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Cardiovascular disease progression is characterised by the dysregulation of lipid metabolism and pro-
atherogenic effects of adipose tissue signalling. Recent findings from the analysis of transcriptomic 
data in bulk tissue has enabled these insights and revealed important changes in gene expression. 
However, few studies have explored these molecular mechanisms before the onset of cardiovascular 
disease. We explore associations between future lipid-regulating drug use and cardiometabolic 
traits (n = 103), including DXA scans of body composition at baseline and follow-up 5–10 years later, 
in a cohort of British twins (n up to 6963). Utilising transcriptomic profiles from a subset of twins 
(n = 766), we explore the associations between baseline adipose tissue gene expression, clinical 
traits, and future lipid-regulating drug usage. We then test the joint predictive capacity of clinical 
traits plus gene expression compared to traditional risk scores using an automated machine learning 
approach. We find 44 traits are associated with lipid-regulating drug usage including measurements 
of abdominal fat tissue, cardiovascular health, and lipid metabolism (FDR 5%). Then, we present that 
adipose tissue gene expression levels at baseline are associated cross-sectionally with 19 of these 44 
traits (FDR 5%). By comparing adipose gene expression levels between individuals prescribed lipid-
regulating drugs in the future and controls, we discover that genes associated with 16 of these 19 
traits produced greater log2-fold changes, suggesting shared mechanisms. We reveal 15 differentially 
expressed genes comparing future lipid-regulating drug users and controls at baseline (FDR 10%), 
including some implicated in angiogenesis: ESM1, RCAN2, and SOCS3. Functional enrichment with 
1212 significantly differentially expressed genes (p < 0.05) included molecular mechanisms related 
to abnormal cardiovascular system electrophysiology (p = 1.89 × 10−3), arrhythmia (p = 4.02 × 10−3), 
and mitochondrial pathways (p = 1.12 × 10−3). Finally, we confirm inclusion of gene expression levels 
as features in machine learning models achieves a better AUC (0.919) compared to traditional 
risk predictors. These findings highlight the potential of bulk transcriptomic data to improve risk 
stratification for lipid-regulating drug use, offering new insights into the RNA biology of adipose tissue 
and advancing approaches for cardiovascular disease prevention.
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FDR	� False discovery rate
HDL	� High-density lipoprotein
LDL	� Low-density lipoprotein
ML	� Machine learning
PCA	� Principal component analysis
ROC	� Receiver operating characteristic
TMM	� Trimmed mean of M-values

Cardiovascular disease (CVD) is the leading cause of mortality worldwide and accounted for approximately 32% 
of deaths in 2019, despite estimations that up to 90% of cases might be preventable1. CVD is a term for conditions 
that influence the heart and the blood vessels, which are characterised by progressive build-up of atherosclerotic 
plaques in arteries2. Recent evidence supports this emerging picture that CVD is driven by interactions between 
genetic and environmental factors, which influence the accumulation of unrepaired damage3. Epidemiological 
studies of coronary artery disease (CAD) have produced estimates of genetic heritability between 40 and 50%, 
while GWAS have located over 300 genetic loci that explain 30–40% of the heritability and have been implicated 
in angiogenesis, inflammation, and lipid metabolism4. Decades of study has shown that age, sex, hypertension, 
diabetes, obesity, and dysregulated lipid metabolism increase risk of CVD5. These risk factors are used clinically 
to identify people that may benefit from lipid-regulating drugs, but detailed longitudinal characterisation has 
been consistently lacking.

Obesity is a major risk factor for CVD and affects more than a quarter of adults in the UK6. Excess fat 
exacerbates ‘hallmarks’ of ageing including genomic instability, telomere erosion, epigenetic alterations, loss of 
proteostasis, mitochondrial dysfunction, cellular senescence, and stem cell exhaustion, which triggers immune 
responses that promote the accumulation of atherosclerotic plaques7. Longitudinal studies have showed strong 
evidence of changes in these hallmarks for individuals with atherosclerotic plaques, including increased levels 
of inflammatory proteins such as C-reactive protein and Interleukins. Importantly, these have been shown to 
be predictive of CVD risk8, suggesting obesity and ageing hallmarks could hold potential for improving clinical 
health outcomes9.

Adipose tissue is known as an endocrine organ and immune system regulator for its role in producing 
hormones and proinflammatory cytokines10. The distribution of adipose tissue in both the subcutaneous and 
visceral depots, plus in both the android and gynoid regions, correlates with the progression of pathologies 
associated with CVD11. Metabolic changes influenced by increased adiposity can have profound effects on 
dyslipidaemia (higher levels of triglycerides and low-density lipoprotein, alongside low levels of high-density 
lipoprotein), as engorged adipocytes become saturated then rupture, circulating atherogenic adipokines and 
lipids into the blood12. Several indicators suggesting pathological changes have been found such as apoptosis, 
inflammation, LDL production, and oxidative stress markers13, while RNA-sequencing studies have elucidated 
markers connected with CVD pathology14. Yet, there is a growing need for studies that profile the underlying 
transcriptional processes happening prior to the development of lipid dysregulation and CVD, especially as 
detection of biomarkers could help prevent disease in high-risk individuals15.

In this study, we explore the associations between clinical traits related to CVD progression, molecular 
processes in adipose tissue, and future prescription of lipid-regulating drugs using longitudinal clinical 
phenotyping and transcriptomic data from TwinsUK. We find differences between many cardiometabolic and 
obesity traits and adipose tissue gene expression levels several years prior to individuals being prescribed lipid-
regulating drugs and determine that combining these features discriminates outcomes better than traditional 
markers.

Methods
Study design
In this study, we planned to characterise the phenotypic and molecular changes happening prior to lipid 
dysregulation. We used participants from TwinsUK, the largest cohort of adult twins in the UK. The registry 
comprises over 16,000 twins, the majority of which are female (82%) and middle-aged (median age 60). Over 
the last thirty years, TwinsUK has collected detailed questionnaire responses from routine clinical visits to the 
Department of Twin Research and Genetic Epidemiology, which is located at King’s College London16.

Participants self-report usage of prescription medication in questionnaires at least every 3–4 years, which 
allows free‐text drug entries as well as selection from a drop-down list of drug classes. These inputs were matched 
with British National Formulary (BNF v01-01-2019) records and reviewed in-house by a clinician17. As a result, 
the lipid-regulating drug class would have medical substances including (but not exclusively): Bezafibrate, 
Cholestyramine, Ezetimibe, Statins, and other lipid-regulating preparations (ATC C10A/C10B).

Our study design included 8195 participants which had responded to multiple questionnaires and attended 
clinical visits between 2001 and 2019. Participants were placed into 2 groups: people on prescribed lipid-
regulating drugs (cases) or not (controls). Participants prescribed drugs between 2001 and 2010 were defined 
as having lipid dysregulation at ‘baseline’ and those on drugs between 2014 and 2019 (but not ‘baseline’) were 
defined as having lipid dysregulation during ‘follow-up’ (Supplementary Table 1). As we did not have access to 
the precise date of first prescription of lipid-lowering medication, thus lipid-regulating drug use was inferred 
from the next available questionnaire response from 2014 or later.

Prescriptions were used as a proxy for lipid dysregulation as they should involve evaluations by a medical 
professional and are usually prescribed after routine blood tests that quantify circulating lipids18. These 
classifications enable cross-sectional analysis to compare users at baseline with controls, and longitudinal 
analysis for comparison of participants that were subsequently prescribed lipid-regulating drugs during follow-
up versus controls.
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Study materials
TwinsUK collects comprehensive longitudinal measurements of many clinical, biochemical, behavioural, 
dietary, and sociological factors, providing scientists with data for the analysis of complex age-related traits. 
Measurements are taken at routine clinical visits to TwinsUK, allowing us to explore statistical associations 
between drug-prescription classifications and clinical traits measured concurrently. A list of 180 clinical traits 
was compiled from TwinsUK incorporating blood pressure, body fat distributions from dual-energy X-ray 
absorptiometry, glucose and insulin, lipid profiles, height, and weight. Diabetes status was determined with 
questionnaire data and fasting blood glucose and insulin levels. Participants were classified as diabetic if they 
either reported taking diabetes medication, or their fasting blood glucose was greater than 7 mmol/L during at 
least one of their clinical visits, or self-reported having been diagnosed with diabetes by a medical professional. 
Lipids including total cholesterol, HDL, LDL, and triglyceride levels were then calculated with a colorimetric 
enzymatic method (mmol/L)19. In addition, HDL was estimated by precipitating large lipids with magnesium 
and dextran sulphate, and LDL was calculated with Friedewald’s equation. The frailty index was calculated as the 
proportion of the age-related health deficits reported by participants using over 36 general health domains such 
as chronic health conditions, physical inactivity, cognitive function, and social isolation20. Age in years, total 
cholesterol, HDL cholesterol, blood pressure, hypertension drug use, smoker status, and diabetes were used to 
calculate atherosclerotic cardiovascular disease (ASCVD) risk21 (Supplementary Table 2).

Data pre-processing
Strongly correlated DXA adiposity measurements (r > 0.9) and those with near zero variance were filtered first 
with the ‘findCorrelation’ function from the caret package (version 6.0–92). For glucose and insulin, participants 
that had not fasted prior to clinical visit were removed. Then, clinical traits were filtered by year to obtain their 
first result between 2001 and 2010, leaving 103 in total, then outliers were removed using the formula below:

	 I = [ q0.25 − 1.5 · IQR; q0.75 + 1.5 · IQR ]

Next, for representing the trajectories of clinical traits between visits, we extracted residuals from linear models, 
which fitted the raw differences in the first (between 2001 and 2010) and last (between 2014 and 2019) recorded 
values versus time difference between visits, and controlling for baseline as this is correlated with value at follow-
up22:

	 Raw difference ∼ time difference in days + result at baseline

Transcriptomic profiles were available for 766 participants with samples from adipose tissue, with between 152 
and 760 matching baseline clinical trait results (median age: 60, range: 38–64; median BMI: 25, range: 16–47). 
The RNA-sequencing data production and pre-processing are described in the reference here23. Succinctly, sub-
umbilical subcutaneous adipose tissue punch biopsies were taken from participants between 2007 and 2009. 
STAR software (v2.4.0.1) was used for aligning properly paired short reads to the ‘hg19’ reference genome. Reads 
with mapping quality less than 10 were filtered out24. Gene expression was quantified by using ‘featureCounts’ 
with the GENCODE annotation (v19) and trimmed mean of M-values-adjusted25. Finally, expression was filtered 
by 5 counts or more in at least 25% of samples to exclude genes with lower expression while reducing the impact 
of outliers, inverse-rank normalised within each gene to stabilise variance, and the genes failing a Shapiro-Wilk 
test of normality (Bonferroni-adjusted p-value) were removed to avoid violating linear model assumptions.

Phenotype analysis
All statistical analysis was performed in R (version 4.2.2) and high-throughput analyses were processed on the 
research computing infrastructure at King’s College London, UK (CREATE). For 103 clinical traits at baseline, 
data were available for between 108 and 3,510 participants. (Supplementary Table 3). Residuals taken from linear 
models of 88 clinical trait trajectories for those with multiple measurements were included in the list of traits. 
Next, we carried out a case-control study to investigate the association between future lipid-regulating drug use 
and various clinical traits, adjusting for age and BMI at baseline, the year of visit at baseline, year of birth, sex, 
zygosity, and family ID as a random effect. The analysis was implemented by using the ‘glmer’ function from the 
lme4 package (version 1.1–29):

	 F uture medication use ∼ clinical trait + age + BMI+

	 visit year + year of birth + sex + zygosity + (1| family)

The ‘optimx’ optimiser version (2022 − 4.30) with the nlminb minimiser was used for handling complex mixed 
models with random effect parameters. Models were tested in parallel using ‘mclapply’ from parallel (version 
3.4.0) and compared with models where clinical traits were omitted. P-value adjustment with was applied using 
qvalue (version 2.22.0)26,27.

Gene expression association study
To identify molecular processes in adipose tissue associated with lipid-regulating drug usage, a gene expression 
association study was run for normalised gene expression values against clinical traits associated with future lipid-
regulating drug use. For the clinical traits reflecting lipid levels (e.g., cholesterol), participants which reported 
baseline lipid-regulating drug use were removed prior to analysis to avoid capturing treatment effects. Linear 
mixed models of TMM-normalised gene expression values against clinical traits were used to accommodate 
continuous outcomes and model random effects such as family structure. RNA-sequencing covariate selection 
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(age, BMI, insert size median, GC mean, primer index, sequencing data) was based on previous work identifying 
the technical factors that best captured common axes of variation in the gene expression data28:

	Gene expression ∼ clinical trait + age + BMI + insert size median + GC mean + (1| primer)+

	 (1 |date) + (1| zygosity) + (1 |family) + (1| batch)

Significant associations were identified by comparing each model with the null model using ANOVA where 
clinical traits were omitted. Models were compared to another model where clinical traits were omitted with 
an ANOVA, and p-values were extracted, indicating if these clinical traits were improving the model fit and 
corrected with qvalue (FDR threshold at 5%).

Pathway analysis
P-values of association between adipose tissue gene expression values and clinical traits or future lipid-regulating 
drug usage were filtered using the Benjamini-Hochberg procedure or testing procedure called Independent 
Hypothesis Weighting that optimises for power29. Gene names were retrieved using biomaRt (version 2.54.1), 
while Ensembl IDs were entered directly into gprofiler2 for enrichment analysis using a background of all the 
genes tested in adipose tissue (version 0.2.1). Finally, p-values of functional enrichment were corrected with the 
in-built ‘gSCS’ correction method, then associated terms and processes were aggregated across clinical traits to 
identify the molecular markers that were most strongly enriched.

Differential expression analysis
DESeq2 was used to assess significant differences in gene expression between future users of lipid-regulating 
drugs (cases) and controls (DESeq2 version 1.30.1)30. As DESeq2 cannot currently support the use of random 
effects, family effects were controlled for by censoring one twin per family and preferentially selecting cases 
(Supplementary Table 4). Genes were prefiltered for 10 or more counts in the minimum group sample size, 
normalised by DESeq2’s median-of-ratios sizing factor and dispersion estimation, then transformed using an 
in-built variance-stabilising method (rlog)30. Sample outliers were removed using approximation of projection 
pursuit estimators calculated with ‘PcaGrid’31 (rrcov version 1.6-0). Diabetes status was also included as previous 
work in the lab showed this can alter gene expression, potentially confounding the effect of future medication 
usage. For this analysis, the adjusted p-value threshold was set to 0.1 (FDR 10%) to prioritise detection of true 
positives (sensitivity) from the weaker biological signals anticipated when detecting differences in gene expression 
years before medication use. Diabetes status is included due to its confounding influence on expression, but this 
does not account for any heterogeneity in subtypes or varied progression.

	 Gene expression ∼ age + BMI + diabetes + future medication use

In parallel to the DESeq2 analysis, differential expression analysis was also performed with limma-voom32. 
These raw counts were pre-filtered as before, and TMM-normalised with calcNormFactors and converted into 
log2-counts-per-million (log2-CPM). Precision weights were computed by modelling the mean-variance trend 
in the data and applied to transform the values to make them suitable for linear modelling33. Empirical Bayes 
moderation was applied to shrink estimates. To assess concordance between these methods, the genes with 
nominal p-values were compared (p < 0.05), calculating the percentage of concordant genes and squared Pearson 
correlation (R) between log-fold changes. Moreover, in 510 TwinsUK participants with both adipose tissue RNA-
seq and DNA methylation data, the deviation of Horvath epigenetic age from chronological age was computed 
after controlling for age34, details of which are described in this previous publication19.

Differential expression analysis results were combined by gene ID with results obtained from the association 
analyses between gene expression and clinical traits. Gene expression values associated with clinical traits that 
passed an FDR 5% were categorised as either ‘significant’ (q < 0.05) or ‘not significant’ (q > 0.05). To validate 
specific genes in adipose tissue that were differentially expressed and linked with clinical traits preceding future 
lipid-regulating users, we compared the absolute log2-fold change from the differential expression analysis 
between ‘significant’ and ‘not significant’ genes identified from the association analysis, determined using a 
Wilcoxon test.

Data pre-processing for machine learning
To assess the predictive power of baseline clinical traits and adipose tissue gene expression for future lipid-
regulating drug usage, we applied various Machine Learning algorithms using our results and previous research 
to guide feature selection35. The models were selected automatically from a list of generalised linear models, 
XGBoost (Extreme Gradient Boosting), GBM (Gradient Boosting Machines), as well as stacked ensembles of 
these models with random grid search over the hyperparameters specific for each variety of model. We used 
different feature combinations: (1) the ASCVD risk scores, (2) 28 baseline clinical traits which were significantly 
associated with future lipid-regulating drug usage, gene expression values from the genes differentially expressed 
between future cases and controls at two thresholds: (3) FDR 5% (n = 15) and (4) p-value 0.05 (n = 1212), and 
(5) all features together.

Automated machine learning with H2O
We used an automated machine learning workflow to test these machine learning models, which is fully 
described here: ​h​t​t​p​s​:​​/​/​d​o​c​s​​.​h​2​o​.​a​​i​/​h​2​o​/​​l​a​t​e​s​​t​-​s​t​a​b​​l​e​/​h​2​o​​-​d​o​c​s​/​​a​u​t​o​m​l​.​h​t​m​l. The pre-processed dataset was 
split into training, cross-validation, and test sets with a ratio of 70–15–15 (n = 251–39–54) by utilising the ‘h2o.
splitFrame’ function (H2O version 3.44.0.2). In this AutoML pipeline, we defined the predictor variables (x), 
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identified the target variable (y), designated the training, cross-validation, and training datasets, then, most 
importantly, the maximum number of models to be trained (n = 100), utilising a 10-fold cross-validation, and 
for replicability and model interpretability, deep neural networks were discounted from the available models. 
We set a random seed, ensuring consistency of results, then retained cross-validation models and predictions. 
For predictor sets, H2O trained numerous models, generated leader boards ranking model performances, and 
computed area under the curve (AUC) values. Receiver operating characteristic (ROC) values were visualised as 
ROC curves, allowing us to compare the performances of the best-in-class models for each predictor set, with 
diagnostic plots to explain results from the top-performing models.

Results
Using a cohort characterised during routine clinical visits, we investigated the links between 103 clinical traits, 
molecular markers in adipose tissue, and future lipid-regulating drug use, and their potential as biomarkers of 
future lipid dysregulation and CVD risk. To achieve this, we obtained medication data between 2 time points: 
2001–2010 (‘baseline’) and 2014–2019 (‘follow-up’) (Supplementary Table 1). We established three groups: 5350 
participants that were not prescribed drugs at either time point (controls), 865 participants that moved from 
non-prescribed to prescribed between baseline and follow-up (cases), and 748 participants prescribed drugs 
throughout (censored). For the 3510 participants with clinical data at both baseline and follow-up (time between 
visits was 7 ± 3 years on average), covering 4–19 years, we studied how these traits relate to future lipid-regulating 
drug usage. Then, using a subset of participants with RNA-seq data (n = 766), we studied the association between 
clinical traits and adipose tissue gene expression. Finally, we compared the difference in gene expression between 
cases and controls, and if this data could predict future lipid-regulating usage using one twin per family (n = 312) 
(Fig. 1; Supplementary Table 3).

Cardiometabolic and obesity-related traits at baseline increase the risk of future lipid-
regulating drug usage
To identify the clinical traits associated with future lipid-regulating drug use, we compared the baseline values of 
103 clinical traits (e.g., cholesterol, DXA) in those not prescribed drugs at either timepoint (‘controls’) and those 

Fig. 1.  Study design. Participants repeatedly responded to questionnaires which detailed their prescribed 
medications. We used these responses to identify all participants not using lipid-regulating drugs between 
2001–2010 (‘baseline’) then split these participants into cases and controls based on whether they reported 
taking prescribed lipid-regulating drugs from 2014–2019 (‘follow-up’). A subset of participants (n = 766) had 
transcriptomic data profiled from punch biopsies which included adipose tissue from this baseline period. 
We compared a catalogue of 103 clinical traits at baseline, 88 trajectories in these traits between baseline and 
follow-up, and gene expression from adipose tissue samples at baseline for future users of lipid-regulating drug 
versus controls. Figure adapted from “Double-Blinded, Randomized, Placebo-Controlled, Crossover Study 
(Graphical, 1)” by BioRender.com (2020). Retrieved from these templates: ​h​t​t​p​s​:​/​/​a​p​p​.​b​i​o​r​e​n​d​e​r​.​c​o​m​/​b​i​o​r​e​n​d​e​
r​-​t​e​m​p​l​a​t​e​s​​​​​.​​​​
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who changed from not prescribed drugs at baseline to taking lipid regulating drugs at follow-up (‘cases’). In total, 
28 traits produced associations with future lipid-regulating drug use (FDR 5%; Table 1), the most statistically 
significant of which suggested elevated lipid markers (apolipoprotein B, LDL cholesterol, total cholesterol, and 
triglycerides in serum; Table 1) increase the likelihood of needing lipid-regulating drugs in the future. These 
associations are not surprising since we expect individuals with elevated lipid levels to be prescribed lipid-
regulating drugs. We found multiple cardiometabolic traits were associated with an increased likelihood of 
future lipid-regulating drug usage, including ASCVD risk scores, fat in the abdominal region, blood pressure, 
frailty, and heart rate while HDL cholesterol, heart activity measures, lean tissue and mass in limbs, pancreatic 
amylase, and creatinine were associated with decreased likelihood of future lipid-regulating drug use (Fig. 2A). 
Overall, the 28 clinical traits significantly associated with increased likelihood of future lipid-regulating drug 
use grouped into phenotypes implicating elevated lipid markers, excessive fat tissue the abdominal region, and 
cardiovascular dysfunction.

Next, we examined if the trajectories of clinical traits between baseline and follow-up were associated with 
lipid-regulating drug use at follow-up by calculating rate of change between both visits for 88 traits with multiple 
measurements to see if we observed any differences between cases and controls. Overall, we found 16 clinical 
trait trajectories were associated with future lipid-regulating drug use (FDR 5%; Table 2). Notably, 12 clinical 
traits trajectories were increasing and associated with increased likelihood of future lipid-regulating drug use 
including body fat measures, weight, and monocyte counts. Together, these results suggest larger increases body 
fat distribution and fat tissue, and immune system markers are linked with lipid-regulating drug use in the future 
(Fig. 2B). The most significant associations were for lipid markers: LDL cholesterol (p = 9.37 × 10−78), non-HDL 
cholesterol (p = 6.83 × 10−22), and total cholesterol (p = 1.18 × 10−74), showing decreases between visits increasing 
the log-odds of future lipid-regulating drug use, which we believe is due to treatment (Table  2). Similarly, 
declining ASCVD risk scores associated with increased likelihood of lipid-regulating drug use, probably due to 
declining lipid concentrations and concomitant anti-hypertension drug use lowering future ASCVD risk.

Clinical trait Cases Controls Beta SE P-value

Age-related

Frailty Index 396 1914 0.55 0.16 3.43 × 10−4

Nuclear cataracts score 214 873 0.35 0.23 5.63 × 10−3

Cardiovascular

ASCVD 409 1997 1.73 0.53 1.69 × 10−7

Diastolic blood pressure 573 2916 0.20 0.53 8.25 × 10−3

ECG P axis 234 1253 −0.56 0.61 4.87 × 10−3

Pulse pressure 562 2907 0.27 0.63 3.95 × 10−4

Carotid-femoral pulse wave velocity 172 866 0.41 0.16 6.10 × 10−3

Carotid-femoral pulse time 174 869 −0.62 0.33 7.21 × 10−4

Systolic blood pressure 567 2916 0.36 0.41 2.75 × 10−6

Dual x-ray absorptiometry

All tissue in gynoid region 476 2456 −0.34 0.24 1.39 × 10−2

Area of fat inside abdominal cavity 481 2496 0.58 0.20 3.45 × 10−6

Fat tissue in trunk region 494 2540 0.63 0.22 7.78 × 10−5

Lean tissue in right leg region 490 2505 −0.31 0.27 8.32 × 10−3

Mass in right leg region 487 2489 −0.40 0.24 1.67 × 10−3

% of fat in android region 488 2506 0.45 0.20 1.46 × 10−4

% of fat in visceral fat region 488 2503 0.43 0.20 2.37 × 10−4

% of fat in visceral/gynoid region 484 2487 0.38 0.19 3.91 × 10−5

% of fat tissue in trunk region 497 2537 0.59 0.21 9.29 × 10−6

% of total body mass that is fat 488 2492 0.34 0.20 1.32 × 10−2

Trunk fat/limb fat 482 2494 0.45 0.20 5.54 × 10−8

Lipid profiles

Apolipoprotein B in Serum 360 1466 1.00 0.11 1.31 × 10−29

High density lipoprotein 419 2051 −0.35 0.38 2.36 × 10−4

Low density lipoprotein 413 2054 0.89 0.24 1.00 × 10−23

Serum triglycerides level 523 2763 0.62 0.24 2.85 × 10−16

Total cholesterol 415 2060 0.90 0.22 1.97 × 10−24

Metabolic

Pancreatic amylase in serum 176 924 −0.37 0.42 5.13 × 10−3

Serum creatinine level 137 863 −0.99 0.97 5.62 × 10−3

Total amylase in serum 173 935 −0.34 0.52 1.27 × 10−2

Table 1.  Clinical trait and future lipid-regulating drug usage associations.
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Fig. 2.  The traits associated with future lipid-regulating drug usage. (A) Example of 4 traits at baseline that 
were associated with future lipid-regulating drug use, which suggest frailty, lipid measures, cardiovascular 
dysfunction, and abdominal adiposity, are significantly higher in future lipid-regulating drug users at baseline 
(2001–2010) at least 4 years before reported drug usage. (B) Example of changes in 4 traits associated with 
future lipid-regulating drug use, reflecting decreasing lipid measurements, and increasing immune cell counts, 
which suggest increased change between visits in future lipid-regulating drug users. Significant differences 
between cases and controls are indicated by ‘****’ (p < 0.0001, Student’s t-test; controls in grey/blue; future 
medication users in yellow/orange).
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Molecular processes in adipose tissue are linked with phenotypes that precede lipid-
regulating drug usage
To study the relationships between molecular processes in adipose tissue and clinical traits associated with 
future lipid-regulating drugs usage (28 traits at baseline and 16 trajectories, comprising a total of 44 traits), we 
investigated associations between these phenotypes and transcriptional profiles in adipose tissue measured at 
baseline in a subset of 766 twins with available transcriptomic data. The sample size of each comparison ranged 
between 152 and 760 depending on the availability of clinical data.

17 clinical traits were linked with adipose tissue gene expression at an FDR threshold of 5% including 8 
fat tissue measures in the trunk region associated with more than 10,000 genes (Fig.  3). We also identified 
widespread transcriptome associations between traits reflecting cardiovascular function and health such as the 
ASCVD risk score (564 associated genes) and ECG P axis (240 associated genes). The ECG P axis represents 
the direction of depolarisation in the atrium during the cardiac cycle and deviations can indicate elevated risk 
of arrhythmias or structural heart disease36. Notably, several genes associated with ECG P axis (n = 242) were 
enriched for molecular processes implicated in dilated cardiomyopathy (p = 7.46 × 10−4) and hypertrophic 
cardiomyopathy (p = 1.78 × 10−3), while we showed strong enrichment of genes for the ASCVD associated 
genes with ribosome function (p = 1.90 × 10−41). These findings show the clinical traits that reflect abdominal 
fat distribution and cardiovascular functioning both precede lipid-regulating drug use and enrich for molecular 
processes in adipose.

We revealed associations between baseline adipose gene expression and the trajectories of visceral fat to 
both gynoid and android fat ratios (3 and 367 associated genes, respectively). The trajectory of the visceral fat to 
gynoid fat ratio was associated with decreased expression of RPL7 (p = 1.25 × 10−6) and NONO (p = 4.08 × 10−6), 
a member of the 60  S ribosomal subunit37 and RNA-binding protein involved in transcriptional regulation 
through RNA splicing38, and increased expression of LRRC32 (p = 8.71 × 10−6), a type-I membrane protein. 367 
genes were associated with the change in visceral fat to android fat ratio and functionally enriched for terms 
related to the mitochondria including the mitochondrial matrix (p = 7.92 × 10−14), Krebs cycle (p = 1.86 × 10−8), 
fatty acid oxidation (p = 2.07 × 10−6), mitophagy (p = 1.72 × 10−2), and NF-kappa b signalling (p = 2.59 × 10−2). In 
addition, these associated genes also enriched for molecular processes associated with mortality, ageing, and age 
of death (p = 5.18 × 10−3). We compared the 367 genes with 2,139 age-associated genes in adipose tissue reported 
by the METSIM study39 and found an overlap of 32 genes (8.7%), indicating that some genes associated with this 
clinical trait have expression levels that are also associated with ageing. We also performed sensitivity analyses to 
assess robustness of our results to heterogeneity in cell-type or socioeconomic status and found significant effect 
size correlations after including these covariates in our models in all cases (mean R = 0.93 and 0.96, respectively). 
The full gene lists and corresponding beta estimates and p-values for the clinical traits that are associated with 
adipose tissue gene expression can be found in Supplementary Table 5. Overall, these results suggest that clinical 
trait associated with future lipid-regulating drug use overlap with processes in adipose tissue implicating age-
related pathways.

Clinical trait Cases Controls Beta SE P-value

Cardiovascular

ASCVD 356 1836 −0.40 0.35 8.65 × 10−6

Dual x-ray absorptiometry

Body Mass Index 557 2968 0.25 1.23 5.80 × 10−4

Area of fat inside abdominal cavity 466 2346 0.22 0.22 2.06 × 10−3

Fat tissue in left arm region 465 2326 0.30 0.25 1.11 × 10−4

Fat tissue in trunk region 470 2347 0.21 0.25 7.22 × 10−3

Lean tissue in left arm region 443 2248 0.23 0.44 8.00 × 10−3

% of fat in android region 478 2362 0.24 0.23 2.67 × 10−3

% of fat in visceral fat region 479 2360 0.26 0.24 1.10 × 10−3

% of fat in visceral/android region 466 2179 0.20 0.24 7.87 × 10−3

% of fat in visceral/gynoid region 470 2334 0.30 0.29 1.66 × 10−4

Total mass in summary 464 2326 0.23 0.26 2.51 × 10−3

Weight 553 2967 0.25 1.27 1.40 × 10−3

Immune-related

Monocytes 234 1025 0.33 0.29 2.70 × 10−3

Lipid profiles

Low density lipoprotein 437 2064 −2.61 0.59 9.37 × 10−78

Non-HDL cholesterol 185 816 −1.11 0.31 6.83 × 10−22

Total cholesterol 439 2070 −2.50 0.003 1.18 × 10−74

Table 2.  Clinical trait trajectory and lipid-regulating drug usage associations.
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Angiogenesis genes are differentially expressed years before medication use
To identify markers of future lipid-regulating drug usage, we investigated genes which were differentially 
expressed in adipose tissue at baseline of cases (n = 92) compared with controls (n = 222). We revealed 15 
differentially expressed genes below FDR 10%: 10 upregulated and 5 downregulated. The most statistically 
significant finding was ESM1 (log2-fold change = 2.16, p = 3.63 × 10−17), which was more highly expressed in 
the adipose tissue of participants that were prescribed lipid-regulating drugs in the future versus controls. 
ESM1 is expressed by endothelial cells and tightly regulated by inflammatory cytokines (TNF-α and IFN-γ) 
and has transcript isoforms that increase with pro-angiogenic factors40. In addition, ANKRD30BL, SOCS3, and 
TMEM254-AS1, and microRNAs MIR3648-2 and MI663AHG were upregulated, while RCAN2 and GPAT3 were 
downregulated in future lipid-regulating drug users (Fig. 4A). Three of four significant mitochondrial pseudo-
genes (MTATP6P1, MTCO2P12, MTND2P28, and MTND1P23) were downregulated41. Then, functional 
enrichment of the 1212 genes differentially expressed below the nominal p-value threshold (p < 0.05; 538 
upregulated and 674 downregulated) showed processes related to the mitochondrial matrix (p = 1.12 × 10−3), 
abnormal cardiovascular system electrophysiology (p = 1.89 × 10−3), and arrhythmia (p = 4.02 × 10−3; Fig.  4B). 
The complete gene ontology and pathway enrichment results from the genes differentially expressed in future 
lipid-regulating drug users is in Supplementary Tables 6 and the frequency of genes across the gene ontology 
terms is shown in Supplementary Table 7. In addition, we identified 1,116 genes at nominal significance with 
a limma-voom approach. From these, 840 genes were common to both methods (Supplementary Table 8), 
comprising a true-positive rate of 0.753 and false-positive rate of 0.019 when using limma-voom results as the 
reference. The log2-fold change estimates produced a strong correlation (R = 0.82, p = 2.2 × 10−16), indicating our 

Fig. 3.  Adipose gene expression associations in traits preceding lipid-regulating drug usage. A p-value 
heatmap of 19 traits and trajectories associated with future lipid-regulating drugs and the number of genes 
these were associated with. List only contains clinical traits that were associated with adipose tissue gene 
expression and future lipid-regulating drug usage below FDR 5%.
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Fig. 4.  Differential expression between future lipid-regulating drug users versus controls. (A) Volcano plot 
of log-fold change (LFC) and adjusted p-values for future lipid-regulating drug users versus controls with 
downregulated (LFC < −0.25) and upregulated (LFC > 0.25) genes shown in green and purple, respectively. 
(B) Gene ontology for functional enrichment analysis of 1212 differentially expressed genes (p < 0.05) between 
future lipid-regulating drug users and controls with their respective sources, terms, term sizes, intersection 
size, and p-values. Functional enrichment table adapted from gprofiler output.
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findings are robust in multiple analytical frameworks (Supplementary Fig.  1). Lastly, to assess if individuals 
who go on to need lipid-regulating drugs showed evidence of accelerated molecular ageing in adipose tissue, 
we tested deviations in epigenetic age from chronological age in 510 participants with available adipose-derived 
450K methylation array data (cases = 76; controls = 347)19. While cases had a higher mean age acceleration 
(mean = 0.138) versus controls (mean = 0.004), the differences between cases and controls were not statistically 
significant when tested with Welch’s two sample t-test (p = 0.3). Though, adding adipose tissue epigenetic age 
acceleration estimates to mixed models of future drug usage significantly improved model fit (∆AIC = −17, LRT 
p = 9.9 × 10−6), where a 1 SD increase in age acceleration had an odds ratio of 1.75, indicating 75% higher odds 
of future drug use. Thus, accelerated molecular ageing in adipose tissue may precede future lipid-regulating 
drug use. Overall, our results suggest that cell signalling pathways may differ in individuals who go on to need 
lipid-regulating drugs around five years before reporting any treatment and appear consistent with molecular 
processes enriched in traits preceding medication use. However, future studies should explore if other factors 
including cohort composition and sample size are important in producing the expression differences observed 
in our study.

Genes significantly associated with clinical traits exhibit larger differences when comparing 
cases and controls
In addition, we explored if the genes that were associated with a relevant clinical trait also exhibited increased 
evidence of differential expression between cases and controls. For each of the 18 clinical traits associated with 
future drug use, we compared the log2-fold changes from the case-versus-control differential expression analysis 
for the set of genes associated with that trait (FDR threshold 5%) versus genes not associated with the trait. We 
discovered significant differences in 16 traits (Table 3): 12 DXA traits (including fat and lean mass traits), 3 lipid 
traits, and ECG P axis, with large effects seen for apolipoprotein B (p = 1.01 × 10−127), triglycerides (p = 1.55 × 10−29), 
HDL (p = 2.74 × 10−8), and ECG measurements (p = 2.19 × 10−4). These findings suggest the shared molecular 
processes that underlie all these clinical traits are more active at baseline in individuals prescribed lipid-lowering 
medication in the future. We found 23 genes associated with 14/16 clinical traits implicating mitochondrial 
processes (BNIP3L, HADH, MTARC2)42–48, apoptosis (E2F1, GSDMB)49,50, cardiovascular function (GPD1L, 
PDK2, TBX4)51–59, immunity (IL1RN)60, and lipid metabolism (SLC27A2)61. Notably, TBX4, from the T-box 
gene family, which serves a crucial role during development, has been connected to BMI and waist-hip ratio 
phenotypes in GWAS meta-analysis studies, and various TBX genes are implicated in both adipogenesis and 
the browning of adipocytes62–66. Additionally, GPAT3 was a gene which showed larger log2-fold changes for 14 
out of 16 clinical traits as well as producing differential expression in cases. GPAT3 protects against lipo-toxicity 
in cells67 and was downregulated, which might suggest that individuals with lower expression show more lipid 
accumulation in non-adipose tissues. Finally, we enriched genes associated with each of the 16 phenotypes 
against CORUM, HP, GO, KEGG, and REACTOME and combined terms to see which were most common. The 
most common molecular terms in 12 out of 16 traits related to abnormalities in metabolite concentrations and 
homeostasis, and hypoglycaemia, and neutrophil degranulation68. In conclusion, these results suggest traits that 
precede future lipid-regulating drug use share common molecular mechanisms in adipose tissue, implicating 
widespread metabolic dysregulation.

Phenotype FDR > 5% FDR < 5% ∆ LFC P-value

Cardiovascular

ECG P axis 20,171 242 0.0074 2.19 × 10−4

Dual x-ray absorptiometry

All tissue in gynoid region 18,414 1999 0.0066 6.77 × 10−18

Area of fat inside abdominal cavity 8431 11,982 0.0040 3.25 × 10−22

Fat tissue in trunk region 7712 12,701 0.0022 9.84 × 10−8

Lean tissue in right leg region 19,276 1137 0.0084 4.32 × 10−17

Mass in right leg region 15,197 5216 0.0060 4.56 × 10−33

% of fat in android region 6153 14,260 0.0017 7.68 × 10−5

% of fat in visceral region 6097 14,316 0.0015 3.51 × 10−4

% of fat in visceral/gynoid region 5423 14,990 0.0009 2.18 × 10−2

% of fat tissue in trunk region 6036 14,377 0.0020 2.73 × 10−6

% of total body mass that is fat 10,385 10,028 0.0028 6.08 × 10−12

Trunk fat 6485 13,928 0.0016 1.88 × 10−4

∆ % of fat in visceral/android region 20,046 367 0.019 8.22 × 10−21

Lipid profiles

Apolipoprotein B 18,343 2070 0.022 1.01 × 10−127

High density lipoprotein 9883 10,530 0.0022 2.74 × 10−8

Serum triglycerides level 12,214 8199 0.0049 1.55 × 10−29

Table 3.  Comparison of log2-fold change between cases and controls for genes associated with clinical traits 
preceding lipid-regulating drug usage.
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Predicting future lipid-regulating drug users
To determine the utility of baseline clinical phenotypes and adipose tissue gene expression for predicting future 
lipid-regulating drug usage, we leveraged automated machine learning to combine numerous features into 
predictor sets and optimise their predictive power with 100 machine learning algorithms comprising regression 
models, gradient boosted machines, and stacked ensembles. We investigated 5 combinations of features: (1) the 
ASCVD risk scores, (2) values of the 28 clinical traits associated with future lipid-regulating drug use in the 
study, (3) gene expression values associated with future lipid-regulating drug usage below FDR of 5% (n = 15), 
(4) adipose gene expression values associated with future lipid-regulating drug usage at a relaxed threshold of 
p < 0.05 (n = 1212 genes), and (5) clinical traits including ASCVD risk and adipose gene expression that passed 
the nominal threshold of p < 0.05 (n = 1212 genes). We selected the leading model based on AUC for each feature 
combination (Table 4).

We observed a wide range of performance for the 5 combinations, ranging from an AUC of 0.651 to 0.919. 
The best model for the ASCVD risk score demonstrated modest performance (AUC = 0.722), highlighting the 
limitations of relying only on clinical risk scores (Table 4). Introducing the associated clinical phenotypes led 
to a significant improvement. For example, the combination of 28 associated clinical traits including ASCVD 
risk scores (Combination 2) achieved a markedly enhanced AUC of 0.844, highlighting the utility of baseline 
clinical trait information to improve predictions. Overall, Combination 5 returned the best performance, which 
integrated 1212 nominally significant gene expression values and clinical phenotypes including ASCVD risk, 
with the improved AUC of 0.919 (Fig. 5A). While the expression values of the 15 genes passing an FDR of 5% 
in isolation produced poor predictions (AUC = 0.651), using expression values of the 1212 genes with nominal 
significance produced a model with an impressive predictive capacity (AUC = 0.904), outperforming the ASCVD 
risk score alone and combined with clinical traits, and nearly matching the maximum AUC of 0.919 observed in 
Combination 5. These findings suggest that in the absence of detailed epidemiological or clinical data, baseline 
molecular signatures from adipose tissue could be features for predicting future lipid-regulating drugs usage 
beyond traditional risk scores.

To establish the baseline features within our best performing combination (Combination 5) that were most 
important, we examined the contributions and importance of these features to this model using several strategies. 
Variable importance analysis calculates the influence of variables in the prediction model by calculating the 
change in performance when features are excluded; this analysis demonstrated that the lipid markers including 
ASCVD risk scores apolipoprotein B, and serum triglycerides levels were highly important, and the remaining 
most important variables corresponded to gene expression values, emphasising the role of these molecular 
signatures in improving predictive power within this combination (Fig. 5B, also validated by model correlations 
heatmaps, Supplementary Fig. 2 A). Furthermore, SHAP (Shapley additive explanations) analysis, which tries 
to quantify the relative contributions of features in the model for each participant, further supported the role 
of gene expression in delivering accurate predictions for this combination (Supplementary Fig.  2B). These 
results indicate that the top-performing model represents risk of future lipid-regulating drug use by combining 
complex gene expression patterns in adipose tissue and traditional lipid markers. Overall, these results suggest 
that molecular signatures in adipose tissue can improve upon traditional risk assessments when identifying 
individuals at risk for clinical health outcomes, especially when combined with clinical traits.

Discussion
Here, we drew on longitudinal clinical data and adipose tissue gene expression to implicate specific clinical traits 
and molecular processes in future lipid-regulating drug use. We found robust associations between 28 traits at 
baseline and trajectories of 16 traits over time with future lipid-regulating drug use, which demonstrated increased 
cardiovascular, metabolic, and obesity markers precede lipid-regulating drug use. We revealed relationships 
between these 44 phenotypes and molecular processes in adipose tissue, identifying 19 phenotypes (17 traits and 
2 trajectories) that associated with adipose tissue gene expression at baseline. We further identified 15 genes that 
were differentially expressed years before prescription of lipid-regulating drugs and these highlighted molecular 
processes including immunity and respiratory processes, which were altered several years before prescription.

We found many DXA measures of body fat distribution, and their trajectories, are associated with the use 
of lipid-regulating drugs. Notably, we demonstrated how the rate of change in the size and composition of fat 
tissue in the abdomen is strongly associated with medication use at follow-up visits and molecular processes 
in adipose tissue. For example, the ratio of visceral fat to android fat alone was not strongly associated with 
future drug use at baseline, but the change in this trait over time was, and was also associated with molecular 
processes in adipose tissue. However, caution is warranted when interpreting these results as this link could 
suggest that alterations in body fat distribution in these areas increases the likelihood of lipid treatment, or 
that both lipid treatment and increasing fat deposits in these areas are correlated with another mechanism. 

Combination Features AUC

1 ASCVD 0.722

2 28 Traits including ASCVD (FDR 5%) 0.844

3 15 Genes (FDR 5%) 0.651

4 1212 Genes (p < 0.05) 0.904

5 28 Traits + 1212 Genes 0.919

Table 4.  Summary of model performance predicting future lipid-regulating drug use.
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More research is needed to contextualise these findings. Interestingly though, we observed common molecular 
processes enriched with these genes and genes differentially expressed between future lipid-regulating drug 
users and controls. These included the Krebs cycle69, and the citrate shuttle70. Importantly, dysregulation of these 
processes can lead to mitochondrial dysfunction and impaired ATP generation71, which lead to the accelerated 
development of cardiovascular disease72. The accumulation of visceral fat has been linked to mitochondrial 
dysfunction in adipocytes, which can impair energy metabolism and exacerbate CVD risk factors such as 
atherosclerosis and hypertension73. Visceral fat is highly metabolically active and linked with the release of 
pro-inflammatory cytokines74, such as IL-6 and TNF-a, which were implicated in many of the molecular and 
cellular pathways enriched here and interact with many of the genes that were also differentially expressed in 
future lipid-regulating drug users at baseline [see below]. Their pro-inflammatory influence is additionally 
compounded by the secretion of fatty acids into circulation, which promote dyslipidaemia75, linking adiposity 
in the form of visceral fat accumulation with dysregulated lipid metabolism and cardiometabolic disease risk.

We detected 15 genes that were differentially expressed between cases and controls years before participants 
reported taking any lipid-lowering medication. Many of these genes are well-characterised with respect to their 
roles within hallmarks of cellular ageing76. Angiogenesis is a biological stress response and repair mechanism 
after ischemic injury77. The most significant gene ESM1 is linked with cardiomyopathies and myocardial 
infarctions78–81 and proven to promote angiogenic sprouting and interact with leukocytes through TNF-a and 
IL1-b40, hence expression for this gene might be upregulated in adipose tissue in response to damage of adjacent 
vasculature. RCAN2 variants are also related to BMI and cellular pathways in cardiac hypertrophy and immune 
response in lymphocytes. Moreover, RCAN2 gene expression in endothelial cells has been discovered to function 
downstream of transcriptional factors which induce angiogenesis82–84. SOCS3 has been observed during 
angiogenesis as a negative regulator from studies of both human small cell lung cancer and colorectal cancers, 
while dysregulation of SOCS3 gene expression has been associated with both CAD and related conditions 
including acute coronary syndrome85–88. Furthermore, MicroRNAs have been increasingly implicated as markers 
for cardiometabolic diseases89. MicroRNA-663 is a marker for pulmonary arterial hypertension, which prevents 
hypertrophy through TGF-β1/smad2/390. It regulates processes important in atherosclerosis including smooth 
muscle cell phenotypic switch, vascular neointimal formation, and stress responses to oxidised phospholipids 
in endothelial cells91,92. MicroRNA 3648-1 is also upregulated after endoplasmic reticulum stress and loss of 
proteostasis93. We attempted to compare nominal hits from this analysis with results from similar studies in 
other tissues, such as liver94, and found no evidence of overlap (4 out of 98 genes), however, most of these 
studies were not directly comparable as they focused on gene expression differences after drug use (response) 
rather than before (risk), or did not use healthy individuals (e.g., severely obese). Since subcutaneous adipose 
tissue plays a critical role in fatty acid metabolism and secretes adipokines regulating inflammation, insulin 
sensitivity, and lipid homeostasis95, our study suggests that individuals at increased risk of future lipid-regulating 
drug use are presenting early signs of immune disruption, lipid dysregulation, or vascular remodelling in this 
tissue, which impacts its primary endocrine and metabolic functions, leading to perturbations that intersect 
with numerous age-related molecular phenotypes96.

Together, the results presented here identify a variety of molecular markers and processes which influence 
CVD phenotypes and may prove valuable as prognostic markers of CVD risk and improve personalised medical 
interventions. From investigating the implementation of these features within automated machine learning 
algorithms, we have demonstrated that combining clinical traits with gene expression holds the potential 
to enhance risk prediction. Adipose gene expression values had impressive predictive ability, which both 
outperformed the predictive performance of the ASCVD risk score and achieved best-in-class performance when 
combined with clinical markers. The dramatic increase in predictive power seen when incorporating expression 
of genes at more permissive multiple testing thresholds (from AUC 0.651–0.904) suggests interactions between 
these genes holds a stronger predictive capacity than the top associated genes. Encouragingly, these models could 
be improved further still with larger sample sizes and better-quality data, and would afford greater statistical 
power, better representation of the underlying population, greater tolerance to noise and outliers, and reduced 
bias, leading to more reliable and accurate predictions, and thereby enhancing early detection of disease.

The results described are limited in several ways. The definition of lipid dysregulation relies on reported 
medication use and there are confounding factors which influence the accuracy of this as a proxy for physiology. 
Lipid-regulating drugs are prescribed based on a diagnosis by a medical professional, but the biological criteria 
for prescription can vary. For example, lipid-regulating drugs may be prescribed prospectively based on family 
history or risk factors before lipid dysregulation has occurred in some individuals. Participants may be inaccurate 
during their self-reporting, and we cannot tell precisely when participants were first put on lipid-regulating 
drugs as data was collected at intervals of two years. Nevertheless, we tried to account for this by utilising 4-year 
windows between questionnaire responses but cannot account for the precise time participants were prescribed 
drugs. Moving forward, we could run these analyses again with electronic health record data and increase the 
result accuracy by fully accounting for the time between baseline measurement and future medication use. We 
also used crude measures of the rate of change for clinical traits between visits. Though, despite the lack of 
prescription dates and varying follow-up times, we were able to produce models that significantly outperformed 
traditional risk assessment. Lastly, due to the known associations with our outcome, it is possible that our method 
of feature selection could lead to data leakage and inflation of the absolute AUC values for our predictive models, 
however, this should not compromise the relative performance of each model combination compared to another, 
which highlighted an improved performance when including gene expression and clinical traits compared to 
traditional clinical risk prediction scores in isolation. Additionally, our gene-level observations will be sensitive 
to cohort composition factors like sample size and should be regarded as hypothesis-generating until validated 
in an independent dataset. Our findings are based solely on the TwinsUK cohort, which comprises British 
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individuals of mostly European-ancestry and is primarily female (82%). As a result, our ability to generalise 
findings to more diverse ancestral groups or sex-balanced populations is undetermined.

Overall, the findings of this study suggest some people may benefit from being prescribed lipid-regulating 
drugs several years before dysregulated lipid metabolism is identified clinically. Though, pragmatically it may 
be advisable to optimise lifestyle changes in line with the NICE guidelines, such as increased physical activity 
and weight management, before relying on medical interventions, and it is possible some of that some of the 
observed changes over time derive from those participants who opted for non-pharmacological routes to reduce 
their disease risk. Similarly, it is important to acknowledge that while adipose tissue offers a powerful resource 
to uncover the molecular determinants of CVD risk, accessing this tissue on a population level might not be 
clinically tractable due to its difficulty of extraction. Finally, the integration of genetic markers into these models 
could offer more understanding of the interplay between genetic predisposition, adipose tissue gene expression, 
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and CVD risk, possibly refining our strategies for pharmacological and non-pharmacological interventions in 
the future.

Conclusions
In conclusion, these results highlight robust early phenotypic and transcriptional differences in future lipid-
regulating drugs users, implicating molecular processes as early warning signs of dysregulated lipid metabolism. 
Incorporating these traits as features in predictive models discriminated future lipid-regulating drug users better 
than traditional risk prediction scores and could be valuable when preventing future cases of CVD related to 
lipid dysregulation.

Data availability
Data access requests are overseen by the TwinsUK Resource Executive Committee (TREC). For information on 
access to these genotype and phenotype data and how to apply, see ​h​t​t​p​s​:​​/​/​t​w​i​n​​s​u​k​.​a​c​​.​u​k​/​r​e​​s​e​a​r​c​​h​e​r​s​/​a​​c​c​e​s​s​-​​d​a​t​a​
-​a​​n​d​-​s​a​m​p​l​e​s​/​r​e​q​u​e​s​t​-​a​c​c​e​s​s​/. The analysis supporting the conclusions of this article are available in the GitHub 
repository ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​M​​a​x​​-​T​o​m​l​i​​n​s​​o​n​/​​L​i​​p​i​d​-​​d​y​s​r​e​​g​u​l​a​t​i​o​n.
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