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Grape disease image recognition is an important part of agricultural disease detection. Accurately 
identifying diseases allows for timely prevention and control at an early stage, which plays a crucial 
role in reducing yield losses. This study addresses the problems in grape leaf disease recognition 
under small-sample conditions, such as the difficulty in capturing multi-scale features, the minuteness 
of features, and the weak adaptability of traditional data augmentation methods. It proposes a 
solution that combines a multi-scale feature hybrid fusion architecture with data augmentation. 
The innovation of this study lies in the following four dimensions: (1) Utilize generative models to 
enhance the cross-category data balancing ability under small-sample conditions and enrich the 
sample information in the dataset. (2) Innovatively propose the LVT Block, a multi-scale information 
perception hybrid module based on the Ghost and Transformer structures. This module can effectively 
acquire and fuse multi-scale information and global information in the feature map. (3) Use the dense 
connection method to combine the LVT Block and the MARI Block to propose a new architecture, 
the DLVT Block. By fusing multi-scale information and global information, it improves the richness 
of feature information. It also uses the MARI to enhance the model’s perception of disease areas and 
constructs an end-to-end lightweight model, DLVTNet, using the DLVT Block. Experiments show that 
this method achieves an average recognition rate of 98.48% on the New Plant Diseases Dataset. The 
number of parameters is reduced to 42.7% of that of MobileNetV4, and it maintains an accuracy of 
96.12% in the tomato leaf disease test. This paper embeds pathological features into the generative 
adversarial process, which can effectively alleviate the problem of insufficient samples in intelligent 
agricultural detection. It provides a new method system with strong interpretability and excellent 
generalization performance for disease detection.
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According to relevant data, grapes, as an important economic crop, are widely cultivated around the world and 
have a broad range of applications. However, during the cultivation period, grapes are susceptible to various 
diseases caused by bacteria, fungi, and pests, which significantly reduce yield and affect daily cultivation 
practices1. This existing challenge has a severe impact on global grape cultivation. Early identification and 
management of grape diseases can effectively reduce cultivation losses and improve crop quality2. Nevertheless, 
the diversity of grape diseases and the complexity of their conditions pose significant difficulties in disease 
detection3. For a long time, the primary method for grape disease detection has been manual inspection, which 
is time-consuming and subject to the subjectivity and expertise of the inspector, affecting the accuracy of disease 
identification. Therefore, developing an effective and rapid method for disease identification holds substantial 
practical value. This need provides an opportunity for the application of computer-aided diagnostic systems in 
agriculture. By utilizing image processing, machine learning, and deep learning technologies, various feature 
extraction methods can meet the practical requirements of disease detection. However, the research prospects 
for automatic grape disease detection are not optimistic due to limitations in dataset acquisition, the subtlety 
of disease defects, uneven distribution, significant differences between similar diseases, and subtle distinctions 
between different diseases, making it a challenging task.

In past research, vision-based detection methods have been introduced into grape disease detection and have 
achieved numerous results. However, early disease identification methods primarily relied on image processing 
and machine learning techniques, which often required manual design of parameter feature extractors. In recent 
years, with the advancement of artificial intelligence technology, deep network models with powerful capabilities 
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have emerged, based on the stacking of multiple layers of artificial neurons. These methods have been applied 
to agricultural leaf disease detection and have effectively identified tomato diseases. Unlike traditional machine 
learning methods, deep learning-based network models can autonomously learn the relationships between 
different samples in the dataset and output appropriate recognition results for input images without manual 
design. Although these models increase the number of parameters and training time, they offer stronger 
recognition capabilities and self-iterative abilities compared to machine learning models4. However, the training 
of deep learning models mainly depends on the input training data, and practical constraints often lead to data 
imbalance issues due to insufficient sample sizes, as well as significant intra-class variations in disease samples at 
different stages, severely limiting the recognition performance of deep learning models.

The structure of the text consists of related work, Materials and Methods, Experimental results and analysis, 
and Conclusions and Discussion. The related work section delves into existing research achievements in the 
field; the Materials and Methods section provides a detailed description of the research work; the Experimental 
results and analysis section primarily validates and analyzes the contributions of this paper; finally, the Results 
and Discussion section concludes the paper and summarizes the limitations of the study.

Related works
The following section reviews relevant research on agricultural leaf disease classification and grape leaf disease 
classification, which integrates machine learning and deep learning structures. These studies are discussed and 
analyzed in detail in the subsections.

Machine learning methods
Machine learning methods have been widely applied in agricultural visual disease detection. These methods can 
autonomously extract features from images using designed feature extractors, such as Gabor filters, gray-level 
co-occurrence matrices, local binary patterns, and wavelet transforms. Additionally, classification algorithms 
like K-nearest neighbors, decision trees, random forests, and support vector machines (SVM) are used to 
classify the extracted features. Relevant research in agriculture is summarized below. Zhang et al. proposed a 
novel genetic algorithm-based SVM (GA-SVM) for the classification of corn diseases. The genetic algorithm 
automatically optimizes the penalty factor and kernel function, and the extracted features are input into the GA-
SVM classification model using the rotation orthogonal method, achieving better performance than traditional 
SVM models5.

Pan et al. introduced a citrus surface defect recognition method based on KF-2D-Renyi and ABC-SVM. The 
method uses the dark channel prior (DCP) technique for image defogging, followed by the Kent-based firefly 
algorithm to optimize the 2D-Renyi threshold segmentation algorithm for citrus surface defect segmentation. 
The resulting vectors are input into the SVM for classification, achieving high accuracy in identifying eight 
types of citrus surface defects6. Ustad et al. developed a grapevine disease classification system based on image 
processing. The K-means clustering algorithm is used to extract disease regions from images, and features such 
as color and shape are extracted. SVM is then employed for classification, effectively identifying Black rot and 
Downy mildew7. Phookronghin et al. utilized self-organizing feature maps (SOFM) to extract grape leaf disease 
regions and implemented a two-level simplified fuzzy ARTMAP (2L-SFAM) for grape leaf disease recognition 
and classification8. Mohammed et al. established an artificial intelligence technique for grape leaf disease 
detection and classification. The K-means algorithm is used for segmentation, and texture features are extracted 
from the segmented grape leaves. Multiple SVMs and Bayesian classifiers are then employed to determine the 
type of grape leaf disease9. Alishba et al. proposed a grape leaf disease recognition system that combines local 
contrast haze reduction (LCHR) and LAB color conversion to select the optimal channel. Canonical correlation 
analysis (CCA) is used to extract disease features, and a multi-class SVM is employed to identify three types 
of grape diseases10. Pranjali et al. used K-means clustering to extract color and texture features from lesion 
regions in leaf images and combined them with SVM for disease detection, achieving an accuracy of 88.89%11. 
Jaisakthi et al. also utilized SVM for grape leaf disease recognition. The authors combined global thresholding 
and supervised methods for detailed segmentation of disease regions and tested multiple machine learning 
algorithms, with SVM achieving a recognition accuracy of 93%12.

Although machine learning-based detection methods have played a crucial role in leaf disease detection 
and yielded numerous research outcomes, these methods still require manual design of feature extraction 
techniques, such as K-means, global thresholding, and 2D-Renyi, for extracting features like color and shape. 
This limits their practical application in effectively identifying samples with complex disease characteristics. 
Consequently, researchers have gradually shifted their focus to deep learning-based detection methods, which 
enable end-to-end detection systems and significantly enhance the versatility of automatic detection algorithms.

Deep learning methods
With the further development of disease recognition technology, deep learning-based methods have become 
powerful tools for detecting agricultural leaf diseases. Researchers have attempted to combine models such as 
AlexNet, VGG, ResNet, and MobileNet with transfer learning techniques to achieve disease recognition, yielding 
numerous research outcomes.

Chen et al. proposed a tomato leaf disease recognition framework based on ABCK-BWTR and B-ARNet. The 
framework uses binary wavelet transform combined with Retinex denoising to enhance images, optimizes KSW 
to separate leaves from the background, and employs a dual-channel residual attention network for recognition13. 
Goncharov et al. improved the deep Siamese network and single-layer perceptron classifier, expanding the 
database to include five groups of grape, corn, and wheat images, effectively increasing plant disease detection 
accuracy to 96%14. Bao et al. designed a lightweight SimpleNet model for wheat head disease detection in natural 
scene images. The model connects the downsampled feature maps output from inverted residual blocks with 
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the average pooled feature maps of the input inverted residual blocks, achieving fusion of features at different 
depths and reducing the loss of detailed disease features during downsampling, achieving an accuracy of 
96.71%15. Atila et al. investigated the use of the EfficientNet architecture for plant leaf disease classification on 
the PlantVillage dataset, achieving high classification accuracy on both the original and augmented datasets 
using transfer learning16. Atila et al. studied the use of the EfficientNet architecture for the classification of plant 
leaf diseases on the PlantVillage dataset, and achieved high classification accuracy on both the original and 
enhanced datasets through transfer learning methods17. Fang et al. proposed a new network architecture, HCA-
MFFNet, which utilizes hard coordinated attention (HCA) allocated at different spatial scales and multi-feature 
fusion techniques to effectively identify corn leaf diseases in complex backgrounds, achieving a recognition 
accuracy of 97.75% 18. Zhang et al. introduced the asymptotic non-local means algorithm (ANLM) to reduce 
image noise interference and proposed a multi-channel auto-guided recursive attention network (M-AORANet) 
to address tomato leaf disease recognition issues to some extent19. Sharma et al. proposed a deeper lightweight 
multi-class model, DLMC-Net, for plant leaf disease detection. The model introduces collective blocks and 
channel layers to avoid gradient vanishing issues and outperforms other network models in detecting various 
plant leaf diseases20. In deep learning-based network models, improving attention mechanisms can effectively 
enhance model recognition performance. Zhao et al. integrated the SE-Net attention mechanism into the 
ResNet-50 model to help extract effective channel information and combined it with a multi-scale feature 
extraction module for tomato disease recognition21. Zhao et al. embedded the CBAM attention mechanism 
into the Inception network model to identify corn, potato, and tomato diseases22. Zeng et al. proposed a self-
attention convolutional neural network (SACNN) and added it to a basic network for crop disease recognition, 
achieving good recognition results on the MK-D2 dataset23. Chen et al. proposed an attention module (LSAM) 
for MobileNet V2, forming the Mobile-Atten model, which achieved an average recognition accuracy of 98.48% 
for rice diseases in complex backgrounds 24. Miaomiao et al. proposed a joint convolutional neural network 
architecture, United-Model, based on ensemble methods, achieving grape disease recognition with an average 
accuracy of 99.17% on the validation set25. Suo et al. combined Gaussian filtering, Sobel smoothing, Laplacian 
operators, and the CoAtNet network to propose the coordinated attention shuffle mechanism-asymmetric multi-
scale fusion module network model (CASM-AMFMNet), achieving effective recognition of grape leaf diseases26. 
Liu proposed a CNN model combining Inception structure and dense connection strategy, which outperformed 
GoogLeNet and ResNet-34 in grape disease recognition27. Cai et al. used binary wavelet transform combined 
with variable threshold methods and NL-means improved MSR algorithm (VN-BWT) to enhance grape leaf 
images and proposed a novel Siamese network (Siamese DWOAM-DRNet) with dual-branch residual modules 
(DRM) and dual-factor weight optimization attention mechanism (DWOAM), enhancing the ability to classify 
grape leaf diseases in complex backgrounds28. Alsubai et al. developed a hybrid deep learning model for grape 
disease classification based on improved Salp Swarm optimization. The model first employs median filtering 
for preprocessing, then introduces dilated residual networks and clipped neural network gated recurrent 
units, enabling effective classification of four types of grape diseases29. Alishba Adeel et al. proposed a grape 
disease detection method combining deep learning models with machine learning techniques. Specifically, they 
utilized pre-trained AlexNet and ResNet101 models for feature extraction through transfer learning, followed 
by classification using least squares support vector machines (LS-SVM)30. Ren et al. integrated Adown and 
CGBlock structures to enhance the model’s ability to extract global information while significantly reducing 
computational resource consumption. The model achieves an accuracy of 94.7% while maintaining lightweight 
performance31.

Transformer methods
In recent years, Transformers have been increasingly applied in various fields, demonstrating their powerful 
ability to capture long-range dependencies and effectively focus on disease locations in different regions of 
images32. Researchers have applied Transformers in agricultural and grape leaf visual detection, achieving 
certain results.

Vallabhajosyula et al. combined Transformers with the ResNet-9 model for leaf disease classification and 
detection, showing superior performance to mainstream CNN models33. Wei Li integrated the CBAM attention 
mechanism and Transformer framework into ResNet-50, achieving high-precision tomato recognition and 
effective classification on the PlantDoc dataset34. Chen et al. addressed the challenge of tomato leaf disease 
recognition by first using CyTrGan to generate a certain number of sample images to enrich the dataset. They 
then employed a densely connected CNN network with Transformer structure, experimentally verifying effective 
tomato disease recognition35. Han et al. used a dual-channel Swin Transformer for image detection, with one 
channel receiving the initial image input and the other receiving edge information input, demonstrating effective 
recognition of lignified leaf diseases36. Hu et al. proposed a hybrid framework, FOTCA, to address the poor 
performance of Transformers on small and medium-sized datasets. The framework uses adaptive Fourier 
neural operators and Transformer architecture to effectively extract global features, achieving effective disease 
recognition37. Li et al. improved the MobileViT model with residual structures to obtain the PMVT model and 
integrated the CBAM attention mechanism into the ViT encoder. The model was tested on datasets including 
wheat, coffee, and rice, achieving excellent recognition accuracy38.

Karthik et al. proposed a novel dual-track feature fusion network, GrapeLeafNet, which uses InceptionResNet 
and CBAM for local feature extraction and Shuffle-Transformer for global feature extraction, achieving high 
recognition capability for grape leaf disease detection39. Li et al. proposed an improved YOLOV5s-based apple 
leaf detection method, incorporating Transformers and the CBAM attention mechanism to reduce interference 
from invalid background information and enhance the expression of disease features. The experimental results 
achieved an average recognition accuracy of 84.3% and demonstrated strong robustness40. Liu et al. proposed 
an optimized Efficient Swin Transformer model, introducing a token generator and feature fusion aggregation 
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mechanism to reduce the number of tokens processed. The method exhibits strong recognition performance, with 
recognition accuracy improving by 4.29% compared to the original Swin Transformer41. Zhang et al. proposed a 
feature extraction mechanism combining Transformers and Diffusion for jujube tree disease detection in desert 
areas, achieving lightweight model design and excellent recognition capability with a recognition accuracy 
of 93%42. Li et al. proposed a Transformer-based multimodal detection method, integrating RGB images, 
hyperspectral images, and environmental sensor readings to build a multimodal dataset, achieving a recognition 
accuracy of 94%43. Lu et al. embedded the Transformer framework into the GhostNet network to enhance CNN 
model recognition performance in complex background leaf images and proposed the GeT network model, 
which achieved a recognition accuracy of 98.14%44. Karthik et al. proposed a dual-path network combining Swin 
Transformer and Group Shuffle Residual DeformNet. This network effectively extracts local and global features 
from image samples, and achieves a recognition accuracy of 98.6% through cross-dimensional interaction45.

In agricultural visual inspection, existing methods have gradually evolved from traditional machine learning 
methods to those combining deep learning and the Transformer architecture. As visual inspection technology 
advances, the details of leaf disease detection are being increasingly explored. There has been a shift from 
manually-designed feature extraction algorithms to automatically-designed ones, and from considering disease 
recognition of the entire image to taking into account the relationships between distributed disease features 
within the image, aiming for more accurate leaf disease recognition over time.

This paper summarizes the existing research foundation and aims to address the issues in current agricultural 
visual inspection algorithms, including data imbalance, large inter-class differences, small differences between 
different classes, uneven disease features, tiny feature defects, and large model sizes. Based on these problems, 
this study fills several research gaps. First, a data augmentation method using deep learning technology is 
proposed to solve the problems of data imbalance and small sample size. Generative adversarial networks can 
be used to generate new image samples, enriching the dataset with diverse disease images. Second, a lightweight 
neural network model called DLVTNet is introduced. This model combines Ghost modules and the Transformer, 
which can capture multi-scale and global information from sample images. While achieving model lightweight, 
it enhances the model’s ability to detect complex and subtle defects. Then, in the DLVT Block, the obtained multi-
scale and global information is concatenated in the channel dimension through dense connections to enhance 
the richness of information. Subsequently, the MARI Block embedded with the MELA attention mechanism is 
used to process the feature maps, thereby improving the accuracy of the model in disease classification. The main 
contributions of this study lie in using a generative network model to process small-sample datasets to enrich 
the sample information of the dataset, and introducing multi-scale information and a lightweight Transformer 
structure to enhance the model’s ability to locate disease defects.

Materials and methods
Image datasets and preprocessing
The grape leaf disease dataset used in this study comes from the publicly available plant disease classification 
dataset New Plant Diseases Dataset on Kaggle (​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​v​i​p​​o​o​o​o​o​l​​/​n​e​w​-​p​​l​a​n​t​-​d​i​s​e​a​s​
e​s​-​d​a​t​a​s​e​t). Grape leaf images from this dataset were selected as the image dataset for this study. The dataset 
includes images of three types of grape leaf diseases as well as healthy leaves, totaling 7222 images, divided into 
four categories. The images have been resized to 256 × 256 pixels and processed using oversampling. Sample 
images from the dataset are shown in Fig. 1.

Image preprocessing
In this section, the research mainly focuses on the problems of dataset imbalance, large inter-class differences, 
and small differences between different classes in leaf disease images. Affected by real-world conditions, it is 
difficult to collect sufficient samples for all categories during dataset acquisition, which makes it challenging for 
the model to learn comprehensively. Moreover, in existing methods for leaf visual inspection, although various 
data augmentation methods such as image processing, mixup, and generative adversarial networks are used, 
they mainly focus on the issue of differences in the number of categories. However, they do not address the 
problem that leaf diseases have different feature distribution patterns due to the influence of the onset time. We 
use the generative adversarial network model to enrich the dataset information based on the existing dataset 
samples. This is to compensate for the representations of diseases at different onset stages and make the sample 
distribution of the dataset more reasonable.

In the field of agricultural disease detection, the recognition performance of deep learning (DL) models 
relies on high-quality and diverse training data, which helps models better learn data distributions and reduce 

Fig. 1.  Grape leaf dataset sample examples: a Black Measles, b Black rot, c Leaf blight, d Healthy.
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overfitting. In practical applications, datasets with rich and diverse data enable models to perform more stably 
when processing input information. However, traditional image enhancement methods, such as rotation, 
mirroring, and contrast adjustment, can only make simple adjustments to the spatial layout or contrast features 
of images, making it difficult to effectively simulate the changes in characteristic diseases at different time stages. 
In the case of grape leaf disease detection, the significant differences in disease manifestation caused by varying 
onset times make the effect of traditional data augmentation methods limited in enriching disease dataset 
information. Additionally, the influence of real-world environmental factors leads to significant differences 
in the number of images of different diseases in the dataset, causing the model to overlearn categories with 
more samples during training and misclassify categories with fewer samples, thereby affecting the models 
generalization ability and practical application performance.

With the continuous development of generative models, they have been widely applied in processing small-
sample datasets. Generative network models can generate new sample information based on existing data, 
effectively alleviating the problem of data insufficiency. Among various generative models, FastGAN stands 
out due to its advantages of fast training, low computational resource requirements, and excellent generation 
effects, making it particularly advantageous in data augmentation46. Therefore, this study employs the FastGAN 
adversarial generative network to enhance the existing dataset, increasing the diversity and balancing the class 
distribution of image data.

The different processing methods applied to the dataset are illustrated in Fig. 2. During the experiment, the 
augmented dataset was divided into training and testing sets in an 8:2 ratio, as shown in Table 1. Table 1 details 
the number of samples in the grape leaf disease dataset used in this study, where “Original Dataset” represents 
grape leaf images of different categories from the publicly available New Plant Diseases Dataset; “Image 
Processing” represents the dataset expanded using image processing methods; and “FastGAN” represents the 
dataset generated using the FastGAN adversarial generative network with different sample counts.

Black Measles Black rot Leaf blight Healthy

Original dataset 1888 1920 1692 1722

Image Processing 3000 3000 3000 3000

FastGAN dataset 3000 3000 3000 3000

train 2400 2400 2400 2400

test 600 600 600 600

Table 1.  Comparison of samples before and after data augmentation and the number of training and test sets.

 

(a)Oringinal (b)Image Processing (c)FastGAN

Black Measles

Black Rot

Leaf Blight

Healthy

Fig. 2.  The image results processed by different processing methods: a original image, b image enhancement 
image, c FastGAN generated image.
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To visually observe the distribution of dataset samples, this study employs the T-SNE algorithm for 
visualization analysis, with results shown in Fig. 3. Figure 3a–c respectively display the sample distributions of 
the original dataset, the image processing dataset, and the adversarial generation network dataset. As observed in 
the figures, the original dataset exhibits disordered sample distributions, with healthy leaf samples (represented 
in green) primarily located in the right and upper-left regions, indicating significant inter-class differences. 
Other studies (represented in red, blue, and orange) show similarly disordered distributions for different disease 
samples.

In Fig. 3b, although image processing techniques were used to enhance the dataset, the sample distributions 
remain disordered. Healthy leaf samples are distributed in the upper and central regions, suggesting that even 
after image processing, the dataset still suffers from large intra-class differences and small inter-class differences. 
This indicates that traditional image enhancement methods have limited effectiveness in improving dataset 
distributions and are unable to adequately address the issue of data diversity in agricultural disease detection.

However, in Fig. 3c, the dataset processed by the FastGAN generative adversarial network model shows an 
obvious clustering phenomenon of different samples in their respective regions, and the distribution is more 
reasonable. This phenomenon confirms our conjecture. Compared with traditional image processing methods, 
using a generative model to compensate for the missing information in the dataset can optimize the sample 
distribution of the dataset and highlight the boundaries between different categories in the high-dimensional 
space.

In addition, this method can also effectively enrich the disease representations at different stages. As shown 
in the “Black Rot” in Fig. 2c, images of the early and late stages of the disease are generated. We believe that by 
processing the dataset in this way, the full-time-period expression of diseases can be enriched, which helps the 
model fully learn disease defects.

DLVTNet model body framework
In this section, we summarize the agricultural visual inspection methods and conduct research based on the 
existing problems of uneven distribution of disease features and tiny disease features. A neural network model 
named DLVTNet is proposed. This model combines Convolutional Neural Networks (CNNs) and Transformers, 
and it is mainly composed of a DLVT Block (Dense-connected Light-weight Vision Transformer Block) and a 
Down Sample (downsampling module).

This model is capable of recognizing and detecting diseases on grape leaves. As shown in Fig. 4, the DLVT 
Block uses dense connections to connect the LVT Block (Lightweight Vision Transformer Block) and the MAIR 
Block (Multi-scale Attention Inverted Residual Block) to increase the reuse of input image information47. 
Additionally, within the LVT Block, the Ghost Module is used to extract multi-scale information from images, 
and the LVT FFN enhances the model’s nonlinear capabilities. Furthermore, self-attention mechanisms are used 
only in the final LVT Block to reduce the computational resources required by the model. Within the DLVTNet 
model structure, the DLVT Block is primarily used to extract features from images, followed by downsampling 
operations performed by the DS Block structure. In this model, the first layer of the downsampling module 
uses a 4 × 4 convolutional layer to acquire spatial features from a larger receptive field. To avoid losing detailed 
features of the input image due to the use of large convolutional kernels, the second and third layers of the 
downsampling module use 2 × 2 convolutional layers for downsampling.

Dense-connected lightweight vision transformer block
In the detection of agricultural leaf diseases, the main difficulties lie in the complex and diverse presentation of 
disease features, as well as the problems of small and unevenly distributed disease features, which pose challenges 
to leaf disease recognition. To address this issue, we designed a structure called DLVT Block. By combining the 
CNN + Transformer structure, it can extract important defect regions in the image and enhance the model’s 
attention to tiny defects in the image. This module is mainly composed of the LVT module with a Transformer 
structure and the MAIR module with a convolutional neural network structure, and uses a dense connection 
method to connect the output of each layer to the input of the next layer along the channel dimension.

As shown in Fig. 5, the DLVT module structure consists of three LVT modules and one MAIR module. The 
first three LVT modules do not add the self-attention mechanism. Instead, they enhance the image representation 

Fig. 3.  Visualization results of T-SNE on different data-augmented datasets. a Original dataset, b image 
processing dataset, and c GastGAN dataset.
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ability through the Ghost Module and the LVT Feed-Forward Network (LVT FFN). Then, the LVT module 3 
with the self-attention mechanism added is used to extract the global information in the image. Finally, using 
the dense connection method, before the MAIR module extracts local feature information from the input, the 
outputs of the first three LVT modules are connected to the input of the DLVT module along the channel 
dimension.

Lightweight vision transformer block
In this section, a multi-scale lightweight Transformer architecture proposed in this paper is mainly introduced. 
The aim is to increase the richness of information obtained by the model. Meanwhile, the long-range dependency 
of the self-attention mechanism is utilized to obtain the positions of tiny defects in the image and enhance the 
model’s attention to tiny defects. The Transformer architecture is mainly composed of a self-attention mechanism 
and a feed-forward network (FFN). The self-attention mechanism can effectively extract global information 
from the input, while the feed-forward network enhances the expression ability of the input image features.

Among them, Swin Transformer uses the W-MSA module based on the shifted window multi-head self-
attention mechanism to replace the global attention mechanism in the Vision Transformer (VIT). Then, a two-
layer multi-layer perceptron (MLP) with a Gelu non-linear activation function is used in the middle to enrich 

Fig. 5.  DLVT Block structure.

 

Fig. 4.  The main framework diagram of a lightweight neural network model that combines CNN and 
Transform.

 

Scientific Reports |        (2025) 15:28974 7| https://doi.org/10.1038/s41598-025-13689-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the image features extracted by W-MSA, as shown in Fig.  6a. To achieve a lightweight Transformer model, 
EfficientFormer proposes a new attention variant called GroupAttention, which is combined with a deep-
learning-based Token interaction structure and a linear feed-forward network (FFN) to form a new Transformer 
module, as shown in Fig. 6b.

To further lightweight the Transformer model, this paper proposes a new Transformer Block structure, 
mainly consisting of Ghost model, CLSHSA, and LVT FFN, as shown in Fig.  6c. Among them, Token 
Interaction is mainly responsible for local feature aggregation or conditional position embedding, CLSHSA is 
mainly responsible for modeling global context, and LVT FFN is mainly responsible for channel interaction. By 
combining Token Interaction and CLSHSA, local and global dependencies are captured in a lightweight manner. 
To reduce computational redundancy in the neural network model, CLSHSA is not used in the first and second 
LVT Blocks, but dense connections are used to input the first two layers of LVT Block into the last LVT Block 
to obtain global feature information from multi-level features of the input image, and then the obtained feature 
information is passed to the last layer of MARI Block. In the LVT block, there are two situations depending 
on the stage. In each DLVT Block, the first two LVT Blocks do not include CLSHSA, but instead use dense 
connections to uniformly input the output images obtained from the first two LVT Blocks into the last LVT 
Block with CLSHSA, which helps to better capture multi-level features of the input image.

The Ghost module and LVT FFN structures are shown in Fig.  7. Figure  7a shows the ghost module, 
which mainly processes input data at multiple scales to introduce more local inductive bias. In its structure, 
a 1 × 1 convolution is first used to compress the number of channels of the input image, then depth-separable 
convolution is used to generate more feature maps, and different feature maps are concatenated together to 
generate new outputs. This method can effectively reduce the number of parameters and computational cost 
required for calculation while generating rich feature maps.

LVT FFN mainly consists of two 1 × 1 convolutions and a Relu non-linear activation function, which can 
further non-linearly map and extract high-level features from the input feature maps, as shown in Fig. 7b. First, 
when the feature map passes through the first layer of 1 × 1 convolution, it can expand the number of image 
channels. After passing through the non-linear activation function, it then passes through the second 1 × 1 
convolution to integrate the image channels to retain important image feature information channels.

Channel lightweight single-head self-attention
In the Transformer architecture, global information extraction from input data is primarily achieved through 
the self-attention mechanism. In self-attention, this is accomplished by calculating the relationships between 
each element in the input image and other elements to extract global feature information. Initially, the image 
features are processed through linear transformations to obtain three matrices: Q (Query), K (Key), and V 
(Value). The matrices K and Q are used to compute the attention weights, while V represents the values used 
for weighted summation to obtain the final output. However, due to the quadratic computational complexity 
of self-attention relative to the size of the image, neural network models using Transformer structures require 
substantial computational resources. As a result, many lightweight methods for the self-attention mechanism 
have been proposed.

Figure 8 shows the design of various single-head attention mechanisms. Figure 8a shows a single-head self-
attention mechanism that retains all channels of the input image, then calculates the weights of the self-attention 
mechanism and weights the values in the image. However, this method considers all image channels when 
calculating K and Q, resulting in some computational redundancy. Figure 8b shows a lightweight single-head 
self-attention mechanism proposed in the SHViT model. In this attention mechanism, a pre-convolution method 
is used to split the input image channels into two parts. One part of the channel images uses a self-attention 

Fig. 6.  Different Vision Transformer architectures. a Swin Transformer, b EfficientVit, and c DLVTNet.
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mechanism to obtain global information. The other part of the channel images is not processed. Finally, the 
feature maps obtained from both parts are concatenated.

In this paper, to achieve a lightweight Transformer structure, a single-head self-attention mechanism 
combined with CNN channel attention, called CLSHSA, is proposed. The inspiration primarily comes from the 
fact that the matrices Q and K in self-attention mechanism calculations generate significant redundancy, and the 

Fig. 8.  Different single-head attention mechanisms and lightweight methods: a traditional single-head self-
attention mechanisms and b SHVIT’s improved single-head self-attention mechanisms.

 

Fig. 7.  Structure diagram of Ghost module and LVT FFN. a Ghost Module and b LVT FFN.
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channel dependency of matrices Q and K is lower than that of matrix V when processing images48. The CLSHSA 
structure is shown in Fig. 9a. Before calculating the matrices K and Q, the input image has its channel dimensions 
reduced using a CL Block (Channel Lightweight Block). Self-Attention is then used to weight the input matrix V, 
thereby extracting global information and achieving a lightweight processing of the self-attention mechanism49. 
The computation of CLSHSA is illustrated in Eqs. 1, 2, and 3.

In the CL Block, the main components are a fully connected layer, pooling layer, Sigmoid activation function, 
and ReLU activation function, as shown in Fig. 9b. The data input to the CL Block undergoes global pooling 
first, followed by two fully connected layers and the ReLU activation function to obtain the channel weight 
information of the image. The Sigmoid function is then used to generate a weight vector to apply weighting 
to the image channels. Finally, another fully connected layer integrates the weighted channel information and 
removes redundant channel information, achieving lightweight processing of the self-attention mechanism.

	 Xr = CL(X)� (1)

	
Attention(Qr, Kr, V ) = Softmax

(
QrKT

r√
dr

)
V � (2)

	 CLSHSA(X) = Attention(XW Q, XW K , XW V )� (3)

Multi-scale attention inverted residual block
The MAIR Block is located at the last step of the DLVT Block. Its purpose is to form the CNN structure in 
the model by combining the multi-scale attention mechanism and the inverted residual block. It combines the 
previously extracted multi-scale information and the information focusing on tiny regions to extract the defect 
positions in the model and constrain the important channels. The structure is illustrated in Fig. 10a and mainly 
consists of two 1 × 1 pointwise convolutions, one 3 × 3 depthwise convolution, Batch Normalization, and the 
Multi-scale Efficient Local Attention (MELA) mechanism. The input image first undergoes a 1 × 1 pointwise 
convolution to expand the image’s expressiveness, then the expanded channels are processed with depthwise 
convolution, and ReLU activation function is applied to enhance the non-linear expression of image features. 
Finally, a second pointwise convolution integrates the number of channels, and the integrated image is fed into 
the MELA attention mechanism.

In this paper, to effectively extract local feature information from images after concatenation, a Multi-scale 
Efficient Local Attention (MELA) mechanism is proposed. MELA is inspired by the CA (Coordinate Attention) 
and ELA (Efficient Local Attention) mechanisms. It obtains spatial weights for different regions of the image 
based on horizontal and spatial positional information of the input image50. ELA, utilizing the coordinate 
positional information approach from CA, redesigns the attention mechanism structure to achieve a lightweight 
implementation without dimensionality reduction. The structure is shown in Fig. 10b. The goal of this paper is 
to achieve effective extraction of features with uneven spatial distribution. To this end, a multi-scale attention 
mechanism, MELA, is constructed, with its structure illustrated in Fig. 10c.

The image input to the MELA attention mechanism is processed in two parts. One part uses average pooling 
with kernels of (H, 1) and (1, W) to extract horizontal and vertical feature vectors, respectively. These extracted 
feature vectors are then processed using a 3 × 3 convolutional layer and Batch Normalization, with Sigmoid 
calculating the spatial weights of the input image in the horizontal and vertical directions. In the other part, the 
input image is directly processed using a 3 × 3 convolutional layer and Batch Normalization, followed by Sigmoid 
to obtain the spatial weights of the image. These weights are combined with the horizontal and vertical weights 

Fig. 9.  Structure of CLSHSA attention mechanism. a CLSHSA and b CL Block.
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of the image to perform weighted processing. This method effectively focuses on disease areas in the image by 
combining the weights at different locations and the multi-scale weights of the entire image.

In the MELA attention mechanism, to obtain attention weights at different scales, the input representations 
of height h and width w in channel c are first obtained using pooling kernels of (H, 1) and (1, W) along the 
vertical and horizontal directions, respectively. The calculation process is shown in Eqs. 4 and 5.

	
zh
c (h) = 1

W

∑
0≤i < h

xc (h,i)� (4)

	
zw
c (w) = 1

H

∑
0≤i < w

xc (h,w)� (5)

where zc represents the encoding result of average pooling in the c-th channel in the horizontal direction w 
and vertical direction h; xc represents the feature value of the c-th channel at height h and width w in the 
feature map. To effectively utilize the obtained feature vectors, we apply one-dimensional convolution (conv1d) 
to process information in the horizontal and vertical directions. The processed information is then enhanced 
using Batch Normalization (BN), and finally, the attention weights are computed using the Sigmoid function. 
The calculation process is shown in Eqs.  6 and 7. In these equations, Fw  and Fh represent the convolution 
operations with 3 × 3 kernels in the horizontal and vertical directions, respectively.

	 gh=sigmoid
(
Bh

(
Fh

(
zh

)))
� (6)

	 gw=sigmoid (Bw (Fw (zw)))� (7)

Then, to obtain multi-scale global weights, the input image feature information is processed using a convolution 
operation F2 with a 3 × 3 kernel and Batch Normalization B2, followed by the calculation of weights using the 
Sigmoid function. The calculation method is shown in Eq. 8.

	 gs = sigmoid (B2 (F2 (x)))� (8)

Finally, the obtained weights gh and gw  and multi-scale weights gs are used to weight the input image, resulting 
shown in Eq. 9.

	 y (i,j) = xc (i,j) × gh
c (i,j) × gw

c (i,j) × gs (i,j)� (9)

where y is the final output of MELA. Inspired by CA attention and ELA attention, MELA can effectively combine 
spatial position information and multi-scale information to find regions of interest in the image, improving 
accuracy.

Fig. 10.  Schematic diagram of the structure of the MAIR Block. a MAIR Block, b ELA attention mechanism, 
and c MELA attention mechanism.
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Experimental results and analysis
Experimental design
The computer used in this paper runs on Windows 11 operating system, using a 12th Gen Intel(R) Core(TM) 
i7-12,700 (2.10  GHz) processor. GPU acceleration is used for model training and testing, with an NVIDIA 
GeForce RTX 3060 (12G) GPU. The software environment uses Python 3.9.13, PyTorch 1.13.1, and CUDA 11.6 
framework. Additionally, in training the neural network model, Adam is set as the optimizer, the learning rate is 
set to 0.000001, the number of iterations is set to epochs = 200, and the batch size is set to 16.

Evaluation indicators
In this study, precision, recall, accuracy, and F1 score are used to evaluate the recognition effect of different 
models on the grape leaf dataset. The calculation methods are shown in Eqs. 10, 11, 12, and 13.

	
P recision = T P

T P + F P
� (10)

	
Recall = T P

T P + F N
� (11)

	
Accuray = T P + T N

T P + F N + F P + T N
� (12)

	
F 1 = 2T P

2T P + F P + F N
� (13)

where TP (True Positive) represents the number of positive samples correctly predicted as positive by the model; 
TN (True Negative) represents the number of negative samples correctly predicted as negative by the model; 
FP (False Positive) represents the number of negative samples incorrectly predicted as positive by the model; 
FN (False Negative) represents the number of positive samples incorrectly predicted as negative by the model.

In this study, precision represents the proportion of samples correctly judged as positive by the network 
model. Recall measures the proportion of positive samples correctly identified by the network model among the 
actual positive samples. Accuracy represents the proportion of total samples correctly classified by the network 
model. The F1 score comprehensively considers precision and recall, and is the harmonic mean of precision and 
recall. In addition, two parameters, Flops (floating-point operations) and Params (number of parameters), are 
introduced to evaluate the size of the model. The larger these two parameters, the more computational resources 
the model requires.

Model performance testing
In this study, to comprehensively evaluate the recognition ability of the model, we conducted a series of 
experiments under different batch sizes to determine the optimal batch size for training and verify the 
generalization performance of the model. In the experiments, we trained the model using three different batch 
sizes (8, 16, and 32) for comparison. Significantly different model performances were observed. Interestingly, 
when the batch size was 16, the average recognition accuracy of the model reached 98.48%, and the highest 
recognition accuracy reached 99.79%. Additionally, the experimental data showed that when the batch size was 
32, the average recognition accuracy was 98.88%, while when the batch size was 8, the average recognition 
accuracy was 98.33%. Although the accuracy slightly decreased when the batch size was 8, the maximum 
difference in the highest recognition accuracy among different batch sizes was only 0.38%. The average highest 
recognition accuracy across the three batch sizes reached 99.60% (Table 2).

After determining the training batch size, we selected the parameter of batch = 16 to train the model. Each 
time we trained the model, we re-divided the dataset at a ratio of 8:2. The best average recognition accuracy 
could reach 98.58%, and the worst recognition accuracy could reach 98.27%. This issue was mainly due to the 
influence of dataset division. The difference in the number of easily recognizable samples in the test-set samples 
led to variations in recognition accuracy. However, the overall recognition accuracy of the model could still 
reach a relatively high level. Finally, the batch size had a certain impact on the model’s recognition accuracy; 
however, the impact on the model performance was minimal, and the model consistently demonstrated high-
level performance under different conditions.

Considering the influence of dataset division on the model training results, a more comprehensive evaluation 
of the model’s learning ability on the grape dataset was needed. To address this issue, we adopted the K-fold 
cross-validation method in the study to estimate the model performance while avoiding overfitting and variance. 
This method could divide the dataset into k parts according to the given parameter k. We used (k-1) parts to 
train the model and the remaining 1 part for model testing, thereby effectively verifying the model’s recognition 
ability for the entire dataset. In our experiment, we used the standard value K = 10, trained the model 10 times, 
and calculated the average accuracy value each time, as shown in Fig. 11. Among them, the highest average 
accuracy value of the model learning was 98.64%, the lowest average accuracy value was 98.11%, the variance 
was 0.53%, and the overall average was 98.43%.

In addition, to reduce the influence of outliers, we also used the Trimmed Mean method to reduce the impact 
of outliers and improve the evaluation stability, and its value was 98.45%. After cross-experiment verification, 
the arithmetic mean was 98.41%, and the Trimmed Mean value of 98.45% was lower than the model accuracy 
value we used. This was mainly because in cross-validation, we set K = 10, and the test-set in the model testing 
accounted for only 10%. However, the difference between the values obtained by our 8:2 division method and 
the Trimmed Mean was not significant, and the variance of the average recognition accuracy was only 0.03. This 
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proved that our model could fully learn the information in the dataset and achieve accurate results. Moreover, 
in this round, we obtained the highest recognition accuracy of the model, 99.79%, so we used it as the main 
comparison parameter to compare with the other data presented in this paper.

Comparative experiments of different network models
In this study, to test the recognition performance of the DLVT model, comparison experiments were conducted 
using existing mainstream image classification models. The comparative models discussed in this paper mainly 
include CNN models such as ConvNextV251, EfficientNetV252, MobileNetV453, ResNet5054, DenseNet12155, 
InceptionNext56,and GhostNetV257, as well as Transformer models such as Deit358, EfficientFormerV259, 

Fig. 11.  K-fold cross—validation data graph and model training data comparison chart.

 

Methods Accuracy Precision Recall F1 score Top Acc Flop(G) Params (M) Times (ms)

ConvNext V2 95.89 96.02 95.98 95.97 96.41 4.45 27.79` 28

InceptionNext 93.81 92.75 92.73 92.72 95.74 4.20 28.04 32

DenseNet121 98.30 98.06 98.06 98.04 99.71 2.83 7.89 37

ResNet50 97.71 97.70 97.69 97.65 99.75 4.13 25.55 14

EfficientNet V2 95.73 95.59 95.52 95.39 98.16 2.85 21.305 26

Mobilenet V4 88.16 88.14 88.05 87.50 93.78 0.18 2.46 6.9

GhostNetV2 91.55 94.47 91.61 91.46 94.07 0.18 4.87 23

Deit3 95.95 95.92 95.89 95.82 98.62 4.24 21.97 7

EfficientFormer V2 96.82 96.11 96.09 96.06 99.04 1.23 12.63 23

MobileVit V2 93.45 92.64 92.58 92.55 96.20 1.41 4.87 14

SwinTransformer V2 96.29 96.29 96.23 96.18 98.25 4.51 28.33 17

TinyVit 96.20 95.54 95.43 95.46 97.70 1.19 12.07 10

CaitNet 93.43 92.89 93.44 92.87 98.54 8.63 46.82 15

MvitV2 80.86 80.56 80.58 80.31 89.97 3.97 24.07 17

DLVTNet 98.48 98.48 98.47 98.46 99.79 0.49 1.05 8

Table 2.  Comparison of average Accuracy, Precision, Recall, F1 score, Times, Flop and Params of different 
network models.
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MobileVitV260, Swin TransformerV261, TinyVit62, CaitNet63, and MvitV264. The evaluation results of the 
comparative experiments are shown in Table 3. Among the 15 network models participating in the experiment, 
six models achieved an average recognition accuracy of over 96%: EfficientFormer, Swin Transformer, ResNet, 
DenseNet, TinyVit, and DLVTNet. Among these, DenseNet and DLVTNet achieved average recognition 
accuracies of over 98%. we also tested the model inference time. Under the same device conditions, DLVTNet 
achieves a single inference time of 8 ms, which is better than most of the models participating in the comparison 
experiment. Moreover, the average accuracy and model size of our proposed model are superior to those of 
MobileNet V4 (6.9 ms) and DeiT3 (7 ms). This indicates that the lightweight Transformer structure we proposed 
has stronger practical application capabilities compared with the existing mainstream Transformer structures, 
verifying the rationality of our design concept.

In addition, in the experiments, our proposed model outperforms DenseNet121 by 0.18 in terms of accuracy 
and 0.42 in terms of the F1-score. Considering that the DenseNet model mainly uses a pure convolutional 
approach, although it enhances the information reuse through its unique Dense connection method, it still faces 
certain difficulties when dealing with the free and tiny defects in grape leaf images. We will further verify this 
idea in the follow-up research.

Table 3 reflects the Flops and Params required for the different network models in the comparison experiment, 
which can be used to evaluate the computational resources required by each model. Of the 12 neural network 
models participating in the comparison experiment, only MobileNet V3 has a smaller Flops requirement 
than DLVTNet. However, MobileNet V3’s Params requirement is four times that of DLVTNet, and its average 
recognition accuracy is only 88.16%. DLVTNet requires only 0.49G of Flops, making it the second smallest after 
MobileNet, and it has the smallest Params requirement among the models tested, with a maximum difference 
of up to 28 times compared to others. Despite this, DLVTNet has the highest average recognition accuracy 
and Recall, with parameters of 98.48, 98.48, 98.47, and 98.46, respectively, as highlighted in black and bold in 
Table 3. Figure 12 shows the accuracy curve comparison of the network models in the parameter comparison 
experiment. Figure 12a compares the accuracy curves of DLVTNet and CNN models, while Fig. 12b compares 
those of LVTNet and Transformer models, marking the peak recognition accuracy curve. As shown in Fig. 12a, 
the recognition accuracy of the DLVTNet model can reach up to 99.79%. In addition, the accuracy curve of 
our model is pink. It is clearly superior to the existing lightweight CNN and lightweight Transformer models in 
terms of convergence speed, and its recognition ability is also comparable to that of large-scale SOTA models. 
Meanwhile, from the figure, we can observe that the accuracy curve of the model trained with the optimized 
dataset is smoother. Compared with the curves obtained from training with other datasets (as shown in Fig. 20), 
our dataset is more conducive to the full learning of the model.

In addition, to effectively express the recognition accuracy of the LDVTNet model for grape diseases, this 
paper also conducted confusion matrix tests on the models appearing in Table 2, and the test results are shown in 
Fig. 13. In the confusion matrix, B M, B R, H, and L B correspond to black_measles, black_rot, healthy, and leaf_
blight, respectively, which are the four categories of grape leaves. These are abbreviations of the first letters of the 
grape diseases shown in Fig. 1. In the detection results shown in Fig. 13, the LDVTNet model achieved correct 
recognition of all sample images, while DenseNet, ResNet, Swin Transformer, Tiny Vit, and EfficientFormer 
performed slightly worse, with recognition errors of less than 5 samples. The remaining models have larger 
errors, with Deit3, MobileNet, and InceptionNext having more than 10 misrecognized samples, mainly 
distributed in the Black Measles and Black Rot disease categories. Primarily, since the visual manifestations of 
these two types of diseases tend to be similar, it is difficult for general models to effectively extract the differences 
in the similar minute features at the early onset stage of the diseases. This makes it challenging for the models to 
achieve effective recognition. Although we obtained favorable recognition results in the confusion matrix test, 
the data still comes from the dataset. Therefore, the effectiveness of the model when tested on real-world samples 
remains uncertain.

Ablation experiments
In this study, to comprehensively validate the contributions of different methods to the recognition performance 
of the DLVTNet model, we designed a series of ablation experiments to systematically evaluate the impact 
of six methods on model performance. These methods include: using the original grape leaf dataset, using a 
dataset enhanced by FastGAN, introducing the Ghost module, introducing the CLSHSA attention mechanism, 
introducing the MARI module, and employing dense connections. Through these experiments, we can not 
only visually observe the independent contributions of different methods to model performance but also 
comprehensively assess their combined effects on improving model performance. The experimental results are 
detailed in Table 4 and Figs. 14, 15, covering multiple aspects such as average recognition accuracy, precision, 
recall, F1 score, computational cost, parameter count, and feature extraction effectiveness.

Methods Accuracy Precision Recall F1 score Top Accuracy Batch Size

DLVTNet 98.33 98.36 98.33 98.33 99.41 8

DLVTNet 98.48 98.48 98.47 98.46 99.79 16

DLVTNet 98.44 98.46 98.45 98.45 99.42 32

Best DLVTNet 98.58 98.61 98.62 98.60 99.62 16

Bad DLVTNet 98.27 98.32 98.32 98.29 99.49 16

Table 3.  DLVTNet model recognition accuracy comparison under different batch sizes.
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Among the six methods tested in the ablation experiments, the base backbone network alone occupies 0.329 
GFLOPs and 0.719 M Params. First, we compared the effects of different data augmentation methods on model 
recognition performance. As shown in Fig. 14a, the classification performance of the original dataset was poor, 
with significant overlaps between samples of different categories, particularly between blue and orange samples. 
This indicates that training the model using the original dataset with disordered sample distribution severely 
limits its classification performance, making it difficult to effectively distinguish between different disease 
categories. Subsequently, we introduced the FastGAN-enhanced dataset for comparison. As shown in Fig. 13b, 
using the optimized dataset with a more reasonable sample distribution can effectively enhance the model’s 
clustering ability and increase the inter-class distance, which verifies our assumption of optimizing the dataset 
through the generative model.

To further enhance the models feature extraction capabilities, we introduced the multi-scale Ghost module 
and the self-attention mechanism CLSHSA. The combination of these two methods not only improved 
the average classification accuracy by 2.52% but also effectively reduced the models computational cost and 
parameter count, decreasing them by 0.031 G and 0.074 M, respectively. Furthermore, we introduced the MARI 
module to enable deeper processing of the extracted features. Although the computational cost increased by 
0.406 G, the average recognition accuracy improved by 1.1%. As shown in Fig. 14c, the clustering performance 
of the model was significantly enhanced, with increased inter-class distances and clearer distributions between 
different samples. However, some samples still failed to cluster correctly, indicating that the MARI modules 
capability for complex feature extraction remains to be improved. Finally, we incorporated dense connections 
into the model by integrating multi-scale information from the Ghost module and global information from 
CLSHSA into the MARI module, thereby enhancing the models ability to handle complex feature extraction. 
The experimental results demonstrated that the DLVTNet model with dense connections achieved an average 
classification accuracy of 98.48% during training while maintaining low computational cost and parameter 
count (0.493 G and 1.054 M, respectively). As shown in Fig. 14d, all tested samples were clustered into their 
correct categories, with distinct inter-class distances.

Figure 15 compares the accuracy and loss curves of DLVTNet models employing different methods in the 
ablation experiments. As shown in Fig.  15a, the accuracy curve of the DLVTNet model using the proposed 
innovative methods demonstrates a significant advantage over models using incomplete methods. Among the 
six methods, the accuracy curve of the model using the original dataset (blue) showed the slowest improvement, 
with a maximum accuracy of only 94.12%, lower than that of the model using the FastGAN-enhanced dataset 
(97.62%). The introduction of the Ghost and CLSHSA methods, represented by the green and brown curves 

Fig. 12.  Training accuracy curves of different models: a comparison of CNN models and b comparison of 
Transformer models.
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in Fig. 15a, respectively, improved the convergence speed of the accuracy curves. After introducing the MARI 
module, the maximum recognition accuracy reached 99.50%, as shown by the orange curve in Fig. 15a, with 
notably faster convergence during the early stages of model training. Finally, the DLVTNet model with dense 
connections achieved a maximum recognition accuracy of 99.79%, as shown by the pink curve in Fig.  15a, 
with the fastest convergence speed among all six methods. Additionally, as shown in Fig. 15b, the loss value 
curves of the six methods indicate that the complete DLVTNet model exhibits the fastest convergence. Finally, 

Fig. 13.  Confusion matrix test renderings for different network models, a–l Network models shown in Table 2, 
respectively.
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we also output the feature maps of different modules at different stages in the ablation experiment to compare 
the feature extraction effects. It can be clearly observed from Fig. 16 that as the modules are added, the model 
pays more attention to the defect position in the upper-left corner. In the feature map of Fig. 16f, the features 
of the defect area in the upper-left corner are significantly different from those in other positions. This verifies 
our assumption about the model, that is, the LVT Block and MARI Block are used to obtain the multi-scale 
information, tiny defect information, and important defect positions of the image respectively, and the method 
of densely connecting and splicing information at each level effectively helps the model to cluster different 
samples, which has achieved remarkable results in the grape leaf disease dataset.

Comparative experiments with different attention mechanisms
This paper proposes a deep learning network model DLVTNet that combines CNN and Transformer. In this 
model, MELA is used as the last layer of the dense connection block to extract regions of interest from the 
input image. To verify the performance of the MELA attention mechanism, this section compares it with five 
mainstream and new attention mechanisms: ECA65, CBAM66, GAM67, NAM68, and ELA69. The experimental 

Fig. 14.  Ablation experiments used different methods of DLVTNet model to visualize the clustering effect of 
grape leaf categories.

 

Method Accuracy Precision Recall F1 score Flop (G) Params (M)

Base 86.76 86.23 86.45 86.23 0.329 0.719

 + GAN 94.30 93.68 93.70 93.61 0.329 0.719

 + Ghost 96.31 96.02 95.97 95.35 0.278 0.603

 + CLSHSA 96.82 96.35 96.35 96.32 0.298 0.645

 + MARI 97.92 97.53 97.52 97.51 0.406 0.860

 + Dense 98.48 98.48 98.47 98.46 0.493 1.054

Table 4.  Data diagram of ablation experiment shows the effect of different functions on the recognition ability 
of DLVTNet.
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data obtained are shown in Table 5. Among them, ours has the highest average recognition accuracy, Precision, 
Recall, and F1 score, which are 98.48%, 98.48%, 98.47%, and 98.46, respectively, about 0.63%, 0.33%, 1.98%, 
0.31%, and 0.47% higher than the average accuracy of the other five attention mechanisms. The accuracy 
change curves of the six attention mechanisms are shown in Fig. 17, where the MELA attention mechanism can 

Fig. 16.  Characteristic plots of different DLVT block outputs of DLVTNet models using different methods.

 

Fig. 15.  The accuracy of the ablation experiment is graphed, and the highest precision value of the curve is 
marked by the arrows. a Comparison chart of the accuracy curve, and b comparison chart of the Loss value 
curve.
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effectively improve the recognition accuracy of the model, with its highest accuracy reaching 99.79%, surpassing 
other mainstream attention mechanisms.

In addition, this study also visualizes the regions of interest in disease images for different attention 
mechanisms, and the results are shown in Fig. 18. It can be observed that using the MELA attention mechanism 
can effectively capture the leaf disease areas, with the best focus on disease areas among the six attention 
mechanisms. Furthermore, ECA, CBAM, and NAM attention mechanisms can also capture regions of interest, 
but their focus areas are relatively scattered and fail to accurately focus on the disease areas in the leaves, with 
more useless areas. Among the six attention mechanisms, GAM has the lowest accuracy, and its class activation 
map also has the worst effect on focusing on disease areas, failing to effectively localize diseases. This problem 
is mainly because our attention mechanism introduces a multi-scale information processing branch, which 
effectively combines the original processing of data in the x and y directions within the image (as shown in 
Fig. 10). This method can effectively process the feature image. The ECA attention mechanism mainly focuses 
on the channel information of the image and ignores the most important free disease distribution in agricultural 
leaf diseases. As shown in Fig.  18a, it fails to effectively focus on the main disease distribution area within 
the sample. In contrast, although the GAM attention mechanism improves the accuracy at any cost through 
feature interaction, in the detection of agricultural leaf diseases, the multiple information interaction affects the 
retention of key information in the model. As shown in Fig. 18c, its focus is far from the disease area.

Fig. 17.  Comparison of attention mechanism model curves. a Comparison chart of the accuracy curve, and b 
comparison chart of the Loss value curve.

 

Methods Accuracy Precision Recall F1 score Flop (G) Params (M)

ECA 97.85 97.86 97.90 97.86 0.491 1.051

CBAM 98.15 98.25 98.18 98.15 0.491 1.054

GAM 96.50 96.65 96.56 96.40 0.732 1.590

NAM 98.17 98.23 98.21 98.18 0.491 1.051

ELA 98.01 98.11 98.04 97.98 0.493 1.054

MELA 98.48 98.48 98.47 98.46 0.493 1.054

Table 5.  Evaluation and comparison of training data of different attention mechanisms with ECA, CBAM, 
GAM, NAM, and ELA.
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Comparison experiments with different datasets
The method proposed in this paper demonstrates effective detection performance for grape leaf disease 
recognition and detection. However, using only a single type of leaf disease makes it difficult to prove the 
generalization capability of the DLVTNet model. To address this, this section tests the DLVTNet model across 
datasets using tomato leaf disease images from the publicly available New Plant Diseases Dataset (​h​t​t​p​s​:​​​/​​/​w​w​​w​
.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​v​​i​p​o​o​o​​o​​o​l​/​​n​e​​w​-​p​​l​a​n​t​-​d​i​s​e​​a​s​e​s​-​d​a​t​a​s​e​t). Different categories of tomato image samples are 
shown in Fig. 19. This dataset includes 10 types of leaf categories, with a total of 18,345 images. The training and 
test set splits are shown in Table 6.

To compare with existing mainstream models, this section’s experiments used models consistent with 
those in the comparative experiments of Part 3.3. These models include CNN models such as ConvNext, 
EfficientNet, MobileNet, ResNet, DenseNet, and InceptionNext, as well as Transformer models including Deit, 
EfficientFormer, MobileVit, Swin Transformer, TinyVit, and the DLVTNet proposed in this paper, totaling 12 
network models. Table 7 presents the evaluation parameters for the 12 models trained on the tomato leaf dataset. 
Models with an average recognition accuracy exceeding 97% include Deit, EfficientFormer, ResNet, DenseNet, 
and DLVTNet. Among these, DenseNet and DLVTNet models have an average recognition accuracy above 98%, 

Fig. 19.  Samples of four different tomato diseases.

 

Fig. 18.  Category activation diagram of DLVTNet using different attention mechanisms. Mechanisms of 
attention in Table 5 are from (a) to (e), respectively. Each of the three rows represents a different disease 
category.
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with DLVTNet achieving the highest average evaluation parameters among the 12 models, specifically 98.57%, 
98.74%, 98.57%, and 98.55%.

Figure 20 shows the accuracy curves for the 12 network models tested. Figure 20a compares the accuracy 
curves of DLVTNet and CNN models. It shows that the accuracy curves of DLVTNet and ConvNext models 
experienced significant fluctuations in the early stages of training, but DLVTNet was able to converge to a 
higher level of accuracy. Figure 20b compares the accuracy curves of the DLVTNet model with Transformer 
models. Most models, except for TinyVit and MobileVit, experienced significant fluctuations, but TinyVit and 
MobileVit had recognition accuracies much lower than the other models. In the accuracy curve comparison of 
different network models in Fig. 20, DLVTNet experienced significant fluctuations in the early training stages 
but exhibited a higher accuracy improvement trend compared to other models, with a peak recognition accuracy 
of 99.92%, the highest among the 12 neural network models. This indicates that while the DLVTNet model 
proposed in this paper has some limitations, it still achieves effective recognition of tomato leaf diseases.

Conclusions and discussion
This paper proposes a method for grape leaf disease recognition and detection based on deep learning. This 
method can effectively identify different types of grape leaf diseases and enhance the richness of data samples 
First, in response to the problem that existing data augmentation methods struggle to effectively enrich the 
information in image datasets, the FastGAN generative adversarial network is employed to generate a large 
number of grape leaf samples. This approach effectively enriches the feature representations of grape leaf diseases 
at different stages and resolves the issue of data imbalance. On this basis, a lightweight neural network model 
called DLVTNet is proposed. By combining the Transformer-based LVT module and the CNN-based MARI 
module, this model effectively fuses the global and local information in images to achieve leaf disease recognition. 
Specifically, the LVT module innovatively introduces the Ghost module to enhance the image information 
extraction ability. Moreover, based on the low dependence of K and Q on the number of image channels in 
the self-attention mechanism, a channel-based local self-attention mechanism (CLSHSA) is proposed. This 
mechanism realizes a lightweight self-attention mechanism without reducing the model’s recognition ability. 
Furthermore, the inverted residual module is improved by introducing the MELA attention mechanism. The 
MELA attention mechanism uses the position information and multi-scale information in the image to obtain 
weights, thereby enhancing the MARI module’s ability to extract local information. Finally, this paper uses a 

Methods Accuracy Precision Recall F1 score Flop (G) Params (M)

ConvNext V2 90.89 91.07 90.96 90.95 4.45 27.79`

Deit3 97.79 97.83 97.78 97.78 4.24 21.97

EfficientNet V2 90.50 90.48 90.46 90.37 2.85 21.30

EfficientFormer V2 97.98 98.02 97.97 97.94 1.23 12.63

Mobilenet V3 89.12 89.11 89.08 88.97 0.2 4.18

MobileVit V2 88.18 88.18 88.02 87.98 1.41 4.87

SwinTransformer V2 96.78 96.89 96.80 96.79 4.51 28.33

ResNet18 97.85 97.96 97.84 97.81 1.82 11.69

DenseNet 98.50 98.52 98.49 98.49 2.83 7.89

InceptionNext 94.03 94.18 94.07 94.04 4.20 28.04

TinyVit 95.04 95.09 95.00 94.96 1.19 12.07

DLVTNet 98.57 98.74 98.57 98.55 0.49 1.05

Table 7.  Comparison of training parameters of different models in tomato disease datasets.

 

Categories Dataset Train Test

Bacterial spot 1702 1362 340

Early blight 1920 1536 384

Healthy 1926 1541 385

Late blight 1851 1481 370

Leaf mold 1882 1506 376

Septoria leaf spot 1745 1396 349

Spider mites 1741 1393 348

Target spot 1827 1462 365

Mosaic 1790 1432 358

Yellow leaf curl 1961 1569 392

Table 6.  Classification of the training test set of the tomato disease dataset.
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dense connection method to connect the LVT module and the MARI module, increasing the reuse of image 
information within the DLVTNet model and further enhancing the model’s recognition ability.

To verify the performance of the DLVTNet model, this study conducted comparative experiments, ablation 
experiments, and experiments on different attention mechanisms. The experimental results show that through 
sufficient experimental verification, it can be confirmed that the method of optimizing the expressions of 
diseases in different cycles through GAN can serve as an effective way to optimize the dataset. It can optimize the 
sample distribution in the dataset and help the model further learn the differences between different categories 
to achieve excellent clustering effects. In addition, the proposed DLVTNet can effectively focus on the important 
defect areas in the model and capture the disease characteristics of free-distributed lesions within the image. At 
the same time, it realizes the lightweight design of the model. Compared with the existing pure convolutional 
models, this model has certain advantages, and its size is much smaller than the existing Transformer models, 
which meets our original design intention. This method can also provide a certain direction for the integration 
of CNN networks and self-attention mechanisms, and can effectively capture long-range dependencies in actual 
detection. Finally, we introduced the tomato disease dataset for testing to verify the generalization ability of this 
method. In the obtained data, our model showed excellent performance. However, the accuracy curves of all 
the models participating in the experiment fluctuated greatly due to the influence of the dataset, which further 
confirmed the effect of our dataset optimization. However, there are still certain limitations in our research 
in this article. Firstly, our dataset is sourced from public dataset samples, without considering the real-world 
disease situations. Secondly, we used the existing general GAN model to optimize the dataset, and it remains a 
question whether the optimization effect of the dataset can be further improved. Thirdly, the disease categories 
we tested are only limited to grapes, and it is unclear whether it can show advantages for a large number of 
different types of agricultural diseases. Finally, our model does not take the latest research results into account, 
and there is still room for further optimization of its model structure. In the follow-up, we will conduct in-depth 
research on the optimization effect of generative models on agricultural leaf diseases, the small differences in leaf 
characteristics among different categories, the lightweight improvement of the model, and the real-world data 
distribution problems, aiming to solve the practical problems in agricultural disease detection and realize the 
practical application of deep learning methods.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Fig. 20.  The change of training accuracy curves of different models. a Comparison of CNN models and b 
comparison of Transformer models.
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