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The development and refinement of artificial intelligence (AI) and machine learning algorithms have 
been an area of intense research in radiology and pathology, particularly for automated or computer-
aided diagnosis. Whole Slide Imaging (WSI) has emerged as a promising tool for developing and 
utilizing such algorithms in diagnostic and experimental pathology. However, patch-wise analysis of 
WSIs often falls short of capturing the intricate cell-level interactions within local microenvironment. 
A robust alternative to address this limitation involves leveraging cell graph representations, thereby 
enabling a more detailed analysis of local cell interactions. These cell graphs encapsulate the local 
spatial arrangement of cells in histopathology images, a factor proven to have significant prognostic 
value. Graph Neural Networks (GNNs) can effectively utilize these spatial feature representations 
and other features, demonstrating promising performance across classification tasks of varying 
complexities. It is also feasible to distill the knowledge acquired by deep neural networks to smaller 
student models through knowledge distillation (KD), achieving goals such as model compression 
and performance enhancement. Traditional approaches for constructing cell graphs generally rely on 
edge thresholds defined by sparsity/density or the assumption that nearby cells interact. However, 
such methods may fail to capture biologically meaningful interactions. Additionally, existing works in 
knowledge distillation primarily focus on distilling knowledge between neural networks. We designed 
cell graphs with biologically informed edge thresholds or criteria to address these limitations, moving 
beyond density/sparsity-based definitions. Furthermore, we demonstrated that student models do 
not need to be neural networks. Even non-neural models can learn from a neural network teacher. 
We evaluated our approach across varying dataset complexities, including the presence or absence of 
distribution shifts, varying degrees of imbalance, and different levels of graph complexity for training 
GNNs. We also investigated whether softened probabilities obtained from calibrated logits offered 
better guidance than raw logits. Our experiments revealed that the teacher’s guidance was effective 
when distribution shifts existed in the data. The teacher model demonstrated decent performance due 
to its higher complexity and ability to use cell graph structures and features. Its logits provided rich 
information and regularization to students, mitigating the risk of overfitting the training distribution. 
We also examined the differences in feature importance between student models trained with 
the teacher’s logits and their counterparts trained on hard labels. In particular, the student model 
demonstrated a stronger emphasis on morphological features in the Tuberculosis (TB) dataset than 
the models trained with hard labels. This emphasis aligns closely with the features that pathologists 
typically prioritize for diagnostic purposes. Future work could explore designing alternative teacher 
models, evaluating the proposed approach on larger datasets, and investigating causal knowledge 
distillation as a potential extension.
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Cell graphs have emerged as a powerful tool for capturing the spatial and functional relationships within tissues. 
They encapsulate cellular and tissue-level architecture by representing cells as nodes and their interactions as 
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edges. They are particularly valuable for bridging the gap between molecular details and their collective impact 
on larger biological processes, such as wound healing, tumor progression, and immune response1. The cell-
graph technique seeks to uncover the structure-function relationship by modeling the structural organization 
of tissue using graph theory. For instance, in the context of breast cancer, cancer cells often cluster together 
to form dense regions of abnormal tissue. This clustering reflects the biological processes underlying tumor 
growth2, such as rapid cell division, altered adhesion properties, and disrupted tissue architecture. By analyzing 
the spatial distribution and interactions of these clustered cells, the cell-graph approach can provide insights into 
the functional state of the tissue, such as tumor aggressiveness. This study focuses on three primary cell graph-
based datasets: Tuberculosis (TB), Placenta, and Breast Cancer Classification. TB is a highly contagious disease 
and a leading cause of ill health and mortality worldwide. According to the World Health Organization’s report 
on TB3, an estimated 1.25 million people succumbed to the disease in 2023. Pulmonary TB, primarily caused by 
an infectious bacterium, predominantly impacts the lungs through airborne transmission4. Granulomas in lung 
tissue are characteristic of both human and experimental pulmonary tuberculosis5,6. Identifying acid-fast bacilli 
(AFB) in stained samples is essential for diagnosing tuberculosis7.

Whole-slide imaging makes it easier to digitally examine these stained samples, allowing for high-resolution, 
in-depth tissue investigation. They preserve fine-grained cellular morphology and local tissue architecture that 
is often lost through downsampling. Traditional WSI analysis pipelines resort to patch-based processing or 
downsampling, fragmenting tissue structure and sacrificing essential contextual information8. In our approach, 
we construct cell graphs from whole slide images that integrate local morphological features with spatial context. 
A deep GNN is then applied to these graphs to learn complex cell interactions, translating the rich WSI content 
into structured, relational representations. The edge threshold for intercellular communication is crucial 
in constructing biologically meaningful cell graphs. Incorporating pathologist insights can help refine this 
threshold, ensuring the graph representation aligns with the underlying cellular interactions. We determined 
edge thresholds based on the biological rationale for the cell graphs we constructed and validated them through 
consultations with our domain expert. For the TB dataset cell graphs, nodes represent either acid-fast bacilli 
(AFB) or the nucleus of activated macrophages, and edge thresholds are based on the length of cords of the 
M.tb infected cells after 72 hours of infection9 and the fact that macrophages extend pseudopods to sense their 
environment10. The Placenta dataset represents diverse histological structures essential to placental biology, 
including various types of trophoblastic villi (TVilli, MIVilli, SVilli, AVilli), Sprouts, Chorion, Maternal cells, 
Fibrin, and Avascular regions. These structures capture key functional and structural aspects of the placenta. 
Cell graphs from this dataset reveal how these structures collectively contribute to placental function. Finally, 
cell graphs from the breast cancer dataset show the spatial arrangement and interactions between tumor cells, 
lymphocytes, and stromal cells. Edges in these cell graphs were constructed based on factors such as immune 
surveillance by lymphocytes and the clustering behavior of tumor cells facilitated by adhesion molecules11. They 
captured important patterns, such as tumor-immune interactions and interactions with stromal cells, essential 
for understanding disease progression and prognosis.

The cell-graph technique leverages image processing, feature extraction, and machine learning algorithms to 
establish a quantitative relationship between structure and function1. Our approach extends this by employing 
a GNN trained on these cell graphs to learn and model this relationship effectively. Within our proposed graph 
model, which we term as Cell Graph Jumping Knowledge Neural Network (CG-JKNN), we incorporate the 
concept of ’jumping knowledge’12 from GraphSAGE layers. This approach aggregates information from multiple 
network layers rather than relying solely on the final layer. We enhance the jumping knowledge with GATv2’s 
attention mechanism to refine this process further. This allows the model to focus on the most informative nodes 
dynamically.

An important question is whether the knowledge learned by complex deep learning models, such as GNNs 
in our work, can be effectively distilled into simpler, non-neural network-based models. The answer lies in 
knowledge distillation (KD), a process where the knowledge from a teacher model (in this case, a GNN) is 
distilled into student models, typically less complex. Knowledge distillation on graphs brings the advantages of 
KD into graph learning. This approach primarily serves two objectives: model compression and performance 
improvement. Model compression focuses on creating a smaller student model than the teacher model. After 
distillation, the student model achieves a performance comparable to that of the teacher while requiring fewer 
parameters. Performance improvement focuses on transferring knowledge from the teacher to the student 
model, aiming to enhance the student’s performance beyond that of a model trained without knowledge 
distillation13. The student model may be smaller, similar, or architecturally different from the teacher. The 
other main goals of KD are knowledge adaptation and knowledge expansion14. Knowledge adaptation focuses 
on helping student networks perform well on new, unseen target domains by using knowledge from teacher 
networks trained on similar source domains. Knowledge expansion aims to create student networks that are 
more capable and perform better than the teacher networks. In our work, we focus on model compression 
and performance improvement. Existing approaches to knowledge distillation mainly focus on neural network-
based student models15–17 using their iterative learning capabilities to align with the teacher’s outputs. However, 
this work demonstrates that knowledge can be distilled to non-neural network-based models, such as tree-based 
ensemble models. The knowledge that can be distilled can be categorized into various forms, including response-
based, intermediate, relation-based, and mutual information-based representations14. In this work, we focus on 
response-based knowledge distillation, using the logits generated by a deep GNN as targets to train tree-based 
ensemble regressor models. These student models are significantly less complex than the teacher. Our primary 
objective is to evaluate whether the teacher’s guidance through logits provides better insights into the student 
models than traditional hard labels. We will use the term “Guidance” throughout the paper, which refers to 
the teacher model’s ability to provide detailed class distinctions and enhance the student model’s performance 
and generalization through its logits. Literature suggests that students trained on logits are better equipped to 

Scientific Reports |        (2025) 15:29274 2| https://doi.org/10.1038/s41598-025-13697-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


mimic the behavior of the teacher model18. This approach enhances the student’s performance and enables it 
to be a partial proxy for interpreting the teacher’s decision-making process. In one of our ablation studies, we 
analyze the differences in feature importance between the student trained on logits and its counterpart trained 
on hard labels to identify any notable distinctions. To measure the efficacy of this distillation process, we employ 
a distillation quality metric that balances model complexity and performance. Furthermore, we extend our 
analysis to explore whether calibration (aligning the probabilities derived from logits with the true likelihood of 
events) improves the guidance provided by logits. Additionally, we evaluate the efficacy of our approach under 
varying dataset complexities, including the presence or absence of distribution shifts, imbalanced data, different 
feature sets, and different levels of training graph complexity. To broaden the applicability of our method, we also 
test it on datasets beyond cell graphs.

In this study, we addressed key questions to learn the efficacy of knowledge distillation in our proposed 
framework. Specifically, we sought to answer the following:

•	 Do all student models benefit from knowledge distilled from the teacher GNN trained on cell graphs with lo-
cal cell graph features and/or morphological features under varying dataset complexities such as the presence 
of distribution shifts?

•	 Do the features selected by models trained on hard labels differ from those chosen by the students, and can 
these differences provide insights into the teacher’s guidance?

•	 Can a student model achieve better performance when trained using the combined guidance of the teacher 
model and the best-performing student, compared to being taught solely by the teacher model?

•	 Can calibration of teacher logits provide better guidance to student models?

The major contributions of this work can be summarized as follows:

•	 Inspired by Fukui et al.19, we proposed a knowledge distillation framework that uses the logits from a GNN 
model with jumping knowledge, which acts as the teacher, to train non-neural network models as student 
models. To our knowledge, this is the first work exploring a teacher trained on cell graphs to guide non-neural 
network-based student models.

•	 We proposed a method to approximate the number of parameters/complexity of student models using the 
asymptotic equivalence between the Akaike Information Criterion (AIC) and leave-one-out cross-validation.

•	 We evaluated the efficacy of knowledge distillation under diverse dataset conditions, including varying de-
grees of imbalance, distribution shifts, and varying graph complexities. We also tested our approach across 
various feature sets, including combinations of cell graph features and morphological features, individual 
feature sets (only cell graph features or morphological features), and non-cell graph features.

•	 We explored the impact of post-calibrating logits to enhance the guidance provided by teacher models to 
student models. We proposed a modified distillation quality metric that effectively measures the quality of 
knowledge distilled, even in scenarios where the student model outperforms the teacher.

•	 We conducted ablation studies to determine whether the best-performing student model, in combination 
with the teacher model, could improve guidance. Additionally, we analyzed how feature importance varied 
when guided by the teacher and explored the biological relevance of these features.

Section “Related works” discusses prior research in the domain. Section “Methods” describes this study’s 
proposed methodology and framework. Section “Results” presents the experimental results and evaluates 
the performance of our approach. Section “Discussion and major takeaways” analyzes the implications of 
our findings and summarizes the key takeaways of this study. Section “Limitations of our work” outlines the 
limitations of our approach. Section “Conclusion and future work” summarizes the contributions and identifies 
areas for future work.

Related works
Cell graphs and GNNs trained on cell graphs: applications in disease prediction and 
classification
Graph construction for modeling cellular interactions often assumes that neighboring cells are more likely to 
interact. To capture these interactions, methods such as Delaunay triangulation1,20,21 and K-nearest-neighbor 
(KNN)22–25 are widely employed. The Waxman model26 is another approach that uses an exponential decay 
function of Euclidean distance to define edges probabilistically. Numerous studies have utilized cell graphs to 
gain insights into the organization and behavior of cells within tissues. The pioneering work on cell graphs 
highlighted that the most effective cell-graph construction methods emerge from combining physics-driven 
and data-driven paradigms1. The study presented in27 used a computational method using cell-graph evolution 
to model glioma malignancy. It linked graph phases to cancer severity through connectivity analysis of cell 
graphs constructed from tissue photomicrographs. The authors in28 presented a computational method to model 
glioma malignancy using cell-graph topology from tissue images. Cell-graph edges were generated using the 
Waxman model. By analyzing graph metrics of cancerous cell clusters, the method achieved 85% accuracy at 
the cellular level and 100% accuracy at the tissue level. An augmented cell-graph (ACG) method for diagnosing 
malignant glioma from low-magnification tissue images was introduced in29. It represented cell clusters as 
nodes and their relationships as weighted edges. Tested on 646 brain biopsy samples, the approach achieved 
97.53% sensitivity and specificities of 93.33% (inflamed) and 98.15% (healthy) at the tissue level. Gunduz-
Demir30 introduced an object-graph-based approach for gland segmentation by leveraging the organizational 
properties of primitive objects. It achieved high segmentation accuracy when applied to colon tissue images and 
demonstrated robustness to artifacts and tissue variances. The authors in31 introduced a Cell Graph Transformer 
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(CGT) for nuclei classification in histopathology images. A topology-aware pretraining method using a graph 
convolutional network (GCN) was proposed to learn a feature extractor to address challenges with noisy self-
attention scores in complex cell graphs. The study in32 presented sigGCN, a multimodal deep learning model 
combining a graph convolutional network (GCN) and neural network to integrate gene interaction networks 
for cell classification. The method outperformed existing traditional approaches in both within-dataset and 
cross-dataset classifications. Graph neural network-based approach that leveraged cell graphs from multiplexed 
immunohistochemistry (mIHC) images to predict patient survival and digitally stage gastric cancer was 
proposed in33. Edges in the cell graph were established based on the Euclidean distance between cell pairs, 
connecting cells separated by less than 20 µm. It outperformed traditional staging systems, achieving high AUC 
scores (0.960 for binary and 0.771-0.904 for ternary classification). A novel cell-graph convolutional neural 
network for colorectal cancer (CRC) grading that models large histology images as graphs was proposed in23. It 
incorporated both nuclear appearance and spatial information. An edge was placed between two nuclei if they 
were at a fixed distance from each other. By introducing Adaptive GraphSage for multi-scale feature fusion and 
a sampling technique to address graph redundancy, CGC-Net effectively captured tissue micro-environment 
structures. A hierarchical Transformer Graph Neural Network, combining GNN and Transformer architectures, 
was introduced in24. The main aim was to achieve colorectal adenocarcinoma cancer (CRA) grading using the 
cell graph that was constructed using the KNN approach. It used a Masked Nuclei Patch (MNP) strategy to 
train a ResNet-50 to extract representative nuclei features. The transformer module captured long-distance 
dependencies, achieving state-of-the-art results on CRA grading tasks. The authors in34 proposed Feature-
Driven Local Cell Graphs (FeDeG) for constructing cell graphs by integrating spatial proximity and nuclear 
attributes like shape, size, and texture. Graph-derived metrics extracted from FeDeGs were used with a linear 
discriminant classifier, achieving an AUC of 0.68. A Hierarchical Cell-to-Tissue (HACT) graph representation 
utilizing the cell graphs was proposed in35. The tissue structure and functionality were modeled using a novel 
hierarchical graph neural network (HACT-Net). Using the Breast Carcinoma Subtyping (BRACS) dataset, 
HACT-Net outperformed state-of-the-art methods and individual pathologists.

Knowledge distillation in graphs
With the demand for efficient models, KD is an ever-developing field. Among the various types of information 
that can be distilled, including logits, embeddings, and graph structures, we specifically use logits as the training 
labels for the student models. Many works have focused on transferring logits as a form of knowledge in 
knowledge distillation. The authors in36 systematically compared different knowledge sources–features, logits, 
and gradients in knowledge distillation by approximating the KL-divergence criterion. They analyzed their 
effectiveness in model compression and incremental learning and found that logits were generally more efficient. 
Recently, a refined knowledge distillation method that employed labeling information to refine teacher logit 
dynamically and to eliminate misleading information from the teacher was introduced in37. Distilling graph 
structure information involves transferring knowledge about the connectivity and relationships between nodes 
and edges38, which is crucial for modeling graph data. Additionally, some works distill learned node embeddings 
from the intermediate layers of teacher models to guide the student model’s learning.

In the context of knowledge distillation, various setups exist to transfer knowledge. There are teacher-free 
networks where the student model learns independently without a teacher. In teacher-to-student networks, the 
knowledge transfer can involve one or multiple teachers guiding the students. Additionally, distillation can be 
categorized as offline or online. Online distillation refers to a scheme where the teacher and student models 
are trained simultaneously in an end-to-end manner. In contrast, offline distillation involves a pre-trained 
teacher model that facilitates the student’s training without undergoing further updates. In our study, we utilize 
a teacher-to-student setup with two configurations: a single teacher guiding the student and a combination of the 
teacher and the best-performing student acting as teachers. Additionally, our approach falls under the category 
of offline distillation, as the teacher models are pre-trained and remain unchanged during the training of the 
student models.

Numerous works have been conducted to highlight the use of knowledge distillation in graphs. In39, the 
authors proposed a method for compressing a k-layered graph convolution network (GCN) by repeating a 
single GCN layer k times and distilling both the logits and final node embeddings. The authors in40 used two 
heterogeneous teacher models to distill their embeddings via a topological attribution map and logits. In41, the 
authors trained a teacher on offline graph snapshots with a self-attention mechanism to distill to a smaller, more 
efficient student model making predictions on online graph snapshots. A neighbor distillation method to distill 
local structure knowledge and to use peer node information to learn the local structure was proposed in42. The 
approach in43 used logit distillation and auxiliary representation distillation methods such as Locality Structure 
Preserving distillation (LSP)44. In45, the authors used adversarial training for KD by applying a discriminator 
to the embeddings and logits of the student and teacher models. The authors in46 proposed a method for fair 
distillation where a student model learned both the distilled logits and a proxy for bias from the teacher, which 
was removed during testing with the rationale that it contained most of the information on bias and its exclusion 
would result in fair predictions. An interesting logits-based KD method termed Decoupled Graph Knowledge 
Distillation (DGKD) was proposed in47. It reformulated the distillation loss into the components of target class 
(TCGD) and non-target class (NCGD). By decoupling the fixed weight between these losses and addressing 
their negative correlation, DGKD dynamically adjusted the weights for different data samples. This led to 
improved prediction accuracy for student MLP. The authors in48 proposed Knowledge Distillation for Graph 
Augmentation (KDGA) that mitigated the adverse effects of distribution shifts caused by graph augmentation. 
KDGA transferred knowledge from a GNN teacher trained on augmented graphs to a partially parameter-shared 
student tested on the original graph. This helped to improve performance across various GNN architectures and 
augmentation methods. In49, they transferred knowledge from two specialized teacher models, one focused on 
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features and the other on structure, using a teacher-student distillation framework. The feature-level teacher 
guided the student on completing and leveraging node features, while the structure-level teacher focused on 
graph topology. However, these works primarily focused on distilling knowledge from a GNN to another GNN 
or other neural networks. In19, the authors proposed a distillation method that utilized information extracted 
from neural networks to train non-neural network models, such as support vector machines, random forests, 
and gradient-boosting decision trees. Their study was limited to a single image-based dataset and did not provide 
a detailed analysis of why specific student models failed to achieve the desired performance when trained with 
logits obtained from the teacher CNN. Moreover, they evaluated their approach using only two out of ten 
available classes for simplicity, which does not adequately demonstrate the efficacy of KD in a multiclass setting.

Problem statement
Currently used methods for building cell graphs typically use a single-edge threshold to represent every 
interaction between cells. These thresholds are often chosen based on factors such as achieving denser graphs. 
However, this approach overlooks the biological diversity of interactions, as different cell types exhibit distinct 
interaction patterns that a uniform edge threshold cannot adequately capture. A more biologically informed 
methodology for defining these thresholds is necessary to better reflect the underlying cellular relationships. In 
the context of knowledge distillation from GNNs, most existing works focus on transferring knowledge from 
GNNs to other neural networks. However, student models need not be limited to neural networks. They can 
include non-neural models. Furthermore, evaluating the efficacy of knowledge distillation in our specific setup 
requires a broader understanding of its behavior under varying dataset complexities, including scenarios with 
distribution shifts, multiple classes, and other challenges.

Methods
Datasets based on cell graphs and non-cell graphs
For this work, we utilized three cell graph-based datasets: one from our previous paper on tuberculosis (TB)50, 
another dataset from placenta histology51, and lastly, the TCGA Breast Cancer Cell Classification Dataset 
(BRCA-M2C)52. The TB dataset contained 44 whole slide images (WSIs) with an average size of 42,831 x 41,159 
pixels at 40X magnification. The nodes were classified into acid-fast bacilli (AFB) and the nucleus of activated 
macrophages. The approach used to determine the cell locations and classify the cell types is detailed in our 
previous work50. We used 34 WSIs for training and validation, while 10 WSIs were reserved for the test set. The 
train and test WSIs used in this study differed from those proposed in50. The training set had 90878 nodes, the 
validation set had 22708 nodes, and the test set had 76316 nodes.

The placenta dataset consisted of two cell graphs constructed from two placenta histology WSIs, combined 
into a single graph with nine classes. We utilized the original 64-dimensional feature set provided with the 
dataset for our analysis. These features primarily focussed on the morphological characteristics of the cells. Our 
goal was to evaluate the efficacy of knowledge distillation with cell graph datasets where the cell graph features 
were not included in the training process. The process of feature extraction is described in51. Additionally, we 
followed the dataset’s original train, validation, and test split (considering only labeled nodes).

The BRCA-M2C dataset (Breast Cancer Dataset)52 provided dot annotations for multi-class cell classification 
in breast cancer images, including the annotated cells’ coordinates and corresponding labels. The cell extraction 
and labeling process can be found in52. These images were patches extracted from 1000x1000 pixels at the 
highest resolution and downsampled to 20x. All images were around 500x500 pixels. The cell classes included 
lymphocytes, breast cancer cells, and stromal cells. There were 80 image data (coordinates of the annotated cells 
along with their corresponding labels) under the training set, 10 image data under the validation set, and the test 
set consisted of 30 image data. We combined training and validation data while keeping the test data unchanged. 
This resulted in 19602 training nodes, 2178 validation set nodes, and 8858 test set nodes.

To determine the generalizability of our approach to non-cell graph-based datasets and in the absence of 
features extracted from cell graphs, we used three non-cell graph-based datasets: CoauthorCS, CoauthorPhysics 
and a synthetic dataset. These datasets consisted of a single graph. The CoauthorCS dataset consisted of 18,333 
nodes and 163,788 edges, with nodes divided into 15 classes. A 6,805-dimensional feature vector represented 
each node. The training set had 12833 nodes, the validation set had 3666 nodes, and the test set had 1834 nodes. 
Similarly, the CoauthorPhysics dataset contained 34,493 nodes and 495,924 edges, with nodes categorized into 
five classes. Node features in this dataset were 8,415-dimensional vectors. The training set had 24145 nodes, the 
validation set had 6898 nodes, and the test set had 3450 nodes. These datasets were only used to evaluate the 
applicability of our approach to non-cell graph settings and were not included in ablation studies. We generated 
a synthetic dataset of 60,000 nodes using the preferential attachment mechanism of the Barabási-Albert model53. 
Seven topological features were extracted for this graph to represent its structural properties. The dataset training 
set contained 42,000 nodes, 12,000 nodes were present in the validation set, and 6,000 nodes were present in the 
test set, respectively.

Generally, datasets with a minority class proportion between 20% and 40% are considered to have mild 
imbalance, those with proportions from 1% to 20% are categorized as moderately imbalanced, and datasets with 
a minority class proportion of less than 1% are considered extremely imbalanced54. Based on this classification, 
TB and Breast cancer datasets had a mild imbalance. The Placenta, CoauthorCS, and Synthetic datasets 
demonstrated extreme class imbalance. The CoauthorPhysics dataset had a moderate imbalance.

Construction of cell graph
Edge construction in cell graphs estimates the biological likelihood that neighboring cells interact within the 
same structure. The edge threshold for intercellular communication is critical in cellular studies, and many 
investigations have aimed to determine the optimal distance for accurately modeling these interactions. 
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Pathologists’ input provides valuable guidance to refine graph representations and ensure they accurately reflect 
the biological relationships between cells55. Many prior works have employed a single threshold value to map 
cell-cell interactions23,33, while some have experimented with varying edge thresholds, such as 60, 75, and 90 µ
m, to identify an appropriate threshold value56. In contrast, our approach uses distinct threshold values for each 
cell-cell pair,

In the TB dataset, nodes represent either AFBs or the nucleus of activated macrophages. Edge thresholds 
were based upon the length of cords of the M.tb infected cells after 72 hours of infection9 and the fact that 
macrophages can extend their pseudopods beyond their normal boundary (radius) to detect other cells farther 
away. We hypothesize that AFBs can interact with other AFBs within a distance of 150 µm, equivalent to 615 
pixels at the magnification used in this study57. Likewise, activated macrophage nuclei may interact with both 
AFBs and each other if they are within 500 µm (2049 pixels)10. Our domain expert has thoroughly reviewed and 
validated these threshold values.

The adjacency matrix is computed as follows:

	
Aij

{ 1 if Distance(u, v) < d
0 otherwise.

Distance denotes euclidean distance computing using the equation 1. The coordinates (xu, yu) belongs to node 
’u’ and the coordinates (xv, yv) belons to node ’v’ in the image.

	 d(u, v) =
√

(xu − xv)2 + (yu − yv)2� (1)

The distance threshold values are tabulated in the Table 1.
For the placenta dataset, the authors utilized the intersection of the K-nearest neighbors (KNN)58 and 

Delaunay triangulation59 graphs with a k-value of 5 to generate the cell graphs. In this graph, the nodes 
represented cells, and the edges depicted their interactions.

For the BRCA-M2C dataset, we constructed cell graphs where nodes represent cells and edges represent 
interactions based on the k-nearest neighbors (KNN)58 approach. Different k-values were used for each pair 
of cell types to reflect the biological significance of their interactions. The values used are tabulated in the 
Table 2. The adjacency matrix is calculated using the Eq. 2. The chosen k values were determined based on the 
cohesiveness of tumor cells and the solitary nature of stromal cells in tumors. Similarly, lymphocyte interactions 
were assigned moderate k values to reflect their intermediate proximity during immune surveillance, whether 
with tumor cells or among themselves. Figure 1 illustrates the cell graphs for various datasets.

	
A[i, j] =

{ 1 if j ∈ KNN(i)
0 otherwise � (2)

Are all these edges required?
While the cell graphs used in our study are generated by considering biological interactions, we acknowledge 
that they might not represent the optimal cell graphs. The edges in these graphs capture critical intercellular 
interactions. However, determining the optimal edges for such graphs remains an open research question. 
These interactions prove to be highly beneficial, particularly when the test set originates from a distribution 
different from the training set. Randomly removing edges from the cell graphs has been shown to hamper the 
teacher model’s performance. This, in turn, degrades the performance of the student models, as the quality of the 

Cell_1 Cell_2 k-value

Lymphocyte Lymphocyte 5

Breast cancer cell Breast Cancer Cell 2

Stromal Stromal 8

Lymphocyte Breast cancer cell 5

Lymphocyte Stromal 10

Breast cancer cell Stromal 10

Table 2.  k-values for different types of cell interactions.

 

Node ‘u’ Node ‘v’ Distance ‘d’ in pixels

AFB AFB 615

AFB Macrophage Nucleus 2049

Macrophage Nucleus AFB 2049

Macrophage Nucleus Macrophage Nucleus 2049

Table 1.  Distance thresholds.
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teacher’s logits diminishes. The concept of optimal cell graphs with the right amount of connectivity to balance 
model complexity and performance remains an emerging area of research that requires further exploration.

Feature extraction
We tested the efficacy of our approach under different feature sets across datasets. We combined local cell graph 
features with morphological features for the TB dataset. For the Placenta dataset, we used only morphological 
features (along with inherent variations in cell appearance). For the BRCA-M2C dataset, we utilized only the 
local cell graph features. For the Coauthorship datasets, we did not extract additional features. Instead, we used 
the existing original features provided by the datasets.

TB dataset
In50, combining morphological and graph features resulted in the best results for CG-JKNN. Hence, we use this 
combination to train our models in this work. Table 3 denotes the extracted features; the description can be 
found in the paper that introduced it.

Placenta dataset
For the placenta dataset, we used the features defined in the original paper. Specifically, the node features 
are defined using the nucleus coordinates as node coordinates and the 64-dimensional embeddings from the 
penultimate layer of the cell classifier model. These features primarily encode morphological information about 
cells rather than cell graph structural information.

BRCA-M2C dataset
For the BRCA-M2C dataset, we extracted the local graph features from the cell graphs generated. The extracted 
features are listed in Table 4.

Feature names Features (feature number)

Graph Features Eccentricity (1), Closeness_of_node (2), Average_Clustering (3), Node_Clustering (4), Sørensen (5), Salton (6), Hub_Promoted 
(7), Hub_Depressed (8), Centrality (9), Mean_all_neighbors (10), Skew_all_neighbors (11), Kurtosis_all_neighbors (12)

Morphological Features
X (13),Y (14), Contrast (15), Energy (16), Correlation (17), Homogeneity (18), ASM_value (19), Dissimilarity (20), Variance 
(21), Mean_Image (22), Standard_Deviation (23), Area (24), Major_Axis (25), Minor_Axis (26), Eccentricity_object (27), 
Perimeter (28), Diameter_object (29), Circularity (30), Mean_convex_hull (31), SD_convex_hull (32)

Table 3.  Features. Note: Skew_all_neighbors and Kurtosis_all_neighbors are computed based on the 
distribution of edge lengths between neighboring nodes.

 

Figure 1.  Cell graphs of the TB and BRCA-M2C datasets were generated using the NetworkX library60 
(version 3.4.2, https://networkx.org/). (A) Cell Graph generated for a TB image. Acid-fast bacilli (AFB) 
cells are shown in red, and the nucleus of activated macrophages is depicted in blue. Black edges represent 
interactions. (B) Cell Graph generated for a normal lung tissue, i.e., not infected. (C) Cell Graph acquired from 
the Vanea et al.51, licensed under Creative Commons Attribution 4.0 International License ​(​​​h​t​t​p​s​:​/​/​c​r​e​a​t​i​v​e​c​o​m​
m​o​n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/​​​​​)​. (D) Cell Graph generated from the BRCA-M2C dataset, where red nodes represent 
lymphocytes, blue nodes represent tumor cells, green nodes represent stromal cells, and gray edges denote 
their interactions, created using different k-values for specific cell interactions.
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Distilling the knowledge from CG-JKNN (teacher) to tree-based ensembles (students)
Based on the CG-JKNN architecture, the teacher model is designed for node-level classification tasks. A graph 
is defined as G = (V, E), where V denotes the set of nodes, and each node v is associated with a d-dimensional 
feature vector xv ∈ Rd. The edges E are represented by eu,v = (u, v), indicating a connection between nodes u 
and v. The adjacency matrix A ∈ Rn×n encodes the graph structure.

The architecture of our teacher model and the flow of our proposed work are depicted in Fig. 2. To train 
the teacher GNN, we utilize cell graphs G constructed along with their associated node features xv . During 
the training phase, the model learns to classify each node by predicting its label based on the provided labeled 
graphs. During testing, the trained GNN receives unseen cell graphs G and their associated node features xv . 
The model predicts the test node labels, which are then compared against the true labels in the test set to evaluate 
performance.

Each node’s hidden features h(l)
v ∈ Rd in the l-th layer are initialized with the input features as h(0)

v = xv . 
The GraphSAGE layers process node representations, employing a mean aggregation function as shown in Eq. 
3 to gather information from neighboring nodes. In our previous work50, we experimented with both mean 
and max aggregators and found the mean aggregator to achieve superior performance consistently. This also 
aligned with prior studies that demonstrate the effectiveness of mean aggregation in node classification tasks61,62. 
T﻿herefore, we selected the mean aggregator.

	 h
(l)
N(v) = MEAN

({
h(l−1)

u , ∀u ∈ N(v)
})

� (3)

Here, h(l)
N(v) represents the aggregated neighborhood representation, and h(l−1)

u  corresponds to the representation 
of neighboring node u from the previous layer. The node’s updated representation is computed using Eq. 4.

	
h(l)

v = σ
(

W ·
[
h(l−1)

v , h
(l)
N(v)

])
� (4)

Here, W is the learnable weight matrix, and σ denotes the activation function (ReLU).
The “jumping knowledge representation learning” mechanism12 is incorporated to combine multi-layer 

node representations. This approach concatenates representations from all layers to form a comprehensive 
node representation (Eq. 5) instead of using only the final layer’s representation. The authors in12 explored three 
different aggregation mechanisms: concatenation, max-pooling, and an LSTM-based attention mechanism. Our 
network adopts the concatenation-based jumping knowledge mechanism for aggregating node representations.

Figure 2.  Architecture of the teacher model used for knowledge distillation. To obtain the temperature-scaled 
logits, as discussed in the ablation study, a temperature-scaling block needs to be incorporated between the 
logits generated by the teacher model and the input to the student models.

 

Feature names
Features (feature 
number)

Graph features

Degree (1), Betweenness_
centrality (2) , Eccentricity 
(3), Closeness_of_node 
(4), Node_Clustering (5), 
Kurtosis_all_neighbors 
(6), Mean_all_neighbors 
(7), Skew_all_neighbors 
(8), Sørensen (9), Salton 
(10), Hub_Promoted (11), 
Hub_Depressed (12)

Table 4.  Features.
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	 h(Concatenated)
v = Concatenate

[
h(1)

v , . . . , h(l)
v

]
� (5)

After concatenation, the node representations are passed through a GATv2 layer63, which refines the 
representations using an attention mechanism. The attention coefficients αvu are computed as:

	
αvu = softmaxu

(
LeakyReLU

(
aT

[
W h(Concatenated)

v ∥W h(Concatenated)
u

]) )
� (6)

Finally, the node representations are updated as shown in Eq. 7, Later, the softmax function applied to obtain 
the class probabilities.

	

h(GAT )
v = σ


 ∑

u∈N (v)

αvuW h(Concatenated)
u


� (7)

Here, N (v) denotes the neighbors of node v, and σ is the activation function. We use a rectified linear unit 
(ReLU) as the activation function. Over-smoothing is a critical issue in GNNs. It arises when deep networks cause 
node features to converge, losing their distinctiveness. Existing approaches address this challenge using various 
strategies. Energetic Graph Neural Networks employ energy-based modeling64, while Graph DropConnect 
introduces graph-specific dropout65. Graph-coupled oscillator Networks use non-linear oscillators to modify 
GNN dynamics66, and residual connections improve the information flow in deep GNNs to counter over-
smoothing67. For this study, we adopted the DropEdge technique68. It mitigates over-smoothing by randomly 
removing a proportion of edges during training. Using the edge index representation for graph connections, we 
experimented with various dropping rates.

Logits represent the unnormalized outputs of the model. It provides richer information compared to class 
probabilities. It has been shown in the literature that training the student model directly on the logits allows 
for more effective learning of the internal representations captured by the teacher18. This approach enables the 
student to mimic the teacher’s learned patterns better. Additionally, it helps avoid the information loss that 
typically occurs when logits are transformed into probabilities. Hence, we extract the logits before applying the 
softmax function for knowledge distillation and use them as labels to train the student regressor models.

In general, the KD loss69 is formulated to align the predictions of the student model with those of the teacher 
model by minimizing the divergence between their output distributions. This is typically achieved by leveraging 
the Kullback-Leibler (KL) divergence. While this approach is effective for neural network-based student models 
that undergo continuous updates during training, it is not directly applicable to our scenario. In our study, the 
student models are tree-based ensembles that do not rely on iterative gradient updates. As a result, we don’t 
utilize this loss function.

After training on the teacher’s logits as targets, the student models generate predictions, which are converted 
into probabilities using the softmax function. These probabilities are evaluated to calculate performance metrics 
such as accuracy and F1-score. We specifically chose non-linear models for students because the teacher logits, 
serving as labels, are inherently non-linear. For the student models to effectively learn from these logits, they 
must possess sufficient capacity (or complexity) to capture the underlying non-linear relationships embedded in 
the teacher’s predictions. We employ tree-based ensemble regressors as student models, as described in the Table 
5. For brevity, we will often refer to these models by their specific names rather than repeatedly using the term 
’regressor’ throughout the paper.

Estimating the complexity of tree-based ensemble models-an approximation and distillation 
quality score
Understanding the complexity of student models is essential to evaluating the quality of knowledge distilled 
from the teacher model. Black-box models, including various ensemble techniques, diverge from traditional 
likelihood-based frameworks and present challenges in directly assessing model complexity. This is mainly 
because the number of parameters in such models does not accurately represent their degrees of freedom. The 
concept of Generalized Degrees of Freedom (GDF), introduced by Ye70 and later applied to machine learning by 
Elder71, serves as a metric for assessing the complexity of models. For instance, in the case of a two-dimensional 
decision tree scenario, Elder71 has observed that combining multiple trees through bagging leads to an ensemble 
with a Generalized Degrees of Freedom (GDF) complexity that is lower than that of any single tree within the 
ensemble. In72, they employed GDF to estimate the number of parameters for the random forest model that was 

Student model Description

ExtraTrees An ensemble model that combines multiple randomized decision trees for regression.

XGBoost A gradient boosting model that optimizes performance using weak learners.

HistGradientBoost A histogram-based gradient boosting regressor for efficient training on large datasets.

Random Forest An ensemble method that uses multiple decision trees for robust regression.

LightGBM A gradient boosting framework optimized for speed and efficiency with large data.

Table 5.  Student models and their descriptions.
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utilized to predict cell-type specific enhancer-promoter interactions by leveraging the information of protein-
protein interactions between transcription factors.

Despite the utility of GDF in providing an estimate of model complexity, it has some challenges. Firstly, the 
sensitivity of GDF to perturbations in the data means that the degree to which GDF reacts can vary significantly 
depending on the specific modeling approach being used. This variability indicates that a GDF estimation method 
that works for one model type may not be suitable for another. In addition, the absence of a robust, universally 
applicable method for estimating GDF complicates its implementation across different data distributions and 
model architectures. These drawbacks highlight the complexity of accurately assessing model behavior in 
machine learning and the need for further research in developing more adaptable metrics like GDF73.

A standard metric for choosing models is the Akaike Information Criterion (AIC)74, which illustrates the 
trade-off between model complexity and goodness of fit. Models with reduced AIC values indicate a better 
balance between the model complexity and goodness of fit. It is computed using the Eq. 8. Mk  denotes the model 
with dimension k. L(Mk) is the likelihood corresponding to the model Mk

	 AIC (Mk) = −2 log L (Mk) + 2k� (8)

However, one limitation of the Akaike Information Criterion (AIC) is its unsuitability for non-parametric 
model selection75. Models such as Random Forest are non-parametric76. It is a common misconception that 
non-parametric models have no parameters. They can be thought of as having an infinite number of parameters. 
This characteristic suggests that the complexity of non-parametric models can grow to capture increasingly 
precise information within the data as the number of data rises76. Few papers have computed the AIC for models 
such as Random Forest in77. This study developed a machine-learning model to simulate the effect of masks on 
motor sound, utilizing noise level data in decibels from various operation frequencies of motors at the National 
Synchrotron Radiation Research Center (NSRRC). Three group indicators were used to assess the learning 
performance: the Akaike Information Criterion (AIC), the Hannan-Quinn Information Criterion (HQIC), 
the Schwartz-Bayesian Criterion (SBIC), and the Akaike Information Criterion with Small Sample Correction 
(AICc). However, based on the information provided, the specific method used to determine the number of 
parameters (‘k’) for the AIC score is unclear.

When models are estimated using maximum likelihood, the choice of model based on minimizing the cross-
validation error leads to asymptotically equivalent decisions as selecting the model that minimizes the AIC78. 
Based on this, the authors in73 argued that it should be possible to extract a measurement from lCV  (which 
denotes the sum over K folds of the log-likelihood of the validation subset that estimates model complexity). The 
equation in 9 denotes the asymptotic equivalence between AIC and leave one out cross validation (LOOCV). 
Based on this, the number of parameters p can be estimated using the Eq. (11). lm denotes the maximum 
log-likelihood of the original (non-cross-validated) model, and lCV  represents the sum over K folds of the log-
likelihood of the validation fold.

	 AIC = −2ℓm + 2p̂ ≈ −2ℓCV � (9)

	

− 2lm + 2p ≈ −2lcv

2p ≈ −2lcv + 2lm

p ≈ 2(lm − lcv)/2
� (10)

	 p̂ ≈ ℓm − ℓCV � (11)

In our work, we have employed tree-based ensemble regressors as student models. These are non-likelihood 
models. In73, the authors found the notion of applying GDFs to non-likelihood models to improve information-
theoretic metrics of model fit (like AIC) was associated with the high cost of processing and produced inconsistent 
results. While cross-validation was a more direct method, it was less stable than GDFs. To determine the model 
complexity metric, they suggested repeated 10-fold cross-validation. Cross-validation is suitable for models that 
do not make likelihood assumptions since it can but need not, use the likelihood fit.

We build our methodology based on this idea. We utilize the sum of squared errors (SSE) to approximate 
the log-likelihood term. It suits our models that do not directly maximize the likelihood function. A higher 
maximum log-likelihood value indicates that the observed data is more probable under the model, which is 
interpreted as a better fit. A lower SSE suggests that the model’s predictions are closer to the actual observed 
values, which is also interpreted as a better fit.

Equation (12) shows the computation of model complexity with SSE. The SSEfull denotes the sum of 
squared errors on the training set, and SSECV  denotes the SSE of the cross-validation. The logarithm helps to 
scale and normalize the SSE in relation to the number of observations ’n.’ In our experiments, we implemented a 
trial of 10-fold cross-validation recognizing the expensive computational demands of LOOCV. However, it does 
introduce some level of Monte-Carlo variability, resulting from not averaging all possible leave-one-out sets, as 
would be the case with LOOCV73. We observed slight variations in these estimates across different runs during 
our experiments. To ensure stable and reliable estimates, we recommend future researchers to conduct multiple 
runs, as suggested in73.

	
p̂ ≈ n/2 ln

(
SSECV

n

)
− n/2 ln

(
SSEfull

n

)
� (12)
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These terms capture the fit by indicating how close the model’s predictions are to the actual data points, with the 
logarithm helping to scale and normalize the SSE in relation to the number of observations. The supplementary 
files provide additional results on how model complexity changes under varying parameters. Henceforth, the 
term ’number of parameters’ for non-neural models in this study will denote the effective complexity,p̂.

Based on the complexity approximated, we compute the distillation quality metric, which measures the 
effectiveness of the distillation process. Inspired by79, we employ a slightly modified version of the distillation 
quality metric to evaluate the performance of various student models. Its computation is shown in equation 13. 
Instead of using accuracy, we use a weighted F1 score in our metric when dealing with imbalanced datasets.

	
DS = α ·

( studentc

teacherc

)
+ (1 − α) · max

(
0, 1 − studentf1

teacherf1

)
� (13)

studentc and teacherc denote their respective complexities (in terms of parameters), and studentf1 and 
teacherf1 denote their F1-scores (weighted). The approach of computing the number of parameters of our 
student models is described under section “Estimating the complexity of tree-based ensemble models-an 
approximation and distillation quality score”. The second term incorporates the max function to handle cases 
where the student outperforms the teacher. The authors in79 emphasize that the choice of the parameter α 
is left to the designers, allowing them to prioritize either model size or accuracy according to their system’s 
requirements. For instance, a value of α > 0.5 would be appropriate if smaller model sizes are more critical. 
In our work, to balance the importance of model size and performance, we set α = 0.5, giving equal weight 
to these two factors. For balanced datasets, accuracy can be used instead of F1-scores to evaluate performance. 
In cases where the student outperforms the teacher, the ratio of student performance to teacher performance 
exceeds one. To address this, we have adjusted the score to ensure it remains non-negative. In our approach, a 
score of zero is achieved when the student model outperforms the teacher while maintaining a much smaller 
size than its teacher.

Ablation studies
We conducted three ablation studies, primarily focusing on cell graph data sets. The first study explored training 
with ensembled logits from the teacher and the best-performing student model. The second study aimed to 
analyze the differences in the importance of features when the models were trained using teacher logits compared 
to when they were trained using hard labels. The third study compares the effectiveness of transferring teacher 
knowledge via distillation into two types of student models: an Artificial Neural Network (ANN) and non-
neural models.

Combining teacher and top student: ensemble model training
The goal of knowledge distillation from several teachers is to produce a good student who inherits the majority 
of the ensemble’s performance without raising the computational cost of inference. First, building highly 
predictive teacher ensembles is required to produce strong student models with distillation80. A few works 
focus on ensemble distillation on unlabeled datasets81–83. Since our study focuses on labeled data, we explicitly 
evaluate approaches relevant to labeled datasets for our distillation process, where the crucial problem is how 
to assign different weights to individual teachers within the ensemble81. In84, they proposed an ensemble model 
that unified three distinct knowledge distillation methods–feature-based, response-based, and relation-based 
on the CIFAR-10 and CIFAR-100 benchmarks. The distillation utilized a lightweight ResNet-20 student model 
with 0.27 million parameters and a ResNet-110 teacher model with 1.7 million parameters. The authors in85 
trained an ensemble of various Multi-Task Deep Neural Networks (MT-DNNs (teachers)), achieving superior 
performance over any single model. Subsequently, they trained a single MT-DNN (student) through multi-task 
learning, effectively distilling knowledge from the ensemble of teachers. Wang et al.86 trained one segmentation 
teacher CNN on synthetic samples with accurately known ground truth fault labels and another classification 
teacher CNN on field samples with manually annotated labels. Following this, a classification student network 
was trained on samples created by aggregating the predictions from both teacher models through a voting 
mechanism. The authors in87 proposed MT-BERT, a novel approach to multi-teacher knowledge distillation 
focused on the compression of pre-trained language models. They devised a co-finetuning framework that 
simultaneously fine-tuned multiple teacher models employing a unified pooling and prediction module to align 
their output hidden states. This methodology enhanced the collaborative teaching of the student model. Chebotar 
and Waters88 discovered an effective ensemble of acoustic models comprising LSTM and CLDNN architectures 
developed with diverse training objectives, where the student model was a CLDNN. Initially, the research 
involved identifying the optimal fixed weights for merging the outputs of teacher models to maximize accuracy. 
The knowledge was later distilled into the student model using the soft labels generated by the ensemble. The 
authors in89 proposed a dynamic weighting approach for each teacher, demonstrating its effectiveness in logits-
based and feature-based distillation through extensive experiments. They treated the process as a multi-objective 
optimization problem to find a more effective training direction.

For this ablation study, we consider both the CG-JKNN and the highest-performing student model as teacher 
models to investigate their combined impact on knowledge distillation. We adopt the methodology proposed 
in88, which involves identifying optimal fixed weights for merging the outputs of teacher models to maximize 
the F1 score on the validation set. Following this, we distill a student model from the ensemble output generated 
through this optimized combination. Equation (14) illustrates the method for aggregating outputs from the 
teacher GNN and LightGBM models. The detailed approach is shown in the algorithm 1.
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	 L ensemble (x) = w gnn · L gnn (x) + w lightgbm · L lightgbm (x)� (14)

L ensemble (x) is the ensembled output for a given input x. Lgnn(x) is the logit output from the GNN model 
for a given input x. L lightgbm (x) is the raw decision score output from the LightGBM model for a given input x. 
w gnn  and w lightgbm  are the weights applied to the outputs from the GNN and LightGBM models, respectively. 
It can be adapted to incorporate the outputs of other high-performing student models.

Algorithm 1.  Optimal Weight Finding for Ensemble of Teacher GNN and Best Student model

Feature importance: comparing students trained with and without teacher guidance
We aimed to analyze the differences in feature importance of student models trained on teacher logits and their 
counterpart trained on hard labels. Literature suggests that students trained on logits are better equipped to 
mimic the behavior of the teacher model18. Thus, this analysis can also serve as an approach to explore how 
a student model trained on logits may partially act as a proxy for interpreting the teacher’s decision-making 
process. For this experiment, we selected the student model that performed best on the held-out test set. To 
determine feature importance, we utilized the “feature importances” attribute of the model. Additionally, to 
assess how some of these important features contribute to predictions for each class and the direction of their 
impact, we employed SHapley Additive exPlanations (SHAP) plots90. Our objective was not to compare these 
techniques but to leverage SHAP for a deeper understanding of how features influence model predictions. In 
future work, we plan to incorporate advanced techniques such as permutation-based methods (e.g., Boruta 
importance)91 and knockoff approaches92, as these methods provide a more robust and accurate assessment of a 
feature’s predictive abilities within a model93.

It is important to note that the student model can act as an interpretable approximation of the teacher by 
reflecting its emphasis on certain cell graph level or morphological features. However, it cannot leverage the 
graph structure and complex node relationships that the teacher model captures through message passing. 
Instead, the student operates solely on feature values and the logits provided by the teacher. It thus limits its 
ability to fully replicate the teacher’s reasoning process.

Comparing effectiveness of knowledge distillation into ANN vs. non-neural student models
In this ablation study, we selected an ANN as the neural student to ensure both model types rely solely on the 
features and implicit relational knowledge provided through the logits of the teacher GNN. This avoids the 
additional advantage of directly exploiting cell graph structures that a GNN would have and ensures that any 
observed differences in performance stem directly from the effectiveness of the distillation process.

We designed a shallow network with one hidden layer to maintain a smaller student model and its structure 
is illustrated in Fig. 3. The hyperparameters, such as hidden dimensions, alpha (which balances the two losses), 
and learning rate, were optimized using Optuna over 50 trials, selecting those that maximized the validation F1 
score. We also constrained the hyperparameter search space to ensure that the ANN model parameters remained 
comparable to those of the non-neural student models.

Hinton et al.15 discovered that the effectiveness of the student model’s learning process is significantly 
enhanced when it is trained using both the soft target provided by the teacher model and the actual ground 
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truth. This approach involves a combined loss function that integrates two key components: the traditional 
cross-entropy loss and a knowledge distillation-specific loss term.

The overall loss function for knowledge distillation can be expressed as shown in the equation 15.

	 LKD = αLCE (ps, y) + (1 − α)τ2KL (pτ
s , pτ

t )� (15)

Here, LCE (ps, y) represents the cross-entropy loss. The second component, τ2KL (pτ
s , pτ

t ), is the knowledge 
distillation term. pτ

s  and pτ
t  denote the softened outputs of the student and teacher models, respectively, after 

applying the temperature scaling with parameter τ . KL stands for the Kullback-Leibler divergence, a measure of 
how one probability distribution diverges from a second, reference probability distribution. α is a hyperparameter 
that controls the balance between the traditional cross-entropy loss and the knowledge distillation loss. In our 
work, we observed that logits before calibration already produced good results, and consequently, we set the 
temperature τ=1.

Hinton et al.15 suggested using a weighted average between the distillation loss and the student loss by 
setting β = 1 − α, and in one of their experiments, they used α = β = 0.5. Other works that utilize knowledge 
distillation treat this weight as a tunable parameter94–96. In our work, we treat the weight parameter α as a 
hyperparameter. Additionally, we present results using a fixed α value of 0.5.

Generalizability of knowledge distillation under various dataset complexities
To investigate whether all models benefit from knowledge distillation and assess the effectiveness of our 
approach across various dataset complexities, we conducted experiments on multiple datasets (cell graph and 
non-cell graph). These datasets presented challenges, such as distribution shifts, and structural complexities 
in training and testing graphs. Importantly, for Coauthorship datasets, we did not extract local graph features 
but instead utilized the original dataset features. This allowed us to test the efficacy of knowledge distillation 
in the absence of graph-specific features. The logits obtained from GNN trained on these coauthor networks 
could encapsulate rich information by reflecting relationships between node features (keywords) and the graph 
structure (Coauthorship network). For instance, if an author is involved in interdisciplinary work, their logits 
may encode soft probabilities across multiple fields, capturing the uncertainty or overlap between class labels.

Graph complexity
We hypothesize that for knowledge distillation to be effective when the teacher is a GNN learning from the 
graph, the graph must possess sufficient complexity. In such cases, the logits transferred from the GNN provide 
valuable information that student models can leverage.

According to the literature, graph complexity measures can be categorized into deterministic and probabilistic 
methods97. Deterministic approaches include Kolmogorov complexity, substructure counting, and generative 
models. Probabilistic methods involve entropy functions (such as Shannon’s entropy) applied to probability 
distributions over graph structures with intrinsic and extrinsic subcategories. In our work, we focus on graph 
energy, a concept originating from molecular and quantum chemistry, as a metric to evaluate how graph 
structural complexities affect knowledge transfer from a teacher GNN to student models98,99. It is computed 
using the Eq. (16).

	
C =

(
1

|A|

|A|∑
k=1

bk

) ∑
SVD(M)� (16)

Here bk  represents the edge weights if any, |A| denotes the number of edges in the graph, and SVD(M) is a 
vector of singular values of the matrix M98.

Distribution shift in the data
The distribution shift100–102 can be broadly categorized into three types: Covariate shift, label shift, and concept 
shift. The feature distribution changes in the covariate shift case, while the label distribution does not. On the 
other hand, label shift happens when the distribution of the labels varies while the feature distribution remains 
the same. Concept shift, also called conceptual drift, arises when the actual relationship between the inputs and 

Figure 3.  Architecture of our shallow ANN student model. The ellipses denote that additional neurons are 
present in the layer but are not explicitly illustrated for clarity.
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labels evolves, reflecting a change in the underlying concept the model is attempting to capture. There exist 
multiple ways to detect covariate shifts. We can compare summary statistics or employ dissimilarity measures 
like Earth mover’s distance. For statistical rigor, hypothesis tests such as the Kolmogorov-Smirnov or Chi-
squared tests are used to determine significant distributional differences103.

For this work, we utilized Kernel Principal Components Analysis (Kernel PCA) for dimensionality reduction, 
selecting the number of components that captured above 95% of the dataset’s variance. Subsequent univariate 
Kolmogorov-Smirnov tests, with Bonferroni correction104 applied to an alpha of 0.01, rigorously adjusted 
our significance levels to control the cumulative Type I error rate across multiple hypotheses. The mean of 
all significant KS statistics was computed to summarize the extent of covariate shift across the K dimensions. 
Moreover, for the computationally expensive TB and Placenta dataset, we subsampled 20,000 points to ensure 
the feasibility of the analysis while maintaining the representativeness of the original data. The mean KS statistic 
calculated may not fully reflect the entire degree of shift in the dataset. However, our primary goal was to 
demonstrate the presence of a shift.

To determine the covariate shift in non-cell graph-based datasets, we calculated the percentage of features 
with covariate shift by performing univariate KS tests directly on the scaled features. This was due to the high 
dimensionality of the dataset, as the large number of components required to achieve 95% variance capture 
would have made our initially proposed approach computationally expensive. For label shift detection, we 
employed the Chi-squared test105 to evaluate the consistency of class distributions between the different data 
subsets. This involved constructing a contingency table based on the frequency counts of each unique class 
in these subsets. After computing the Chi-squared statistic, we assessed the p-value to determine whether the 
observed distributional differences were statistically significant.

Can logit calibration enhance student guidance?
Neural networks produce poorly calibrated predictions that can be either overconfident or underconfident. 
GNNs can be miscalibrated too106. Calibration primarily aims to make predicted probabilities more reliable. 
In our study, we were particularly interested in investigating whether logit calibration could enhance the 
guidance provided to our student models. It is important to note that logit calibration does not impact the 
performance of the teacher model itself. Previous studies107,108 have demonstrated how calibration can impact 
models’ accuracy and other performance metrics. Additionally, the authors in109 introduced the concept of 
addressing mis-instruction through logit calibration. This work highlighted that enhancing target logits while 
preserving the relative proportions among non-target logits can significantly improve the utility of logits for 
knowledge distillation. These works primarily dealt with neural models as students. Wang et al.110 observed 
that GNNs tend to be underconfident, in contrast to the majority of multi-class classifiers, which are generally 
overconfident. This necessitated the use of various techniques to calibrate the logits. Guo et al.111 proposed 
temperature scaling to address the miscalibration issue found in modern neural networks. Kuleshov et al.112 
introduced a straightforward calibration method based on isotonic regression. Another approach was ensemble-
based temperature scaling113. Methods such as temperature scaling preserved accuracy by maintaining the per-
node logit rankings unaltered114.

To achieve calibration, in this work, we employed isotonic regression and temperature scaling as post-hoc 
calibration methods. In traditional settings, isotonic regression is employed for binary classification tasks. To 
extend isotonic regression to multiclass scenarios, we adopt a one-vs-all strategy115,116. We measured the Brier 
score (Stratified) and negative log-likelihood before and after calibration, as they are proper scoring rules and 
provide a truthful measure of the accuracy of probabilistic predictions117. To learn the temperature T, it is 
considered best practice to use a validation set or perform cross-validation. We used 5-fold cross-validation 
(2 folds if the dataset is highly imbalanced) by splitting the training logits into train and validation folds. We 
learned two temperatures using the validation fold to optimize both the Brier score and the log loss. Our paper 
refers to the probabilities obtained after calibration using Eq. (17) as calibrated probabilities (calibrated probs). 
T﻿he overall score mentioned in the paper represents the mean of the scores calculated individually for each class.

	
p̂i =

exp
(

zi
T

)
∑C

j=1 exp
( zj

T

) � (17)

where p̂i represents the calibrated probability for class i, zi is the logit for class i (pre-softmax output of the 
model), T > 0 is the temperature parameter learned using a validation set or cross-validation, and C  is the total 
number of classes.

Experimental setup and hyperparameters
We implemented the models using the PyTorch framework118 and ran them on one NVIDIA A100 GPU. The 
hyperparameters of the teacher model were chosen with the assistance of Optuna119, a Python library for 
hyperparameter optimization. We ran 50 trials to optimize the model hyperparameters, aiming to achieve 
the highest weighted F1 score on the validation set for imbalanced datasets. We used the cross-entropy loss 
function during training when the class imbalance was mild/moderate. We utilized a weighted cross-entropy 
loss function for scenarios with extreme class imbalance. The teacher model was run for 80 epochs. We used 
an Adam optimizer. The hyperparameters of the teacher model associated with each dataset are tabulated in 
Table 6. The features were scaled using the standard scaler. As performance metrics, we evaluated the accuracy 
and weighted F1 score. The temperatures used to calibrate the logits are also presented. The first temperature 
minimizes the stratified Brier score, The second temperature minimizes the log loss.
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To maintain smaller student models, we set the number of estimators in the students to 6, with the maximum 
depth varying between 8 and 16 (such as 8,12,16, etc) and the number of leaf nodes fixed at 50. However, we 
allowed the number of leaf nodes to be 300 for our complex TB dataset. The learning rate of the boosters was 
set to 0.3, while all other parameters were kept at their default values. The specific depths of student models 
are detailed in the results section corresponding to each dataset. It is important to note that the student model 
performances reported are specific to the chosen hyperparameter configurations. We acknowledge that the 
results could vary with a more extensive hyperparameter search.

The edge homophily of the graphs used is shown in the Table 7. It is the ratio that measures the proportion 
of edges in a graph that connect nodes of the same class label. The equation to compute edge homophily is given 
in 18.

	
h = | {(u, v) : (u, v) ∈ E ∧ yu = yv}

|E | � (18)

where: h denotes the edge heterophily score, |E | is the total number of edges in the graph, (u, v) represents an 
edge between nodes u and v, yu and yv  are the labels of nodes u and v.

As stated in120, a high edge homophily ratio indicates strong homophily where h → 1 while a low edge 
homophily ratio indicates strong heterophily where h → 0 .

Results
Covariate and label shift across datasets
Table 8 presents the Mean KS statistic, chi-squared statistics, and corresponding p-values for each dataset pair.

Based on the results, we observe a covariate shift in the test set of the TB dataset, as the test nodes are taken 
from separate graphs compared to the training and validation nodes. Additionally, the Chi-squared statistic 
indicates the presence of a label shift in the data. In the placenta dataset, we did not observe a large covariate 
shift between the validation and test sets, while a covariate shift is observed in other splits. This could be due to 
how the nodes were sourced. However, no label shift was detected in this dataset. This aligns with the findings 
in51, as the data splits were designed to ensure that tissue types have similar distributions across splits, and 
we adhered to the same splitting methodology. For the BRCA-M2C dataset, label shifts are observed across 
all subsets. As shown in Table 9, we did not observe label shift for non-cell graph datasets such as coauthor 
networks. In the Coauthorship networks, the percentage of features with covariate shift was nearly 0, indicating 
minimal distributional differences between the training and test datasets. The absence of substantial covariate 

Dataset Edge homophily ratio

TB 0.6375

Cell Graph 1-Placenta 0.9868

Cell Graph 2-Placenta 0.9984

BRCA-M2C 0.2028

CoauthorCS 0.8081

CoauthorPhysics 0.9314

Synthetic Dataset 0.6630

Table 7.  Edge homophily ratios.

 

Dataset Teacher model hyperparameters Complexity Temperature (brier score) Temperature (log loss)

TB
Num_GraphSage layers: 25, Num_GAT layers: 1,
hidden_channels: 33, lr: 0.002,
weight_decay: 5e-4 ,dropout=0.1

107848 NA NA

Placenta
Num_GraphSage layers: 6, Num_GAT layers: 1,
hidden_channels: 45, lr: 0.006440304794081112,
weight_decay: 9.480520388945085e-05 ,dropout=0.1

49608 0.6931 NA

BRCA-M2C
Num_GraphSage layers: 16, Num_GAT layers: 1,
hidden_channels: 37, lr: 0.00253
weight_decay: 2.56e-05, dropout=0.1

82220 1.1068 0.98369

CoauthorPhysics
Num_GraphSage layers: 9, Num_GAT layers: 1,
hidden_channels: 17, lr: 0.0018,
weight_decay: 2.5339174600421627e-05, dropout=0.3669

581359 0.7614 0.6155

CoauthorCS
Num_GraphSage layers: 5,
hidden_channels: 10, lr: 0.004436311854841181,
weight_decay: 2.1138365253049543e-05

274160 0.5096 NA

Synthetic Dataset
Num_GraphSage layers: 10, Num_GAT layers: 1,
hidden_channels: 40, lr:0.003,
weight_decay: 5e-4

56406 1.2 0.9

Table 6.  Teacher model hyperparameters and temperature values for datasets.
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shift in the coauthor networks was further supported by the performance of GNNs, where the test performance 
did not show a significant drop compared to the training performance. In contrast, a significant covariate shift 
was observed in the synthetic dataset generated by us, where 100% of the test features demonstrated a shift due 
to the Gaussian noise we introduced.

Performance of student models trained on TB dataset
For this dataset, the maximum depth for HistGradientBooster, XGBoost, Random Forest, and LightGBM was 
set to 12. For ExtraTrees, it was set to 16. As the dataset was complex, we set the maximum number of leaf 
nodes to 300. Table 10 represents the performance results of various models on the training, validation, and test 
datasets. We do see a drop in performance on the test set. This drop is attributed to covariate and label shift, as 
explained in detail under “Covariate and label shift across datasets”. Based on the comprehensive evaluation of 
various models, LightGBM achieved the best performance as a student model. HistGradientBooster emerged as 
the next best-performing model. Figure 5 displays the plot of the performance metrics for various models. We 
did not apply post-hoc calibration techniques, such as temperature scaling or isotonic regression, because the 

Model Acc_Train ± std Acc_Val ± std Acc_test ± std F1_train ± std F1_Val ± std F1_test ± std

Teacher 0.974449 ± 0.002941 0.963229 ± 0.002287 0.902489 ± 0.001697 0.974466 ± 0.002947 0.963268 ± 0.002289 0.902543 ± 0.001731

ExtraTrees trained on hard labels 0.9252±0.0010 0.919661 ±0.0008 0.78278 ± 0.0017 0.92474 ±0.00102 0.919 ±0.00081 0.78084±0.0016

ExtraTrees trained on logits  0.9179± 0.00066 0.9134±0.00111  0.7873±0.00316 0.9173±0.00066  0.91272±0.001132  0.78531±0.00324

XGBoost trained on hard labels 0.947±0.0000 0.931±0.0000 0.793±0.0000 0.9469±0.0000 0.9307±0.0000 0.7922±0.0000

XGBoost trained on logits 0.943±0.0000 0.930±0.0000 0.806±0.0000 0.9423±0.0000 0.9298±0.0000 0.8049±0.0000

Random Forest trained on hard labels 0.9431± 0.00098 0.931±0.0014 0.7770± 0.00056 0.9428±0.0009 0.9306 ± 0.0014 0.7753 ± 0.00064

Random Forest trained on logits  0.933± 0.00233  0.922±0.002 0.7942±0.0063  0.9327±0.0023  0.9217±0.00285  0.7927±0.00680

HistGrad trained on hard labels 0.964±0.0008 0.947±0.0009 0.788±0.0028 0.9637±0.0008 0.9467±0.0009 0.7864±0.0028

HistGrad trained on logits 0.948±0.0002 0.938±0.0004 0.807±0.0046 0.9478±0.0002 0.9373±0.0004 0.8055±0.0063

LightGBM trained on hard labels 0.962±0.0000 0.944±0.0000 0.786±0.0000 0.9616±0.0000 0.9438±0.0000 0.7847±0.0000

LightGBM trained on logits 0.949±0.0003 0.936±0.0006 0.813±0.0016 0.9488±0.0004 0.9357±0.0006 0.8121±0.0014

Table 10.  Model performance-TB dataset. Note: Values in bold denote the performance of student models that 
learned well from the teacher model and outperformed their counterparts trained on hard labels. Std denotes the 
standard deviation

 

Dataset Subset Chi-squared p-value

CoAuthorPhysics

Train-Val 3.91529 0.4175

Train-Test 3.91878 0.4171

Val-Test 4.87626 0.3002

CoAuthorCS

Train-Val 12.0746822 0.60030517

Train-Test 12.309576 0.581456575

Val-Test 11.29236684 0.662930907

Synthetic Dataset

Train-Val 3.273938 0.19456

Train-Test 0.71801 0.6983

Val-Test 0.5464 0.76091

Table 9.  Comparison of Chi-squared and p-value across non-cell-based datasets and subsets.

 

Dataset Subset Mean KS statistic Chi-squared p-value

TB

Train-Val 0.0295 0.0085 0.9262

Train-Test 0.0588 3555.013 0

Val-Test 0.0532 1480.303 0

Placenta

Train-Val 0.2950 0.1271 1

Train-Test 0.3160 0.1419 1

Val-Test 0.0330 0.0629 1

BRCA-M2C

Train-Val 0 0.00010485247150756805 0.999

Train-Test 0.0620 1035.9097697143552 1.1351457610072601e-225

Val-Test 0.0741 341.3532652686813 7.517618058244497e-75

Table 8.  Comparison of mean KS statistic, chi-squared, and p-value across datasets and subsets.
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probabilities obtained from logits were reasonably well-calibrated. This is evident in Fig. 4, where the calibration 
curve is close to the diagonal. Moreover, in binary classification, the relationship between the predicted 
probability and the actual probability of the positive class is inherently more straightforward than in multi-class 
classification. Table 11 presents the distillation quality scores. The table shows that all student models exhibited 
performance gains, with each demonstrating a higher test F1 score than its counterpart trained on hard labels. 
Using teacher logits improves student performance by capturing important graph context. However, since the 
teacher directly leverages neighbor aggregation in the high homophily setting, students relying solely on node 
features may not fully match its performance. This is why we refer to these student models as partial proxies for 

Model Best F1 score Number_of_parameters Distillation quality score % Inc/Dec/NC

Random Forest as Student 0.79950 1945.89 0.0669 3.04↑

LightGBM as Student 0.8135 7063.295 0.0829 3.67 ↑

HistGradientBooster as Student 0.8118 7166.25 0.084355 2.863↑

ExtraTrees as student 0.78855 1143.813 0.0693 0.78↑

XGBoost as student 0.8049 4399.565 0.0753 1.603 ↑

Table 11.  Distillation quality scores of various student models (TB) and analysis of performance variations (F1 
Score): percentage increase, decrease, or no change in student models relative to their counterparts trained on 
hard labels.

 

Figure 4.  Calibration plot of raw logits converted to probabilities for positive class-TB dataset.

 

Figure 5.  Performance of best performing student models and their counterparts on the test set-TB. We see 
student models outperforming their counterparts.
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the teacher. While the teacher-model architectures remain consistent with our prior work50, this paper (Table 
10) presents an evaluation of these baselines on a slightly different dataset. Notably, all performance metrics are 
now computed globally across the entire dataset, unlike the batch-level average accuracy scores reported in50.

Performance of student models trained on placenta dataset
The dataset exhibited extreme class imbalance, so we employed a weighted cross-entropy loss while training 
the teacher model. The class weights were determined based on the recommendations provided in the paper51. 
These weights were applied to ensure fair treatment of minority classes during training. When training the 
student models using the logits from the teacher, we did not explicitly use these weights, as the logits already 
encapsulated the class imbalance information. However, we applied the same weights to maintain consistency 
and address the class imbalance to train the counterpart models that used hard labels.

For this dataset, the maximum depth for HistGradientBooster, Random Forest, and XGBoost was set to 
12. For LightGBM and ExtraTrees, it was set to 16. Additionally, the maximum number of leaves was fixed at 
50 for all models. The model performances are summarized in Table 12. As shown in their paper51, all scalable 
GNN architectures–GraphSAGE, ClusterGCN, GraphSAINT, ShaDow, and SIGN, performed within 2% mean 
accuracy of each other, with none surpassing 65% accuracy. This indicates that the challenges observed are not 
unique to our approach but are inherent to the highly imbalanced and complex nature of the dataset.

The calibration plots of logits for the teacher model, without using and using weighted cross-entropy loss, are 
shown in Fig. 6. We notice that the weighted cross-entropy rebalanced the teacher model’s focus. It improved the 
calibration for minority classes (Class 3 and Class 8) while causing a decrease in calibration for well-represented 
classes. Without the weighted cross-entropy loss, the teacher tended to favor majority classes, assigning more 
reliable probabilities while struggling to calibrate probabilities for the minority classes. Since our primary 
objective was to enhance generalization and ensure equal importance for all classes(critical for accurately 
representing placenta function), we employed the weighted cross-entropy loss during the teacher training. The 
calibration curves obtained after using weighted cross-entropy loss are shown in Fig. 7.

Model Acc_Train ± std Acc_Val ± std Acc_test ± std F1_train ± std F1_Val ± std textbfF1_test ± std

Teacher 0.5083 ± 0.0090 0.5087± 0.0116 0.5463 ±0.0114 0.4939 ±0.0118 0.4662 ±0.0110 0.5043 ±0.0066

ExtraTrees trained on hard labels 0.3768 ± 0.00125 0.4188± 0.0010 0.4706 ± 0.00167 0.31061 ± 0.00286 0.3367 ± 0.0012 0.3905 ± 0.0016

ExtraTrees trained on logits 0.4311 ± 0.0002 0.4287 ± 0.0005 0.4595 ± 0.0024 0.4152 ± 0.0010 0.4070 ± 0.0017 0.4458 ± 0.0004

ExtraTrees trained on Calibrated
probs using IR 0.4599 ± 0.0002 0.4554 ± 0.0004 0.5074 ± 0.0001 0.3788 ± 0.0005 0.3547 ± 0.0010 0.4151 ± 0.0006

ExtraTrees trained on Calibrated
probs using temp scaling-BS 0.4331 ± 0.0004 0.4505 ± 0.0005 0.4955 ± 0.0003 0.3722 ± 0.0009 0.3674 ± 0.0013 0.4162 ± 0.0018

XGBoost trained on hard labels 0.4083 ± 0.0000 0.4238 ± 0.0000 0.4703 ± 0.0000 0.3736 ± 0.0000 0.3695 ± 0.0000 0.4203 ± 0.0000

XGBoost trained on logits 0.4253 ± 0.0000 0.4227 ± 0.0000 0.4457 ± 0.0000 0.4179 ± 0.0000 0.4099 ± 0.0000 0.4427 ± 0.0000

XGBoost trained on Calibrated
probs using IR 0.4652 ± 0.0000 0.4590 ± 0.0000 0.5108 ± 0.0000 0.3848 ± 0.0000 0.3578 ± 0.0000 0.4169 ± 0.0000

XGBoost trained on calibrated
probs using temp scaling-BS 0.4384 ± 0.0000 0.4536 ± 0.0000 0.4985 ± 0.0000 0.3784 ± 0.0000 0.3692 ± 0.0000 0.4182 ± 0.0000

HistGrad trained on hard labels 0.4227 ± 0.0011 0.4209 ± 0.0010 0.4621 ± 0.0005 0.4029 ± 0.0013 0.3838 ± 0.0014 0.4286 ± 0.0012

HistGrad trained on logits 0.4277 ± 0.0007 0.4255 ± 0.0008 0.4522 ± 0.0005 0.4198 ± 0.0007 0.4128 ± 0.0008 0.4482 ± 0.0006

HistGrad trained on Calibrated
probs using IR 0.4671 ± 0.0002 0.4598 ± 0.0003 0.5106 ± 0.0004 0.3891 ± 0.0004 0.3605 ± 0.0005 0.4186 ± 0.0006

HistGrad trained on calibrated
probs using temp scaling-BS 0.4388 ± 0.0004 0.4537 ± 0.0002 0.4981 ± 0.0005 0.3838 ± 0.0004 0.3737 ± 0.0010 0.4216 ± 0.0014

Random Forest trained on hard labels 0.38124 ± 0.0001 0.4222 ± 0.00124 0.4711 ± 0.0011 0.3203 ± 0.00129 0.34376 ± 0.0012 0.39527 ± 0.0004

Random Forest trained on logits 0.4296 ± 0.0015 0.4274 ± 0.0012 0.4620 ± 0.0049 0.4106 ± 0.0002 0.4016 ± 0.0011 0.4444 ± 0.0033

Random Forest trained on Calibrated
probs using IR 0.4571 ± 0.0007 0.4546 ± 0.0006 0.5065 ± 0.0007 0.3714 ± 0.0007 0.3497 ± 0.0005 0.4097 ± 0.0008

Random Forest trained on Calibrated
probs using temp scaling-BS 0.4348 ± 0.0011 0.4505 ± 0.0004 0.4984 ± 0.0007 0.3613 ± 0.0012 0.3556 ± 0.0013 0.4081 ± 0.0018

LightGBM trained on hard labels 0.4242 ± 0.0008 0.4241 ± 0.0021 0.4667 ± 0.0009 0.4004 ± 0.0010 0.3814 ± 0.0027 0.4276 ± 0.0012

LightGBM trained on logits 0.4278 ± 0.0008 0.4250 ± 0.0007 0.4503 ± 0.0015 0.4198 ± 0.0006 0.4118 ± 0.0006 0.4460 ± 0.0012

LightGBM trained on Calibrated
probs using IR 0.4670 ± 0.0002 0.4596 ± 0.0002 0.5105 ± 0.0002 0.3896 ± 0.0006 0.3606 ± 0.0010 0.4191 ± 0.0009

LightGBM trained on Calibrated
probs using temp scaling-BS 0.4390 ± 0.0001 0.4536 ± 0.0002 0.4979 ± 0.0002 0.3842 ± 0.0001 0.3736 ± 0.0007 0.4213 ± 0.0004

Table 12.  Model performance-placenta dataset. Note: The logits represent the raw outputs of the teacher 
model. IR denotes Isotonic Regression, BS denotes Brier score reduction, and LL denotes log loss reduction. 
Values in bold denote the performance of student models that learned well from the teacher model and 
outperformed their counterparts trained on hard labels. Std denotes the standard deviation. Different class-
weighting than the one applied here may yield different teacher logits and, consequently, different student-
model performances
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As highlighted in the paper121, the effect of temperature scaling in the presence of class imbalance has not 
been adequately explored. Our experiments found that using a temperature that minimized the log loss was 
not suitable. Instead, we relied on the temperature that minimized the stratified Brier score. Additionally, we 
observed that isotonic regression behaved unstably under extreme class imbalance. Specifically, Classes 3 and 8, 
being minority classes, exhibited disproportionately high scores. This observation aligns with the findings of122, 
where the authors noted that isotonic regression tends to perform unstably in highly imbalanced scenarios. We 
also found that calibration achieved using the temperature that minimized the stratified Brier score was superior 
to isotonic regression. This improvement was reflected in the performance of student models, as the temperature-
scaled probabilities provided better guidance than the probabilities obtained from isotonic regression. The 
performance achieved with uncalibrated logits was higher than that obtained with calibrated logits after post-
hoc calibration. We attribute this to the insufficient amount of data available per class, which is critical for the 
effectiveness of these calibration methods. This observation aligns with the findings of107, where the authors 
noted that post-hoc calibration methods require sufficient data per class to perform effectively. The stratified 
Brier scores are reported in Table 13. The temperature obtained through our temperature scaling process resulted 
in a worse stratified Brier score for the minority class 3. This highlights the limitation of standard temperature 
scaling in addressing class-specific miscalibration. We recommend an advanced temperature scaling approach 

Figure 7.  (A) Calibration plot: raw logits converted to probabilities. (B) Calibration plot after applying 
isotonic regression. (C) Calibration plot after applying temperature scaling with a temperature that reduces 
Stratified Brier score.

 

Figure 6.  (A) Calibration plot: probabilities derived from raw logits of the teacher model trained with 
standard cross-entropy loss. (B) Calibration plot: probabilities derived from raw logits of the teacher model 
trained with weighted cross-entropy loss.
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designed to improve class-wise calibration which is necessary to address this issue effectively123. Contrary to 
expectations, using calibrated logits did not improve training set performance (eventhough the logits were 
specifically calibrated for this training set). We hypothesize that temperature scaling likely compressed the logits 
to an extent that it masked the tree model’s optimal decision splits. Given the dataset’s imbalance, the weighted 
F1 score is a more reliable metric to evaluate model performance. As observed from the plots, student models 
trained using teacher logits consistently outperform their counterparts trained on hard labels. Figure 8 presents 

Figure 8.  Performance of best performing student models and their counterparts on the test set-placenta. We 
see student models outperforming their counterparts.

 

Method/Data Stratified Brier Score

Before Calibration

Class 0: 0.4236

Class 1: 0.2080

Class 2: 0.2875

Class 3: 0.3420

Class 4: 0.3004

Class 5: 0.1902

Class 6: 0.0985

Class 7: 0.3315

Class 8: 0.1338

Overall: 0.2573

Isotonic Regression

Class 0: 0.4117

Class 1: 0.1817

Class 2: 0.2634

Class 3: 0.4695

Class 4: 0.2294

Class 5: 0.1612

Class 6: 0.1477

Class 7: 0.3938

Class 8: 0.4662

Overall: 0.3027

Temp Scaling-Reduces Brier Score

Class 0: 0.4410

Class 1: 0.1911

Class 2: 0.2799

Class 3: 0.3485

Class 4: 0.3038

Class 5: 0.1841

Class 6: 0.0921

Class 7: 0.3246

Class 8: 0.1094

Overall: 0.2527

Table 13.  Stratified brier scores-placenta dataset.
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a comparative analysis of the performance of the best-performing student models and their counterparts on the 
test set. Standard deviations are represented by the error bars.

Table 14 highlights the trade-off between model complexity, performance, and distillation quality. Models 
with fewer parameters, such as Random Forest and ExtraTrees, are simpler. ExtraTrees has the lowest parameter 
count. In contrast, LightGBM and XGBoost achieve the best F1 scores, indicating superior predictive performance. 
The distillation quality score balances model complexity and performance. LightGBM, HistGradientBooster, 
and XGBoost perform well. However, their higher complexity results in slightly worse distillation scores. As 
indicated in Table 14, all models benefit from knowledge distillation, consistent with the trend observed in our 
TB dataset. Among the student models, the Random Forest and ExtraTrees regressors benefited the most, while 
HistGradientBooster emerged as the best-performing model overall.

Performance of student models trained on TCGA breast cancer cell classification dataset
For this dataset, the maximum depth for HistGradientBooster, Random Forest, and XGBoost was set to 12. 
For LightGBM and ExtraTrees, it was set to 16. Additionally, the maximum number of leaves was fixed at 50 
for all models. We observe that most student models outperform the teacher. We primarily attribute this trend 
to the relatively smaller training data or the low homophily. Despite this limitation, the teacher’s logits remain 
meaningful in guiding the smaller student models. The smaller students benefit from a two-fold advantage: 
their reduced size allows for simplicity, while they leverage the guidance of the large teacher to achieve 
superior performance. The performance of the models is tabulated in the Table 15. We observed that raw logits 
consistently outperformed calibrated probabilities for most models. We attribute it to the fact that it preserved 
a good balance between resolution and reliability when compared to calibrated probabilities obtained from 
isotonic regression, which exhibited higher reliability but a lower resolution. The calibration plots are shown in 
the Fig. 9. The stratified Brier scores and log loss values achieved are tabulated in the Table 16. When calibrated 
probabilities from temperature scaling were used, we observed a drop in student model performance on the 
test set. This could be because, although temperature scaling improved the calibration of teacher logits on the 
validation folds during 5-fold cross-validation, the resulting calibration might not have generalized well to the 
test set under distribution shift117. The distillation quality scores and the effectiveness of the logits from teacher 
models in enhancing or limiting the student’s classification capabilities are presented in Table 17. Even though 
the students outperform their teacher, we do not observe a perfect zero distillation score. This is because our 
evaluation assigns equal importance to performance and complexity. Since the students retain some level of 
complexity, the score is not entirely zero but remains very close to zero. Figure 10 presents a comparative analysis 
of the performance of the best-performing student models and their counterparts on the test set.

Ablation study results
Feature importance: comparing students trained with and without teacher guidance
We performed this ablation study on the TB and BRAC_M2C datasets, as these were the datasets from which 
we extracted local cell graphs and morphological features. In our experiments with the TB dataset, the student 
model guided by the teacher placed greater emphasis on morphological characteristics than its counterpart 
guided by hard labels. This can be seen in the Figs. 11 and 12. Interestingly, the teacher-guided student prioritized 
features such as contrast, area, mean_image, circularity, and homogeneity, along with local cell graph features, 
which align with real-life considerations. For example, pathologists often use circularity to distinguish AFBs 
from the nucleus of activated macrophages. AFBs are rod-shaped and less circular compared to the nucleus of 
macrophages. This is also seen in the SHAP plots. We also notice higher contrast values for AFB. AFBs demonstrate 
distinct transitions or boundaries between texture regions. This likely stems from its unique cell wall properties, 
creating sharp intensity changes and well-defined structures. As per the expert, the staining procedure, which 
uses a red dye for AFB and a blue dye for surrounding tissue, may further contribute to the higher gray-level 
co-occurrence matrix (GLCM) contrast observed for AFB. Eccentricity is the maximum distance of a node from 
all other nodes in a graph. For AFB, higher eccentricity reflects their spatial isolation within tissue networks. It 
aligns with their biological behavior of immune evasion and persistence in host tissues. In contrast, the model 
trained on hard labels emphasized features like node clustering, hub-promoted index, and eccentricity. AFBs 
exhibit higher node clustering coefficients because they tend to form local clusters or communities. The AFBs 
also have a higher hub-promoted index. These nodes are pivotal in connecting various parts of the network, 
acting as a hub. According to domain experts, this aligns with the biological context, where the presence of AFB 
triggers the host’s inflammatory responses and activates the immune system. For the BRAC_M2C dataset, the 

Model Best F1 Score Number_of_parameters Distillation quality score % Inc/Dec/NC

Random forest as student 0.4477 1333.0885 0.07528 13.1 ↑

LightGBM as student 0.4472 2654.90 0.089 4.2910 ↑

HistGradientBooster as Student 0.4488 2532.403 0.0862 4.42066 ↑

ExtraTrees as student 0.4462 309.60115 0.0664 13.8↑

XGBoost as student 0.4427 2762.976 0.09459 5.329↑

Table 14.  Distillation quality scores of various student models (placenta) and analysis of performance 
variations (F1 score): percentage increase, decrease, or no change in student models relative to their 
counterparts trained on hard labels.
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LightGBM model emerged as the best-performing model and was consequently used for the analysis. When 
trained on hard labels, the LightGBM model emphasized features such as degree, betweenness centrality, mean_
all_neighbors, and Salton index. Figure 13 shows the plot of feature importance. In contrast, when guided by 
the teacher’s logits, the model emphasized degree, and the hub promoted index. node clustering, sørensen, and 
eccentricity. To further evaluate the biological relevance of these features, we analyzed their contributions using 
SHAP plots shown in Fig. 14. Degree values were moderate for lymphocytes, lower for breast cancer cells, and 
highest for stromal cells because of their extensive connections. Node clustering was high for lymphocytes and 
breast cancer cells. This aligns with their biological behavior, as lymphocytes naturally cluster near cancer cells 
in immune hotspots, forming localized areas of immune activity124. It was lower for stromal cells as they are 
separated by extracellular matrix such as collagen and are not as densely clustered as lymphocytes or cancer cells. 
The Hub-Promoted Index (HPI) measured the overlap between neighbors of two connected nodes. It was lower 
for stromal cells due to their diverse and dispersed connections with fewer overlapping neighbors and higher 
for breast cancer cells because of their dense clustering and high number of common neighbors. The Mean_
all_neighbors feature measured the average distance between a node and all its neighbors in the graph. Breast 
cancer cells exhibited higher values, which was likely driven by some long-distance connections with stromal 
cells125. Breast cancer cells have a higher Sørensen index when compared to lymphocytes due to their tight 
clustering and significant overlap of neighbors. This shows their cohesive role in the tumor microenvironment. 

Model Acc_Train ± std Acc_Val ± std Acc_test ± std F1_train ± std F1_Val ± std F1_test ± std

Teacher Model 0.9818 ± 0.0021 0.9466 ± 0.0013 0.9111 ± 0.0138 0.9818 ± 0.0021 0.9460 ± 0.0013 0.9059 ± 0.0159

ExtraTrees trained on hard labels 0.9448 ±0.0020 0.9447 ±0.001 0.90392 ± 0.007 0.9449 ± 0.0019 0.94487 ± 0.0011 0.90752 ±0.006

ExtraTrees trained on logits 0.95027 ± 0.0031 0.9438 ± 0.00533 0.95774064 ± 0.00344 0.95031 ± 0.0031 0.94384 ± 0.0053 0.95788 ± 0.00344

ExtraTrees trained on Calibrated
probs using IR 0.9512 ± 0.0025 0.94827 ± 0.0061 0.9584 ± 0.0037 0.9513 ± 0.0026 0.9483 ± 0.0061 0.9587 ± 0.0037

ExtraTrees trained on Calibrated
probs using temp scaling-BS 0.95000 ± 0.0030 0.9464 ± 0.004519 0.95623 ± 0.003135 0.9500 ± 0.0030 0.94645 ± 0.0045 0.9565 ± 0.0032

ExtraTrees trained on Calibrated
probs using temp scaling-LL 0.95051 ± 0.002 0.94643 ± 0.0041 0.95751 ± 0.0023 0.950 ± 0.0027 0.9464 ± 0.00422 0.95777 ± 0.0024

XGBoost trained on hard labels 0.9683 ± 0 0.9614 ± 1.11e-16 0.90708 ± 0 0.9682 ± 0 0.9613 ± 1.11e-16 0.9105 ± 0

XGBoost trained on logits 0.9575 ± 0 0.9508 ± 0 0.9611 ± 0 0.9574 ±0 0.9507 ± 0 0.9613 ±0

XGBoost trained on calibrated
probs using IR 0.96689 ± 0.0000 0.95959 ± 0.0000 0.9085 ± 0.0000 0.96682 ± 0.0000 0.9595 ± 0.0000 0.9119 ± 0.0000

XGBoost trained on calibrated
probs using temp scaling-BS 0.9653 ± 0 0.9573 ± 0 0.9073 ± 0 0.9653 ± 0 0.9572 ± 0 0.9109 ±0

XGBoost trained on calibrated
probs using temp scaling-LL 0.9653 ± 0 0.9591 ±0 0.9084 ±0 0.9652 ± 0 0.959 ± 1.110e-16 0.9119 ± 1.1105e-16

HistGrad trained on hard labels 0.9843 ± 0.0002 0.9696 ± 0.0016 0.9102 ± 0.0007 0.984 ± 0.00024 0.9696 ± 0.00164 0.91388 ± 0.0007

HistGrad trained on logits 0.9648 ± 0.00115 0.9579 ±0.0008 0.9568 ±0.00064 0.9648 ± 0.00114 0.9579 ± 0.00087 0.9573 ± 0.00062

HistGrad trained on calibrated
probs using IR 0.9743 ± 0.0001 0.9666 ± 0.0005 0.9102 ± 0.0004 0.9743 ± 0.0001 0.9666 ± 0.0005 0.9138 ± 0.0004

HistGrad trained on calibrated
probs using temp scaling-BS 0.97440 ± 0.0002 0.9667 ± 0.0009 0.91006 ± 0.0007 0.9743 ± 0.0002 0.9667 ± 0.0009 0.9137± 0.0007

HistGrad trained on calibrated
probs using temp scaling-LL 0.9738 ± 0.0001 0.966 ± 0.002 0.9107 ± 0.0006 0.9738 ± 0.0001 0.966 ± 0.0025 0.9142 ± 0.00056

Random Forest trained on
hard labels 0.9537±0.0015 0.9469±0.0018 0.8999±0.00168 0.9615±0.001267 0.953739±0.0015 0.904±0.0015

Random Forest trained on logits 0.9557±0.0007 0.9474±0.0016 0.9229±0.0063 0.9558±0.0007 0.9474±0.0016 0.9254±0.0059

Random Forest trained on calibrated
probs using IR 0.9688 ± 0.0005 0.9597 ± 0.0002 0.9069 ± 0.0013 0.9688 ± 0.0005 0.9597 ± 0.0001 0.9107 ± 0.0012

Random trained on calibrated
probs using temp scaling-BS 0.9688±0.0004 0.9597±0.0008 0.9070±0.0012 0.9687±0.0004 0.9597±0.0008 0.9108±0.0011

Random trained on calibrated
probs using temp scaling-LL 0.9688±0.0008 0.9593±0.0013 0.9074±0.0006 0.9688±0.0008 0.9593±0.0013 0.9112±0.0005

LightGBM trained on hard labels 0.9793 ± 0.0 0.9683 ± 0.0 0.9103 ± 0.0 0.9793 ± 0.0 0.9683 ± 0.0 0.9139 ± 0.0

LightGBM trained on logits 0.9648 ± 0.0 0.9555 ± 0.0 0.9626 ± 0.0 0.9648 ± 0.0 0.9554 ± 0.0 0.9629 ± 0.0

LightGBM trained on Calibrated
probs using IR 0.9746 ± 0.0000 0.9641 ± 0.0000 0.9101 ± 0.0000 0.9746 ± 0.0000 0.9641 ± 0.0000 0.9138 ± 0.0000

LightGBM trained on Calibrated
probs using temp scaling-BS 0.9742 ± 0.0 0.9656 ± 0.0 0.9104 ± 0.0 0.9742 ± 0.0 0.9655 ± 0.0 0.9140 ± 0.0

LightGBM trained on Calibrated
probs using temp scaling-LL 0.9742 ± 0.0 0.9656 ± 0.0 0.9112 ± 0.0 0.9742 ± 0.0 0.9656 ± 0.0 0.9148 ± 0.0

Table 15.  Model performance-breast cancer dataset. Note: The logits represent the raw outputs of the teacher 
model. IR denotes Isotonic Regression, BS denotes Brier score reduction, LL denotes Log Loss reduction. 
Values in bold denote the performance of student models that learned well from the teacher model and 
outperformed their counterparts trained on hard labels. Std denotes the standard deviation
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Model Best F1 Score Number_of_parameters Distillation Quality Score % Inc/Dec/NC

Random Forest as Student 0.9313 787.085 0.0047 2.8↑

LightGBM as Student 0.9629 906.29 0.0055 5.36 ↑

HistGradientBooster as Student 0.958 938.4595 0.0057 4.75 ↑

ExtraTrees as student 0.9624 269 0.0016 5.35 ↑

XGBoost as student 0.9613 822.25 0.005 5.58 ↑

Table 17.  Distillation quality scores of various student models (breast cancer) and analysis of performance 
variations (F1 Score): percentage increase, decrease, or no change in student models relative to their 
counterparts trained on hard labels.

 

Method/Data Stratified Brier Score Log Loss

Before Calibration
Class 0: 0.01773
Class 1: 0.015629
Class 2: 0.011969
Overall: 0.015111

Class 0: 0.03479
Class 1: 0.05215
Class 2: 0.02904
Overall:0.038663

Isotonic Regression
Class 0: 0.016961
Class 1: 0.0156
Class 2: 0.012267
Overall: 0.0149

Class 0: 0.037611
Class 1: 0.055318
Class 2: 0.030436
Overall: 0.041

Temp Scaling - Reduces Brier Score
Class 0: 0.01753
Class 1: 0.01581
Class 2: 0.01187
Overall: 0.0150708

Class 0: 0.03534
Class 1: 0.05317
Class 2: 0.02959
Overall: 0.039368

Temp Scaling - Reduces Log Loss
Class 0: 0.01778
Class 1: 0.01562
Class 2: 0.01199
Overall: 0.015127

Class 0: 0.03474
Class 1: 0.05206
Class 2: 0.02899
Overall: 0.03860

Table 16.  stratified brier scores and log loss values-breast cancer dataset.

 

Figure 9.  (A) Calibration plot: raw logits converted to probabilities. (B) Calibration plot after applying 
isotonic regression. (C) Calibration plot after applying temperature scaling with a temperature that reduces the 
Stratified Brier score. (D) Calibration plot after applying temperature scaling with a temperature that reduces 
negative log-likelihood (log loss).
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We believe the models primarily rely on features such as degree, hub-promoted index, mean_all_neighbors, 
node clustering, and Sørensen index to differentiate breast cancer cells from other types. In contrast, features 
like degree and node clustering play a key role in distinguishing stromal cells from other cell types. Observing 
how the model highlights betweenness centrality as a crucial feature is also interesting. As seen from the plots, 
this metric is particularly high for lymphocytes, suggesting this is one of the primary features the model relies on 
to distinguish lymphocytes from other cell types. This may be attributed to the biological role of lymphocytes, 
which infiltrate tumors as part of the immune response126. They often localize to the interface between tumor 
and stromal regions, where they may be blocked from entering the tumor by soluble mediators produced by 
the cancer cells127. This placement significantly enhances their betweenness centrality and reflects their role in 
mediating interactions between the immune system and the tumor microenvironment.

Training with ensembled output
In the analysis of our ensemble model performance, where logits from CG-JKNN (primary teacher) and raw 
scores/predictions from the best student are combined, we observe interesting trends concerning the influence 

Figure 11.  SHAP summary plots comparing feature importance for different cell types. The top row (A,B) 
represents features considered important when the model is trained on hard labels, while the bottom row 
(C,D) shows the important features when trained on logits. Note that the SHAP results do not provide 
sufficient evidence to clearly discern differences in the ’closeness of node’ feature between AFB and nucleus of 
activated macrophage, limiting our ability to draw biological conclusions on this metric.

 

Figure 10.  Performance of best performing student models and their counterparts on the test set-breast 
cancer. We see student models outperforming their counterparts.
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Figure 13.  Feature importance comparison for LightGBM models trained on hard labels and logits. (A) Shows 
the feature importances when the model is trained on hard labels. (B) Represents the feature importances 
when the model is trained on logits distilled from the teacher model. (C) Compares the feature importances for 
both scenarios. The brown color indicates the overlap of feature importance between models trained on hard 
labels and logits.The feature numbers on the x-axis correspond to the features listed in Table 4.

 

Figure 12.  Feature importance comparison for LightGBM models trained on hard labels and logits. (A) Shows 
the feature importances when the model is trained on hard labels. (B) Represents the feature importances 
when the model is trained on logits distilled from the teacher model. (C) Compares the feature importances for 
both scenarios. The brown color indicates the overlap of feature importance between models trained on hard 
labels and logits. The feature numbers on the x-axis correspond to the features listed in Table 3.
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of different teachers on student models as shown in the Table 18. It is important to note that the comparisons (of 
F1-test scores) here are made against the baseline scenario in which only the CG-JKNN teacher model guides 
the students. In the case of the TB and BRAC_M2C datasets, the best-performing student model was LightGBM. 
On the other hand, for the Placenta dataset, the best-performing student model was HistGradientBooster.

In the TB dataset, the ExtraTrees model, when taught by LightGBM along with CG-JKNN, actually exhibits 
an increase in test set performance in contrast to when it is solely taught by the CG-JKNN. However, the XGBoost 
and Random Forest show a drop in performance. This suggests that integrating LightGBM’s guidance doesn’t 
always align with the learning patterns beneficial to all student models. In the Placenta dataset, all student models 
benefited from CG-JKNN rather than being taught by the joint teachers HistGradientBooster and CG-JKNN.

In the case of the BRAC_M2C dataset, we observe a performance improvement in HistGradientBooster 
when guided by the joint teachers LightGBM and CG-JKNN. However, XGBoost prefers to be guided solely 
by CG-JKNN, as it assigns zero weight to the raw scores from LightGBM. Additionally, a drop in performance 
is observed for the ExtraTrees and Random Forest models. Based on the above results, we should note that the 
influence of the ’best’ student’s output is not universally beneficial, as their effectiveness can vary depending on 
the specific characteristics of the dataset and the learning dynamics of the other models being guided.

Dataset Model Weight GNN
Weight
Student

Accuracy F1 % Inc/Dec/
NC F1Train Val Test Train Val Test

TB

Random Forest 0.8 0.2 0.9022 0.8938 0.7793 0.9014 0.8926 0.7763 2.9 ↓

HistGrad 1 0 0.9482 0.9384 0.8116 0.948 0.9377 0.8118 NC

ExtraTrees 0.9 0.1 0.9184 0.9131 0.7912 0.9178 0.9124 0.7894 0.107↑

XGBoost 0.9 0.09 0.9343 0.9235 0.8020 0.9338 0.9227 0.8006 0.53 ↓

Placenta

LightGBM 0.8 0.2 0.4262 0.4241 0.4485 0.4178 0.4128 0.4459 ↓ 0.29

Random Forest 0.5 0.5 0.4288 0.4285 0.4609 0.4087 0.4041 0.4451 ↓ 0.58

XGBoost 1 0 0.4253 0.4227 0.4457 0.4179 0.4099 0.4427 NC

ExtraTrees 0.2 0.8 0.4252 0.4256 0.4562 0.4092 0.4073 0.4428 ↓0.761

Breast
Cancer

Random Forest 0.7 0.3 0.9543 0.948 0.9212 0.9544 0.948 0.9237 ↓0.82

XGBoost 1 0 0.9575 0.9508 0.9611 0.9574 0.9507 0.9613 NC

HistGrad 0.7 0.3 0.9623 0.9559 0.9636 0.9623 0.9558 0.9638 ↑0.61

ExtraTrees 0.8 0.2 0.9525 0.9479 0.961 0.9525 0.9479 0.9612 ↓0.12

Table 18.  Performance of students with ensembled outputs for TB, placenta, and breast cancer datasets. The 
best-performing student (based on the performance and its low variability across multiple runs) for the TB 
dataset was LightGBM, for the Placenta dataset it was HistGrad, and for the Breast Cancer dataset it was 
LightGBM.

 

Figure 14.  SHAP summary plots comparing feature importance for different cell types. The top row (A–C) 
represents features considered important when the model is trained on hard labels. The bottom row (D–F) 
corresponds to features considered important when the model is trained on logits.
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A comparative analysis of knowledge distillation in neural and non-neural student models
Table 19 summarizes the optimized hyperparameters for the ANN student model. Table 20 shows that the ANN 
benefits from incorporating teacher logits into the training process. For each dataset, TB, Placenta, and Breast 
Cancer, the models trained with teacher logits outperform those trained solely on hard labels. Moreover, when 
comparing different weighting schemes for the combined loss, using an equal weight (α = 0.5) for the cross-
entropy and KL divergence losses yields the best performance compared to the α value tuned as a hyperparameter 
in most cases.

From Table 21, we can observe that although the ANN student model undergoes additional hyperparameter 
tuning and possesses a greater number of parameters compared to the best-performing non-neural model, it 
does not consistently outperform the non-neural counterparts on all datasets. In particular, for the Placenta and 
Breast Cancer datasets, the non-neural students achieve competitive performance, while the ANN students do 
not significantly improve. Only in the TB dataset does the ANN student show a slight 1.17% improvement over 
its non-neural counterpart, but this gain comes at the cost of additional parameters. These results validate that 
non-neural student models are viable and competitive alternatives, achieving comparable performance with 
fewer parameters and less tuning. Pure logit-regression on teacher’s logits could further close the performance 
gap, and while increasing the ANN’s capacity may boost performance, it would inflate model size and undermine 
the goal of a lightweight student.

Results of generalizability on non-biological graph datasets
This section investigates whether our approach is effective when applied to non-cell graph datasets. Unlike cell 
graphs, where morphological and graph-specific features are typically extracted, these experiments utilize only 
the existing features provided in the datasets.

Dataset Complexity-ANN
Estimated model 
complexity-Best performing 
non-neural model

Distillation Quality Score
% Inc/Dec/NC (F1-score) in 
comparison to its counterpart 
(trained on hard labels)

% Inc/Dec/
NC (F1-
score) in 
comparison 
to best 
non-neural 
student 
model

TB 14366 7063.295 0.11 0.34% ↑ 1.17% ↑

Placenta 5781 2532.403 0.1259 3.27% ↑ 1.6% ↓

Breast Cancer 1923 906.29 0.0116 0.6745% ↑ 0.74 % ↓

Table 21.  Comparison of ANN student models and best-performing non-neural models: complexity, 
distillation quality, and relative performance. Note: The LightGBM regressor achieved the best performance 
on the TB dataset and the breast cancer dataset, while the HistGradientBoostingRegressor was the best 
performing on the Placenta dataset

 

Dataset Trained on Train Acc ±std Val Acc ± std Test Acc ± std Train F1 ± std Val F1 ± std Test F1 ± std

TB

Hard Labels 0.9367 ± 0.0025 0.9300 ± 0.0022 0.8191 ± 0.0017 0.9365 ± 0.0025 0.9297 ± 0.0022 0.8184 ± 0.0018

Logits (alpha=0.88) 0.9393 ± 0.0020 0.9332 ± 0.0015 0.8216 ± 0.0003 0.9391 ± 0.0020 0.9330 ± 0.0015 0.8210 ± 0.0002

Logits (alpha=0.5) 0.9368 ± 0.0016 0.9311± 0.0024 0.8218 ± 0.0018 0.9366 ± 0.0015 0.9308 ± 0.0025 0.8211 ± 0.0019

Placenta

Hard Labels 0.3918 ± 0.0010 0.4276 ± 0.0009 0.4724 ± 0.0025 0.3604 ± 0.0016 0.3758 ± 0.0019 0.4232 ± 0.0045

Logits (alpha=0.131) 0.4476 ± 0.00265 0.4534 ± 0.00140 0.4970 ± 0.00170 0.3993 ± 0.00271 0.3866 ± 0.00426 0.4337 ± 0.00381

Logits (alpha=0.5) 0.4621 ± 0.0014 0.4587 ± 0.0009 0.5036 ± 0.0018 0.4080 ± 0.0034 0.3885 ± 0.0029 0.4387 ± 0.0030

Breast Cancer

Hard Labels 0.9492 ± 0.0011 0.9475 ± 0.0023 0.9483 ± 0.0006 0.9492 ± 0.0011 0.9474 ± 0.0023 0.9488 ± 0.0006

Logits (alpha=0.012) 0.9478 ± 0.0025 0.9447 ±0.0046 0.9531 ± 0.0024 0.9478 ± 0.0026 0.9446 ± 0.0045 0.9535 ± 0.0023

Logits (alpha=0.5) 0.9507 ± 0.0014 0.9461 ±0.0015 0.9537 ± 0.0011 0.9507 ± 0.0014 0.9460 ± 0.0015 0.9541 ± 0.0011

Table 20.  Evaluation of ANN performance across multiple datasets.

 

Dataset Hyperparameters

TB hidden_dim=399, lr=0.009628, alpha= 0.88

Placenta hidden_dim=78,lr=0.00204, alpha=0.131

Breast Cancer hidden_dim= 120,lr=0.00748,alpha=0.0126

Table 19.  Optimized hyperparameters for the ANN student model across datasets.
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Performance on CoauthorPhysicsDataset
For this dataset, the maximum depth for HistGradientBooster, Random Forest, and XGBoost was set to 12. For 
LightGBM and ExtraTrees, it was set to 16. Additionally, the maximum number of leaves was fixed at 50 for 
all models. Figure 15 shows the calibration plots illustrating the performance of various calibration techniques 
across different classes. Table 22 compares the stratified Brier scores and log losses for the different methods used. 
As seen from the Table 23, ExtraTrees, XGBoost, and Random Forest models performed better when trained on 
calibrated probs from the teacher model. LightGBM and HistGradientBooster performed well when trained on 
hard labels because the test distribution was similar to the training distribution. These models slightly overfit 
the training data, which, in this case, acted as a boon rather than a bane. At the same time, the regularization 
effect provided by the logits did not translate into improved performance. Instead, it acted as a bane, leading to 
slight underperformance compared to models trained on hard labels. Also, since the student versions of these 
models did not outperform their counterparts, we did not record their distillation score in the Table 24. Figure 
16 presents the results on the CoauthorPhysics dataset. The mean test accuracy and F1 score for various models 
are displayed, with error bars indicating standard deviation. LightGBM and HistGradientBooster were excluded 
from this comparison as the student models trained using teacher logits failed to outperform their counterparts 
trained on hard labels, even after calibration. Among the student models, the ExtraTrees model emerged as the 
best student.

The distillation quality scores, computed using Eq. 13, for the student models that consequently outperformed 
their counterparts trained on hard labels, are tabulated in Table 24.

Performance on CoauthorCSDataset
This dataset exhibited extreme class imbalance. Although this dataset did not represent a biologically critical 
scenario where equal importance for minority and majority classes is essential, we still applied weighted cross-
entropy to address the imbalance effectively with weights set inversely proportional to each class’s frequency. 
For this dataset, the maximum depth for HistGradientBooster, Random Forest, and XGBoost was set to 12. For 
LightGBM and ExtraTrees, it was set to 16. Additionally, the maximum number of leaves was fixed at 50 for all 
models. By selecting a hyperparameter configuration that omits explicit regularization, we create a scenario where 
models trained on hard labels are prone to overfitting, thereby allowing us to clearly demonstrate the efficacy of 
using teacher logits as an implicit regularizer. Figure 17 shows the calibration plots illustrating the performance 
of various calibration techniques across different classes. Table 25 compares the stratified Brier scores for the 
different methods used. When trained on hard labels, we observe overfitting in the HistGradientBooster and 
LightGBM models. However, this overfitting is reduced when the models are trained on logits, suggesting that 
logits provide implicit regularization and improve the models’ generalization capability. We also propose that 
the regularization effect inherently provided by the teacher model’s guidance offers more effective control over 
model overfitting than manually tuning explicit regularization parameters. Each model benefited from different 

Figure 15.  Plots along with stratified brier scores and log losses (A) Calibration plot: raw logits converted 
to probabilities. (B) Calibration plot after applying isotonic regression. (C) Calibration plot after applying 
temperature scaling with a temperature that reduces Stratified Brier score. (D) Calibration plot after applying 
temperature scaling with a temperature that reduces negative log-likelihood (log loss).
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calibration techniques, as shown in the Table 26. The distillation quality scores are recorded in the Table 27. 
Figure 18 shows the performance of the best-performing student models and their counterparts on the test set.

Performance on synthetic dataset
We also experimented with a synthetic dataset with three classes generated using the Barabási-Albert (BA) 
model53 with a preferential attachment mechanism, which occurs in many real-world graphs128. Although these 
graphs do not fully capture the complexity of cell graphs, we utilized them due to the limited availability of cell 
graph-based datasets. This experiment served two primary purposes: first, to evaluate if logits provide improved 
guidance under distribution shift, and second, to assess the performance of post-hoc calibration methods under 
such shifts. The graph consisted of 60,000 nodes, with each new node attaching to five existing nodes based on 
the principle of linear preferential attachment. Instead of relying on random features, we computed various 
graph-derived features such as degree, clustering coefficient, and eigenvector centrality to capture the structural 
properties of the graph better. Class labels were assigned by clustering features derived from the graph using 
the k-means algorithm. To simulate a distribution shift, we introduced Gaussian noise to the features of the test 
nodes. This approach allowed us to reflect potential variations in data distribution between the training and test 
sets. The shift was induced synthetically to provide a controlled environment for this initial investigation, and 
we acknowledge that a more rigorous shifting paradigm would be a valuable next step for future studies. Our 
dataset had an uneven distribution of classes. However, since it wasn’t a critical biological dataset, we used the 
standard cross-entropy loss function to train the teacher without any modifications. The algorithm is provided 
in 2. For this dataset, the maximum depth for HistGradientBooster, LightGBM, Random Forest, and XGBoost 
was set to 12. For ExtraTrees, it was set to 16. Additionally, the maximum number of leaves was fixed at 50 for all 
models. Table 28 shows the accuracy and F1-score for various models trained on hard labels and their student 
counterparts using different calibration techniques. Typically, we expect calibration to improve the guidance 
raw logits provide. However, in this case, we do not observe any improvement. Good calibration achieved on 
validation folds of the training set does not necessarily translate to good calibration on the held-out test set when 
a distribution shift exists117. This misalignment may have contributed to the observed lower performance on 
the test set. Our experiments revealed that when the GNN teacher was trained on extremely imbalanced data 
without weighted loss, its logits became biased but remained predictive for the minority class. Distilling from 
these raw, uncalibrated logits produced a student model with the highest overall test performance but at a slight 
cost of misclassifying minority classes. We recommend training the GNN teacher with a weighted cross-entropy 
loss to ensure minority-class logits are not under-represented. Additionally, apply robust post-hoc calibration to 
further boost student performance and minority-class performance. Figure 19 shows the calibration plots before 
and after applying post-hoc calibration. Figure 20 shows the comparison of weighted test F1 score between 

Method/data Stratified brier score Log Loss

Before calibration

Class 0: 0.030995 Class 0: 0.040620

Class 1: 0.032688 Class 1: 0.038505

Class 2: 0.015430 Class 2: 0.047046

Class 3: 0.036208 Class 3: 0.028423

Class 4: 0.047892 Class 4: 0.040356

Overall: 0.032642 Overall: 0.038990

Isotonic regression

Class 0: 0.0300 Class 0:0.0435

Class 1: 0.0314 Class 1: 0.0403

Class 2: 0.0151 Class 2: 0.0489

Class 3: 0.0370 Class 3: 0.0296

Class 4: 0.0467 Class 4: 0.0422

Overall: 0.03204 Overall: 0.0409

Temp scaling-reduces brier score

Class 0: 0.0307 Class 0: 0.0398

Class 1: 0.0326 Class 1: 0.0383

Class 2: 0.0153 Class 2: 0.0459

Class 3: 0.0368 Class 3: 0.0275

Class 4: 0.0473 Class 4: 0.0399

Overall: 0.03254 Overall: 0.03828

Temp scaling-reduces log loss

Class 0: 0.0308 Class 0: 0.0399

Class 1: 0.0328 Class 1: 0.0388

Class 2: 0.0153 Class 2: 0.0456

Class 3: 0.0377 Class 3: 0.0276

Class 4: 0.0472 Class 4: 0.0401

Overall: 0.03276 Overall: 0.0384

Table 22.  Stratified brier scores and log loss values-coauthorphysics dataset.  Can you please make the overall 
value in bold here?. Some overall values are not bold.
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Model Number_of_Parameters Best_Performance DQ_Score

ExtraTrees trained on calibrated probs using LL 952.634935 0.911 0.0310

XGBoost trained on calibrated probs using BS 1535.46 0.894 0.0403

Random trained on calibrated probs using LL 1392.373 0.8932 0.0406

Table 24.  Distillation quality Scores-F1 score as the performance metric.

 

Model Acc_Train ± std Acc_Val ± std Acc_test ± std F1_train ± std F1_Val ± std F1_test ± std

Teacher Model 0.9982±0.0007 0.9707±0.0012 0.9685±0.0012 0.9982±0.0007 0.9707±0.0012 0.9685±0.0012

ExtraTrees trained on hard labels 0.8368 ± 0.0046 0.8337 ± 0.0024 0.8301 ± 0.0023 0.8226 ± 0.0061 0.8202 ± 0.0035 0.8126 ± 0.0028

ExtraTrees trained on logits 0.8873 ± 0.0037 0.8811 ± 0.0032 0.8817 ± 0.0063 0.8823 ± 0.0049 0.8756 ± 0.0044 0.8758 ± 0.0078

ExtraTrees trained on Calibrated
logits using IR 0.9229 ± 0.0011 0.9145 ± 0.0031 0.9072 ± 0.0037 0.9210 ± 0.0012 0.9122 ± 0.0032 0.9047 ± 0.0039

ExtraTrees trained on Calibrated
logits using temp scaling-BS 0.9229 ± 0.0019 0.9127 ± 0.0032 0.9102 ± 0.0029 0.9210 ± 0.0020 0.9104 ± 0.0033 0.9077 ± 0.0030

ExtraTrees trained on Calibrated
logits using temp scaling-LL 0.9233 ± 0.0017 0.9130 ± 0.0037 0.9102 ± 0.0032 0.9215 ± 0.0018 0.9107 ± 0.0038 0.9077 ± 0.0034

XGBoost trained on hard labels 0.9194 ± 0.0000 0.8957 ± 0.0000 0.8959 ± 0.0000 0.9174 ± 0.0000 0.8928 ± 0.0000 0.8928 ± 0.0000

XGBoost trained on logits 0.8675 ± 0.0000 0.8543 ± 0.0000 0.8544 ± 0.0000 0.8580 ± 0.0000 0.8434 ± 0.0000 0.8431 ± 0.0000

XGBoost trained on calibrated
probs using IR 0.9166 ± 0.0000 0.8935 ± 0.0000 0.8924 ± 0.0000 0.9141 ± 0.0000 0.8898 ± 0.0000 0.8885 ± 0.0000

XGBoost trained on calibrated
probs using temp scaling-BS 0.9178 ± 0.0000 0.8946 ± 0.0000 0.8976 ± 0.0000 0.9154 ± 0.0000 0.8908 ± 0.0000 0.8940 ± 0.0000

XGBoost trained on calibrated
probs using temp scaling-LL 0.9167 ± 0.0000 0.8941 ± 0.0000 0.8944 ± 0.0000 0.9142 ± 0.0000 0.8904 ± 0.0000 0.8908 ± 0.0000

HistGrad trained on hard labels 0.9549 ± 0.0002 0.9296 ± 0.0010 0.9273 ± 0.0013 0.9546 ± 0.0002 0.9287 ± 0.0011 0.9263 ± 0.0013

HistGrad trained on logits 0.9085 ± 0.0004 0.8954 ± 0.0025 0.8954 ± 0.0015 0.9053 ± 0.0004 0.8914 ± 0.0025 0.8912 ± 0.0015

HistGrad trained on calibrated
probs using IR 0.9335 ± 0.0016 0.9164 ± 0.0042 0.9126 ± 0.0033 0.9321 ± 0.0017 0.9143 ± 0.0044 0.9103 ± 0.0036

HistGrad trained on calibrated
probs using temp scaling-BS 0.9341 ± 0.0015 0.9171 ± 0.0017 0.9144 ± 0.0029 0.9327 ± 0.0015 0.9151 ± 0.0018 0.9122 ± 0.0032

HistGrad trained on calibrated
probs using temp scaling-LL 0.9333 ± 0.0028 0.9162 ± 0.0045 0.9139 ± 0.0033 0.9319 ± 0.0030 0.9141 ± 0.0048 0.9117 ± 0.0036

Random Forest trained on
hard labels 0.8243 ± 0.0014 0.8124 ± 0.0018 0.8133 ± 0.0006 0.8150 ± 0.0019 0.8027 ± 0.0027 0.8035 ± 0.0011

Random Forest trained on logits 0.8782 ± 0.0015 0.8668 ± 0.0032 0.8684 ± 0.0010 0.8736 ± 0.0017 0.8613 ± 0.0033 0.8631 ± 0.0011

Random Forest trained on calibrated
probs using IR 0.9138 ± 0.0015 0.8942 ± 0.0007 0.8948 ± 0.0009 0.9117 ± 0.0017 0.8912 ± 0.0008 0.8919 ± 0.0010

Random trained on calibrated
probs using temp scaling-BS 0.9133 ± 0.0019 0.8941 ± 0.0004 0.8934 ± 0.0016 0.9111 ± 0.0021 0.8910 ± 0.0006 0.8903 ± 0.0018

Random trained on calibrated
probs using temp scaling-LL 0.9133 ± 0.0020 0.8943 ± 0.0009 0.8936 ± 0.0025 0.9112 ± 0.0022 0.8912 ± 0.0011 0.8905 ± 0.0027

LightGBM trained on hard labels 0.9537 ± 0.0000 0.9269 ± 0.0000 0.9318 ± 0.0000 0.9533 ± 0.0000 0.9258 ± 0.0000 0.9309 ± 0.0000

LightGBM trained on logits 0.9120 ± 0.0000 0.8977 ± 0.0000 0.8979 ± 0.0000 0.9089 ± 0.0000 0.8939 ± 0.0000 0.8940 ± 0.0000

LightGBM trained on Calibrated
probs using IR 0.9377 ± 0.0000 0.9214 ± 0.0000 0.9176 ± 0.0000 0.9365 ± 0.0000 0.9196 ± 0.0000 0.9156 ± 0.0000

LightGBM trained on Calibrated
probs using temp scaling-BS 0.9363 ± 0.0000 0.9186 ± 0.0000 0.9139 ± 0.0000 0.9350 ± 0.0000 0.9167 ± 0.0000 0.9116 ± 0.0000

LightGBM trained on Calibrated
probs using temp scaling-LL 0.9373 ± 0.0000 0.9198 ± 0.0000 0.9165 ± 0.0000 0.9361 ± 0.0000 0.9179 ± 0.0000 0.9144 ± 0.

Table 23.  Model performance-CoauthorPhysics dataset. Note: The logits represent the raw outputs of the 
teacher model. IR denotes Isotonic Regression, BS denotes Brier score reduction, and LL denotes log loss 
reduction. Values in bold denote the performance of student models that learned well from the teacher model 
and outperformed their counterparts trained on hard labels.Std denotes the standard deviation
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Method/Data Stratified Brier Score

Before Calibration Overall: 0.0138

Isotonic Regression Overall: 0.014

Temp Scaling-Reduces Brier Score Overall: 0.0121

Table 25.  Stratified brier scores-CoauthorCS dataset. The first overall value here is not bold. Can you please 
make it bold here?

 

Figure 17.  (A) Calibration plot: raw logits converted to probabilities. (B) Calibration plot after applying 
isotonic regression. (C) Calibration plot after applying temperature scaling with a temperature that reduces 
Stratified Brier score.

 

Figure 16.  Performance of best performing student models and their counterparts on the test set-
coauthorphysics. We see the student models outperforming their counterparts.
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Model Number_of_Parameters Best_Performance DQ_Score

ExtraTrees trained on calibrated probs using BS 2554.529 0.8843 0.036

LightGBM trained on calibrated probs using BS 2093.5 0.8970 0.029

Random trained on calibrated probs using IR 590.5 0.8679 0.041

HistGrad trained on calibrated probs using IR 1837.45 0.8921 0.0303

XGBoost trained on calibrated probs using BS 3289.5 0.8728 0.04548

Table 27.  Distillation quality scores-F1 score as the performance metric.

 

Model Acc_Train ± std Acc_Val ± std Acc_test ± std F1_train ± std F1_Val ± std F1_test ± std

Teacher Model 0.9982±0.0005 0.9392±0.0006 0.9406±0.0039 0.9982±0.0005 0.9393±0.0007 0.9406±0.0040

XGBoost trained on hard labels 0.9591 ± 0.0000 0.8857 ± 0.0000 0.8664 ± 0.0000 0.9593 ± 0.0000 0.8865 ± 0.0000 0.8684 ± 0.0000

XGBoost trained on logits 0.8039 ± 0.0000 0.7657 ± 0.0000 0.7650 ± 0.0000 0.8028 ± 0.0000 0.7627 ± 0.0000 0.7633 ± 0.0000

XGBoost trained on calibrated
probs using IR 0.9524 ± 0.0000 0.8837 ± 0.0000 0.8729 ± 0.0000 0.9521 ± 0.0000 0.8800 ± 0.0000 0.8710 ± 0.0000

XGBoost trained on calibrated
probs using temp scaling-BS 0.9523 ± 0.0000 0.8843 ± 0.0000 0.8746 ± 0.0000 0.9520 ± 0.0000 0.8813 ± 0.0000 0.8728 ± 0.0000

ExtraTrees trained on hard labels 0.7617± 0.0063 0.7504 ±0.003 0.7470 ± 0.010 0.76490 ± 0.0064 0.7530 ±0.0027 0.7511± 0.01022

ExtraTrees trained on logits 0.8102 ± 0.0029 0.7918 ± 0.0054 0.7819 ± 0.0066 0.8063 ± 0.0018 0.7849 ± 0.0041 0.7811 ± 0.0058

ExtraTrees trained on Calibrated
probs using IR 0.9439 ± 0.0008 0.8892 ± 0.0011 0.8805 ± 0.0033 0.9435 ± 0.0009 0.8860 ± 0.0013 0.8788 ± 0.0035

ExtraTrees trained on Calibrated
probs using temp scaling-BS 0.9448 ± 0.0003 0.8904 ± 0.0019 0.8813 ± 0.0053 0.9444 ± 0.0003 0.8872 ± 0.0017 0.8793 ± 0.0050

HistGrad trained on hard labels 0.9758 ± 0.0005 0.8835 ± 0.0023 0.8771 ± 0.0011 0.9759 ± 0.0006 0.8844 ± 0.0026 0.8781 ± 0.0011

HistGrad trained on logits 0.8455 ± 0.0028 0.8144 ± 0.0059 0.7995 ± 0.0032 0.8448 ± 0.0027 0.8111 ± 0.0051 0.7997 ± 0.0037

HistGrad trained on calibrated
probs using IR 0.9406 ± 0.0009 0.8961 ± 0.0015 0.8916 ± 0.0015 0.9399 ± 0.0010 0.8935 ± 0.0015 0.8905 ± 0.0016

HistGrad trained on calibrated probs using temp scaling-BS 0.9403 ± 0.0012 0.8969 ± 0.0037 0.8900 ± 0.0019 0.9396 ± 0.0012 0.8946 ± 0.0038 0.8887 ± 0.0016

Random Forest trained on
hard labels 0.6541 ± 0.0049 0.6326 ± 0.0033 0.6337 ± 0.0089 0.6647± 0.0059 0.6422 ± 0.004720 0.64595 ± 0.0105

Random Forest trained on logits 0.7938 ± 0.0043 0.7724 ± 0.0027 0.7581 ± 0.0048 0.7939 ± 0.0044 0.7716 ± 0.0028 0.7607 ± 0.0000

Random Forest trained on calibrated
probs using IR 0.9369 ± 0.0009 0.8759 ± 0.0020 0.8680 ± 0.0020 0.9366 ± 0.0009 0.8734 ± 0.0021 0.8659 ± 0.0020

Random trained on calibrated
probs using temp scaling-BS 0.9374 ± 0.0006 0.8777 ± 0.0025 0.8675 ± 0.0008 0.9372 ± 0.0007 0.8752 ± 0.0028 0.8657 ± 0.0006

LightGBM trained on hard labels 0.9861 ± 0.0000 0.8920 ± 0.0000 0.8768 ± 0.0000 0.9861 ± 0.0000 0.8922 ± 0.0000 0.8772 ± 0.0000

LightGBM trained on logits 0.8578 ± 0.0000 0.8271 ± 0.0000 0.8086 ± 0.0000 0.8564 ± 0.0000 0.8240 ± 0.0000 0.8076 ± 0.0000

LightGBM trained on Calibrated
probs using IR 0.9497 ± 0.0000 0.9007 ± 0.0000 0.8909 ± 0.0000 0.9493 ± 0.0000 0.8987 ± 0.0000 0.8896 ± 0.0000

LightGBM trained on Calibrated
probs using temp scaling-BS 0.9473 ± 0.0000 0.9045 ± 0.0000 0.8980 ± 0.0000 0.9467 ± 0.0000 0.9027 ± 0.0000 0.8970 ± 0.0000

Table 26.  Model performance-CoauthorCS dataset. Note: The logits represent the raw outputs of the teacher 
model. IR denotes Isotonic Regression, BS denotes Brier score reduction, and LL denotes log loss reduction. 
Values in bold denote the performance of student models that learned well from the teacher model and 
outperformed their counterparts trained on hard labels. Std denotes the standard deviation. Accuracy and 
weighted F1-scores are reported to four decimal places. Values may appear identical (especially for the teacher) 
due to rounding but can differ at higher precision (>6 decimal places)
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Model Acc_Train ± std Acc_Val ± std Acc_test ± std F1_train ± std F1_Val ± std F1_test ± std

Teacher Model 0.9971 ± 0.0015 0.9962 ± 0.0045 0.9008 ± 0.0094 0.9969 ± 0.0015 0.9959 ± 0.0045 0.8956 ± 0.0085

ExtraTrees trained on hard labels 0.9980 ± 0.000204 0.9974± 0.00031 0.81044 ±0.02933 0.99806± 0.000204 0.99738 ±.00031 0.83005 ± 0.0202

ExtraTrees trained on logits 0.99537 ± 0.00033 0.99572 ± 0.00046 0.89194 ± 0.01143 0.99520 ± 0.00033 0.99542 ± 0.00047 0.885 ± 0.01039

ExtraTrees trained on Calibrated
logits using IR 0.9973 ± 0.0001 0.9973 ± 0.0001 0.7958 ± 0.0302 0.9971 ± 0.0001 0.9970 ± 0.0001 0.8176 ± 0.0193

ExtraTrees trained on Calibrated
logits using temp scaling-BS 0.99737 ± 0.00007 0.99719 ± 0.00031 0.79556 ± 0.03426 0.99720 ± 0.00007 0.99691 ± 0.00031 0.81941 ± 0.02289

ExtraTrees trained on Calibrated
logits using temp scaling-LL 0.9972 ± 0.0000 0.9970 ± 0.0001 0.7893 ± 0.0352 0.9971 ± 0.0000 0.9967 ± 0.0001 0.8128 ± 0.0221

XGBoost trained on hard labels 0.9987 ± 0.0000 0.9968 ± 0.0000 0.7491 ± 0.0000 0.9987 ± 0.0000 0.9967 ± 0.0000 0.7839 ± 0.0000

XGBoost trained on logits 0.9958 ± 0.0000 0.9949 ± 0.0000 0.8673 ± 0.0000 0.9956 ± 0.0000 0.9946 ± 0.0000 0.8712 ± 0.0000

XGBoost trained on Calibrated
logits using IR 0.9973 ± 0.0000 0.9965 ± 0.0000 0.8306 ± 0.0000 0.9971 ± 0.0000 0.9962 ± 0.0000 0.8425 ± 0.0000

XGBoost trained on calibrated
logits using temp scaling-BS 0.9974 ± 0.0000 0.9966 ± 0.0000 0.7498 ± 0.0000 0.9972 ± 0.0000 0.9963 ± 0.0000 0.7827 ± 0.0000

XGBoost trained on calibrated
logits using temp scaling-LL 0.9975 ± 0.0000 0.9968 ± 0.0000 0.8031 ± 0.0000 0.9973 ± 0.0000 0.9965 ± 0.0000 0.8216 ± 0.0000

HistGrad trained on hard labels 0.9992 ± 0.0001 0.9950 ± 0.0005 0.7563 ± 0.0033 0.9990 ± 0.0001 0.9947 ± 0.0005 0.7909 ± 0.0020

HistGrad trained on logits 0.9951 ± 0.0004 0.9662 ± 0.0040 0.8156 ± 0.0443 0.9949 ± 0.0004 0.9676 ± 0.0036 0.8354 ± 0.0312

HistGrad trained on calibrated probs 0.9973 ± 0.0001 0.9953 ± 0.0004 0.8049 ± 0.0508 0.9971 ± 0.0001 0.9950 ± 0.0004 0.8215 ± 0.0361

HistGrad trained on calibrated
logits using temp scaling-BS 0.9975 ± 0.0001 0.9958 ± 0.0005 0.7986 ± 0.0489 0.9974 ± 0.0001 0.9956 ± 0.0005 0.8167 ± 0.0334

HistGrad trained on calibrated
logits using temp scaling-LL 0.9975 ± 0.0001 0.9959 ± 0.0006 0.8031 ± 0.0483 0.9973 ± 0.0001 0.9956 ± 0.0006 0.8199 ± 0.0329

Random Forest trained on
hard labels 0.99934 ± 0.00013 0.99766±0.00031 0.8475 ± 0.021790 0.9993 ± 0.0001 0.99763 ± 0.00030 0.85659 ± 0.0166

Random Forest trained on logits 0.99444 ± 0.00006 0.99497 ± 0.00004 0.87928 ± 0.00717 0.99428 ± 0.00006 0.99469 ± 0.00004 0.87526 ± 0.00543

Random Forest trained on
calibrated probs using IR 0.9978 ± 0.0000 0.9970 ± 0.0002 0.8647 ± 0.0132 0.9977 ± 0.0000 0.9967 ± 0.0002 0.8669 ± 0.0090

Random trained on calibrated
logits using temp scaling-BS 0.9976 ± 0.0001 0.9969 ± 0.0001 0.8465 ± 0.0247 0.9975 ± 0.0001 0.9966 ± 0.0001 0.8538 ± 0.0172

Random trained on calibrated
logits using temp scaling-LL 0.9976 ± 0.0001 0.9969 ± 0.0004 0.8346 ± 0.0225 0.9974 ± 0.0001 0.9966 ± 0.0004 0.8456 ± 0.0169

LightGBM trained on hard labels 0.9983 ± 0.0000 0.9966 ± 0.0000 0.8546 ± 0.0083 0.9983 ± 0.0000 0.9965 ± 0.0000 0.8637 ± 0.0066

LightGBM trained on logits 0.9951 ± 0.0000 0.9942 ± 0.0001 0.8973 ± 0.0008 0.9949 ± 0.0000 0.9939 ± 0.0001 0.8790 ± 0.0004

LightGBM trained on Calibrated
logits using IR 0.9977 ± 0.0000 0.9968 ± 0.0000 0.8752 ± 0.0099 0.9975 ± 0.0000 0.9965 ± 0.0000 0.8715 ± 0.0074

LightGBM trained on Calibrated
logits using temp scaling-BS 0.99762 ± 0.00000 0.99692 ± 0.00000 0.85883 ± 0.01237 0.99745 ± 0.00000 0.99663 ± 0.00000 0.86122 ± 0.01041

LightGBM trained on Calibrated
logits using temp scaling-LL 0.9976 ± 0.0000 0.9968 ± 0.0000 0.8668 ± 0.0163 0.9974 ± 0.0000 0.9965 ± 0.0000 0.8657 ± 0.0111

Table 28.  Model performance-synthetic dataset1. Note: The logits represent the raw outputs of the teacher 
model. IR denotes Isotonic Regression, BS denotes Brier score reduction, and LL denotes log loss reduction. 
Values in bold denote the performance of student models that learned well from the teacher model and 
outperformed their counterparts trained on hard labels. Std denotes the standard deviation. Weighted cross-
entropy can be employed to better capture information about minority classes

 

Figure 18.  Performance of best performing student models and their counterparts on the test set-CoauthorCS. 
We see the student models outperforming their counterparts.
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models trained on hard labels and their student counterparts, which performed the best (as per the Table 28). 
Table 29 represents the stratified Brier scores and log loss values obtained before and after calibration. The 
distillation quality scores of the student models that performed the best are summarized in Table 30.

Algorithm 2.  Feature engineering and synthetic label generation with distribution shift

Figure 20.  Performance of best performing student models and their counterparts on the test set-synthetic 
dataset. We see student models outperforming their counterparts.

 

Figure 19.  (A) Calibration plot: raw logits converted to probabilities. (B) Calibration plot after applying 
isotonic regression. (C) Calibration plot after applying temperature scaling with a temperature that reduces 
Brier score. (D) Calibration plot after applying temperature scaling with a temperature that reduces negative 
log-likelihood (log loss).
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Factors influencing the efficacy of our approach across datasets
We considered various factors impacting our approach and tabulated them in Table 31. However, the graph 
complexity (which, in our case is equivalent to graph energy) could not be computed for the placenta dataset as 
it contained millions of nodes within a single cell graph. Similarly, the synthetic dataset also had a large number 
of nodes within a single graph, making complexity computation infeasible. Approximating graph complexity for 
very large graphs is an avenue for future work.

Effectiveness of our approach: successes, limitations, and when it might not be too useful
Our approach proved particularly beneficial in complex scenarios involving data distribution shifts. In such 
cases, the logits from the teacher GNN provided richer insights than the hard labels. In addition to the knowledge 
transferred from the teacher to the student, it also helped curb overfitting to the training data, preventing student 
models from becoming overly specialized on the training set. In our experiments, student models, like Random 
Forest or ExtraTrees, benefited constantly from the GNN’s logits. These models were able to leverage the rich 

Dataset

Complexity of 
train+val graph (graph 
energy)

Complexity of test 
graph (graph energy)

Number 
of 
features Feature type

Number 
of 
classes

Distribution shift: covariate and 
label shift

Did all student models 
benefit from KD?

Our dataset 528099.8645 145243.7451519 32 Spatial and 
Morphological 2 Yes (both covariate and label shift) Yes

Placenta Large for computation Large for computation 64 Morphological 9 Yes (covariate shift) Yes

BRCA-M2C 33879.69182 12192.8422 12 Spatial 3 Yes (both covariate and label shift) Yes

CoauthorCS 39464.388 39464.388 6805 Original 15 No Yes

CoauthorPhysics 90782.486005 90782.486005 8415 Original 5 No No. LightGBM and HistGrad 
were not benefitted

Synthetic dataset Large for computation Large for computation 7 Topological 3 Yes (Covariate Shift) Yes

Table 31.  Factors considered to evaluate the efficacy of our proposed method.

 

Model Number_of_Parameters Best_Performance DQ_Score

ExtraTrees trained on logits 409.975 0.89539 0.0084

XGBoost trained on logits 462.97 0.8712 0.022

Random trained on logits 1331.635 0.8806 0.0248

HistGrad trained on logits 679.8 0.8666 0.02676

LightGBM trained on logits 692.15 0.8794 0.0197

Table 30.  Distillation quality scores-F1 score as the performance metric.

 

Method/data Stratified brier score Log loss

Before calibration

Class 0 :0.01275 Class 0: 0.01597

Class 1 :0.01086 Class 1: 0.01496

Class 2: 0.49084 Class 2:0.00355

Overall:0.17148 Overall:0.01150

Isotonic regression

Class 0 : 0.0140 Class 0: 0.0180

Class 1: 0.0136 Class 1: 0.0170

Class 2 :0.4909 Class 2: 0.0028

Overall :0.1728 Overall:0.0126

Temp scaling - reduces brier score

Class 0:0.0126 Class 0 :0.0166

Class 1:0.0102 Class 1 :0.0161

Class 2:0.4815 Class 2 : 0.0040

Overall: 0.1681 Overall :0.0122

Temp scaling - reduces log loss

Class 0:0.01279 Class 0:0.01595

Class 1:0.01094 Class 1:0.01488

Class 2 :0.49160 Class 2:0.00351

Overall: 0.17177 Overall: 0.01144

Table 29.  Stratified brier scores and log loss values-synthetic dataset. Note: The extremely low Log Loss 
observed for Class 2 is likely due to the small sample size for that class, which may be misleading. Isotonic 
Regression did not yield an improvement over the baseline calibration metrics
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information encoded in the logits to make more accurate predictions. The performance of boosting models 
varied across different scenarios. Specifically, when the test distribution closely mirrored the training distribution, 
slight overfitting of these models to the training data proved beneficial. Bagging models demonstrated more 
consistent improvements with knowledge distillation across different datasets and complexities, making them a 
more favorable choice for distillation. In simpler cases, where data relationships are primarily linear or the graph 
has very low complexity, knowledge distillation from GNN becomes less impactful. In such scenarios, simpler 
models can directly utilize the cell graph features for classification, achieving effective results without requiring 
a teacher GNN. Introducing a GNN in these cases adds unnecessary complexity. This aligns with the findings of 
the authors in34, who demonstrated that a simple classifier using the 15 most predictive feature-driven local cell 
graph features identified via the Wilcoxon Rank Sum Test (WRST) achieved an average AUC of 0.68, thereby 
outperforming a deep learning model.

Discussion and major takeaways
To address the first question regarding the benefits of knowledge distillation from the teacher GNN, we analyzed 
the performance of the teacher and student models under varying dataset complexities. The proposed approach 
was instrumental in scenarios where a distribution shift existed in the data. In such cases, student models 
trained on logits consistently outperformed their counterparts trained on hard labels. However, the results were 
mixed for non-cell graph-based datasets without distribution shifts. Bagging models improved when trained 
on calibrated probs, while some boosting models performed better with hard labels. We hypothesize that logits 
offer more effective guidance during distribution shifts than hard labels. Furthermore, logits acted as a form of 
regularization, helping to prevent models from overfitting to the training data, as evidenced by the results on cell 
graph-based datasets. Achieving high-quality logits required a sufficiently deep teacher model.

To address the second question, we observed notable differences in the feature importance assigned by models 
trained on hard labels versus those guided by teacher logits. For the TB dataset, the teacher-guided student 
model emphasized morphological features, such as contrast and circularity. Pathologists commonly use these 
to differentiate between AFB and the nucleus of activated macrophages. Similarly, for the BRAC_M2C dataset, 
the teacher-guided student model prioritized features like node clustering, reflecting the biological behavior of 
breast cancer cells, which tend to form tight clusters and adhere via adhesion molecules.

To answer the third question, we observed performance improvements in student models when they were 
trained using the ensembled outputs of the teacher model and the best-performing student model, particularly 
in specific datasets. These improvements were more pronounced when the best-performing student shared some 
architectural similarities with other student models. For instance, the performance of HistGradientBooster 
improved when guided by the ensembled logits of LightGBM and CG-JKNN, compared to its performance when 
trained solely by CG-JKNN. However, it is essential to note that the ensembled outputs were not universally 
beneficial. Some student models experienced a drop in performance. Also, some models did not prefer learning 
from the best-performing student, as they assigned a zero weight to its output.

Regarding the fourth question, teacher logit calibration provided better guidance to student models than 
using hard labels in most cases. In datasets like the placenta dataset, where the number of samples per class was 
small, isotonic regression led to lower performance and, in some instances, performed worse than using hard 
labels.

We hypothesize that the success of our approach stems from the student’s inherent inductive bias, which 
functions as a powerful regularizing filter. Unlike a flexible NN student, which can overfit to the teacher’s 
entire output function, including its flaws, a tree-based model’s structural rigidity prevents it from replicating 
these complex, spurious correlations. This inherent limitation forces the student to approximate the teacher’s 
knowledge using simpler, rule-based tools, thereby capturing the dominant, generalizable signals while ignoring 
high-frequency noise. Further experiments are needed across varied datasets and model architectures to validate 
the robustness and scope of this hypothesis fully.

The major takeaways are as follows:

•	 Our goal was not to benchmark the teacher model against the baseline performances reported for each da-
taset. Instead, our primary focus was demonstrating the efficacy of using the teacher’s logits as a supervisory 
signal for training student models.

•	 Our approach using teacher GNN logits improved student model performance under distribution shifts by 
capturing model uncertainty and relative class similarities, which in turn revealed subtle transitional states 
in cellular morphology that hard labels may obscure. For example, in the placenta dataset, the student mod-
el produces very similar confidence scores for class 1 and class 2, suggesting that these classes may share 
morphological features during transformation129,130. Additional details can be found in our supplementary 
files. However, further expert evaluation is necessary to determine whether these outputs genuinely represent 
biological transitions or if they instead reflect limitations in feature extraction. Moreover, the teacher may 
produce noisy logits for classes with few samples due to insufficient representation learning.

•	 Bagging models consistently benefited from using logits compared to hard labels. In contrast, boosting mod-
els showed mixed results, with some cases favoring hard labels over logits, especially in datasets with no 
distribution shift. During our experiments on the CoauthorCS network, we found that bagging models, such 
as Random Forest, performed well with calibrated probabilities obtained through isotonic regression. These 
probabilities focused on improving reliability, even though this came at the cost of resolution. On the other 
hand, booster models, such as XGBoost, performed better with calibrated probabilities obtained through 
temperature scaling, which provided higher resolution but slightly less reliability compared to isotonic regres-
sion. We believe this difference is related to the way these algorithms function.
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•	 We observed that the teacher-guided student model placed greater emphasis on morphological features for 
the TB dataset than its counterpart trained on hard labels. This suggests that combining local cell graph fea-
tures and morphological features provides better guidance and performance than using either morphological 
or local cell graph features alone. We believe that the student model can serve as a partial proxy for under-
standing which features the teacher considers important.

•	 While using weighted cross-entropy loss helps address the class imbalance, it does not tackle calibration is-
sues. A more advanced loss function, such as the one proposed in121, could be employed to handle both class 
imbalance and calibration simultaneously.

The focus of this work was to demonstrate that it is possible to distill knowledge from neural to non-neural 
network models as students and that these simpler models can also learn effectively from the logits of a teacher 
GNN. Even when we observe a performance gap between the teacher and student models (in the case of the 
TB dataset), often due to the teacher’s use of graph structure, the results indicate that the distilled logits provide 
better guidance than hard labels. This opens up opportunities for further improvements, such as incorporating 
intermediate teacher embeddings with node features, to help the students better approximate the teacher’s full 
capabilities. In our study, we deliberately chose non-neural student models for several reasons. Their enhanced 
interpretability is a primary advantage. Tree-based ensembles enable the straightforward extraction of decision 
rules (compared to GNNs), making model decisions easily understandable, an essential aspect in applications 
involving TB, Placenta, and Breast Cancer datasets. Moreover, prior work, such as that by Frosst and Hinton131, 
has shown that distilling a deep neural network into a simpler decision tree can improve the tree’s performance 
compared to training on hard labels alone. By transferring the teacher’s rich, implicit relational knowledge to 
these students via its logits, we allow them to effectively operate using only cell-level feature vectors (which 
include morphological and local cell graph features), thereby broadening applicability to scenarios where full-
cell graphs are unavailable. Their simplicity also offers multiple practical advantages: they require significantly 
less hyperparameter tuning132, are easier to implement, and their decision boundaries are more readily visualized 
compared to more complex methods, such as those employed in approaches like GNNBoundary133. Additionally, 
the differences in feature importance between the student models and counterparts trained on hard labels 
provide valuable insights into the teacher’s decision-making process. Additionally, successfully transferring the 
teacher’s knowledge to a non-neural model demonstrates that these valuable insights are not exclusive to neural 
architectures but can be effectively captured by different function approximations, underscoring its generality.

Limitations of our work
Our work primarily focused on node-level classification, which limits its applicability to graph-level classification 
tasks. In this study, all interactions between cells were assigned equal weight (weight=1). However, specific 
interactions may be more biologically significant than others. For example, interactions between lymphocytes 
and cancer cells could have a stronger impact on disease progression than other cell-cell interactions. While 
we employed calibration methods such as isotonic regression and temperature scaling, we did not explore 
other popular techniques. Specifically, for multiclass calibration, we adapted isotonic regression using a one-
vs-all approach, which may not fully capture the subtleties of multiclass classification compared to methods 
specifically designed for this purpose, such as Matrix Scaling, Vector Scaling111, or Dirichlet Calibration115. The 
calibration performance was assessed using the Stratified Brier Score and Log Loss. However, our analysis may 
lack comprehensiveness as metrics like Expected Calibration Error (ECE)134 were not considered. Moreover, we 
did not explore pre-calibration techniques that integrate temperature learning during GNN training to generate 
pre-calibrated probabilities, leaving the effectiveness of the pre-calibrated softmax probabilities unexamined. 
We also did not assess whether the student models’ predictions were calibrated. While we used weighted F1 
score and accuracy as our primary performance metrics, our analysis could be enhanced by incorporating other 
performance measures that provide broader insights. While weighted F1 shows overall gains from distillation, 
the teacher’s logits remain noisy for the very rare classes, so improvements are uneven and some classes might not 
see a clear benefit. Furthermore, while we focused on evaluating the generalization capabilities of student models 
trained with teacher logits, we did not analyze fidelity17,135, which is a measure of how closely the student models 
replicate the teacher’s outputs. Incorporating fidelity in future evaluations could provide a more comprehensive 
understanding of the trade-offs between generalization and fidelity.Additionally, to fully validate our findings, 
the framework should be evaluated under more rigorous shift conditions.

Conclusion and future work
We explored logit-based knowledge distillation from GNNs trained on cell graphs to non-neural student models. 
The study assessed the efficacy of this approach under different dataset complexities, including factors such as 
varying graph complexity and the presence or absence of distribution shifts. Our approach proved particularly 
beneficial when the test distribution differed from the training distribution. The rich information embedded 
in the logits and their regularization effect benefited the student models. Additionally, we investigated the 
scenarios where the calibration of logits could enhance student performance. Post-hoc calibration demonstrated 
its utility when ample samples were available in each class and when there was no distribution shift. Bagging 
models consistently benefited from logits, whereas booster models exhibited variable performance based on the 
presence or absence of shift.

We plan to experiment with other teacher models in future work, such as the Simple Graph Convolution 
(SGC) proposed in136. This model aims to reduce the excess complexities typically associated with GCNs by 
removing intermediate non-linear transformations while still leveraging the graph structure for learning. This 
would also open new avenues for utilizing simpler linear models as student models, potentially reducing the 
overall model complexity while maintaining or improving performance. We also plan to focus on measuring 
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the fidelity of the student models17. Fidelity, in this context, refers to the ability of the student models to match 
the teacher’s predictions across various graph datasets. We do not explicitly evaluate whether our student 
models are themselves well-calibrated. The calibration of these models remains an important direction for 
future investigation. We aim to incorporate the loss function proposed in121, which uses a dynamic weighting 
factor that adjusts during the training process of our teacher GNN. This approach addresses the training bias 
in imbalanced datasets while improving confidence calibration. Future direction could also explore methods 
for training the teacher GNN to yield logits that provide a more uniformly beneficial and balanced learning 
signal for all classes, especially under extreme imbalance and potential distribution shifts. We also propose 
experimenting with synthetic datasets that do not exhibit distribution shifts but are designed to emulate 
the distributions of real-world networks. By extracting local graph features from these datasets, it would be 
intriguing to investigate whether logits offer greater utility in guiding student models. Future research could 
focus on designing teacher models such as H2GCN120, capable of effectively learning in both homophilic and 
heterophilic contexts. Advanced approaches to measure the degree of non-linearity in datasets can be employed. 
For example, the method described in137 quantifies the degree of non-linearity between variables by defining 
the exposure of one variable to another. Synthetic dataset generators, such as ShapeGGen128, can be employed 
to automatically create a variety of benchmark datasets with varying properties to evaluate the efficacy of 
knowledge distillation. Another interesting future direction is exploring causal knowledge distillation, where we 
generate causal graphs of cell graph features to guide the distillation process. Future work could explore using 
teacher logits as “pseudo-labels” in semi-supervised learning to provide soft targets for student models when 
labeled data is scarce. Visualizing the decision boundaries of student models in knowledge distillation scenarios 
could offer valuable insights into how these models approximate the behavior of teacher models.

Data availability
The datasets analyzed during the current study are available in the Placenta repository (GitHub link: ​h​t​t​p​s​:​/​/​g​i​t​
h​u​b​.​c​o​m​/​n​e​l​l​a​k​e​r​-​g​r​o​u​p​/​p​l​a​c​e​n​t​a​​​​​) and the Dataset-BRCA-M2C repository (GitHub link: ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​T​
o​p​o​X​L​a​b​/​D​a​t​a​s​e​t​-​B​R​C​A​-​M​2​C​​​​​)​. Similarly, the CoAuthorship networks utilized in this study are publicly ​a​v​a​i​l​a​
b​l​e in (​h​t​t​p​s​:​​/​/​p​y​t​o​​r​c​h​-​g​e​​o​m​e​t​r​i​​c​.​r​e​a​​d​t​h​e​d​o​​c​s​.​i​o​/​​e​n​/​l​a​t​​e​s​t​/​g​​e​n​e​r​a​t​​e​d​/​t​o​r​​c​h​_​g​e​o​​m​e​t​r​i​c​.​d​a​t​a​s​e​t​s​.​C​o​a​u​t​h​o​r​.​h​t​m​l). 
The whole-slide images (WSI) used in the TB dataset will be made available upon request to the ​c​o​r​r​e​s​p​o​n​d​i​n​
g author. The codes used to perform the experiments and generate the results in this study is publicly available 
in a repository with the link (Link: ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​V​a​s​u​​n​d​h​a​r​​a​A​c​h​a​r​​​y​a​/​C​o​​​d​e​_​K​n​o​​w​l​e​​d​g​e​_​D​i​s​t​i​l​l​a​t​​i​o​n​.​g​i​t)
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