shown in Fig. 1. In the detection results shown in Fig. 13, the LDVTNet model achieved correct
recognition of all sample images, while DenseNet, ResNet, Swin Transformer, Tiny Vit, and EfficientFormer
performed slightly worse, with recognition errors of less than 5 samples. The remaining models have larger
errors, with Deit3, MobileNet, and InceptionNext having more than 10 misrecognized samples, mainly
distributed in the Black Measles and Black Rot disease categories. Primarily, since the visual manifestations of
these two types of diseases tend to be similar, it is difficult for general models to effectively extract the differences
in the similar minute features at the early onset stage of the diseases. This makes it challenging for the models to
achieve effective recognition. Although we obtained favorable recognition results in the confusion matrix test,
the data still comes from the dataset. Therefore, the effectiveness of the model when tested on real-world samples
remains uncertain.

Ablation experiments

In this study, to comprehensively validate the contributions of different methods to the recognition performance
of the DLVTNet model, we designed a series of ablation experiments to systematically evaluate the impact
of six methods on model performance. These methods include: using the original grape leaf dataset, using a
dataset enhanced by FastGAN, introducing the Ghost module, introducing the CLSHSA attention mechanism,
introducing the MARI module, and employing dense connections. Through these experiments, we can not
only visually observe the independent contributions of different methods to model performance but also
comprehensively assess their combined effects on improving model performance. The experimental results are
detailed in Table 4 and Figs. 14, 15, covering multiple aspects such as average recognition accuracy, precision,
recall, F1 score, computational cost, parameter count, and feature extraction effectiveness.

Methods Accuracy | Precision | Recall | F1 score | Top Accuracy | Batch Size
DLVTNet 98.33 98.36 98.33 | 98.33 99.41 8
DLVTNet 98.48 98.48 98.47 | 98.46 99.79 16
DLVTNet 98.44 98.46 98.45 | 98.45 99.42 32
Best DLVTNet | 98.58 98.61 98.62 | 98.60 99.62 16
Bad DLVTNet | 98.27 98.32 98.32 | 98.29 99.49 16

Table 3. DLVTNet model recognition accuracy comparison under different batch sizes.
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Fig. 12. Training accuracy curves of different models: a comparison of CNN models and b comparison of
Transformer models.

Among the six methods tested in the ablation experiments, the base backbone network alone occupies 0.329
GFLOPs and 0.719 M Params. First, we compared the effects of different data augmentation methods on model
recognition performance. As shown in Fig. 14a, the classification performance of the original dataset was poor,
with significant overlaps between samples of different categories, particularly between blue and orange samples.
This indicates that training the model using the original dataset with disordered sample distribution severely
limits its classification performance, making it difficult to effectively distinguish between different disease
categories. Subsequently, we introduced the FastGAN-enhanced dataset for comparison. As shown in Fig. 13b,
using the optimized dataset with a more reasonable sample distribution can effectively enhance the model’s
clustering ability and increase the inter-class distance, which verifies our assumption of optimizing the dataset
through the generative model.

To further enhance the models feature extraction capabilities, we introduced the multi-scale Ghost module
and the self-attention mechanism CLSHSA. The combination of these two methods not only improved
the average classification accuracy by 2.52% but also effectively reduced the models computational cost and
parameter count, decreasing them by 0.031 G and 0.074 M, respectively. Furthermore, we introduced the MARI
module to enable deeper processing of the extracted features. Although the computational cost increased by
0.406 G, the average recognition accuracy improved by 1.1%. As shown in Fig. 14c, the clustering performance
of the model was significantly enhanced, with increased inter-class distances and clearer distributions between
different samples. However, some samples still failed to cluster correctly, indicating that the MARI modules
capability for complex feature extraction remains to be improved. Finally, we incorporated dense connections
into the model by integrating multi-scale information from the Ghost module and global information from
CLSHSA into the MARI module, thereby enhancing the models ability to handle complex feature extraction.
The experimental results demonstrated that the DLVTNet model with dense connections achieved an average
classification accuracy of 98.48% during training while maintaining low computational cost and parameter
count (0.493 G and 1.054 M, respectively). As shown in Fig. 14d, all tested samples were clustered into their
correct categories, with distinct inter-class distances.

Figure 15 compares the accuracy and loss curves of DLVTNet models employing different methods in the
ablation experiments. As shown in Fig. 15a, the accuracy curve of the DLVTNet model using the proposed
innovative methods demonstrates a significant advantage over models using incomplete methods. Among the
six methods, the accuracy curve of the model using the original dataset (blue) showed the slowest improvement,
with a maximum accuracy of only 94.12%, lower than that of the model using the FastGAN-enhanced dataset
(97.62%). The introduction of the Ghost and CLSHSA methods, represented by the green and brown curves
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Fig. 13. Confusion matrix test renderings for different network models, a-1 Network models shown in Table 2,
respectively.

in Fig. 15a, respectively, improved the convergence speed of the accuracy curves. After introducing the MARI
module, the maximum recognition accuracy reached 99.50%, as shown by the orange curve in Fig. 15a, with
notably faster convergence during the early stages of model training. Finally, the DLVTNet model with dense
connections achieved a maximum recognition accuracy of 99.79%, as shown by the pink curve in Fig. 15a,
with the fastest convergence speed among all six methods. Additionally, as shown in Fig. 15b, the loss value
curves of the six methods indicate that the complete DLVTNet model exhibits the fastest convergence. Finally,
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Base 86.76 86.23 86.45 | 86.23 0.329 0.719
+GAN 94.30 93.68 93.70 | 93.61 0.329 0.719
+Ghost 96.31 96.02 95.97 | 95.35 0.278 0.603
+CLSHSA | 96.82 96.35 96.35 | 96.32 0.298 0.645
+MARI 97.92 97.53 97.52 | 97.51 0.406 0.860
+Dense 98.48 98.48 98.47 | 98.46 0.493 1.054

Table 4. Data diagram of ablation experiment shows the effect of different functions on the recognition ability
of DLVTNet.

100 Grape_black_measles
Grape_black_rot
Grape_healthy

Grape_leaf_blight

Grape_black_measles
Grape_black_rot
Grape_healthy
Grape_leaf_blight

100

KK
ecoe

-100

(b)+GAN

Grape_black_measles
Grape_black_rot

Grape_healthy 75
Grape_leaf_blight »

Grape_black_measles
Grape_black_rot
Grape_healthy
Grape_leaf_blight

eooe
eooe

75

50

25

-100
-100 =75 =50 =25 0 25 50 75 =75 =50 =25 0 25 50 75

(c)*tMARI (d)+Dense

Fig. 14. Ablation experiments used different methods of DLVTNet model to visualize the clustering effect of
grape leaf categories.

we also output the feature maps of different modules at different stages in the ablation experiment to compare
the feature extraction effects. It can be clearly observed from Fig. 16 that as the modules are added, the model
pays more attention to the defect position in the upper-left corner. In the feature map of Fig. 16f, the features
of the defect area in the upper-left corner are significantly different from those in other positions. This verifies
our assumption about the model, that is, the LVT Block and MARI Block are used to obtain the multi-scale
information, tiny defect information, and important defect positions of the image respectively, and the method
of densely connecting and splicing information at each level effectively helps the model to cluster different
samples, which has achieved remarkable results in the grape leaf disease dataset.

Comparative experiments with different attention mechanisms

This paper proposes a deep learning network model DLVTNet that combines CNN and Transformer. In this
model, MELA is used as the last layer of the dense connection block to extract regions of interest from the
input image. To verify the performance of the MELA attention mechanism, this section compares it with five
mainstream and new attention mechanisms: ECA%, CBAM®, GAM®, NAM®, and ELA®. The experimental
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marked by the arrows. a Comparison chart of the accuracy curve, and b comparison chart of the Loss value
curve.
DLVT 1 .
DLVT 2
DLVT 3

(a) +GAN (f) +Dense

Fig. 16. Characteristic plots of different DLVT block outputs of DLV TNet models using different methods.

data obtained are shown in Table 5. Among them, ours has the highest average recognition accuracy, Precision,
Recall, and F1 score, which are 98.48%, 98.48%, 98.47%, and 98.46, respectively, about 0.63%, 0.33%, 1.98%,
0.31%, and 0.47% higher than the average accuracy of the other five attention mechanisms. The accuracy
change curves of the six attention mechanisms are shown in Fig. 17, where the MELA attention mechanism can
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Methods | Accuracy | Precision | Recall | F1 score | Flop (G) | Params (M)
ECA 97.85 97.86 97.90 | 97.86 0.491 1.051
CBAM 98.15 98.25 98.18 | 98.15 0.491 1.054
GAM 96.50 96.65 96.56 | 96.40 0.732 1.590
NAM 98.17 98.23 98.21 | 98.18 0.491 1.051
ELA 98.01 98.11 98.04 | 97.98 0.493 1.054
MELA 98.48 98.48 98.47 | 98.46 0.493 1.054

Table 5. Evaluation and comparison of training data of different attention mechanisms with ECA, CBAM,
GAM, NAM, and ELA.
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Fig. 17. Comparison of attention mechanism model curves. a Comparison chart of the accuracy curve, and b
comparison chart of the Loss value curve.

effectively improve the recognition accuracy of the model, with its highest accuracy reaching 99.79%, surpassing
other mainstream attention mechanisms.

In addition, this study also visualizes the regions of interest in disease images for different attention
mechanisms, and the results are shown in Fig. 18. It can be observed that using the MELA attention mechanism
can effectively capture the leaf disease areas, with the best focus on disease areas among the six attention
mechanisms. Furthermore, ECA, CBAM, and NAM attention mechanisms can also capture regions of interest,
but their focus areas are relatively scattered and fail to accurately focus on the disease areas in the leaves, with
more useless areas. Among the six attention mechanisms, GAM has the lowest accuracy, and its class activation
map also has the worst effect on focusing on disease areas, failing to effectively localize diseases. This problem
is mainly because our attention mechanism introduces a multi-scale information processing branch, which
effectively combines the original processing of data in the x and y directions within the image (as shown in
Fig. 10). This method can effectively process the feature image. The ECA attention mechanism mainly focuses
on the channel information of the image and ignores the most important free disease distribution in agricultural
leaf diseases. As shown in Fig. 18a, it fails to effectively focus on the main disease distribution area within
the sample. In contrast, although the GAM attention mechanism improves the accuracy at any cost through
feature interaction, in the detection of agricultural leaf diseases, the multiple information interaction affects the
retention of key information in the model. As shown in Fig. 18c, its focus is far from the disease area.
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Fig. 18. Category activation diagram of DLVTNet using different attention mechanisms. Mechanisms of
attention in Table 5 are from (a) to (e), respectively. Each of the three rows represents a different disease
category.

Fig. 19. Samples of four different tomato diseases.

Comparison experiments with different datasets

The method proposed in this paper demonstrates effective detection performance for grape leaf disease
recognition and detection. However, using only a single type of leaf disease makes it difficult to prove the
generalization capability of the DLVTNet model. To address this, this section tests the DLVTNet model across
datasets using tomato leaf disease images from the publicly available New Plant Diseases Dataset (https://www
.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset). Different categories of tomato image samples are
shown in Fig. 19. This dataset includes 10 types of leaf categories, with a total of 18,345 images. The training and
test set splits are shown in Table 6.

To compare with existing mainstream models, this section’s experiments used models consistent with
those in the comparative experiments of Part 3.3. These models include CNN models such as ConvNext,
EfficientNet, MobileNet, ResNet, DenseNet, and InceptionNext, as well as Transformer models including Deit,
EfficientFormer, MobileVit, Swin Transformer, TinyVit, and the DLVTNet proposed in this paper, totaling 12
network models. Table 7 presents the evaluation parameters for the 12 models trained on the tomato leaf dataset.
Models with an average recognition accuracy exceeding 97% include Deit, EfficientFormer, ResNet, DenseNet,
and DLVTNet. Among these, DenseNet and DLV TNet models have an average recognition accuracy above 98%,
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Categories Dataset | Train | Test
Bacterial spot 1702 1362 | 340
Early blight 1920 1536 | 384
Healthy 1926 1541 | 385
Late blight 1851 1481 | 370
Leaf mold 1882 1506 | 376
Septoria leaf spot | 1745 1396 | 349
Spider mites 1741 1393 | 348
Target spot 1827 1462 | 365
Mosaic 1790 1432 | 358
Yellow leaf curl 1961 1569 | 392

Table 6. Classification of the training test set of the tomato disease dataset.

Methods Accuracy | Precision | Recall | F1 score | Flop (G) | Params (M)
ConvNext V2 90.89 91.07 90.96 | 90.95 4.45 27.79
Deit3 97.79 97.83 97.78 |97.78 4.24 21.97
EfficientNet V2 90.50 90.48 90.46 | 90.37 2.85 21.30
EfficientFormer V2 97.98 98.02 97.97 | 97.94 1.23 12.63
Mobilenet V3 89.12 89.11 89.08 | 88.97 0.2 4.18
MobileVit V2 88.18 88.18 88.02 | 87.98 1.41 4.87
SwinTransformer V2 | 96.78 96.89 96.80 | 96.79 451 28.33
ResNet18 97.85 97.96 97.84 | 97.81 1.82 11.69
DenseNet 98.50 98.52 98.49 | 98.49 2.83 7.89
InceptionNext 94.03 94.18 94.07 | 94.04 4.20 28.04
TinyVit 95.04 95.09 95.00 | 94.96 1.19 12.07
DLVTNet 98.57 98.74 98.57 | 98.55 0.49 1.05

Table 7. Comparison of training parameters of different models in tomato disease datasets.

with DLVTNet achieving the highest average evaluation parameters among the 12 models, specifically 98.57%,
98.74%, 98.57%, and 98.55%.

Figure 20 shows the accuracy curves for the 12 network models tested. Figure 20a compares the accuracy
curves of DLVTNet and CNN models. It shows that the accuracy curves of DLVTNet and ConvNext models
experienced significant fluctuations in the early stages of training, but DLVTNet was able to converge to a
higher level of accuracy. Figure 20b compares the accuracy curves of the DLVTNet model with Transformer
models. Most models, except for TinyVit and MobileVit, experienced significant fluctuations, but TinyVit and
MobileVit had recognition accuracies much lower than the other models. In the accuracy curve comparison of
different network models in Fig. 20, DLVTNet experienced significant fluctuations in the early training stages
but exhibited a higher accuracy improvement trend compared to other models, with a peak recognition accuracy
of 99.92%, the highest among the 12 neural network models. This indicates that while the DLVTNet model
proposed in this paper has some limitations, it still achieves effective recognition of tomato leaf diseases.

Conclusions and discussion

This paper proposes a method for grape leaf disease recognition and detection based on deep learning. This
method can effectively identify different types of grape leaf diseases and enhance the richness of data samples
First, in response to the problem that existing data augmentation methods struggle to effectively enrich the
information in image datasets, the FastGAN generative adversarial network is employed to generate a large
number of grape leaf samples. This approach effectively enriches the feature representations of grape leaf diseases
at different stages and resolves the issue of data imbalance. On this basis, a lightweight neural network model
called DLVTNet is proposed. By combining the Transformer-based LVT module and the CNN-based MARI
module, this model effectively fuses the global and local information in images to achieve leaf disease recognition.
Specifically, the LVT module innovatively introduces the Ghost module to enhance the image information
extraction ability. Moreover, based on the low dependence of K and Q on the number of image channels in
the self-attention mechanism, a channel-based local self-attention mechanism (CLSHSA) is proposed. This
mechanism realizes a lightweight self-attention mechanism without reducing the model’s recognition ability.
Furthermore, the inverted residual module is improved by introducing the MELA attention mechanism. The
MELA attention mechanism uses the position information and multi-scale information in the image to obtain
weights, thereby enhancing the MARI module’s ability to extract local information. Finally, this paper uses a
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Fig. 20. The change of training accuracy curves of different models. a Comparison of CNN models and b
comparison of Transformer models.

dense connection method to connect the LVT module and the MARI module, increasing the reuse of image
information within the DLVTNet model and further enhancing the model’s recognition ability.

To verify the performance of the DLVTNet model, this study conducted comparative experiments, ablation
experiments, and experiments on different attention mechanisms. The experimental results show that through
sufficient experimental verification, it can be confirmed that the method of optimizing the expressions of
diseases in different cycles through GAN can serve as an effective way to optimize the dataset. It can optimize the
sample distribution in the dataset and help the model further learn the differences between different categories
to achieve excellent clustering effects. In addition, the proposed DLVTNet can effectively focus on the important
defect areas in the model and capture the disease characteristics of free-distributed lesions within the image. At
the same time, it realizes the lightweight design of the model. Compared with the existing pure convolutional
models, this model has certain advantages, and its size is much smaller than the existing Transformer models,
which meets our original design intention. This method can also provide a certain direction for the integration
of CNN networks and self-attention mechanisms, and can effectively capture long-range dependencies in actual
detection. Finally, we introduced the tomato disease dataset for testing to verify the generalization ability of this
method. In the obtained data, our model showed excellent performance. However, the accuracy curves of all
the models participating in the experiment fluctuated greatly due to the influence of the dataset, which further
confirmed the effect of our dataset optimization. However, there are still certain limitations in our research
in this article. Firstly, our dataset is sourced from public dataset samples, without considering the real-world
disease situations. Secondly, we used the existing general GAN model to optimize the dataset, and it remains a
question whether the optimization effect of the dataset can be further improved. Thirdly, the disease categories
we tested are only limited to grapes, and it is unclear whether it can show advantages for a large number of
different types of agricultural diseases. Finally, our model does not take the latest research results into account,
and there is still room for further optimization of its model structure. In the follow-up, we will conduct in-depth
research on the optimization effect of generative models on agricultural leaf diseases, the small differences in leaf
characteristics among different categories, the lightweight improvement of the model, and the real-world data
distribution problems, aiming to solve the practical problems in agricultural disease detection and realize the
practical application of deep learning methods.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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