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Distilling knowledge from graph
neural networks trained on cell
graphs to non-neural student
models

Vasundhara Acharya'™?, Billent Yener? & Gillian Beamer?

The development and refinement of artificial intelligence (Al) and machine learning algorithms have
been an area of intense research in radiology and pathology, particularly for automated or computer-
aided diagnosis. Whole Slide Imaging (WSI) has emerged as a promising tool for developing and
utilizing such algorithms in diagnostic and experimental pathology. However, patch-wise analysis of
WSis often falls short of capturing the intricate cell-level interactions within local microenvironment.
A robust alternative to address this limitation involves leveraging cell graph representations, thereby
enabling a more detailed analysis of local cell interactions. These cell graphs encapsulate the local
spatial arrangement of cells in histopathology images, a factor proven to have significant prognostic
value. Graph Neural Networks (GNNs) can effectively utilize these spatial feature representations

and other features, demonstrating promising performance across classification tasks of varying
complexities. It is also feasible to distill the knowledge acquired by deep neural networks to smaller
student models through knowledge distillation (KD), achieving goals such as model compression

and performance enhancement. Traditional approaches for constructing cell graphs generally rely on
edge thresholds defined by sparsity/density or the assumption that nearby cells interact. However,
such methods may fail to capture biologically meaningful interactions. Additionally, existing works in
knowledge distillation primarily focus on distilling knowledge between neural networks. We designed
cell graphs with biologically informed edge thresholds or criteria to address these limitations, moving
beyond density/sparsity-based definitions. Furthermore, we demonstrated that student models do
not need to be neural networks. Even non-neural models can learn from a neural network teacher.
We evaluated our approach across varying dataset complexities, including the presence or absence of
distribution shifts, varying degrees of imbalance, and different levels of graph complexity for training
GNNs. We also investigated whether softened probabilities obtained from calibrated logits offered
better guidance than raw logits. Our experiments revealed that the teacher’s guidance was effective
when distribution shifts existed in the data. The teacher model demonstrated decent performance due
to its higher complexity and ability to use cell graph structures and features. Its logits provided rich
information and regularization to students, mitigating the risk of overfitting the training distribution.
We also examined the differences in feature importance between student models trained with

the teacher’s logits and their counterparts trained on hard labels. In particular, the student model
demonstrated a stronger emphasis on morphological features in the Tuberculosis (TB) dataset than
the models trained with hard labels. This emphasis aligns closely with the features that pathologists
typically prioritize for diagnostic purposes. Future work could explore designing alternative teacher
models, evaluating the proposed approach on larger datasets, and investigating causal knowledge
distillation as a potential extension.

Keywords Whole slide imaging, Graph neural networks, Cell graphs, Knowledge distillation, Non-neural
models, Tuberculosis

Cell graphs have emerged as a powerful tool for capturing the spatial and functional relationships within tissues.
They encapsulate cellular and tissue-level architecture by representing cells as nodes and their interactions as
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edges. They are particularly valuable for bridging the gap between molecular details and their collective impact
on larger biological processes, such as wound healing, tumor progression, and immune response!. The cell-
graph technique seeks to uncover the structure-function relationship by modeling the structural organization
of tissue using graph theory. For instance, in the context of breast cancer, cancer cells often cluster together
to form dense regions of abnormal tissue. This clustering reflects the biological processes underlying tumor
growth?, such as rapid cell division, altered adhesion properties, and disrupted tissue architecture. By analyzing
the spatial distribution and interactions of these clustered cells, the cell-graph approach can provide insights into
the functional state of the tissue, such as tumor aggressiveness. This study focuses on three primary cell graph-
based datasets: Tuberculosis (TB), Placenta, and Breast Cancer Classification. TB is a highly contagious disease
and a leading cause of ill health and mortality worldwide. According to the World Health Organization’s report
on TB?, an estimated 1.25 million people succumbed to the disease in 2023. Pulmonary TB, primarily caused by
an infectious bacterium, predominantly impacts the lungs through airborne transmission®. Granulomas in lung
tissue are characteristic of both human and experimental pulmonary tuberculosis>®. Identifying acid-fast bacilli
(AFB) in stained samples is essential for diagnosing tuberculosis’.

Whole-slide imaging makes it easier to digitally examine these stained samples, allowing for high-resolution,
in-depth tissue investigation. They preserve fine-grained cellular morphology and local tissue architecture that
is often lost through downsampling. Traditional WSI analysis pipelines resort to patch-based processing or
downsampling, fragmenting tissue structure and sacrificing essential contextual information®. In our approach,
we construct cell graphs from whole slide images that integrate local morphological features with spatial context.
A deep GNN is then applied to these graphs to learn complex cell interactions, translating the rich WSI content
into structured, relational representations. The edge threshold for intercellular communication is crucial
in constructing biologically meaningful cell graphs. Incorporating pathologist insights can help refine this
threshold, ensuring the graph representation aligns with the underlying cellular interactions. We determined
edge thresholds based on the biological rationale for the cell graphs we constructed and validated them through
consultations with our domain expert. For the TB dataset cell graphs, nodes represent either acid-fast bacilli
(AFB) or the nucleus of activated macrophages, and edge thresholds are based on the length of cords of the
M.tb infected cells after 72 hours of infection® and the fact that macrophages extend pseudopods to sense their
environment!?. The Placenta dataset represents diverse histological structures essential to placental biology,
including various types of trophoblastic villi (T'Villi, MIVilli, SVilli, AVilli), Sprouts, Chorion, Maternal cells,
Fibrin, and Avascular regions. These structures capture key functional and structural aspects of the placenta.
Cell graphs from this dataset reveal how these structures collectively contribute to placental function. Finally,
cell graphs from the breast cancer dataset show the spatial arrangement and interactions between tumor cells,
lymphocytes, and stromal cells. Edges in these cell graphs were constructed based on factors such as immune
surveillance by lymphocytes and the clustering behavior of tumor cells facilitated by adhesion molecules'!. They
captured important patterns, such as tumor-immune interactions and interactions with stromal cells, essential
for understanding disease progression and prognosis.

The cell-graph technique leverages image processing, feature extraction, and machine learning algorithms to
establish a quantitative relationship between structure and function!. Our approach extends this by employing
a GNN trained on these cell graphs to learn and model this relationship effectively. Within our proposed graph
model, which we term as Cell Graph Jumping Knowledge Neural Network (CG-JKNN), we incorporate the
concept of jumping knowledge’'? from GraphSAGE layers. This approach aggregates information from multiple
network layers rather than relying solely on the final layer. We enhance the jumping knowledge with GATv2’s
attention mechanism to refine this process further. This allows the model to focus on the most informative nodes
dynamically.

An important question is whether the knowledge learned by complex deep learning models, such as GNNs
in our work, can be effectively distilled into simpler, non-neural network-based models. The answer lies in
knowledge distillation (KD), a process where the knowledge from a teacher model (in this case, a GNN) is
distilled into student models, typically less complex. Knowledge distillation on graphs brings the advantages of
KD into graph learning. This approach primarily serves two objectives: model compression and performance
improvement. Model compression focuses on creating a smaller student model than the teacher model. After
distillation, the student model achieves a performance comparable to that of the teacher while requiring fewer
parameters. Performance improvement focuses on transferring knowledge from the teacher to the student
model, aiming to enhance the student’s performance beyond that of a model trained without knowledge
distillation!?. The student model may be smaller, similar, or architecturally different from the teacher. The
other main goals of KD are knowledge adaptation and knowledge expansion'’. Knowledge adaptation focuses
on helping student networks perform well on new, unseen target domains by using knowledge from teacher
networks trained on similar source domains. Knowledge expansion aims to create student networks that are
more capable and perform better than the teacher networks. In our work, we focus on model compression
and performance improvement. Existing approaches to knowledge distillation mainly focus on neural network-
based student models'>~!7 using their iterative learning capabilities to align with the teacher’s outputs. However,
this work demonstrates that knowledge can be distilled to non-neural network-based models, such as tree-based
ensemble models. The knowledge that can be distilled can be categorized into various forms, including response-
based, intermediate, relation-based, and mutual information-based representations'“. In this work, we focus on
response-based knowledge distillation, using the logits generated by a deep GNN as targets to train tree-based
ensemble regressor models. These student models are significantly less complex than the teacher. Our primary
objective is to evaluate whether the teacher’s guidance through logits provides better insights into the student
models than traditional hard labels. We will use the term “Guidance” throughout the paper, which refers to
the teacher model’s ability to provide detailed class distinctions and enhance the student model’s performance
and generalization through its logits. Literature suggests that students trained on logits are better equipped to

Scientific Reports |

(2025) 15:29274 | https://doi.org/10.1038/s41598-025-13697-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

mimic the behavior of the teacher model'®. This approach enhances the student’s performance and enables it
to be a partial proxy for interpreting the teacher’s decision-making process. In one of our ablation studies, we
analyze the differences in feature importance between the student trained on logits and its counterpart trained
on hard labels to identify any notable distinctions. To measure the efficacy of this distillation process, we employ
a distillation quality metric that balances model complexity and performance. Furthermore, we extend our
analysis to explore whether calibration (aligning the probabilities derived from logits with the true likelihood of
events) improves the guidance provided by logits. Additionally, we evaluate the efficacy of our approach under
varying dataset complexities, including the presence or absence of distribution shifts, imbalanced data, different
feature sets, and different levels of training graph complexity. To broaden the applicability of our method, we also
test it on datasets beyond cell graphs.

In this study, we addressed key questions to learn the efficacy of knowledge distillation in our proposed
framework. Specifically, we sought to answer the following:

Do all student models benefit from knowledge distilled from the teacher GNN trained on cell graphs with lo-
cal cell graph features and/or morphological features under varying dataset complexities such as the presence
of distribution shifts?

« Do the features selected by models trained on hard labels differ from those chosen by the students, and can
these differences provide insights into the teacher’s guidance?

« Can a student model achieve better performance when trained using the combined guidance of the teacher
model and the best-performing student, compared to being taught solely by the teacher model?

« Can calibration of teacher logits provide better guidance to student models?

The major contributions of this work can be summarized as follows:

« Inspired by Fukui et al.'®, we proposed a knowledge distillation framework that uses the logits from a GNN
model with jumping knowledge, which acts as the teacher, to train non-neural network models as student
models. To our knowledge, this is the first work exploring a teacher trained on cell graphs to guide non-neural
network-based student models.

« We proposed a method to approximate the number of parameters/complexity of student models using the
asymptotic equivalence between the Akaike Information Criterion (AIC) and leave-one-out cross-validation.

o We evaluated the efficacy of knowledge distillation under diverse dataset conditions, including varying de-
grees of imbalance, distribution shifts, and varying graph complexities. We also tested our approach across
various feature sets, including combinations of cell graph features and morphological features, individual
feature sets (only cell graph features or morphological features), and non-cell graph features.

o We explored the impact of post-calibrating logits to enhance the guidance provided by teacher models to
student models. We proposed a modified distillation quality metric that effectively measures the quality of
knowledge distilled, even in scenarios where the student model outperforms the teacher.

o We conducted ablation studies to determine whether the best-performing student model, in combination
with the teacher model, could improve guidance. Additionally, we analyzed how feature importance varied
when guided by the teacher and explored the biological relevance of these features.

Section “Related works” discusses prior research in the domain. Section “Methods” describes this study’s
proposed methodology and framework. Section “Results” presents the experimental results and evaluates
the performance of our approach. Section “Discussion and major takeaways” analyzes the implications of
our findings and summarizes the key takeaways of this study. Section “Limitations of our work” outlines the
limitations of our approach. Section “Conclusion and future work” summarizes the contributions and identifies
areas for future work.

Related works

Cell graphs and GNNs trained on cell graphs: applications in disease prediction and
classification

Graph construction for modeling cellular interactions often assumes that neighboring cells are more likely to
interact. To capture these interactions, methods such as Delaunay triangulation!?*?! and K-nearest-neighbor
(KNN)?*-% are widely employed. The Waxman model®® is another approach that uses an exponential decay
function of Euclidean distance to define edges probabilistically. Numerous studies have utilized cell graphs to
gain insights into the organization and behavior of cells within tissues. The pioneering work on cell graphs
highlighted that the most effective cell-graph construction methods emerge from combining physics-driven
and data-driven paradigms'. The study presented in*” used a computational method using cell-graph evolution
to model glioma malignancy. It linked graph phases to cancer severity through connectivity analysis of cell
graphs constructed from tissue photomicrographs. The authors in?® presented a computational method to model
glioma malignancy using cell-graph topology from tissue images. Cell-graph edges were generated using the
Waxman model. By analyzing graph metrics of cancerous cell clusters, the method achieved 85% accuracy at
the cellular level and 100% accuracy at the tissue level. An augmented cell-graph (ACG) method for diagnosing
malignant glioma from low-magnification tissue images was introduced in®. It represented cell clusters as
nodes and their relationships as weighted edges. Tested on 646 brain biopsy samples, the approach achieved
97.53% sensitivity and specificities of 93.33% (inflamed) and 98.15% (healthy) at the tissue level. Gunduz-
Demir® introduced an object-graph-based approach for gland segmentation by leveraging the organizational
properties of primitive objects. It achieved high segmentation accuracy when applied to colon tissue images and
demonstrated robustness to artifacts and tissue variances. The authors in*! introduced a Cell Graph Transformer
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(CGT) for nuclei classification in histopathology images. A topology-aware pretraining method using a graph
convolutional network (GCN) was proposed to learn a feature extractor to address challenges with noisy self-
attention scores in complex cell graphs. The study in®? presented sigGCN, a multimodal deep learning model
combining a graph convolutional network (GCN) and neural network to integrate gene interaction networks
for cell classification. The method outperformed existing traditional approaches in both within-dataset and
cross-dataset classifications. Graph neural network-based approach that leveraged cell graphs from multiplexed
immunohistochemistry (mIHC) images to predict patient survival and digitally stage gastric cancer was
proposed in*. Edges in the cell graph were established based on the Euclidean distance between cell pairs,
connecting cells separated by less than 20 um. It outperformed traditional staging systems, achieving high AUC
scores (0.960 for binary and 0.771-0.904 for ternary classification). A novel cell-graph convolutional neural
network for colorectal cancer (CRC) grading that models large histology images as graphs was proposed in®. It
incorporated both nuclear appearance and spatial information. An edge was placed between two nuclei if they
were at a fixed distance from each other. By introducing Adaptive GraphSage for multi-scale feature fusion and
a sampling technique to address graph redundancy, CGC-Net effectively captured tissue micro-environment
structures. A hierarchical Transformer Graph Neural Network, combining GNN and Transformer architectures,
was introduced in?*. The main aim was to achieve colorectal adenocarcinoma cancer (CRA) grading using the
cell graph that was constructed using the KNN approach. It used a Masked Nuclei Patch (MNP) strategy to
train a ResNet-50 to extract representative nuclei features. The transformer module captured long-distance
dependencies, achieving state-of-the-art results on CRA grading tasks. The authors in* proposed Feature-
Driven Local Cell Graphs (FeDeG) for constructing cell graphs by integrating spatial proximity and nuclear
attributes like shape, size, and texture. Graph-derived metrics extracted from FeDeGs were used with a linear
discriminant classifier, achieving an AUC of 0.68. A Hierarchical Cell-to-Tissue (HACT) graph representation
utilizing the cell graphs was proposed in®. The tissue structure and functionality were modeled using a novel
hierarchical graph neural network (HACT-Net). Using the Breast Carcinoma Subtyping (BRACS) dataset,
HACT-Net outperformed state-of-the-art methods and individual pathologists.

Knowledge distillation in graphs

With the demand for efficient models, KD is an ever-developing field. Among the various types of information
that can be distilled, including logits, embeddings, and graph structures, we specifically use logits as the training
labels for the student models. Many works have focused on transferring logits as a form of knowledge in
knowledge distillation. The authors in® systematically compared different knowledge sources—features, logits,
and gradients in knowledge distillation by approximating the KL-divergence criterion. They analyzed their
effectiveness in model compression and incremental learning and found that logits were generally more efficient.
Recently, a refined knowledge distillation method that employed labeling information to refine teacher logit
dynamically and to eliminate misleading information from the teacher was introduced in*’. Distilling graph
structure information involves transferring knowledge about the connectivity and relationships between nodes
and edges’8, which is crucial for modeling graph data. Additionally, some works distill learned node embeddings
from the intermediate layers of teacher models to guide the student model’s learning.

In the context of knowledge distillation, various setups exist to transfer knowledge. There are teacher-free
networks where the student model learns independently without a teacher. In teacher-to-student networks, the
knowledge transfer can involve one or multiple teachers guiding the students. Additionally, distillation can be
categorized as offline or online. Online distillation refers to a scheme where the teacher and student models
are trained simultaneously in an end-to-end manner. In contrast, offline distillation involves a pre-trained
teacher model that facilitates the student’s training without undergoing further updates. In our study, we utilize
a teacher-to-student setup with two configurations: a single teacher guiding the student and a combination of the
teacher and the best-performing student acting as teachers. Additionally, our approach falls under the category
of offline distillation, as the teacher models are pre-trained and remain unchanged during the training of the
student models.

Numerous works have been conducted to highlight the use of knowledge distillation in graphs. In*, the
authors proposed a method for compressing a k-layered graph convolution network (GCN) by repeating a
single GCN layer k times and distilling both the logits and final node embeddings. The authors in*’ used two
heterogeneous teacher models to distill their embeddings via a topological attribution map and logits. In*!, the
authors trained a teacher on offline graph snapshots with a self-attention mechanism to distill to a smaller, more
efficient student model making predictions on online graph snapshots. A neighbor distillation method to distill
local structure knowledge and to use peer node information to learn the local structure was proposed in*2. The
approach in*? used logit distillation and auxiliary representation distillation methods such as Locality Structure
Preserving distillation (LSP)*%. In*, the authors used adversarial training for KD by applying a discriminator
to the embeddings and logits of the student and teacher models. The authors in*® proposed a method for fair
distillation where a student model learned both the distilled logits and a proxy for bias from the teacher, which
was removed during testing with the rationale that it contained most of the information on bias and its exclusion
would result in fair predictions. An interesting logits-based KD method termed Decoupled Graph Knowledge
Distillation (DGKD) was proposed in*’. It reformulated the distillation loss into the components of target class
(TCGD) and non-target class (NCGD). By decoupling the fixed weight between these losses and addressing
their negative correlation, DGKD dynamically adjusted the weights for different data samples. This led to
improved prediction accuracy for student MLP. The authors in*® proposed Knowledge Distillation for Graph
Augmentation (KDGA) that mitigated the adverse effects of distribution shifts caused by graph augmentation.
KDGA transferred knowledge from a GNN teacher trained on augmented graphs to a partially parameter-shared
student tested on the original graph. This helped to improve performance across various GNN architectures and
augmentation methods. In?’, they transferred knowledge from two specialized teacher models, one focused on
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features and the other on structure, using a teacher-student distillation framework. The feature-level teacher
guided the student on completing and leveraging node features, while the structure-level teacher focused on
graph topology. However, these works primarily focused on distilling knowledge from a GNN to another GNN
or other neural networks. In'®, the authors proposed a distillation method that utilized information extracted
from neural networks to train non-neural network models, such as support vector machines, random forests,
and gradient-boosting decision trees. Their study was limited to a single image-based dataset and did not provide
a detailed analysis of why specific student models failed to achieve the desired performance when trained with
logits obtained from the teacher CNN. Moreover, they evaluated their approach using only two out of ten
available classes for simplicity, which does not adequately demonstrate the efficacy of KD in a multiclass setting.

Problem statement

Currently used methods for building cell graphs typically use a single-edge threshold to represent every
interaction between cells. These thresholds are often chosen based on factors such as achieving denser graphs.
However, this approach overlooks the biological diversity of interactions, as different cell types exhibit distinct
interaction patterns that a uniform edge threshold cannot adequately capture. A more biologically informed
methodology for defining these thresholds is necessary to better reflect the underlying cellular relationships. In
the context of knowledge distillation from GNNs, most existing works focus on transferring knowledge from
GNNs to other neural networks. However, student models need not be limited to neural networks. They can
include non-neural models. Furthermore, evaluating the efficacy of knowledge distillation in our specific setup
requires a broader understanding of its behavior under varying dataset complexities, including scenarios with
distribution shifts, multiple classes, and other challenges.

Methods

Datasets based on cell graphs and non-cell graphs

For this work, we utilized three cell graph-based datasets: one from our previous paper on tuberculosis (TB),
another dataset from placenta histology!, and lastly, the TCGA Breast Cancer Cell Classification Dataset
(BRCA-M2C)*2. The TB dataset contained 44 whole slide images (WSIs) with an average size of 42,831 x 41,159
pixels at 40X magnification. The nodes were classified into acid-fast bacilli (AFB) and the nucleus of activated
macrophages. The approach used to determine the cell locations and classify the cell types is detailed in our
previous work®. We used 34 WSIs for training and validation, while 10 WSIs were reserved for the test set. The
train and test WSIs used in this study differed from those proposed in>. The training set had 90878 nodes, the
validation set had 22708 nodes, and the test set had 76316 nodes.

The placenta dataset consisted of two cell graphs constructed from two placenta histology WSIs, combined
into a single graph with nine classes. We utilized the original 64-dimensional feature set provided with the
dataset for our analysis. These features primarily focussed on the morphological characteristics of the cells. Our
goal was to evaluate the efficacy of knowledge distillation with cell graph datasets where the cell graph features
were not included in the training process. The process of feature extraction is described in®!. Additionally, we
followed the dataset’s original train, validation, and test split (considering only labeled nodes).

The BRCA-M2C dataset (Breast Cancer Dataset)*? provided dot annotations for multi-class cell classification
in breast cancer images, including the annotated cells’ coordinates and corresponding labels. The cell extraction
and labeling process can be found in>2. These images were patches extracted from 1000x1000 pixels at the
highest resolution and downsampled to 20x. All images were around 500x500 pixels. The cell classes included
lymphocytes, breast cancer cells, and stromal cells. There were 80 image data (coordinates of the annotated cells
along with their corresponding labels) under the training set, 10 image data under the validation set, and the test
set consisted of 30 image data. We combined training and validation data while keeping the test data unchanged.
This resulted in 19602 training nodes, 2178 validation set nodes, and 8858 test set nodes.

To determine the generalizability of our approach to non-cell graph-based datasets and in the absence of
features extracted from cell graphs, we used three non-cell graph-based datasets: CoauthorCS, CoauthorPhysics
and a synthetic dataset. These datasets consisted of a single graph. The CoauthorCS dataset consisted of 18,333
nodes and 163,788 edges, with nodes divided into 15 classes. A 6,805-dimensional feature vector represented
each node. The training set had 12833 nodes, the validation set had 3666 nodes, and the test set had 1834 nodes.
Similarly, the CoauthorPhysics dataset contained 34,493 nodes and 495,924 edges, with nodes categorized into
five classes. Node features in this dataset were 8,415-dimensional vectors. The training set had 24145 nodes, the
validation set had 6898 nodes, and the test set had 3450 nodes. These datasets were only used to evaluate the
applicability of our approach to non-cell graph settings and were not included in ablation studies. We generated
a synthetic dataset of 60,000 nodes using the preferential attachment mechanism of the Barabési- Albert model™.
Seven topological features were extracted for this graph to represent its structural properties. The dataset training
set contained 42,000 nodes, 12,000 nodes were present in the validation set, and 6,000 nodes were present in the
test set, respectively.

Generally, datasets with a minority class proportion between 20% and 40% are considered to have mild
imbalance, those with proportions from 1% to 20% are categorized as moderately imbalanced, and datasets with
a minority class proportion of less than 1% are considered extremely imbalanced®*. Based on this classification,
TB and Breast cancer datasets had a mild imbalance. The Placenta, CoauthorCS, and Synthetic datasets
demonstrated extreme class imbalance. The CoauthorPhysics dataset had a moderate imbalance.

Construction of cell graph

Edge construction in cell graphs estimates the biological likelihood that neighboring cells interact within the
same structure. The edge threshold for intercellular communication is critical in cellular studies, and many
investigations have aimed to determine the optimal distance for accurately modeling these interactions.
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Node ‘v’ Node ‘v Distance ‘d’ in pixels
AFB AFB 615

AFB Macrophage Nucleus | 2049

Macrophage Nucleus | AFB 2049

Macrophage Nucleus | Macrophage Nucleus | 2049

Table 1. Distance thresholds.

Cell_1 Cell 2 k-value
Lymphocyte Lymphocyte 5
Breast cancer cell | Breast Cancer Cell | 2
Stromal Stromal 8
Lymphocyte Breast cancer cell |5
Lymphocyte Stromal 10
Breast cancer cell | Stromal 10

Table 2. k-values for different types of cell interactions.

Pathologists’ input provides valuable guidance to refine graph representations and ensure they accurately reflect
the biological relationships between cells®>. Many prior works have employed a single threshold value to map
cell-cell interactions?*33, while some have experimented with varying edge thresholds, such as 60, 75, and 90
m, to identify an appropriate threshold value®. In contrast, our approach uses distinct threshold values for each
cell-cell pair,

In the TB dataset, nodes represent either AFBs or the nucleus of activated macrophages. Edge thresholds
were based upon the length of cords of the M.tb infected cells after 72 hours of infection’ and the fact that
macrophages can extend their pseudopods beyond their normal boundary (radius) to detect other cells farther
away. We hypothesize that AFBs can interact with other AFBs within a distance of 150 pm, equivalent to 615
pixels at the magnification used in this study®’. Likewise, activated macrophage nuclei may interact with both
AFBs and each other if they are within 500 ;2m (2049 pixels)'?. Our domain expert has thoroughly reviewed and
validated these threshold values.

The adjacency matrix is computed as follows:

a L1 it Distance(u,v) < d
Y0 otherwise.

Distance denotes euclidean distance computing using the equation 1. The coordinates (., ¥ ) belongs to node
’u’ and the coordinates (2, y» ) belons to node *v’ in the image.

() = (e — o)+ (g — )’ 0

The distance threshold values are tabulated in the Table 1.

For the placenta dataset, the authors utilized the intersection of the K-nearest neighbors (KNN)* and
Delaunay triangulation®® graphs with a k-value of 5 to generate the cell graphs. In this graph, the nodes
represented cells, and the edges depicted their interactions.

For the BRCA-M2C dataset, we constructed cell graphs where nodes represent cells and edges represent
interactions based on the k-nearest neighbors (KNN)>® approach. Different k-values were used for each pair
of cell types to reflect the biological significance of their interactions. The values used are tabulated in the
Table 2. The adjacency matrix is calculated using the Eq. 2. The chosen k values were determined based on the
cohesiveness of tumor cells and the solitary nature of stromal cells in tumors. Similarly, lymphocyte interactions
were assigned moderate k values to reflect their intermediate proximity during immune surveillance, whether
with tumor cells or among themselves. Figure 1 illustrates the cell graphs for various datasets.

. {1 ifje KNN()
Ali, j] = { 0 otherwise 2)

Are all these edges required?

While the cell graphs used in our study are generated by considering biological interactions, we acknowledge
that they might not represent the optimal cell graphs. The edges in these graphs capture critical intercellular
interactions. However, determining the optimal edges for such graphs remains an open research question.
These interactions prove to be highly beneficial, particularly when the test set originates from a distribution
different from the training set. Randomly removing edges from the cell graphs has been shown to hamper the
teacher model’s performance. This, in turn, degrades the performance of the student models, as the quality of the
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Figure 1. Cell graphs of the TB and BRCA-M2C datasets were generated using the NetworkX library®°
(version 3.4.2, https://networkx.org/). (A) Cell Graph generated for a TB image. Acid-fast bacilli (AFB)

cells are shown in red, and the nucleus of activated macrophages is depicted in blue. Black edges represent
interactions. (B) Cell Graph generated for a normal lung tissue, i.e., not infected. (C) Cell Graph acquired from
the Vanea et al.’!, licensed under Creative Commons Attribution 4.0 International License (https://creativecom
mons.org/licenses/by/4.0/). (D) Cell Graph generated from the BRCA-M2C dataset, where red nodes represent
lymphocytes, blue nodes represent tumor cells, green nodes represent stromal cells, and gray edges denote
their interactions, created using different k-values for specific cell interactions.

Feature names Features (feature number)

Graph Features

Eccentricity (1), Closeness_of_node (2), Average_Clustering (3), Node_Clustering (4), Serensen (5), Salton (6), Hub_Promoted
(7), Hub_Depressed (8), Centrality (9), Mean_all_neighbors (10), Skew_all_neighbors (11), Kurtosis_all_neighbors (12)

X (13),Y (14), Contrast (15), Energy (16), Correlation (17), Homogeneity (18), ASM_value (19), Dissimilarity (20), Variance

Morphological Features | (21), Mean_Image (22), Standard_Deviation (23), Area (24), Major_Axis (25), Minor_Axis (26), Eccentricity_object (27),

Perimeter (28), Diameter_object (29), Circularity (30), Mean_convex_hull (31), SD_convex_hull (32)

Table 3. Features. Note: Skew_all_neighbors and Kurtosis_all_neighbors are computed based on the
distribution of edge lengths between neighboring nodes.

teacher’s logits diminishes. The concept of optimal cell graphs with the right amount of connectivity to balance
model complexity and performance remains an emerging area of research that requires further exploration.

Feature extraction

We tested the efficacy of our approach under different feature sets across datasets. We combined local cell graph
features with morphological features for the TB dataset. For the Placenta dataset, we used only morphological
features (along with inherent variations in cell appearance). For the BRCA-M2C dataset, we utilized only the
local cell graph features. For the Coauthorship datasets, we did not extract additional features. Instead, we used
the existing original features provided by the datasets.

TB dataset

In*°, combining morphological and graph features resulted in the best results for CG-JKNN. Hence, we use this
combination to train our models in this work. Table 3 denotes the extracted features; the description can be
found in the paper that introduced it.

Placenta dataset

For the placenta dataset, we used the features defined in the original paper. Specifically, the node features
are defined using the nucleus coordinates as node coordinates and the 64-dimensional embeddings from the
penultimate layer of the cell classifier model. These features primarily encode morphological information about
cells rather than cell graph structural information.

BRCA-M2C dataset
For the BRCA-M2C dataset, we extracted the local graph features from the cell graphs generated. The extracted
features are listed in Table 4.
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Features (feature

Feature names | number)

Degree (1), Betweenness_
centrality (2) , Eccentricity
(3), Closeness_of_node
(4), Node_Clustering (5),
Kurtosis_all_neighbors
(6), Mean_all_neighbors
(7), Skew_all_neighbors
(8), Serensen (9), Salton
(10), Hub_Promoted (11),
Hub_Depressed (12)

Graph features

Table 4. Features.

Student Models

Distillation
Component

1. Extralrees Regressor
2. XGBoost Regressor
3. Random Forest Regressor
4. HistGrad Regressor
5. LightGBM Regressor
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Figure 2. Architecture of the teacher model used for knowledge distillation. To obtain the temperature-scaled
logits, as discussed in the ablation study, a temperature-scaling block needs to be incorporated between the
logits generated by the teacher model and the input to the student models.

Distilling the knowledge from CG-JKNN (teacher) to tree-based ensembles (students)

Based on the CG-JKNN architecture, the teacher model is designed for node-level classification tasks. A graph
is defined as G = (V, E), where V denotes the set of nodes, and each node v is associated with a d-dimensional
feature vector -, € R?. The edges E are represented by e,, , = (u, v), indicating a connection between nodes u
and v. The adjacency matrix A € R™*™ encodes the graph structure.

The architecture of our teacher model and the flow of our proposed work are depicted in Fig. 2. To train
the teacher GNN, we utilize cell graphs G constructed along with their associated node features x,. During
the training phase, the model learns to classify each node by predicting its label based on the provided labeled
graphs. During testing, the trained GNN receives unseen cell graphs G and their associated node features x,.
The model predicts the test node labels, which are then compared against the true labels in the test set to evaluate
performance.

Each node’s hidden features 2" € R? in the I-th layer are initialized with the input features as Y = a,,.
The GraphSAGE layers process node representations, employing a mean aggregation function as shown in Eq.
3 to gather information from neighboring nodes. In our previous work>’, we experimented with both mean
and max aggregators and found the mean aggregator to achieve superior performance consistently. This also
aligned with prior studies that demonstrate the effectiveness of mean aggregation in node classification tasks®":2.
Therefore, we selected the mean aggregator.

hy = MEAN ({h{™D vu € N(v)}) (3)

Here, hg\l,)(v) represents the aggregated neighborhood representation, and R corresponds to the representation

of neighboring node u from the previous layer. The node’s updated representation is computed using Eq. 4.
1) _ - ®
h® =0 (W~ [hg 1),hN(U)]> (4)

Here, W is the learnable weight matrix, and o denotes the activation function (ReLU).

The “jumping knowledge representation learning” mechanism!? is incorporated to combine multi-layer
node representations. This approach concatenates representations from all layers to form a comprehensive
node representation (Eq. 5) instead of using only the final layer’s representation. The authors in'? explored three
different aggregation mechanisms: concatenation, max-pooling, and an LSTM-based attention mechanism. Our
network adopts the concatenation-based jumping knowledge mechanism for aggregating node representations.
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h{Coneatenated) — Concatenate [h{V, ..., h{] (5)

v

After concatenation, the node representations are passed through a GATv2 layer®®, which refines the
representations using an attention mechanism. The attention coefficients v, are computed as:

Qyn, = sOftmaxy, (LeakyReLU (aT [Wthoncatenated) HWh’ELConcatenated)}) ) (6)

Finally, the node representations are updated as shown in Eq. 7, Later, the softmax function applied to obtain
the class probabilities.

thAT) =0 Z aquthorlcatenated) (7)
ueN (v)

Here, .4 (v) denotes the neighbors of node v, and o is the activation function. We use a rectified linear unit
(ReLU) as the activation function. Over-smoothing is a critical issue in GNNGs. It arises when deep networks cause
node features to converge, losing their distinctiveness. Existing approaches address this challenge using various
strategies. Energetic Graph Neural Networks employ energy-based modeling®, while Graph DropConnect
introduces graph-specific dropout®. Graph-coupled oscillator Networks use non-linear oscillators to modify
GNN dynamics®, and residual connections improve the information flow in deep GNNs to counter over-
smoothing®. For this study, we adopted the DropEdge technique®®. It mitigates over-smoothing by randomly
removing a proportion of edges during training. Using the edge index representation for graph connections, we
experimented with various dropping rates.

Logits represent the unnormalized outputs of the model. It provides richer information compared to class
probabilities. It has been shown in the literature that training the student model directly on the logits allows
for more effective learning of the internal representations captured by the teacher!®. This approach enables the
student to mimic the teacher’s learned patterns better. Additionally, it helps avoid the information loss that
typically occurs when logits are transformed into probabilities. Hence, we extract the logits before applying the
softmax function for knowledge distillation and use them as labels to train the student regressor models.

In general, the KD loss® is formulated to align the predictions of the student model with those of the teacher
model by minimizing the divergence between their output distributions. This is typically achieved by leveraging
the Kullback-Leibler (KL) divergence. While this approach is effective for neural network-based student models
that undergo continuous updates during training, it is not directly applicable to our scenario. In our study, the
student models are tree-based ensembles that do not rely on iterative gradient updates. As a result, we don’t
utilize this loss function.

After training on the teacher’s logits as targets, the student models generate predictions, which are converted
into probabilities using the softmax function. These probabilities are evaluated to calculate performance metrics
such as accuracy and F1-score. We specifically chose non-linear models for students because the teacher logits,
serving as labels, are inherently non-linear. For the student models to effectively learn from these logits, they
must possess sufficient capacity (or complexity) to capture the underlying non-linear relationships embedded in
the teacher’s predictions. We employ tree-based ensemble regressors as student models, as described in the Table
5. For brevity, we will often refer to these models by their specific names rather than repeatedly using the term
regressor’ throughout the paper.

Estimating the complexity of tree-based ensemble models-an approximation and distillation
quality score

Understanding the complexity of student models is essential to evaluating the quality of knowledge distilled
from the teacher model. Black-box models, including various ensemble techniques, diverge from traditional
likelihood-based frameworks and present challenges in directly assessing model complexity. This is mainly
because the number of parameters in such models does not accurately represent their degrees of freedom. The
concept of Generalized Degrees of Freedom (GDF), introduced by Ye”® and later applied to machine learning by
Elder”!, serves as a metric for assessing the complexity of models. For instance, in the case of a two-dimensional
decision tree scenario, Elder’! has observed that combining multiple trees through bagging leads to an ensemble
with a Generalized Degrees of Freedom (GDF) complexity that is lower than that of any single tree within the
ensemble. In’2, they employed GDF to estimate the number of parameters for the random forest model that was

Student model Description

ExtraTrees An ensemble model that combines multiple randomized decision trees for regression.

XGBoost A gradient boosting model that optimizes performance using weak learners.

HistGradientBoost | A histogram-based gradient boosting regressor for efficient training on large datasets.

Random Forest An ensemble method that uses multiple decision trees for robust regression.

LightGBM A gradient boosting framework optimized for speed and efficiency with large data.

Table 5. Student models and their descriptions.
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utilized to predict cell-type specific enhancer-promoter interactions by leveraging the information of protein-
protein interactions between transcription factors.

Despite the utility of GDF in providing an estimate of model complexity, it has some challenges. Firstly, the
sensitivity of GDF to perturbations in the data means that the degree to which GDF reacts can vary significantly
depending on the specific modeling approach being used. This variability indicates that a GDF estimation method
that works for one model type may not be suitable for another. In addition, the absence of a robust, universally
applicable method for estimating GDF complicates its implementation across different data distributions and
model architectures. These drawbacks highlight the complexity of accurately assessing model behavior in
machine learning and the need for further research in developing more adaptable metrics like GDF”>.

A standard metric for choosing models is the Akaike Information Criterion (AIC)7%, which illustrates the
trade-off between model complexity and goodness of fit. Models with reduced AIC values indicate a better
balance between the model complexity and goodness of fit. It is computed using the Eq. 8. M}, denotes the model
with dimension k. L(Mj}) is the likelihood corresponding to the model My,

AIC (M) = —2log L (My) + 2k )

However, one limitation of the Akaike Information Criterion (AIC) is its unsuitability for non-parametric
model selection’””. Models such as Random Forest are non-parametric’S. It is a common misconception that
non-parametric models have no parameters. They can be thought of as having an infinite number of parameters.
This characteristic suggests that the complexity of non-parametric models can grow to capture increasingly
precise information within the data as the number of data rises’®. Few papers have computed the AIC for models
such as Random Forest in”’. This study developed a machine-learning model to simulate the effect of masks on
motor sound, utilizing noise level data in decibels from various operation frequencies of motors at the National
Synchrotron Radiation Research Center (NSRRC). Three group indicators were used to assess the learning
performance: the Akaike Information Criterion (AIC), the Hannan-Quinn Information Criterion (HQIC),
the Schwartz-Bayesian Criterion (SBIC), and the Akaike Information Criterion with Small Sample Correction
(AICc). However, based on the information provided, the specific method used to determine the number of
parameters (‘K’) for the AIC score is unclear.

When models are estimated using maximum likelihood, the choice of model based on minimizing the cross-
validation error leads to asymptotically equivalent decisions as selecting the model that minimizes the AIC”.
Based on this, the authors in”* argued that it should be possible to extract a measurement from lcv (which
denotes the sum over K folds of the log-likelihood of the validation subset that estimates model complexity). The
equation in 9 denotes the asymptotic equivalence between AIC and leave one out cross validation (LOOCV).
Based on this, the number of parameters p can be estimated using the Eq. (11). I, denotes the maximum
log-likelihood of the original (non-cross-validated) model, and lcv represents the sum over K folds of the log-
likelihood of the validation fold.

AIC = —20,, + 2P = —2lcv )

—2lm +2p = —2lcv
2p ~ —2lcv + 2lm (10)
p = 2(lm — lcv) /2

P~ Al — Llov (11)

In our work, we have employed tree-based ensemble regressors as student models. These are non-likelihood
models. In”3, the authors found the notion of applying GDFs to non-likelihood models to improve information-
theoretic metrics of model fit (like AIC) was associated with the high cost of processing and produced inconsistent
results. While cross-validation was a more direct method, it was less stable than GDFs. To determine the model
complexity metric, they suggested repeated 10-fold cross-validation. Cross-validation is suitable for models that
do not make likelihood assumptions since it can but need not, use the likelihood fit.

We build our methodology based on this idea. We utilize the sum of squared errors (SSE) to approximate
the log-likelihood term. It suits our models that do not directly maximize the likelihood function. A higher
maximum log-likelihood value indicates that the observed data is more probable under the model, which is
interpreted as a better fit. A lower SSE suggests that the model’s predictions are closer to the actual observed
values, which is also interpreted as a better fit.

Equation (12) shows the computation of model complexity with SSE. The SSEy.u denotes the sum of
squared errors on the training set, and SSEcv denotes the SSE of the cross-validation. The logarithm helps to
scale and normalize the SSE in relation to the number of observations 'n’ In our experiments, we implemented a
trial of 10-fold cross-validation recognizing the expensive computational demands of LOOCYV. However, it does
introduce some level of Monte-Carlo variability, resulting from not averaging all possible leave-one-out sets, as
would be the case with LOOCV”. We observed slight variations in these estimates across different runs during
our experiments. To ensure stable and reliable estimates, we recommend future researchers to conduct multiple
runs, as suggested in”>.

SSEcv) SSEfuu) (12)
n n

pzn/2ln( fn/2ln(
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These terms capture the fit by indicating how close the model’s predictions are to the actual data points, with the
logarithm helping to scale and normalize the SSE in relation to the number of observations. The supplementary
files provide additional results on how model complexity changes under varying parameters. Henceforth, the
term ‘number of parameters’ for non-neural models in this study will denote the effective complexity,p.

Based on the complexity approximated, we compute the distillation quality metric, which measures the
effectiveness of the distillation process. Inspired by”®, we employ a slightly modified version of the distillation
quality metric to evaluate the performance of various student models. Its computation is shown in equation 13.
Instead of using accuracy, we use a weighted F1 score in our metric when dealing with imbalanced datasets.

student 51
teachery;

student.

13
teacher. (13)

DS:a-( )—i—(l—a)-max(O,l—

student. and teacher. denote their respective complexities (in terms of parameters), and student;; and
teachery; denote their Fl-scores (weighted). The approach of computing the number of parameters of our
student models is described under section “Estimating the complexity of tree-based ensemble models-an
approximation and distillation quality score”. The second term incorporates the max function to handle cases
where the student outperforms the teacher. The authors in”® emphasize that the choice of the parameter «
is left to the designers, allowing them to prioritize either model size or accuracy according to their system’s
requirements. For instance, a value of a > 0.5 would be appropriate if smaller model sizes are more critical.
In our work, to balance the importance of model size and performance, we set o, — (.5, giving equal weight
to these two factors. For balanced datasets, accuracy can be used instead of F1-scores to evaluate performance.
In cases where the student outperforms the teacher, the ratio of student performance to teacher performance
exceeds one. To address this, we have adjusted the score to ensure it remains non-negative. In our approach, a
score of zero is achieved when the student model outperforms the teacher while maintaining a much smaller
size than its teacher.

Ablation studies

We conducted three ablation studies, primarily focusing on cell graph data sets. The first study explored training
with ensembled logits from the teacher and the best-performing student model. The second study aimed to
analyze the differences in the importance of features when the models were trained using teacher logits compared
to when they were trained using hard labels. The third study compares the effectiveness of transferring teacher
knowledge via distillation into two types of student models: an Artificial Neural Network (ANN) and non-
neural models.

Combining teacher and top student: ensemble model training

The goal of knowledge distillation from several teachers is to produce a good student who inherits the majority
of the ensemble’s performance without raising the computational cost of inference. First, building highly
predictive teacher ensembles is required to produce strong student models with distillation®®. A few works
focus on ensemble distillation on unlabeled datasets®!~#2. Since our study focuses on labeled data, we explicitly
evaluate approaches relevant to labeled datasets for our distillation process, where the crucial problem is how
to assign different weights to individual teachers within the ensemble®!. In®, they proposed an ensemble model
that unified three distinct knowledge distillation methods-feature-based, response-based, and relation-based
on the CIFAR-10 and CIFAR-100 benchmarks. The distillation utilized a lightweight ResNet-20 student model
with 0.27 million parameters and a ResNet-110 teacher model with 1.7 million parameters. The authors in®
trained an ensemble of various Multi-Task Deep Neural Networks (MT-DNNs (teachers)), achieving superior
performance over any single model. Subsequently, they trained a single MT-DNN (student) through multi-task
learning, effectively distilling knowledge from the ensemble of teachers. Wang et al.% trained one segmentation
teacher CNN on synthetic samples with accurately known ground truth fault labels and another classification
teacher CNN on field samples with manually annotated labels. Following this, a classification student network
was trained on samples created by aggregating the predictions from both teacher models through a voting
mechanism. The authors in®” proposed MT-BERT, a novel approach to multi-teacher knowledge distillation
focused on the compression of pre-trained language models. They devised a co-finetuning framework that
simultaneously fine-tuned multiple teacher models employing a unified pooling and prediction module to align
their output hidden states. This methodology enhanced the collaborative teaching of the student model. Chebotar
and Waters® discovered an effective ensemble of acoustic models comprising LSTM and CLDNN architectures
developed with diverse training objectives, where the student model was a CLDNN. Initially, the research
involved identifying the optimal fixed weights for merging the outputs of teacher models to maximize accuracy.
The knowledge was later distilled into the student model using the soft labels generated by the ensemble. The
authors in® proposed a dynamic weighting approach for each teacher, demonstrating its effectiveness in logits-
based and feature-based distillation through extensive experiments. They treated the process as a multi-objective
optimization problem to find a more effective training direction.

For this ablation study, we consider both the CG-JKNN and the highest-performing student model as teacher
models to investigate their combined impact on knowledge distillation. We adopt the methodology proposed
in®, which involves identifying optimal fixed weights for merging the outputs of teacher models to maximize
the F1 score on the validation set. Following this, we distill a student model from the ensemble output generated
through this optimized combination. Equation (14) illustrates the method for aggregating outputs from the
teacher GNN and LightGBM models. The detailed approach is shown in the algorithm 1.
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L ensemble (m) = W gnn °* L gnn (l’) +w lightgbm * L lightgbm (J}') (14)

L ensemble () is the ensembled output for a given input x. L g, () is the logit output from the GNN model
for a given input x. L 1ightgbm () is the raw decision score output from the LightGBM model for a given input x.
W gnn and W lightgbm are the weights applied to the outputs from the GNN and Light GBM models, respectively.
It can be adapted to incorporate the outputs of other high-performing student models.

Input: Logits_GNN, logits from the teacher GNN model
Input: Predictions_Best_Student, Raw decision scores obtained on training set (before softmax)/predictions from the best
student model
Output: best_weights, optimal weights to combine outputs from GNN and best student model
Initialize best_val_f1_score < 0
Initialize best_weights < None
for each weight w in [0,0.1,...,1] do
Set weight_gnn <— w and weight_best_student <— 1 —w
Initialize predictions_val < ||
Normalize Logits_GNN and Predictions_Best_Student if they are on different scales
Compute  combined  output: final_outputs < weight_gnn x logits_gnn + weight_best_student x
predictions_best_student
for each column i in final_out puts do
Instantiate model
Fit model on training data with i’ output as target
Predict on validation data and append it to predictions_val
end for
Evaluate performance on validation data after converting the predictions in predictions_val to probabilities using softmax
transformation
if performance > best_val_f1_score then
Update best_val_f1_score and best_weights with current values
end if
end for

Algorithm 1. Optimal Weight Finding for Ensemble of Teacher GNN and Best Student model

Feature importance: comparing students trained with and without teacher guidance

We aimed to analyze the differences in feature importance of student models trained on teacher logits and their
counterpart trained on hard labels. Literature suggests that students trained on logits are better equipped to
mimic the behavior of the teacher model'®. Thus, this analysis can also serve as an approach to explore how
a student model trained on logits may partially act as a proxy for interpreting the teacher’s decision-making
process. For this experiment, we selected the student model that performed best on the held-out test set. To
determine feature importance, we utilized the “feature importances” attribute of the model. Additionally, to
assess how some of these important features contribute to predictions for each class and the direction of their
impact, we employed SHapley Additive exPlanations (SHAP) plots®®. Our objective was not to compare these
techniques but to leverage SHAP for a deeper understanding of how features influence model predictions. In
future work, we plan to incorporate advanced techniques such as permutation-based methods (e.g., Boruta
importance)’! and knockoff approaches®?, as these methods provide a more robust and accurate assessment of a
feature’s predictive abilities within a model®.

It is important to note that the student model can act as an interpretable approximation of the teacher by
reflecting its emphasis on certain cell graph level or morphological features. However, it cannot leverage the
graph structure and complex node relationships that the teacher model captures through message passing.
Instead, the student operates solely on feature values and the logits provided by the teacher. It thus limits its
ability to fully replicate the teacher’s reasoning process.

Comparing effectiveness of knowledge distillation into ANN vs. non-neural student models

In this ablation study, we selected an ANN as the neural student to ensure both model types rely solely on the
features and implicit relational knowledge provided through the logits of the teacher GNN. This avoids the
additional advantage of directly exploiting cell graph structures that a GNN would have and ensures that any
observed differences in performance stem directly from the effectiveness of the distillation process.

We designed a shallow network with one hidden layer to maintain a smaller student model and its structure
is illustrated in Fig. 3. The hyperparameters, such as hidden dimensions, alpha (which balances the two losses),
and learning rate, were optimized using Optuna over 50 trials, selecting those that maximized the validation F1
score. We also constrained the hyperparameter search space to ensure that the ANN model parameters remained
comparable to those of the non-neural student models.

Hinton et al.!® discovered that the effectiveness of the student model’s learning process is significantly
enhanced when it is trained using both the soft target provided by the teacher model and the actual ground
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Input Layer Qulput Layer

Figure 3. Architecture of our shallow ANN student model. The ellipses denote that additional neurons are
present in the layer but are not explicitly illustrated for clarity.

truth. This approach involves a combined loss function that integrates two key components: the traditional
cross-entropy loss and a knowledge distillation-specific loss term.
The overall loss function for knowledge distillation can be expressed as shown in the equation 15.

Lkp = aLes (ps,y) + (1 — a)r KL (p%, p7) (15)

Here, Lo (s, y) represents the cross-entropy loss. The second component, 72 K L (pZ, p7 ), is the knowledge
distillation term. p; and p; denote the softened outputs of the student and teacher models, respectively, after
applying the temperature scaling with parameter 7. KL stands for the Kullback-Leibler divergence, a measure of
how one probability distribution diverges from a second, reference probability distribution. v is a hyperparameter
that controls the balance between the traditional cross-entropy loss and the knowledge distillation loss. In our
work, we observed that logits before calibration already produced good results, and consequently, we set the
temperature 7=1.

Hinton et al.!”> suggested using a weighted average between the distillation loss and the student loss by
setting 8 = 1 — o, and in one of their experiments, they used o = 8 = 0.5. Other works that utilize knowledge
distillation treat this weight as a tunable parameter”¢. In our work, we treat the weight parameter « as a
hyperparameter. Additionally, we present results using a fixed « value of 0.5.

Generalizability of knowledge distillation under various dataset complexities

To investigate whether all models benefit from knowledge distillation and assess the effectiveness of our
approach across various dataset complexities, we conducted experiments on multiple datasets (cell graph and
non-cell graph). These datasets presented challenges, such as distribution shifts, and structural complexities
in training and testing graphs. Importantly, for Coauthorship datasets, we did not extract local graph features
but instead utilized the original dataset features. This allowed us to test the efficacy of knowledge distillation
in the absence of graph-specific features. The logits obtained from GNN trained on these coauthor networks
could encapsulate rich information by reflecting relationships between node features (keywords) and the graph
structure (Coauthorship network). For instance, if an author is involved in interdisciplinary work, their logits
may encode soft probabilities across multiple fields, capturing the uncertainty or overlap between class labels.

Graph complexity

We hypothesize that for knowledge distillation to be effective when the teacher is a GNN learning from the
graph, the graph must possess sufficient complexity. In such cases, the logits transferred from the GNN provide
valuable information that student models can leverage.

According to the literature, graph complexity measures can be categorized into deterministic and probabilistic
methods®”. Deterministic approaches include Kolmogorov complexity, substructure counting, and generative
models. Probabilistic methods involve entropy functions (such as Shannon’s entropy) applied to probability
distributions over graph structures with intrinsic and extrinsic subcategories. In our work, we focus on graph
energy, a concept originating from molecular and quantum chemistry, as a metric to evaluate how graph
structural complexities affect knowledge transfer from a teacher GNN to student models®®®. It is computed
using the Eq. (16).

1A

1
C = —E b E SVD(M 16
|4 k=1 ' ) 1o

Here by, represents the edge weights if any, |A| denotes the number of edges in the graph, and SVD(M) is a
vector of singular values of the matrix M.

Distribution shift in the data

The distribution shift'°-1%? can be broadly categorized into three types: Covariate shift, label shift, and concept
shift. The feature distribution changes in the covariate shift case, while the label distribution does not. On the
other hand, label shift happens when the distribution of the labels varies while the feature distribution remains
the same. Concept shift, also called conceptual drift, arises when the actual relationship between the inputs and
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labels evolves, reflecting a change in the underlying concept the model is attempting to capture. There exist
multiple ways to detect covariate shifts. We can compare summary statistics or employ dissimilarity measures
like Earth mover’s distance. For statistical rigor, hypothesis tests such as the Kolmogorov-Smirnov or Chi-
squared tests are used to determine significant distributional differences!®.

For this work, we utilized Kernel Principal Components Analysis (Kernel PCA) for dimensionality reduction,
selecting the number of components that captured above 95% of the dataset’s variance. Subsequent univariate
Kolmogorov-Smirnov tests, with Bonferroni correction!® applied to an alpha of 0.01, rigorously adjusted
our significance levels to control the cumulative Type I error rate across multiple hypotheses. The mean of
all significant KS statistics was computed to summarize the extent of covariate shift across the K dimensions.
Moreover, for the computationally expensive TB and Placenta dataset, we subsampled 20,000 points to ensure
the feasibility of the analysis while maintaining the representativeness of the original data. The mean KS statistic
calculated may not fully reflect the entire degree of shift in the dataset. However, our primary goal was to
demonstrate the presence of a shift.

To determine the covariate shift in non-cell graph-based datasets, we calculated the percentage of features
with covariate shift by performing univariate KS tests directly on the scaled features. This was due to the high
dimensionality of the dataset, as the large number of components required to achieve 95% variance capture
would have made our initially proposed approach computationally expensive. For label shift detection, we
employed the Chi-squared test'” to evaluate the consistency of class distributions between the different data
subsets. This involved constructing a contingency table based on the frequency counts of each unique class
in these subsets. After computing the Chi-squared statistic, we assessed the p-value to determine whether the
observed distributional differences were statistically significant.

Can logit calibration enhance student guidance?

Neural networks produce poorly calibrated predictions that can be either overconfident or underconfident.
GNNs can be miscalibrated too!%. Calibration primarily aims to make predicted probabilities more reliable.
In our study, we were particularly interested in investigating whether logit calibration could enhance the
guidance provided to our student models. It is important to note that logit calibration does not impact the
performance of the teacher model itself. Previous studies!?”1% have demonstrated how calibration can impact
models’ accuracy and other performance metrics. Additionally, the authors in!® introduced the concept of
addressing mis-instruction through logit calibration. This work highlighted that enhancing target logits while
preserving the relative proportions among non-target logits can significantly improve the utility of logits for
knowledge distillation. These works primarily dealt with neural models as students. Wang et al.!!? observed
that GNNs tend to be underconfident, in contrast to the majority of multi-class classifiers, which are generally
overconfident. This necessitated the use of various techniques to calibrate the logits. Guo et al.!'! proposed
temperature scaling to address the miscalibration issue found in modern neural networks. Kuleshov et al.!!?
introduced a straightforward calibration method based on isotonic regression. Another approach was ensemble-
based temperature scaling!!>. Methods such as temperature scaling preserved accuracy by maintaining the per-
node logit rankings unaltered'!*.

To achieve calibration, in this work, we employed isotonic regression and temperature scaling as post-hoc
calibration methods. In traditional settings, isotonic regression is employed for binary classification tasks. To
extend isotonic regression to multiclass scenarios, we adopt a one-vs-all strategy!!>!'°. We measured the Brier
score (Stratified) and negative log-likelihood before and after calibration, as they are proper scoring rules and
provide a truthful measure of the accuracy of probabilistic predictions''”. To learn the temperature T, it is
considered best practice to use a validation set or perform cross-validation. We used 5-fold cross-validation
(2 folds if the dataset is highly imbalanced) by splitting the training logits into train and validation folds. We
learned two temperatures using the validation fold to optimize both the Brier score and the log loss. Our paper
refers to the probabilities obtained after calibration using Eq. (17) as calibrated probabilities (calibrated probs).
The overall score mentioned in the paper represents the mean of the scores calculated individually for each class.

exp (%)

C zj
> exp (7)
where p; represents the calibrated probability for class ¢, z; is the logit for class ¢ (pre-softmax output of the

model), T' > 0 is the temperature parameter learned using a validation set or cross-validation, and C' is the total
number of classes.

Di = (17)

Experimental setup and hyperparameters

We implemented the models using the PyTorch framework!'® and ran them on one NVIDIA A100 GPU. The
hyperparameters of the teacher model were chosen with the assistance of Optuna'!®, a Python library for
hyperparameter optimization. We ran 50 trials to optimize the model hyperparameters, aiming to achieve
the highest weighted F1 score on the validation set for imbalanced datasets. We used the cross-entropy loss
function during training when the class imbalance was mild/moderate. We utilized a weighted cross-entropy
loss function for scenarios with extreme class imbalance. The teacher model was run for 80 epochs. We used
an Adam optimizer. The hyperparameters of the teacher model associated with each dataset are tabulated in
Table 6. The features were scaled using the standard scaler. As performance metrics, we evaluated the accuracy
and weighted F1 score. The temperatures used to calibrate the logits are also presented. The first temperature
minimizes the stratified Brier score, The second temperature minimizes the log loss.
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Dataset Teacher model hyperparameters Complexity | Temperature (brier score) | Temperature (log loss)

Num_GraphSage layers: 25, Num_GAT layers: 1,
hidden_channels: 33, Ir: 0.002, 107848 NA NA
weight_decay: 5e-4 ,dropout=0.1

Num_GraphSage layers: 6, Num_GAT layers: 1,

Placenta hidden_channels: 45, Ir: 0.006440304794081112, 49608 0.6931 NA

weight_decay: 9.480520388945085¢-05 ,dropout=0.1

Num_GraphSage layers: 16, Num_GAT layers: 1,

BRCA-M2C hidden_channels: 37, Ir: 0.00253 82220 1.1068 0.98369

weight_decay: 2.56e-05, dropout=0.1

Num_GraphSage layers: 9, Num_GAT layers: 1,

CoauthorPhysics | hidden_channels: 17, Ir: 0.0018, 581359 0.7614 0.6155

weight_decay: 2.5339174600421627¢-05, dropout=0.3669

Num_GraphSage layers: 5,

CoauthorCS hidden_channels: 10, Ir: 0.004436311854841181, 274160 0.5096 NA

weight_decay: 2.1138365253049543¢-05

Num_GraphSage layers: 10, Num_GAT layers: 1,

Synthetic Dataset | hidden_channels: 40, 1r:0.003, 56406 1.2 0.9

weight_decay: 5e-4

Table 6. Teacher model hyperparameters and temperature values for datasets.

Dataset Edge homophily ratio
TB 0.6375
Cell Graph 1-Placenta | 0.9868
Cell Graph 2-Placenta | 0.9984

BRCA-M2C 0.2028
CoauthorCS 0.8081
CoauthorPhysics 0.9314
Synthetic Dataset 0.6630

Table 7. Edge homophily ratios.

To maintain smaller student models, we set the number of estimators in the students to 6, with the maximum
depth varying between 8 and 16 (such as 8,12,16, etc) and the number of leaf nodes fixed at 50. However, we
allowed the number of leaf nodes to be 300 for our complex TB dataset. The learning rate of the boosters was
set to 0.3, while all other parameters were kept at their default values. The specific depths of student models
are detailed in the results section corresponding to each dataset. It is important to note that the student model
performances reported are specific to the chosen hyperparameter configurations. We acknowledge that the
results could vary with a more extensive hyperparameter search.

The edge homophily of the graphs used is shown in the Table 7. It is the ratio that measures the proportion
of edges in a graph that connect nodes of the same class label. The equation to compute edge homophily is given
in 18.

|{(u7v):(u7v)€g/\yu:yv}
€]

h = (18)

where: h denotes the edge heterophily score, |£| is the total number of edges in the graph, (u, v) represents an
edge between nodes u and v, y,, and y, are the labels of nodes u and v.

As stated in'?’, a high edge homophily ratio indicates strong homophily where i — 1 while a low edge
homophily ratio indicates strong heterophily where h — 0.

Results
Covariate and label shift across datasets
Table 8 presents the Mean KS statistic, chi-squared statistics, and corresponding p-values for each dataset pair.
Based on the results, we observe a covariate shift in the test set of the TB dataset, as the test nodes are taken
from separate graphs compared to the training and validation nodes. Additionally, the Chi-squared statistic
indicates the presence of a label shift in the data. In the placenta dataset, we did not observe a large covariate
shift between the validation and test sets, while a covariate shift is observed in other splits. This could be due to
how the nodes were sourced. However, no label shift was detected in this dataset. This aligns with the findings
in®!, as the data splits were designed to ensure that tissue types have similar distributions across splits, and
we adhered to the same splitting methodology. For the BRCA-M2C dataset, label shifts are observed across
all subsets. As shown in Table 9, we did not observe label shift for non-cell graph datasets such as coauthor
networks. In the Coauthorship networks, the percentage of features with covariate shift was nearly 0, indicating
minimal distributional differences between the training and test datasets. The absence of substantial covariate
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Dataset Subset Mean KS statistic | Chi-squared p-value
Train-Val | 0.0295 0.0085 0.9262
TB Train-Test | 0.0588 3555.013 0
Val-Test 0.0532 1480.303 0
Train-Val | 0.2950 0.1271 1
Placenta Train-Test | 0.3160 0.1419 1
Val-Test 0.0330 0.0629 1
Train-Val |0 0.00010485247150756805 | 0.999
BRCA-M2C | Train-Test | 0.0620 1035.9097697143552 1.1351457610072601e-225
Val-Test 0.0741 341.3532652686813 7.517618058244497¢-75

Table 8. Comparison of mean KS statistic, chi-squared, and p-value across datasets and subsets.

Dataset Subset Chi-squared | p-value
Train-Val | 3.91529 0.4175

CoAuthorPhysics | Train-Test | 3.91878 0.4171
Val-Test 4.87626 0.3002

Train-Val | 12.0746822 | 0.60030517

CoAuthorCS Train-Test | 12.309576 0.581456575
Val-Test 11.29236684 | 0.662930907
Train-Val | 3.273938 0.19456

Synthetic Dataset | Train-Test | 0.71801 0.6983
Val-Test 0.5464 0.76091

Table 9. Comparison of Chi-squared and p-value across non-cell-based datasets and subsets.

Model Acc_Train + std Acc_Val £ std Acc_test + std F1_train + std F1_Val £std F1_test + std
Teacher 0.974449 + 0.002941 | 0.963229 £ 0.002287 | 0.902489 + 0.001697 | 0.974466 + 0.002947 | 0.963268 + 0.002289 | 0.902543 + 0.001731
ExtraTrees trained on hard labels 0.9252+0.0010 0.919661 +0.0008 0.78278 + 0.0017 0.92474 +0.00102 0.919 £0.00081 0.78084+0.0016
ExtraTrees trained on logits 0.9179+ 0.00066 0.9134+0.00111 0.7873+0.00316 0.9173+0.00066 0.91272+0.001132 0.78531+0.00324
XGBoost trained on hard labels 0.947+0.0000 0.931+0.0000 0.793+0.0000 0.9469+0.0000 0.9307+0.0000 0.7922+0.0000
XGBoost trained on logits 0.943+0.0000 0.930+0.0000 0.806+0.0000 0.9423+0.0000 0.9298+0.0000 0.8049+0.0000
Random Forest trained on hard labels | 0.9431+ 0.00098 0.931+0.0014 0.7770+ 0.00056 0.9428+0.0009 0.9306 + 0.0014 0.7753 £+ 0.00064
Random Forest trained on logits 0.933+ 0.00233 0.922+0.002 0.7942+0.0063 0.9327+0.0023 0.9217+0.00285 0.7927+0.00680
HistGrad trained on hard labels 0.964+0.0008 0.947+0.0009 0.788+0.0028 0.9637+0.0008 0.9467+0.0009 0.7864+0.0028
HistGrad trained on logits 0.948+0.0002 0.938+0.0004 0.807+0.0046 0.9478+0.0002 0.9373+0.0004 0.8055+0.0063
LightGBM trained on hard labels 0.962+0.0000 0.944+0.0000 0.786+0.0000 0.9616+0.0000 0.9438+0.0000 0.7847+0.0000
LightGBM trained on logits 0.949+0.0003 0.936+0.0006 0.813+0.0016 0.9488+0.0004 0.9357+0.0006 0.8121+0.0014

Table 10. Model performance-TB dataset. Note: Values in bold denote the performance of student models that
learned well from the teacher model and outperformed their counterparts trained on hard labels. Std denotes the
standard deviation

shift in the coauthor networks was further supported by the performance of GNNs, where the test performance
did not show a significant drop compared to the training performance. In contrast, a significant covariate shift
was observed in the synthetic dataset generated by us, where 100% of the test features demonstrated a shift due
to the Gaussian noise we introduced.

Performance of student models trained on TB dataset

For this dataset, the maximum depth for HistGradientBooster, XGBoost, Random Forest, and LightGBM was
set to 12. For ExtraTrees, it was set to 16. As the dataset was complex, we set the maximum number of leaf
nodes to 300. Table 10 represents the performance results of various models on the training, validation, and test
datasets. We do see a drop in performance on the test set. This drop is attributed to covariate and label shift, as
explained in detail under “Covariate and label shift across datasets” Based on the comprehensive evaluation of
various models, Light GBM achieved the best performance as a student model. HistGradientBooster emerged as
the next best-performing model. Figure 5 displays the plot of the performance metrics for various models. We
did not apply post-hoc calibration techniques, such as temperature scaling or isotonic regression, because the
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Figure 5. Performance of best performing student models and their counterparts on the test set-TB. We see

student models outperforming their counterparts.
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Figure 4. Calibration plot of raw logits converted to probabilities for positive class-TB dataset.
Model Best F1 score | Number_of_parameters | Distillation quality score | % Inc/Dec/NC
Random Forest as Student 0.79950 1945.89 0.0669 3.047
LightGBM as Student 0.8135 7063.295 0.0829 3.67 1
HistGradientBooster as Student | 0.8118 7166.25 0.084355 2.8631
ExtraTrees as student 0.78855 1143.813 0.0693 0.787
XGBoost as student 0.8049 4399.565 0.0753 1.603 1
Table 11. Distillation quality scores of various student models (TB) and analysis of performance variations (F1
Score): percentage increase, decrease, or no change in student models relative to their counterparts trained on

hard labels.

probabilities obtained from logits were reasonably well-calibrated. This is evident in Fig. 4, where the calibration
curve is close to the diagonal. Moreover, in binary classification, the relationship between the predicted

probability and the actual probability of the positive class is inherently more straightforward than in multi-class
classification. Table 11 presents the distillation quality scores. The table shows that all student models exhibited

performance gains, with each demonstrating a higher test F1 score than its counterpart trained on hard labels.
Using teacher logits improves student performance by capturing important graph context. However, since the
teacher directly leverages neighbor aggregation in the high homophily setting, students relying solely on node

features may not fully match its performance. This is why we refer to these student models as partial proxies for
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the teacher. While the teacher-model architectures remain consistent with our prior work®, this paper (Table
10) presents an evaluation of these baselines on a slightly different dataset. Notably, all performance metrics are
now computed globally across the entire dataset, unlike the batch-level average accuracy scores reported inC.

Performance of student models trained on placenta dataset

The dataset exhibited extreme class imbalance, so we employed a weighted cross-entropy loss while training
the teacher model. The class weights were determined based on the reccommendations provided in the paper®!.
These weights were applied to ensure fair treatment of minority classes during training. When training the
student models using the logits from the teacher, we did not explicitly use these weights, as the logits already
encapsulated the class imbalance information. However, we applied the same weights to maintain consistency
and address the class imbalance to train the counterpart models that used hard labels.

For this dataset, the maximum depth for HistGradientBooster, Random Forest, and XGBoost was set to
12. For LightGBM and ExtraTrees, it was set to 16. Additionally, the maximum number of leaves was fixed at
50 for all models. The model performances are summarized in Table 12. As shown in their paper®!, all scalable
GNN architectures—GraphSAGE, ClusterGCN, GraphSAINT, ShaDow, and SIGN, performed within 2% mean
accuracy of each other, with none surpassing 65% accuracy. This indicates that the challenges observed are not
unique to our approach but are inherent to the highly imbalanced and complex nature of the dataset.

The calibration plots of logits for the teacher model, without using and using weighted cross-entropy loss, are
shown in Fig. 6. We notice that the weighted cross-entropy rebalanced the teacher model’s focus. It improved the
calibration for minority classes (Class 3 and Class 8) while causing a decrease in calibration for well-represented
classes. Without the weighted cross-entropy loss, the teacher tended to favor majority classes, assigning more
reliable probabilities while struggling to calibrate probabilities for the minority classes. Since our primary
objective was to enhance generalization and ensure equal importance for all classes(critical for accurately
representing placenta function), we employed the weighted cross-entropy loss during the teacher training. The

calibration curves obtained after using weighted cross-entropy loss are shown in Fig. 7.

Model Acc_Train + std | Acc_Val + std Acc_test + std F1_train + std F1_Val + std textbfF1_test + std
Teacher 0.5083 +0.0090 | 0.5087+ 0.0116 | 0.5463 +0.0114 | 0.4939 £0.0118 | 0.4662 £0.0110 | 0.5043 +0.0066
ExtraTrees trained on hard labels 0.3768 £ 0.00125 | 0.4188+ 0.0010 | 0.4706 + 0.00167 | 0.31061 + 0.00286 | 0.3367 + 0.0012 | 0.3905 + 0.0016
ExtraTrees trained on logits 0.4311 +0.0002 | 0.4287 + 0.0005 | 0.4595 +0.0024 | 0.4152+0.0010 | 0.4070 + 0.0017 | 0.4458 + 0.0004
ExtraTrees trained on Calibrated 0.4599 +0.0002 | 0.4554 +0.0004 | 0.5074 +0.0001 | 0.3788 +0.0005 | 0.3547 +0.0010 | 0.4151 + 0.0006
probs using IR

ExtraTrees trained on Calibrated 0.4331 £0.0004 | 0.4505 + 0.0005 | 0.4955 +0.0003 | 0.3722£0.0009 | 0.3674 + 0.0013 | 0.4162 + 0.0018
probs using temp scaling-BS

XGBoost trained on hard labels 0.4083 +0.0000 | 0.4238 +0.0000 | 0.4703 +0.0000 | 0.3736 +0.0000 | 0.3695 + 0.0000 | 0.4203 + 0.0000
XGBoost trained on logits 0.4253 £ 0.0000 | 0.4227 + 0.0000 | 0.4457 + 0.0000 | 0.4179 = 0.0000 | 0.4099 + 0.0000 | 0.4427 + 0.0000
XGBoost trained on Calibrated 0.4652 £ 0.0000 | 0.4590 + 0.0000 | 0.5108 +0.0000 | 0.3848 +0.0000 | 0.3578 + 0.0000 | 0.4169 + 0.0000
probs using IR

XGBoost trained on calibrated 0.4384 +0.0000 | 0.4536 + 0.0000 | 0.4985 +0.0000 | 0.3784 +0.0000 | 0.3692 + 0.0000 | 0.4182 + 0.0000

probs using temp scaling-BS

HistGrad trained on hard labels

0.4227 £ 0.0011

0.4209 £ 0.0010

0.4621 £ 0.0005

0.4029 +0.0013

0.3838 +£0.0014

0.4286 + 0.0012

HistGrad trained on logits 0.4277 +0.0007 | 0.4255 + 0.0008 | 0.4522 + 0.0005 | 0.4198 + 0.0007 | 0.4128 + 0.0008 | 0.4482 + 0.0006
HistGrad trained on Calibrated 0.4671 £0.0002 | 0.4598 +0.0003 | 0.5106 +0.0004 | 0.3891 +0.0004 | 0.3605 + 0.0005 | 0.4186 + 0.0006
probs using IR

HistGrad trained on calibrated 0.4388£0.0004 | 0.4537 +0.0002 | 0.4981 +0.0005 | 0.3838+0.0004 | 0.3737 +0.0010 | 0.4216 + 0.0014
probs using temp scaling-BS

Random Forest trained on hard labels | 0.38124 + 0.0001 | 0.4222 +0.00124 | 0.4711 +0.0011 | 0.3203 +0.00129 | 0.34376 + 0.0012 | 0.39527 % 0.0004
Random Forest trained on logits 0.4296 + 0.0015 | 0.4274 +0.0012 | 0.4620 + 0.0049 | 0.4106 + 0.0002 | 0.4016 + 0.0011 | 0.4444 + 0.0033
Random Forest trained on Calibrated | 4571 1 .0007 | 0.4546 +0.0006 | 0.5065 + 0.0007 | 0.3714+0.0007 | 0.3497  0.0005 | 0.4097 + 0.0008
probs using IR

Random Forest trained on Calibrated | 43464 00011 | 0.4505+0.0004 | 0.4984 +0.0007 | 0.3613+0.0012 | 03556+ 0.0013 | 0.4081 0.0018
probs using temp scaling-BS

LightGBM trained on hard labels 0.4242 +0.0008 | 0.4241 +0.0021 | 0.4667 +0.0009 | 0.4004 +0.0010 | 0.3814  0.0027 | 0.4276 + 0.0012
LightGBM trained on logits 0.4278 +0.0008 | 0.4250 + 0.0007 | 0.4503 +0.0015 | 0.4198 +0.0006 | 0.4118 + 0.0006 | 0.4460 + 0.0012
LightGBM trained on Calibrated 0.4670 +0.0002 | 0.4596 +0.0002 | 0.5105+0.0002 | 0.3896 + 0.0006 | 0.3606 + 0.0010 | 0.4191 % 0.0009
probs using IR

LightGBM trained on Calibrated 0.4390 +0.0001 | 0.4536 + 0.0002 | 0.4979 +0.0002 | 0.3842+0.0001 | 0.3736 = 0.0007 | 0.4213 + 0.0004

probs using temp scaling-BS

Table 12. Model performance-placenta dataset. Note: The logits represent the raw outputs of the teacher
model. IR denotes Isotonic Regression, BS denotes Brier score reduction, and LL denotes log loss reduction.
Values in bold denote the performance of student models that learned well from the teacher model and
outperformed their counterparts trained on hard labels. Std denotes the standard deviation. Different class-
weighting than the one applied here may yield different teacher logits and, consequently, different student-
model performances
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Figure 6. (A) Calibration plot: probabilities derived from raw logits of the teacher model trained with
standard cross-entropy loss. (B) Calibration plot: probabilities derived from raw logits of the teacher model
trained with weighted cross-entropy loss.
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Figure 7. (A) Calibration plot: raw logits converted to probabilities. (B) Calibration plot after applying
isotonic regression. (C) Calibration plot after applying temperature scaling with a temperature that reduces
Stratified Brier score.

As highlighted in the paper!?!, the effect of temperature scaling in the presence of class imbalance has not
been adequately explored. Our experiments found that using a temperature that minimized the log loss was
not suitable. Instead, we relied on the temperature that minimized the stratified Brier score. Additionally, we
observed that isotonic regression behaved unstably under extreme class imbalance. Specifically, Classes 3 and 8,
being minority classes, exhibited disproportionately high scores. This observation aligns with the findings of'?,
where the authors noted that isotonic regression tends to perform unstably in highly imbalanced scenarios. We
also found that calibration achieved using the temperature that minimized the stratified Brier score was superior
to isotonic regression. This improvement was reflected in the performance of student models, as the temperature-
scaled probabilities provided better guidance than the probabilities obtained from isotonic regression. The
performance achieved with uncalibrated logits was higher than that obtained with calibrated logits after post-
hoc calibration. We attribute this to the insufficient amount of data available per class, which is critical for the
effectiveness of these calibration methods. This observation aligns with the findings of!”’, where the authors
noted that post-hoc calibration methods require sufficient data per class to perform effectively. The stratified
Brier scores are reported in Table 13. The temperature obtained through our temperature scaling process resulted
in a worse stratified Brier score for the minority class 3. This highlights the limitation of standard temperature
scaling in addressing class-specific miscalibration. We recommend an advanced temperature scaling approach
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Method/Data Stratified Brier Score
Class 0: 0.4236
Class 1: 0.2080
Class 2: 0.2875
Class 3: 0.3420
Class 4: 0.3004
Class 5: 0.1902
Class 6: 0.0985
Class 7: 0.3315
Class 8: 0.1338
Overall: 0.2573
Class 0: 0.4117
Class 1: 0.1817
Class 2: 0.2634
Class 3: 0.4695
Class 4: 0.2294
Class 5: 0.1612
Class 6: 0.1477
Class 7: 0.3938
Class 8: 0.4662
Overall: 0.3027
Class 0: 0.4410

Before Calibration

Isotonic Regression

Class 1: 0.1911
Class 2: 0.2799
Class 3: 0.3485
Class 4: 0.3038

Temp Scaling-Reduces Brier Score
Class 5: 0.1841

Class 6: 0.0921

Class 7: 0.3246

Class 8: 0.1094
Overall: 0.2527

Table 13. Stratified brier scores-placenta dataset.
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Figure 8. Performance of best performing student models and their counterparts on the test set-placenta. We

see student models outperforming their counterparts.

designed to improve class-wise calibration which is necessary to address this issue effectively!?®. Contrary to
expectations, using calibrated logits did not improve training set performance (eventhough the logits were
specifically calibrated for this training set). We hypothesize that temperature scaling likely compressed the logits
to an extent that it masked the tree model’s optimal decision splits. Given the dataset’s imbalance, the weighted
F1 score is a more reliable metric to evaluate model performance. As observed from the plots, student models
trained using teacher logits consistently outperform their counterparts trained on hard labels. Figure 8 presents
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a comparative analysis of the performance of the best-performing student models and their counterparts on the
test set. Standard deviations are represented by the error bars.

Table 14 highlights the trade-off between model complexity, performance, and distillation quality. Models
with fewer parameters, such as Random Forest and ExtraTrees, are simpler. ExtraTrees has the lowest parameter
count. In contrast, Light GBM and XGBoost achieve the best F1 scores, indicating superior predictive performance.
The distillation quality score balances model complexity and performance. LightGBM, HistGradientBooster,
and XGBoost perform well. However, their higher complexity results in slightly worse distillation scores. As
indicated in Table 14, all models benefit from knowledge distillation, consistent with the trend observed in our
TB dataset. Among the student models, the Random Forest and ExtraTrees regressors benefited the most, while
HistGradientBooster emerged as the best-performing model overall.

Performance of student models trained on TCGA breast cancer cell classification dataset

For this dataset, the maximum depth for HistGradientBooster, Random Forest, and XGBoost was set to 12.
For LightGBM and ExtraTrees, it was set to 16. Additionally, the maximum number of leaves was fixed at 50
for all models. We observe that most student models outperform the teacher. We primarily attribute this trend
to the relatively smaller training data or the low homophily. Despite this limitation, the teacher’s logits remain
meaningful in guiding the smaller student models. The smaller students benefit from a two-fold advantage:
their reduced size allows for simplicity, while they leverage the guidance of the large teacher to achieve
superior performance. The performance of the models is tabulated in the Table 15. We observed that raw logits
consistently outperformed calibrated probabilities for most models. We attribute it to the fact that it preserved
a good balance between resolution and reliability when compared to calibrated probabilities obtained from
isotonic regression, which exhibited higher reliability but a lower resolution. The calibration plots are shown in
the Fig. 9. The stratified Brier scores and log loss values achieved are tabulated in the Table 16. When calibrated
probabilities from temperature scaling were used, we observed a drop in student model performance on the
test set. This could be because, although temperature scaling improved the calibration of teacher logits on the
validation folds during 5-fold cross-validation, the resulting calibration might not have generalized well to the
test set under distribution shift'!”. The distillation quality scores and the effectiveness of the logits from teacher
models in enhancing or limiting the student’s classification capabilities are presented in Table 17. Even though
the students outperform their teacher, we do not observe a perfect zero distillation score. This is because our
evaluation assigns equal importance to performance and complexity. Since the students retain some level of
complexity, the score is not entirely zero but remains very close to zero. Figure 10 presents a comparative analysis
of the performance of the best-performing student models and their counterparts on the test set.

Ablation study results

Feature importance: comparing students trained with and without teacher guidance

We performed this ablation study on the TB and BRAC_M2C datasets, as these were the datasets from which
we extracted local cell graphs and morphological features. In our experiments with the TB dataset, the student
model guided by the teacher placed greater emphasis on morphological characteristics than its counterpart
guided by hard labels. This can be seen in the Figs. 11 and 12. Interestingly, the teacher-guided student prioritized
features such as contrast, area, mean_image, circularity, and homogeneity, along with local cell graph features,
which align with real-life considerations. For example, pathologists often use circularity to distinguish AFBs
from the nucleus of activated macrophages. AFBs are rod-shaped and less circular compared to the nucleus of
macrophages. Thisis also seen in the SHAP plots. We also notice higher contrast values for AFB. AFBs demonstrate
distinct transitions or boundaries between texture regions. This likely stems from its unique cell wall properties,
creating sharp intensity changes and well-defined structures. As per the expert, the staining procedure, which
uses a red dye for AFB and a blue dye for surrounding tissue, may further contribute to the higher gray-level
co-occurrence matrix (GLCM) contrast observed for AFB. Eccentricity is the maximum distance of a node from
all other nodes in a graph. For AFB, higher eccentricity reflects their spatial isolation within tissue networks. It
aligns with their biological behavior of immune evasion and persistence in host tissues. In contrast, the model
trained on hard labels emphasized features like node clustering, hub-promoted index, and eccentricity. AFBs
exhibit higher node clustering coefficients because they tend to form local clusters or communities. The AFBs
also have a higher hub-promoted index. These nodes are pivotal in connecting various parts of the network,
acting as a hub. According to domain experts, this aligns with the biological context, where the presence of AFB
triggers the host’s inflammatory responses and activates the immune system. For the BRAC_M2C dataset, the

Model Best F1 Score | Number_of_parameters | Distillation quality score | % Inc/Dec/NC
Random forest as student 0.4477 1333.0885 0.07528 13.171
LightGBM as student 0.4472 2654.90 0.089 4.2910 1
HistGradientBooster as Student | 0.4488 2532.403 0.0862 4.42066 T
ExtraTrees as student 0.4462 309.60115 0.0664 13.81
XGBoost as student 0.4427 2762.976 0.09459 5.3291

Table 14. Distillation quality scores of various student models (placenta) and analysis of performance
variations (F1 score): percentage increase, decrease, or no change in student models relative to their
counterparts trained on hard labels.
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probs using temp scaling-LL

Model Acc_Train +std | Acc_Val + std Acc_test + std F1_train + std F1_Val + std F1_test + std
Teacher Model 0.9818 £0.0021 | 0.9466 +0.0013 | 0.9111 +0.0138 09818 +0.0021 | 0.9460 +0.0013 | 0.9059 + 0.0159
ExtraTrees trained on hard labels 0.9448 £0.0020 | 0.9447 +0.001 0.90392 + 0.007 0.9449 +0.0019 | 0.94487 +0.0011 | 0.90752 £0.006
ExtraTrees trained on logits 0.95027 £ 0.0031 | 0.9438 +0.00533 | 0.95774064 + 0.00344 | 0.95031 + 0.0031 | 0.94384 + 0.0053 | 0.95788 + 0.00344
ExtraTrees trained on Calibrated | 5515 1 0025 | 0.94827 + 0.0061 | 0.9584 + 0.0037 0.9513 +0.0026 | 0.9483 + 0.0061 | 0.9587 % 0.0037
probs using IR
ExtraTrees trained on Calibrated 0.95000 + 0.0030 | 0.9464 + 0.004519 | 0.95623 + 0.003135 | 0.9500 + 0.0030 | 0.94645 + 0.0045 | 0.9565 + 0.0032
probs using temp scaling-BS
ExtraTrees trained on Calibrated 0.95051 +0.002 | 0.94643 +0.0041 | 0.95751 + 0.0023 0.950 £0.0027 | 0.9464 +0.00422 | 0.95777 + 0.0024
probs using temp scaling-LL
XGBoost trained on hard labels 0.9683 + 0 0.9614 + 1.11e-16 | 0.90708 + 0 0.9682 + 0 0.9613 + 1.11e-16 | 0.9105 + 0
XGBoost trained on logits 0.9575 + 0 0.9508 + 0 0.9611 + 0 0.9574 +0 0.9507 + 0 0.9613 +0
XGBoost trained on calibrated 0.96689 +0.0000 | 0.95959 + 0.0000 | 0.9085 + 0.0000 0.96682 +0.0000 | 0.9595 + 0.0000 | 0.9119 + 0.0000
probs using IR
XGBoost trained on calibrated 0.9653 + 0 0.9573 + 0 0.9073 + 0 0.9653 + 0 09572+ 0 0.9109 +0
probs using temp scaling-BS
XGBoost trained on calibrated 0.9653 + 0 0.9591 +0 0.9084 +0 0.9652 + 0 0.959 + 1.110e-16 | 0.9119 + 1.1105¢-16
probs using temp scaling-LL
HistGrad trained on hard labels 0.9843 £0.0002 | 0.9696 + 0.0016 | 0.9102 + 0.0007 0.984 +0.00024 | 0.9696 + 0.00164 | 0.91388 % 0.0007
HistGrad trained on logits 0.9648 + 0.00115 | 0.9579 £0.0008 | 0.9568 +0.00064 0.9648 + 0.00114 | 0.9579 +0.00087 | 0.9573 % 0.00062
HistGrad trained on calibrated 0.9743 £0.0001 | 0.9666 + 0.0005 | 0.9102 + 0.0004 0.9743 £0.0001 | 0.9666 + 0.0005 | 0.9138 + 0.0004
probs using IR
HistGrad trained on calibrated 0.97440 +0.0002 | 0.9667 + 0.0009 | 0.91006 + 0.0007 0.9743 £0.0002 | 0.9667 +0.0009 | 0.9137 0.0007
probs using temp scaling-BS
HistGrad trained on calibrated 0.9738 £0.0001 | 0.966 + 0.002 0.9107 + 0.0006 0.9738 £0.0001 | 0.966 +0.0025 | 0.9142 % 0.00056
probs using temp scaling-LL
ﬁ;&dﬁg‘ei orest trained on 0.9537+0.0015 | 0.9469+0.0018 0.8999+0.00168 0.9615£0.001267 | 0.953739+0.0015 | 0.904+0.0015
Random Forest trained on logits | 0.9557+0.0007 | 0.9474+0.0016 | 0.9229+0.0063 0.9558+0.0007 | 0.9474+0.0016 | 0.9254+0.0059
Random Forest trained on calibrated | gceq 1 0005 | 0.9507 +0.0002 | 0.9069 + 0.0013 0.9688 +0.0005 | 0.9597 +0.0001 | 0.9107 + 0.0012
probs using IR
Random trained on calibrated

i ! 0.9688+0.0004 | 0.9597+0.0008 0.9070+0.0012 0.9687+0.0004 | 0.9597+0.0008 | 0.9108+0.0011
probs using temp scaling-BS
Random trained on calibrated 0.9688+0.0008 | 0.9593+0.0013 0.907420.0006 0.9688+0.0008 | 0.9593+0.0013 | 0.9112+0.0005
probs using temp scaling-LL
LightGBM trained on hard labels 0.9793 + 0.0 0.9683 + 0.0 0.9103 + 0.0 0.9793 + 0.0 0.9683 + 0.0 0.9139 +0.0
LightGBM trained on logits 0.9648 + 0.0 0.9555 + 0.0 0.9626 + 0.0 0.9648 + 0.0 0.9554 + 0.0 0.9629 + 0.0
LightGBM trained on Calibrated 0.9746 +0.0000 | 0.9641 +0.0000 | 0.9101 + 0.0000 0.9746 +0.0000 | 0.9641 +0.0000 | 0.9138 = 0.0000
probs using IR
LightGBM trained on Calibrated | 9745 1 ¢ 0.9656 + 0.0 0.9104 + 0.0 0.9742 + 0.0 0.9655 = 0.0 0.9140 + 0.0
probs using temp scaling-BS
LightGBM trained on Calibrated 0.9742 + 0.0 0.9656 + 0.0 0.9112 + 0.0 0.9742 £ 0.0 0.9656 + 0.0 0.9148 + 0.0

Table 15. Model performance-breast cancer dataset. Note: The logits represent the raw outputs of the teacher
model. IR denotes Isotonic Regression, BS denotes Brier score reduction, LL denotes Log Loss reduction.
Values in bold denote the performance of student models that learned well from the teacher model and
outperformed their counterparts trained on hard labels. Std denotes the standard deviation

LightGBM model emerged as the best-performing model and was consequently used for the analysis. When
trained on hard labels, the LightGBM model emphasized features such as degree, betweenness centrality, mean_
all_neighbors, and Salton index. Figure 13 shows the plot of feature importance. In contrast, when guided by
the teacher’s logits, the model emphasized degree, and the hub promoted index. node clustering, serensen, and
eccentricity. To further evaluate the biological relevance of these features, we analyzed their contributions using
SHAP plots shown in Fig. 14. Degree values were moderate for lymphocytes, lower for breast cancer cells, and
highest for stromal cells because of their extensive connections. Node clustering was high for lymphocytes and
breast cancer cells. This aligns with their biological behavior, as lymphocytes naturally cluster near cancer cells
in immune hotspots, forming localized areas of immune activity'?4. It was lower for stromal cells as they are
separated by extracellular matrix such as collagen and are not as densely clustered as lymphocytes or cancer cells.
The Hub-Promoted Index (HPI) measured the overlap between neighbors of two connected nodes. It was lower
for stromal cells due to their diverse and dispersed connections with fewer overlapping neighbors and higher
for breast cancer cells because of their dense clustering and high number of common neighbors. The Mean_
all_neighbors feature measured the average distance between a node and all its neighbors in the graph. Breast
cancer cells exhibited higher values, which was likely driven by some long-distance connections with stromal

cells'®

. Breast cancer cells have a higher Serensen index when compared to lymphocytes due to their tight

clustering and significant overlap of neighbors. This shows their cohesive role in the tumor microenvironment.
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Figure 9. (A) Calibration plot: raw logits converted to probabilities. (B) Calibration plot after applying
isotonic regression. (C) Calibration plot after applying temperature scaling with a temperature that reduces the
Stratified Brier score. (D) Calibration plot after applying temperature scaling with a temperature that reduces
negative log-likelihood (log loss).

Method/Data

Stratified Brier Score

Log Loss

Before Calibration

Class 0: 0.01773
Class 1: 0.015629
Class 2: 0.011969
Overall: 0.015111

Class 0: 0.03479
Class 1: 0.05215
Class 2: 0.02904
Overall:0.038663

Isotonic Regression

Class 0: 0.016961
Class 1: 0.0156
Class 2: 0.012267
Overall: 0.0149

Class 0: 0.037611
Class 1: 0.055318
Class 2: 0.030436
Overall: 0.041

Temp Scaling - Reduces Brier Score

Class 0: 0.01753
Class 1: 0.01581
Class 2: 0.01187
Overall: 0.0150708

Class 0: 0.03534
Class 1: 0.05317
Class 2: 0.02959
Overall: 0.039368

Temp Scaling - Reduces Log Loss

Class 0: 0.01778
Class 1: 0.01562
Class 2: 0.01199
Overall: 0.015127

Class 0: 0.03474
Class 1: 0.05206
Class 2: 0.02899
Overall: 0.03860

Table 16. stratified brier scores and log loss values-breast cancer dataset.

Model Best F1 Score | Number_of_parameters | Distillation Quality Score | % Inc/Dec/NC
Random Forest as Student 0.9313 787.085 0.0047 2.81
LightGBM as Student 0.9629 906.29 0.0055 5361
HistGradientBooster as Student | 0.958 938.4595 0.0057 4751
ExtraTrees as student 0.9624 269 0.0016 5351
XGBoost as student 0.9613 822.25 0.005 5.58 1

Table 17. Distillation quality scores of various student models (breast cancer) and analysis of performance
variations (F1 Score): percentage increase, decrease, or no change in student models relative to their
counterparts trained on hard labels.
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Figure 10. Performance of best performing student models and their counterparts on the test set-breast
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cancer. We see student models outperforming their counterparts.
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Figure 11. SHAP summary plots comparing feature importance for different cell types. The top row (A,B)
represents features considered important when the model is trained on hard labels, while the bottom row

(C,D) shows the important features when trained on logits. Note that the SHAP results do not provide
sufficient evidence to clearly discern differences in the closeness of node’ feature between AFB and nucleus of

activated macrophage, limiting our ability to draw biological conclusions on this metric.

We believe the models primarily rely on features such as degree, hub-promoted index, mean_all_neighbors,
node clustering, and Serensen index to differentiate breast cancer cells from other types. In contrast, features
like degree and node clustering play a key role in distinguishing stromal cells from other cell types. Observing
how the model highlights betweenness centrality as a crucial feature is also interesting. As seen from the plots,
this metric is particularly high for lymphocytes, suggesting this is one of the primary features the model relies on
to distinguish lymphocytes from other cell types. This may be attributed to the biological role of lymphocytes,
which infiltrate tumors as part of the immune response!2°. They often localize to the interface between tumor
and stromal regions, where they may be blocked from entering the tumor by soluble mediators produced by
the cancer cells!?”. This placement significantly enhances their betweenness centrality and reflects their role in

mediating interactions between the immune system and the tumor microenvironment.
In the analysis of our ensemble model performance, where logits from CG-JKNN (primary teacher) and raw

Training with ensembled output
scores/predictions from the best student are combined, we observe interesting trends concerning the influence
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Figure 12. Feature importance comparison for LightGBM models trained on hard labels and logits. (A) Shows
the feature importances when the model is trained on hard labels. (B) Represents the feature importances
when the model is trained on logits distilled from the teacher model. (C) Compares the feature importances for
both scenarios. The brown color indicates the overlap of feature importance between models trained on hard
labels and logits. The feature numbers on the x-axis correspond to the features listed in Table 3.
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Figure 13. Feature importance comparison for LightGBM models trained on hard labels and logits. (A) Shows
the feature importances when the model is trained on hard labels. (B) Represents the feature importances
when the model is trained on logits distilled from the teacher model. (C) Compares the feature importances for
both scenarios. The brown color indicates the overlap of feature importance between models trained on hard
labels and logits.The feature numbers on the x-axis correspond to the features listed in Table 4.
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Figure 14. SHAP summary plots comparing feature importance for different cell types. The top row (A-C)
represents features considered important when the model is trained on hard labels. The bottom row (D-F)
corresponds to features considered important when the model is trained on logits.

Weight | Accuracy Fl % Inc/Dec/
Dataset | Model Weight GNN | Student | Train | Val Test Train | Val Test NCF1
Random Forest | 0.8 0.2 0.9022 | 0.8938 | 0.7793 | 0.9014 | 0.8926 | 0.7763 | 2.9 {
HistGrad 1 0 0.9482 | 0.9384 | 0.8116 | 0.948 | 0.9377 | 0.8118 | NC
T ExtraTrees 0.9 0.1 0.9184 | 0.9131 | 0.7912 | 0.9178 | 0.9124 | 0.7894 | 0.1071
XGBoost 0.9 0.09 0.9343 | 0.9235 | 0.8020 | 0.9338 | 0.9227 | 0.8006 | 0.53 |
LightGBM 0.8 0.2 0.4262 | 0.4241 | 0.4485 | 0.4178 | 0.4128 | 0.4459 | 0.29
Placenta Random Forest | 0.5 0.5 0.4288 | 0.4285 | 0.4609 | 0.4087 | 0.4041 | 0.4451 | 0.58
XGBoost 1 0 0.4253 | 0.4227 | 0.4457 | 0.4179 | 0.4099 | 0.4427 | NC
ExtraTrees 0.2 0.8 0.4252 | 0.4256 | 0.4562 | 0.4092 | 0.4073 | 0.4428 | J0.761
Random Forest | 0.7 0.3 0.9543 | 0.948 |0.9212 | 0.9544 | 0.948 |0.9237 | ]0.82
Breast | XGBoost 1 0 0.9575 | 0.9508 | 0.9611 | 0.9574 | 0.9507 | 0.9613 | NC
Cancer | HistGrad 0.7 0.3 0.9623 | 0.9559 | 0.9636 | 0.9623 | 0.9558 | 0.9638 | 10.61
ExtraTrees 0.8 0.2 0.9525 | 0.9479 | 0.961 | 0.9525 | 0.9479 | 0.9612 | J0.12

Table 18. Performance of students with ensembled outputs for TB, placenta, and breast cancer datasets. The
best-performing student (based on the performance and its low variability across multiple runs) for the TB
dataset was LightGBM, for the Placenta dataset it was HistGrad, and for the Breast Cancer dataset it was
LightGBM.

of different teachers on student models as shown in the Table 18. It is important to note that the comparisons (of
F1-test scores) here are made against the baseline scenario in which only the CG-JKNN teacher model guides
the students. In the case of the TB and BRAC_M2C datasets, the best-performing student model was Light GBM.
On the other hand, for the Placenta dataset, the best-performing student model was HistGradientBooster.

In the TB dataset, the ExtraTrees model, when taught by Light GBM along with CG-JKNN, actually exhibits
an increase in test set performance in contrast to when it is solely taught by the CG-JKNN. However, the XGBoost
and Random Forest show a drop in performance. This suggests that integrating LightGBM’s guidance doesn’t
always align with the learning patterns beneficial to all student models. In the Placenta dataset, all student models
benefited from CG-JKNN rather than being taught by the joint teachers HistGradientBooster and CG-JKNN.

In the case of the BRAC_M2C dataset, we observe a performance improvement in HistGradientBooster
when guided by the joint teachers LightGBM and CG-JKNN. However, XGBoost prefers to be guided solely
by CG-JKNN, as it assigns zero weight to the raw scores from LightGBM. Additionally, a drop in performance
is observed for the ExtraTrees and Random Forest models. Based on the above results, we should note that the
influence of the "best’ student’s output is not universally beneficial, as their effectiveness can vary depending on
the specific characteristics of the dataset and the learning dynamics of the other models being guided.
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Dataset Hyperparameters

TB hidden_dim=399, Ir=0.009628, alpha= 0.88
Placenta hidden_dim=78,1r=0.00204, alpha=0.131
Breast Cancer | hidden_dim= 120,lr=0.00748,alpha=0.0126

Table 19. Optimized hyperparameters for the ANN student model across datasets.

Dataset Trained on Train Acc +std | Val Acc + std Test Acc + std Train F1 * std Val F1 + std Test F1 + std
Hard Labels 0.9367 £0.0025 | 0.9300 +0.0022 | 0.8191 £0.0017 | 0.9365 +0.0025 | 0.9297 +£0.0022 | 0.8184 +0.0018
TB Logits (alpha=0.88) | 0.9393 +0.0020 | 0.9332 +0.0015 | 0.8216 +0.0003 | 0.9391 +0.0020 | 0.9330 + 0.0015 | 0.8210 * 0.0002
Logits (alpha=0.5) 0.9368 + 0.0016 | 0.9311+0.0024 | 0.8218 +0.0018 | 0.9366 + 0.0015 | 0.9308 + 0.0025 | 0.8211 + 0.0019
Hard Labels 0.3918 £0.0010 | 0.4276 +0.0009 | 0.4724 £ 0.0025 | 0.3604 +0.0016 | 0.3758 = 0.0019 | 0.4232 + 0.0045
Placenta Logits (alpha=0.131) | 0.4476 + 0.00265 | 0.4534 + 0.00140 | 0.4970 £ 0.00170 | 0.3993 + 0.00271 | 0.3866 + 0.00426 | 0.4337 + 0.00381
Logits (alpha=0.5) 0.4621 + 0.0014 | 0.4587 +0.0009 | 0.5036 + 0.0018 | 0.4080 + 0.0034 | 0.3885 + 0.0029 | 0.4387 + 0.0030
Hard Labels 0.9492 £0.0011 | 0.9475 +0.0023 | 0.9483 £ 0.0006 | 0.9492 +0.0011 | 0.9474 +0.0023 | 0.9488 + 0.0006
Breast Cancer | Logits (alpha=0.012) | 0.9478 + 0.0025 | 0.9447 +0.0046 | 0.9531 + 0.0024 | 0.9478 + 0.0026 | 0.9446 + 0.0045 | 0.9535 + 0.0023
Logits (alpha=0.5) 0.9507 £0.0014 | 0.9461 +£0.0015 0.9537 £0.0011 | 0.9507 +0.0014 | 0.9460 = 0.0015 | 0.9541 +0.0011

Table 20. Evaluation of ANN performance across multiple datasets.

% Inc/Dec/
NC (F1-
Estimated model % Inc/Dec/NC (F1-score) in zco(;rrle)a;rilson
Dataset Complexity-ANN | complexity-Best performing | Distillation Quality Score | comparison to its counterpart o bepst
non-neural model (trained on hard labels)
non-neural
student
model
TB 14366 7063.295 0.11 0.34% 1 1.17% 1
Placenta 5781 2532.403 0.1259 327% T 1.6% |
Breast Cancer | 1923 906.29 0.0116 0.6745% 1 0.74 % |

Table 21. Comparison of ANN student models and best-performing non-neural models: complexity,
distillation quality, and relative performance. Note: The LightGBM regressor achieved the best performance
on the TB dataset and the breast cancer dataset, while the HistGradientBoostingRegressor was the best
performing on the Placenta dataset

A comparative analysis of knowledge distillation in neural and non-neural student models

Table 19 summarizes the optimized hyperparameters for the ANN student model. Table 20 shows that the ANN
benefits from incorporating teacher logits into the training process. For each dataset, TB, Placenta, and Breast
Cancer, the models trained with teacher logits outperform those trained solely on hard labels. Moreover, when
comparing different weighting schemes for the combined loss, using an equal weight (« = 0.5) for the cross-
entropy and KL divergence losses yields the best performance compared to the o value tuned as a hyperparameter
in most cases.

From Table 21, we can observe that although the ANN student model undergoes additional hyperparameter
tuning and possesses a greater number of parameters compared to the best-performing non-neural model, it
does not consistently outperform the non-neural counterparts on all datasets. In particular, for the Placenta and
Breast Cancer datasets, the non-neural students achieve competitive performance, while the ANN students do
not significantly improve. Only in the TB dataset does the ANN student show a slight 1.17% improvement over
its non-neural counterpart, but this gain comes at the cost of additional parameters. These results validate that
non-neural student models are viable and competitive alternatives, achieving comparable performance with
fewer parameters and less tuning. Pure logit-regression on teacher’s logits could further close the performance
gap, and while increasing the ANN’s capacity may boost performance, it would inflate model size and undermine
the goal of a lightweight student.

Results of generalizability on non-biological graph datasets

This section investigates whether our approach is effective when applied to non-cell graph datasets. Unlike cell
graphs, where morphological and graph-specific features are typically extracted, these experiments utilize only
the existing features provided in the datasets.
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Performance on CoauthorPhysicsDataset
For this dataset, the maximum depth for HistGradientBooster, Random Forest, and XGBoost was set to 12. For
LightGBM and ExtraTrees, it was set to 16. Additionally, the maximum number of leaves was fixed at 50 for
all models. Figure 15 shows the calibration plots illustrating the performance of various calibration techniques
across different classes. Table 22 compares the stratified Brier scores and log losses for the different methods used.
As seen from the Table 23, ExtraTrees, XGBoost, and Random Forest models performed better when trained on
calibrated probs from the teacher model. Light GBM and HistGradientBooster performed well when trained on
hard labels because the test distribution was similar to the training distribution. These models slightly overfit
the training data, which, in this case, acted as a boon rather than a bane. At the same time, the regularization
effect provided by the logits did not translate into improved performance. Instead, it acted as a bane, leading to
slight underperformance compared to models trained on hard labels. Also, since the student versions of these
models did not outperform their counterparts, we did not record their distillation score in the Table 24. Figure
16 presents the results on the CoauthorPhysics dataset. The mean test accuracy and F1 score for various models
are displayed, with error bars indicating standard deviation. LightGBM and HistGradientBooster were excluded
from this comparison as the student models trained using teacher logits failed to outperform their counterparts
trained on hard labels, even after calibration. Among the student models, the ExtraTrees model emerged as the
best student.

The distillation quality scores, computed using Eq. 13, for the student models that consequently outperformed
their counterparts trained on hard labels, are tabulated in Table 24.

Performance on CoauthorCSDataset

This dataset exhibited extreme class imbalance. Although this dataset did not represent a biologically critical
scenario where equal importance for minority and majority classes is essential, we still applied weighted cross-
entropy to address the imbalance effectively with weights set inversely proportional to each class’s frequency.
For this dataset, the maximum depth for HistGradientBooster, Random Forest, and XGBoost was set to 12. For
LightGBM and ExtraTrees, it was set to 16. Additionally, the maximum number of leaves was fixed at 50 for all
models. By selecting a hyperparameter configuration that omits explicit regularization, we create a scenario where
models trained on hard labels are prone to overfitting, thereby allowing us to clearly demonstrate the efficacy of
using teacher logits as an implicit regularizer. Figure 17 shows the calibration plots illustrating the performance
of various calibration techniques across different classes. Table 25 compares the stratified Brier scores for the
different methods used. When trained on hard labels, we observe overfitting in the HistGradientBooster and
LightGBM models. However, this overfitting is reduced when the models are trained on logits, suggesting that
logits provide implicit regularization and improve the models’ generalization capability. We also propose that
the regularization effect inherently provided by the teacher model’s guidance offers more effective control over
model overfitting than manually tuning explicit regularization parameters. Each model benefited from different
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Figure 15. Plots along with stratified brier scores and log losses (A) Calibration plot: raw logits converted
to probabilities. (B) Calibration plot after applying isotonic regression. (C) Calibration plot after applying
temperature scaling with a temperature that reduces Stratified Brier score. (D) Calibration plot after applying
temperature scaling with a temperature that reduces negative log-likelihood (log loss).
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Method/data Stratified brier score | Log Loss
Class 0: 0.030995 Class 0: 0.040620
Class 1: 0.032688 Class 1: 0.038505
Class 2: 0.015430 Class 2: 0.047046
Before calibration
Class 3: 0.036208 Class 3: 0.028423
Class 4: 0.047892 Class 4: 0.040356
Overall: 0.032642 Overall: 0.038990
Class 0: 0.0300 Class 0:0.0435
Class 1: 0.0314 Class 1: 0.0403
Class 2: 0.0151 Class 2: 0.0489
Isotonic regression
Class 3: 0.0370 Class 3: 0.0296
Class 4: 0.0467 Class 4: 0.0422
Overall: 0.03204 Overall: 0.0409
Class 0: 0.0307 Class 0: 0.0398
Class 1: 0.0326 Class 1: 0.0383
Class 2: 0.0153 Class 2: 0.0459
Temp scaling-reduces brier score
Class 3: 0.0368 Class 3: 0.0275
Class 4: 0.0473 Class 4: 0.0399
Overall: 0.03254 Overall: 0.03828
Class 0: 0.0308 Class 0: 0.0399
Class 1: 0.0328 Class 1: 0.0388
Class 2: 0.0153 Class 2: 0.0456
Temp scaling-reduces log loss
Class 3: 0.0377 Class 3: 0.0276
Class 4: 0.0472 Class 4: 0.0401
Overall: 0.03276 Overall: 0.0384

Table 22. Stratified brier scores and log loss values-coauthorphysics dataset. Can you please make the overall
value in bold here?. Some overall values are not bold.

calibration techniques, as shown in the Table 26. The distillation quality scores are recorded in the Table 27.
Figure 18 shows the performance of the best-performing student models and their counterparts on the test set.

Performance on synthetic dataset

We also experimented with a synthetic dataset with three classes generated using the Barabdsi-Albert (BA)
model® with a preferential attachment mechanism, which occurs in many real-world graphs'?. Although these
graphs do not fully capture the complexity of cell graphs, we utilized them due to the limited availability of cell
graph-based datasets. This experiment served two primary purposes: first, to evaluate if logits provide improved
guidance under distribution shift, and second, to assess the performance of post-hoc calibration methods under
such shifts. The graph consisted of 60,000 nodes, with each new node attaching to five existing nodes based on
the principle of linear preferential attachment. Instead of relying on random features, we computed various
graph-derived features such as degree, clustering coeflicient, and eigenvector centrality to capture the structural
properties of the graph better. Class labels were assigned by clustering features derived from the graph using
the k-means algorithm. To simulate a distribution shift, we introduced Gaussian noise to the features of the test
nodes. This approach allowed us to reflect potential variations in data distribution between the training and test
sets. The shift was induced synthetically to provide a controlled environment for this initial investigation, and
we acknowledge that a more rigorous shifting paradigm would be a valuable next step for future studies. Our
dataset had an uneven distribution of classes. However, since it wasn’t a critical biological dataset, we used the
standard cross-entropy loss function to train the teacher without any modifications. The algorithm is provided
in 2. For this dataset, the maximum depth for HistGradientBooster, LightGBM, Random Forest, and XGBoost
was set to 12. For ExtraTrees, it was set to 16. Additionally, the maximum number of leaves was fixed at 50 for all
models. Table 28 shows the accuracy and F1-score for various models trained on hard labels and their student
counterparts using different calibration techniques. Typically, we expect calibration to improve the guidance
raw logits provide. However, in this case, we do not observe any improvement. Good calibration achieved on
validation folds of the training set does not necessarily translate to good calibration on the held-out test set when
a distribution shift exists'!”. This misalignment may have contributed to the observed lower performance on
the test set. Our experiments revealed that when the GNN teacher was trained on extremely imbalanced data
without weighted loss, its logits became biased but remained predictive for the minority class. Distilling from
these raw, uncalibrated logits produced a student model with the highest overall test performance but at a slight
cost of misclassifying minority classes. We recommend training the GNN teacher with a weighted cross-entropy
loss to ensure minority-class logits are not under-represented. Additionally, apply robust post-hoc calibration to
further boost student performance and minority-class performance. Figure 19 shows the calibration plots before
and after applying post-hoc calibration. Figure 20 shows the comparison of weighted test F1 score between
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probs using temp scaling-LL

Model Acc_Train + std | Acc_Val + std Acc_test + std F1_train +std | F1_Val + std F1_test + std
Teacher Model 0.9982+0.0007 | 0.9707£0.0012 | 0.9685£0.0012 | 0.9982+£0.0007 | 0.9707+0.0012 | 0.968520.0012
ExtraTrees trained on hard labels 0.8368 +0.0046 | 0.8337 £0.0024 | 0.8301 +0.0023 | 0.8226 +0.0061 | 0.8202 % 0.0035 | 0.8126 + 0.0028
ExtraTrees trained on logits 0.8873 £0.0037 | 0.8811 +0.0032 | 0.8817 + 0.0063 | 0.8823 +0.0049 | 0.8756 % 0.0044 | 0.8758 + 0.0078
ExtraTrees trained on Calibrated 0.9229 £0.0011 | 0.9145 +0.0031 |0.9072 % 0.0037 |0.9210 +0.0012 | 0.9122 % 0.0032 | 0.9047 + 0.0039
logits using IR
ExtraTrees trained on Calibrated 0.9229 +0.0019 | 0.9127 +0.0032 | 0.9102 % 0.0029 | 0.9210 +0.0020 | 0.9104 + 0.0033 | 0.9077 + 0.0030
logits using temp scaling-BS
ExtraTrees trained on Calibrated | 5,35, 0017 | 0.9130 + 0.0037 | 0.9102 + 0.0032 | 0.9215 + 0.0018 | 0.9107 + 0.0038 | 0.9077 + 0.0034
logits using temp scaling-LL
XGBoost trained on hard labels 0.9194 £0.0000 | 0.8957 +0.0000 | 0.8959  0.0000 | 0.9174 +0.0000 | 0.8928 % 0.0000 | 0.8928 + 0.0000
XGBoost trained on logits 0.8675 +0.0000 | 0.8543 +0.0000 | 0.8544 + 0.0000 | 0.8580  0.0000 | 0.8434 + 0.0000 | 0.8431 + 0.0000
XGBoost trained on calibrated 0.9166 +0.0000 | 0.8935 + 0.0000 | 0.8924 + 0.0000 | 0.9141 +0.0000 | 0.8898 + 0.0000 | 0.8885 + 0.0000
probs using IR
XGBoost trained on calibrated 0.9178 £ 0.0000 | 0.8946 + 0.0000 | 0.8976 + 0.0000 | 0.9154 + 0.0000 | 0.8908 + 0.0000 | 0.8940 + 0.0000
probs using temp scaling-BS
XGBoost trainied on calibrated 0.9167 +0.0000 | 0.8941 +0.0000 | 0.8944 +0.0000 | 0.9142 +0.0000 | 0.8904 + 0.0000 | 0.8908 + 0.0000
probs using temp scaling-LL
HistGrad trained on hard labels 0.9549 +0.0002 | 0.9296 +0.0010 | 0.9273 +0.0013 | 0.9546 +0.0002 | 0.9287 +0.0011 | 0.9263 + 0.0013
HistGrad trained on logits 0.9085 +0.0004 | 0.8954 +0.0025 | 0.8954 +0.0015 | 0.9053 +0.0004 | 0.8914 + 0.0025 | 0.8912 + 0.0015
HistGrad trained on calibrated 0.9335+£0.0016 |0.9164 +0.0042 | 0.9126 +0.0033 | 0.9321 £0.0017 | 0.9143 +0.0044 |0.9103 + 0.0036
probs using IR
HistGrad trained on calibrated 0.9341 +0.0015 | 0.9171 £0.0017 | 0.9144 +0.0029 | 0.9327 +0.0015 | 0.9151 + 0.0018 |0.9122 + 0.0032
probs using temp scaling-BS
HistGrad trained on calibrated 0.9333 £0.0028 | 0.9162 +0.0045 | 0.9139 +0.0033 | 0.9319 +0.0030 | 0.9141  0.0048 |0.9117 + 0.0036
probs using temp scaling-LL
ﬁ:&dﬁ‘g‘eﬁ"mt trained on 0.8243 £0.0014 | 0.8124 +0.0018 | 0.8133 +0.0006 | 0.8150 +0.0019 | 0.8027 % 0.0027 | 0.8035  0.0011
Random Forest trained on logits 0.8782+0.0015 | 0.8668 +0.0032 | 0.8684 +0.0010 | 0.8736 +0.0017 | 0.8613 +0.0033 | 0.8631 + 0.0011
Random Forest trained on calibrated | 5,36 4 60015 | 0.8942 +0.0007 | 0.8948 + 0.0009 | 0.9117 +0.0017 | 0.8912 +0.0008 | 0.8919 +0.0010
probs using IR
Random trained on calibrated

) ! 0.9133 £0.0019 | 0.8941 +0.0004 | 0.8934 +0.0016 | 0.9111 +0.0021 | 0.8910 % 0.0006 | 0.8903 + 0.0018
probs using temp scaling-BS
Random trained on calibrated 0.9133 £ 0.0020 | 0.8943 + 0.0009 | 0.8936 = 0.0025 | 0.9112 % 0.0022 | 0.8912 + 0.0011 | 0.8905 + 0.0027
probs using temp scaling-LL
LightGBM trained on hard labels 0.9537 +£0.0000 | 0.9269 +0.0000 | 0.9318 +0.0000 | 0.9533 +0.0000 | 0.9258 + 0.0000 | 0.9309  0.0000
LightGBM trained on logits 0.9120 +0.0000 | 0.8977 +0.0000 | 0.8979 +0.0000 | 0.9089 + 0.0000 | 0.8939 + 0.0000 | 0.8940 + 0.0000
LightGBM trained on Calibrated 0.9377 £0.0000 | 0.9214 +0.0000 | 0.9176 +0.0000 | 0.9365 + 0.0000 | 0.9196 + 0.0000 | 0.9156 + 0.0000
probs using IR
LightGBM trained on Calibrated | 93534 60000 | 0.9186+ 0.0000 | 0.9139 + 0.0000 | 0.9350 + 0.0000 | 0.9167 +0.0000 | 0.9116 + 0.0000
probs using temp scaling-BS
LightGBM trained on Calibrated 0.9373 +0.0000 | 0.9198 +0.0000 | 0.9165 +0.0000 | 0.9361 + 0.0000 | 0.9179 +0.0000 | 0.9144 + 0.

Table 23. Model performance-CoauthorPhysics dataset. Note: The logits represent the raw outputs of the
teacher model. IR denotes Isotonic Regression, BS denotes Brier score reduction, and LL denotes log loss
reduction. Values in bold denote the performance of student models that learned well from the teacher model
and outperformed their counterparts trained on hard labels.Std denotes the standard deviation

Model Number_of Parameters | Best_Performance | DQ_Score
ExtraTrees trained on calibrated probs using LL | 952.634935 0.911 0.0310
XGBoost trained on calibrated probs using BS | 1535.46 0.894 0.0403
Random trained on calibrated probs using LL 1392.373 0.8932 0.0406
Table 24. Distillation quality Scores-F1 score as the performance metric.
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Figure 16. Performance of best performing student models and their counterparts on the test set-
coauthorphysics. We see the student models outperforming their counterparts.
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Figure 17. (A) Calibration plot: raw logits converted to probabilities. (B) Calibration plot after applying
isotonic regression. (C) Calibration plot after applying temperature scaling with a temperature that reduces

Stratified Brier score.

Method/Data Stratified Brier Score
Before Calibration Overall: 0.0138
Overall: 0.014

Isotonic Regression
Temp Scaling-Reduces Brier Score | Overall: 0.0121
Table 25. Stratified brier scores-CoauthorCS dataset. The first overall value here is not bold. Can you please

make it bold here?
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Model Acc_Train + std | Acc_Val + std Acc_test + std F1_train + std F1_Val + std F1_test + std
Teacher Model 0.9982+0.0005 | 0.9392+£0.0006 | 0.9406:0.0039 | 0.9982+0.0005 | 0.9393:£0.0007 0.9406:0.0040
XGBoost trained on hard labels 0.9591 +0.0000 | 0.8857 +0.0000 | 0.8664 +0.0000 | 0.9593 +0.0000 | 0.8865 % 0.0000 | 0.8684 + 0.0000
XGBoost trained on logits 0.8039 £ 0.0000 | 0.7657 +0.0000 | 0.7650  0.0000 | 0.8028 +0.0000 | 0.7627 £ 0.0000 | 0.7633 % 0.0000
XGBoost trained on calibrated 0.9524 +0.0000 | 0.8837 +0.0000 | 0.8729 +0.0000 | 0.9521 +0.0000 | 0.8800 £ 0.0000 | 0.8710 + 0.0000
probs using IR
XGBoost trained on calibrated 0.9523 +0.0000 | 0.8843 + 0.0000 | 0.8746 + 0.0000 | 0.9520 + 0.0000 | 0.8813 = 0.0000 | 0.8728 + 0.0000
probs using temp scaling-BS
ExtraTrees trained on hard labels 0.7617+ 0.0063 | 0.7504 £0.003 | 0.7470 £0.010 | 0.76490 + 0.0064 | 0.7530 £0.0027 | 0.7511+ 0.01022
ExtraTrees trained on logits 0.8102 £0.0029 | 0.7918 +0.0054 | 0.7819 +0.0066 | 0.8063 +0.0018 | 0.7849 +0.0041 | 0.7811 % 0.0058
ExtraTrees trained on Calibrated 0.9439 +0.0008 | 0.8892 +0.0011 | 0.8805 +0.0033 | 0.9435 +0.0009 | 0.8860 +0.0013 | 0.8788 + 0.0035
probs using IR
ExtraTrees trained on Calibrated 0.9448 + 0.0003 | 0.8904 + 0.0019 | 0.8813 + 0.0053 | 0.9444 + 0.0003 | 0.8872 +0.0017 | 0.8793 + 0.0050
probs using temp scaling-BS
HistGrad trained on hard labels 0.9758 +0.0005 | 0.8835 +0.0023 | 0.8771 +0.0011 | 0.9759 +0.0006 | 0.8844 +0.0026 | 0.8781 +0.0011
HistGrad trained on logits 0.8455 +0.0028 | 0.8144 +0.0059 | 0.7995 +0.0032 | 0.8448 +0.0027 | 0.8111 £0.0051 | 0.7997 + 0.0037
HistGrad trained on calibrated 0.9406 + 0.0009 | 0.8961 + 0.0015 | 0.8916 + 0.0015 | 0.9399 + 0.0010 | 0.8935 + 0.0015 | 0.8905 + 0.0016
probs using IR
HistGrad trained on calibrated probs using temp scaling-BS | 0.9403 + 0.0012 | 0.8969 + 0.0037 | 0.8900 + 0.0019 | 0.9396 +0.0012 | 0.8946 + 0.0038 0.8887 +0.0016
ﬁ:&dﬁ‘;‘ei"mt trained on 0.6541 +0.0049 | 0.6326 +0.0033 | 0.6337 +0.0089 | 0.6647+0.0059 | 0.6422 + 0.004720 | 0.64595 + 0.0105
Random Forest trained on logits 0.7938 +0.0043 | 0.7724 £0.0027 | 0.7581 +0.0048 | 0.7939 +0.0044 | 0.7716 £0.0028 | 0.7607 + 0.0000
Random Forest trained on calibrated 0.9369 + 0.0009 | 0.8759 + 0.0020 | 0.8680 + 0.0020 | 0.9366 = 0.0009 | 0.8734 +0.0021 | 0.8659 + 0.0020
probs using IR
Random trained on calibrated

) ! 0.9374 £0.0006 | 0.8777 +0.0025 | 0.8675 % 0.0008 |0.9372 +0.0007 | 0.8752+0.0028 | 0.8657 + 0.0006
probs using temp scaling-BS
LightGBM trained on hard labels 0.9861 +0.0000 | 0.8920 + 0.0000 | 0.8768 +0.0000 | 0.9861 +0.0000 | 0.8922 0.0000 | 0.8772 + 0.0000
LightGBM trained on logits 0.8578 £0.0000 | 0.8271 +0.0000 | 0.8086 % 0.0000 | 0.8564 + 0.0000 | 0.8240 £ 0.0000 | 0.8076 + 0.0000
LightGBM trained on Calibrated 0.9497 £0.0000 | 0.9007 £ 0.0000 | 0.8909 + 0.0000 | 0.9493 +0.0000 | 0.8987 £ 0.0000 | 0.8896 + 0.0000
probs using IR
LightGBM trained on Calibrated 0.9473 £ 0.0000 | 0.9045 + 0.0000 | 0.8980 % 0.0000 | 0.9467 + 0.0000 | 0.9027 = 0.0000 | 0.8970 + 0.0000

probs using temp scaling-BS

Table 26. Model performance-CoauthorCS dataset. Note: The logits represent the raw outputs of the teacher
model. IR denotes Isotonic Regression, BS denotes Brier score reduction, and LL denotes log loss reduction.
Values in bold denote the performance of student models that learned well from the teacher model and
outperformed their counterparts trained on hard labels. Std denotes the standard deviation. Accuracy and
weighted F1-scores are reported to four decimal places. Values may appear identical (especially for the teacher)
due to rounding but can differ at higher precision (>6 decimal places)

Model Number_of_Parameters | Best_Performance | DQ_Score
ExtraTrees trained on calibrated probs using BS | 2554.529 0.8843 0.036
LightGBM trained on calibrated probs using BS | 2093.5 0.8970 0.029
Random trained on calibrated probs using IR 590.5 0.8679 0.041
HistGrad trained on calibrated probs using IR | 1837.45 0.8921 0.0303
XGBoost trained on calibrated probs using BS | 3289.5 0.8728 0.04548

Table 27. Distillation quality scores-F1 score as the performance metric.
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Figure 18. Performance of best performing student models and their counterparts on the test set-CoauthorCS.

We see the student models outperforming their counterparts.

Model Acc_Train + std Acc_Val + std Acc_test + std F1_train + std F1_Val + std F1_test + std

Teacher Model 0.9971 £0.0015 | 0.9962 +0.0045 | 0.9008 + 0.0094 | 0.9969 £0.0015 | 0.9959 + 0.0045 | 0.8956 + 0.0085

ExtraTrees trained on hard labels 0.9980 + 0.000204 | 0.9974+ 0.00031 | 0.81044 £0.02933 | 0.99806+ 0.000204 | 0.99738 +.00031 | 0.83005 + 0.0202

ExtraTrees trained on logits 0.99537 + 0.00033 | 0.99572 + 0.00046 | 0.89194 + 0.01143 | 0.99520 + 0.00033 | 0.99542 + 0.00047 | 0.885 = 0.01039

fXFraTr?eS trained on Calibrated 0.9973 +0.0001 0.9973 + 0.0001 0.7958 + 0.0302 0.9971 + 0.0001 0.9970 + 0.0001 0.8176 +0.0193
ogits using IR

ExtraTrees trained on Calibrated 0.99737 £0.00007 | 0.99719 + 0.00031 | 0.79556 % 0.03426 | 0.99720 £ 0.00007 | 0.99691 + 0.00031 | 0.81941 % 0.02289

logits using temp scaling-BS

th.raTre.“ trained on Calibrated 0.9972 + 0.0000 0.9970 + 0.0001 0.7893 + 0.0352 0.9971 £0.0000 | 0.9967 + 0.0001 0.8128 + 0.0221
ogits using temp scaling-LL

XGBoost trained on hard labels 0.9987 +0.0000 | 0.9968 +0.0000 | 0.7491 +0.0000 | 0.9987 £0.0000 | 0.9967 +0.0000 | 0.7839 % 0.0000

XGBoost trained on logits 0.9958 + 0.0000 | 0.9949 + 0.0000 | 0.8673 + 0.0000 | 0.9956 + 0.0000 | 0.9946 + 0.0000 | 0.8712 % 0.0000
f(G.BO"S.t trained on Calibrated 0.9973 £0.0000 | 0.9965 +0.0000 | 0.8306 + 0.0000 | 0.9971 £0.0000 | 0.9962 + 0.0000 | 0.8425 + 0.0000
ogits using IR

f(GB""SF trained on calibrated 0.9974 + 0.0000 0.9966 +0.0000 | 0.7498 + 0.0000 0.9972 £0.0000 | 0.9963 +0.0000 | 0.7827 % 0.0000
ogits using temp scaling-BS

XGBoost trained on calibrated 0.9975 + 0.0000 0.9968 £0.0000 | 0.8031 +0.0000 | 0.9973 +0.0000 | 0.9965 +0.0000 | 0.8216 + 0.0000
logits using temp scaling-LL

HistGrad trained on hard labels 0.9992 £0.0001 | 0.9950 +0.0005 | 0.7563 +0.0033 | 0.9990 £0.0001 | 0.9947 + 0.0005 | 0.7909 % 0.0020
HistGrad trained on logits 0.9951+0.0004 | 0.9662 + 0.0040 | 0.8156 + 0.0443 | 0.9949 + 0.0004 | 0.9676 + 0.0036 | 0.8354 + 0.0312
HistGrad trained on calibrated probs | 0.9973 + 0.0001 0.9953 £0.0004 | 0.8049 +0.0508 | 0.9971 +0.0001 | 0.9950 +0.0004 | 0.8215 + 0.0361
HistGrad trained on calibrated 0.9975 + 0.0001 0.9958 +0.0005 | 0.7986 + 0.0489 0.9974 + 0.0001 0.9956 + 0.0005 0.8167 + 0.0334
logits using temp scaling-BS

HistGrad trained on calibrated 0.9975 + 0.0001 0.9959 £0.0006 | 0.8031 + 0.0483 0.9973 £ 0.0001 0.9956 £ 0.0006 | 0.8199 + 0.0329
logits using temp scaling-LL

ﬁ:ﬁidgfei‘“e“ trained on 0.99934 +0.00013 | 0.99766+0.00031 | 0.8475 + 0.021790 | 0.9993 + 0.0001 0.99763 +0.00030 | 0.85659 + 0.0166
Random Forest trained on logits | 0.99444 + 0.00006 | 0.99497 + 0.00004 | 0.87928 + 0.00717 | 0.99428 + 0.00006 | 0.99469 + 0.00004 | 0.87526 + 0.00543
Random Forest trained on 0.9978 + 0.0000 0.9970 £0.0002 | 0.8647 + 0.0132 0.9977 £0.0000 | 0.9967 + 0.0002 0.8669 + 0.0090
calibrated probs using IR

Random trained on calibrated 0.9976 + 0.0001 0.9969 + 0.0001 0.8465 £0.0247 | 0.9975 + 0.0001 0.9966 + 0.0001 0.8538 + 0.0172
logits using temp scaling-BS

]Rar.ldom. trained on calibrated 0.9976 % 0.0001 0.9969 £0.0004 | 0.8346 + 0.0225 0.9974 + 0.0001 0.9966 +0.0004 | 0.8456 + 0.0169
ogits using temp scaling-LL

LightGBM trained on hard labels 0.9983 +0.0000 | 0.9966 + 0.0000 | 0.8546 + 0.0083 | 0.9983 £0.0000 | 0.9965 + 0.0000 | 0.8637 % 0.0066
LightGBM trained on logits 0.9951 +0.0000 | 0.9942 + 0.0001 | 0.8973 +0.0008 | 0.9949 + 0.0000 | 0.9939 + 0.0001 | 0.8790 + 0.0004
lL‘g.htGB.M trained on Calibrated 0.9977 £0.0000 | 0.9968 +0.0000 | 0.8752 % 0.0099 0.9975 £0.0000 | 0.9965 + 0.0000 | 0.8715 % 0.0074
ogits using IR

]L‘ghtGBM trained on Calibrated 0.99762 +0.00000 | 0.99692 + 0.00000 | 0.85883 +0.01237 | 0.99745 + 0.00000 | 0.99663 + 0.00000 | 0.86122 + 0.01041
ogits using temp scaling-BS

]L‘ghtGBM trained on Calibrated 0.9976 + 0.0000 0.9968 £0.0000 | 0.8668 + 0.0163 0.9974 £0.0000 | 0.9965 +0.0000 | 0.8657 +0.0111
ogits using temp scaling-LL

Table 28. Model performance-synthetic datasetl. Note: The logits represent the raw outputs of the teacher
model. IR denotes Isotonic Regression, BS denotes Brier score reduction, and LL denotes log loss reduction.
Values in bold denote the performance of student models that learned well from the teacher model and
outperformed their counterparts trained on hard labels. Std denotes the standard deviation. Weighted cross-

entropy can be employed to better capture information about minority classes
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Figure 19. (A) Calibration plot: raw logits converted to probabilities. (B) Calibration plot after applying
isotonic regression. (C) Calibration plot after applying temperature scaling with a temperature that reduces
Brier score. (D) Calibration plot after applying temperature scaling with a temperature that reduces negative

log-likelihood (log loss).
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Figure 20. Performance of best performing student models and their counterparts on the test set-synthetic

dataset. We see student models outperforming their counterparts.

models trained on hard labels and their student counterparts, which performed the best (as per the Table 28).
Table 29 represents the stratified Brier scores and log loss values obtained before and after calibration. The

distillation quality scores of the student models that performed the best are summarized in Table 30.

1: Input: Number of nodes n=60k, m=5, number of clusters k=3, noise factor J.
2: Qutput: Preprocessed feature sets Xy qin, Xyar and Xeg, labels y, graph G.

3: Generate graph G using the Barabdsi-Albert model with n nodes, m edges,
4: Compute various features such as degree, clustering coefficient, and eigenvector centrality.

5: Apply KMeans clustering with k clusters to extracted features to generate synthetic labels y.
6: Apply the standard scaler to training and validation set. Apply Gaussian noise scaled by 6 to simulate distribution shift in

test set and standardize it.
7: Return: Feature subsets, y, G

Algorithm 2. Feature engineering and synthetic label generation with distribution shift
nature portfolio
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Method/data Stratified brier score
Class 0:0.01275
Class 1:0.01086

Class 2: 0.49084

Logloss

Class 0: 0.01597
Class 1: 0.01496
Class 2:0.00355
Overall:0.01150
Class 0: 0.0180
Class 1: 0.0170
Class 2: 0.0028
Overall:0.0126

Before calibration

Overall:0.17148
Class 0:0.0140
Class 1: 0.0136
Class 2 :0.4909
Overall :0.1728

Isotonic regression

Class 0:0.0126 Class 0:0.0166

Class 1:0.0102 Class 1:0.0161
Temp scaling - reduces brier score

Class 2:0.4815 Class 2 : 0.0040

Overall: 0.1681 Overall :0.0122

Class 0:0.01279 Class 0:0.01595

Class 1:0.01094 Class 1:0.01488
Temp scaling - reduces log loss

Class 2 :0.49160 Class 2:0.00351

Overall: 0.17177 Overall: 0.01144

Table 29. Stratified brier scores and log loss values-synthetic dataset. Note: The extremely low Log Loss
observed for Class 2 is likely due to the small sample size for that class, which may be misleading. Isotonic
Regression did not yield an improvement over the baseline calibration metrics

Model Number_of Parameters | Best_Performance | DQ_Score
ExtraTrees trained on logits | 409.975 0.89539 0.0084
XGBoost trained on logits | 462.97 0.8712 0.022
Random trained on logits 1331.635 0.8806 0.0248
HistGrad trained on logits | 679.8 0.8666 0.02676
LightGBM trained on logits | 692.15 0.8794 0.0197

Table 30. Distillation quality scores-F1 score as the performance metric.

Complexity of Number Number

train+val graph (graph | Complexity of test of of Distribution shift: covariate and | Did all student models
Dataset energy) graph (graph energy) | features | Feature type | classes | label shift benefit from KD?
Our dataset 528099.8645 145243.7451519 32 i/f[’a“al and Yes (both covariate and label shift) | Yes

orphological
Placenta Large for computation | Large for computation | 64 Morphological |9 Yes (covariate shift) Yes
BRCA-M2C 33879.69182 12192.8422 12 Spatial 3 Yes (both covariate and label shift) | Yes
CoauthorCS 39464.388 39464.388 6805 Original 15 No Yes
CoauthorPhysics | 90782.486005 90782.486005 8415 | Original 5 No No. LightGBM and HistGrad
were not benefitted

Synthetic dataset | Large for computation | Large for computation | 7 Topological 3 Yes (Covariate Shift) Yes

Table 31. Factors considered to evaluate the efficacy of our proposed method.

Factors influencing the efficacy of our approach across datasets

We considered various factors impacting our approach and tabulated them in Table 31. However, the graph
complexity (which, in our case is equivalent to graph energy) could not be computed for the placenta dataset as
it contained millions of nodes within a single cell graph. Similarly, the synthetic dataset also had a large number
of nodes within a single graph, making complexity computation infeasible. Approximating graph complexity for
very large graphs is an avenue for future work.

Effectiveness of our approach: successes, limitations, and when it might not be too useful

Our approach proved particularly beneficial in complex scenarios involving data distribution shifts. In such
cases, the logits from the teacher GNN provided richer insights than the hard labels. In addition to the knowledge
transferred from the teacher to the student, it also helped curb overfitting to the training data, preventing student
models from becoming overly specialized on the training set. In our experiments, student models, like Random
Forest or ExtraTrees, benefited constantly from the GNN’s logits. These models were able to leverage the rich
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information encoded in the logits to make more accurate predictions. The performance of boosting models
varied across different scenarios. Specifically, when the test distribution closely mirrored the training distribution,
slight overfitting of these models to the training data proved beneficial. Bagging models demonstrated more
consistent improvements with knowledge distillation across different datasets and complexities, making them a
more favorable choice for distillation. In simpler cases, where data relationships are primarily linear or the graph
has very low complexity, knowledge distillation from GNN becomes less impactful. In such scenarios, simpler
models can directly utilize the cell graph features for classification, achieving effective results without requiring
a teacher GNN. Introducing a GNN in these cases adds unnecessary complexity. This aligns with the findings of
the authors in*%, who demonstrated that a simple classifier using the 15 most predictive feature-driven local cell
graph features identified via the Wilcoxon Rank Sum Test (WRST) achieved an average AUC of 0.68, thereby
outperforming a deep learning model.

Discussion and major takeaways

To address the first question regarding the benefits of knowledge distillation from the teacher GNN, we analyzed
the performance of the teacher and student models under varying dataset complexities. The proposed approach
was instrumental in scenarios where a distribution shift existed in the data. In such cases, student models
trained on logits consistently outperformed their counterparts trained on hard labels. However, the results were
mixed for non-cell graph-based datasets without distribution shifts. Bagging models improved when trained
on calibrated probs, while some boosting models performed better with hard labels. We hypothesize that logits
offer more effective guidance during distribution shifts than hard labels. Furthermore, logits acted as a form of
regularization, helping to prevent models from overfitting to the training data, as evidenced by the results on cell
graph-based datasets. Achieving high-quality logits required a sufficiently deep teacher model.

To address the second question, we observed notable differences in the feature importance assigned by models
trained on hard labels versus those guided by teacher logits. For the TB dataset, the teacher-guided student
model emphasized morphological features, such as contrast and circularity. Pathologists commonly use these
to differentiate between AFB and the nucleus of activated macrophages. Similarly, for the BRAC_M2C dataset,
the teacher-guided student model prioritized features like node clustering, reflecting the biological behavior of
breast cancer cells, which tend to form tight clusters and adhere via adhesion molecules.

To answer the third question, we observed performance improvements in student models when they were
trained using the ensembled outputs of the teacher model and the best-performing student model, particularly
in specific datasets. These improvements were more pronounced when the best-performing student shared some
architectural similarities with other student models. For instance, the performance of HistGradientBooster
improved when guided by the ensembled logits of Light GBM and CG-JKNN, compared to its performance when
trained solely by CG-JKNN. However, it is essential to note that the ensembled outputs were not universally
beneficial. Some student models experienced a drop in performance. Also, some models did not prefer learning
from the best-performing student, as they assigned a zero weight to its output.

Regarding the fourth question, teacher logit calibration provided better guidance to student models than
using hard labels in most cases. In datasets like the placenta dataset, where the number of samples per class was
small, isotonic regression led to lower performance and, in some instances, performed worse than using hard
labels.

We hypothesize that the success of our approach stems from the student’s inherent inductive bias, which
functions as a powerful regularizing filter. Unlike a flexible NN student, which can overfit to the teacher’s
entire output function, including its flaws, a tree-based model’s structural rigidity prevents it from replicating
these complex, spurious correlations. This inherent limitation forces the student to approximate the teacher’s
knowledge using simpler, rule-based tools, thereby capturing the dominant, generalizable signals while ignoring
high-frequency noise. Further experiments are needed across varied datasets and model architectures to validate
the robustness and scope of this hypothesis fully.

The major takeaways are as follows:

o Our goal was not to benchmark the teacher model against the baseline performances reported for each da-
taset. Instead, our primary focus was demonstrating the efficacy of using the teacher’s logits as a supervisory
signal for training student models.

o Our approach using teacher GNN logits improved student model performance under distribution shifts by
capturing model uncertainty and relative class similarities, which in turn revealed subtle transitional states
in cellular morphology that hard labels may obscure. For example, in the placenta dataset, the student mod-
el produces very similar confidence scores for class 1 and class 2, suggesting that these classes may share
morphological features during transformation'?*'*°. Additional details can be found in our supplementary
files. However, further expert evaluation is necessary to determine whether these outputs genuinely represent
biological transitions or if they instead reflect limitations in feature extraction. Moreover, the teacher may
produce noisy logits for classes with few samples due to insufficient representation learning.

« Bagging models consistently benefited from using logits compared to hard labels. In contrast, boosting mod-
els showed mixed results, with some cases favoring hard labels over logits, especially in datasets with no
distribution shift. During our experiments on the CoauthorCS network, we found that bagging models, such
as Random Forest, performed well with calibrated probabilities obtained through isotonic regression. These
probabilities focused on improving reliability, even though this came at the cost of resolution. On the other
hand, booster models, such as XGBoost, performed better with calibrated probabilities obtained through
temperature scaling, which provided higher resolution but slightly less reliability compared to isotonic regres-
sion. We believe this difference is related to the way these algorithms function.
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o We observed that the teacher-guided student model placed greater emphasis on morphological features for
the TB dataset than its counterpart trained on hard labels. This suggests that combining local cell graph fea-
tures and morphological features provides better guidance and performance than using either morphological
or local cell graph features alone. We believe that the student model can serve as a partial proxy for under-
standing which features the teacher considers important.

o While using weighted cross-entropy loss helps address the class imbalance, it does not tackle calibration is-
sues. A more advanced loss function, such as the one proposed in'?}, could be employed to handle both class
imbalance and calibration simultaneously.

The focus of this work was to demonstrate that it is possible to distill knowledge from neural to non-neural
network models as students and that these simpler models can also learn effectively from the logits of a teacher
GNN. Even when we observe a performance gap between the teacher and student models (in the case of the
TB dataset), often due to the teacher’s use of graph structure, the results indicate that the distilled logits provide
better guidance than hard labels. This opens up opportunities for further improvements, such as incorporating
intermediate teacher embeddings with node features, to help the students better approximate the teacher’s full
capabilities. In our study, we deliberately chose non-neural student models for several reasons. Their enhanced
interpretability is a primary advantage. Tree-based ensembles enable the straightforward extraction of decision
rules (compared to GNNs), making model decisions easily understandable, an essential aspect in applications
involving TB, Placenta, and Breast Cancer datasets. Moreover, prior work, such as that by Frosst and Hinton!3!,
has shown that distilling a deep neural network into a simpler decision tree can improve the tree’s performance
compared to training on hard labels alone. By transferring the teacher’s rich, implicit relational knowledge to
these students via its logits, we allow them to effectively operate using only cell-level feature vectors (which
include morphological and local cell graph features), thereby broadening applicability to scenarios where full-
cell graphs are unavailable. Their simplicity also offers multiple practical advantages: they require significantly
less hyperparameter tuning!®?, are easier to implement, and their decision boundaries are more readily visualized
compared to more complex methods, such as those employed in approaches like GNNBoundary'*. Additionally,
the differences in feature importance between the student models and counterparts trained on hard labels
provide valuable insights into the teacher’s decision-making process. Additionally, successfully transferring the
teacher’s knowledge to a non-neural model demonstrates that these valuable insights are not exclusive to neural
architectures but can be effectively captured by different function approximations, underscoring its generality.

Limitations of our work

Our work primarily focused on node-level classification, which limits its applicability to graph-level classification
tasks. In this study, all interactions between cells were assigned equal weight (weight=1). However, specific
interactions may be more biologically significant than others. For example, interactions between lymphocytes
and cancer cells could have a stronger impact on disease progression than other cell-cell interactions. While
we employed calibration methods such as isotonic regression and temperature scaling, we did not explore
other popular techniques. Specifically, for multiclass calibration, we adapted isotonic regression using a one-
vs-all approach, which may not fully capture the subtleties of multiclass classification compared to methods
specifically designed for this purpose, such as Matrix Scaling, Vector Scaling!'!, or Dirichlet Calibration!!. The
calibration performance was assessed using the Stratified Brier Score and Log Loss. However, our analysis may
lack comprehensiveness as metrics like Expected Calibration Error (ECE)!** were not considered. Moreover, we
did not explore pre-calibration techniques that integrate temperature learning during GNN training to generate
pre-calibrated probabilities, leaving the effectiveness of the pre-calibrated softmax probabilities unexamined.
We also did not assess whether the student models’ predictions were calibrated. While we used weighted F1
score and accuracy as our primary performance metrics, our analysis could be enhanced by incorporating other
performance measures that provide broader insights. While weighted F1 shows overall gains from distillation,
the teacher’s logits remain noisy for the very rare classes, so improvements are uneven and some classes might not
see a clear benefit. Furthermore, while we focused on evaluating the generalization capabilities of student models
trained with teacher logits, we did not analyze fidelity!”13%, which is a measure of how closely the student models
replicate the teacher’s outputs. Incorporating fidelity in future evaluations could provide a more comprehensive
understanding of the trade-offs between generalization and fidelity.Additionally, to fully validate our findings,
the framework should be evaluated under more rigorous shift conditions.

Conclusion and future work

We explored logit-based knowledge distillation from GNNs trained on cell graphs to non-neural student models.
The study assessed the efficacy of this approach under different dataset complexities, including factors such as
varying graph complexity and the presence or absence of distribution shifts. Our approach proved particularly
beneficial when the test distribution differed from the training distribution. The rich information embedded
in the logits and their regularization effect benefited the student models. Additionally, we investigated the
scenarios where the calibration of logits could enhance student performance. Post-hoc calibration demonstrated
its utility when ample samples were available in each class and when there was no distribution shift. Bagging
models consistently benefited from logits, whereas booster models exhibited variable performance based on the
presence or absence of shift.

We plan to experiment with other teacher models in future work, such as the Simple Graph Convolution
(SGC) proposed in'*. This model aims to reduce the excess complexities typically associated with GCNs by
removing intermediate non-linear transformations while still leveraging the graph structure for learning. This
would also open new avenues for utilizing simpler linear models as student models, potentially reducing the
overall model complexity while maintaining or improving performance. We also plan to focus on measuring
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the fidelity of the student models!’. Fidelity, in this context, refers to the ability of the student models to match
the teacher’s predictions across various graph datasets. We do not explicitly evaluate whether our student
models are themselves well-calibrated. The calibration of these models remains an important direction for
future investigation. We aim to incorporate the loss function proposed in'?!, which uses a dynamic weighting
factor that adjusts during the training process of our teacher GNN. This approach addresses the training bias
in imbalanced datasets while improving confidence calibration. Future direction could also explore methods
for training the teacher GNN to yield logits that provide a more uniformly beneficial and balanced learning
signal for all classes, especially under extreme imbalance and potential distribution shifts. We also propose
experimenting with synthetic datasets that do not exhibit distribution shifts but are designed to emulate
the distributions of real-world networks. By extracting local graph features from these datasets, it would be
intriguing to investigate whether logits offer greater utility in guiding student models. Future research could
focus on designing teacher models such as H,GCN'%, capable of effectively learning in both homophilic and
heterophilic contexts. Advanced approaches to measure the degree of non-linearity in datasets can be employed.
For example, the method described in'*” quantifies the degree of non-linearity between variables by defining
the exposure of one variable to another. Synthetic dataset generators, such as ShapeGGen'?, can be employed
to automatically create a variety of benchmark datasets with varying properties to evaluate the efficacy of
knowledge distillation. Another interesting future direction is exploring causal knowledge distillation, where we
generate causal graphs of cell graph features to guide the distillation process. Future work could explore using
teacher logits as “pseudo-labels” in semi-supervised learning to provide soft targets for student models when
labeled data is scarce. Visualizing the decision boundaries of student models in knowledge distillation scenarios
could offer valuable insights into how these models approximate the behavior of teacher models.

Data availability

The datasets analyzed during the current study are available in the Placenta repository (GitHub link: https://git
hub.com/nellaker-group/placenta) and the Dataset-BRCA-M2C repository (GitHub link: https://github.com/T
opoXLab/Dataset-BRCA-M2C). Similarly, the CoAuthorship networks utilized in this study are publicly availa
ble in (https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Coauthor.html).
The whole-slide images (WSI) used in the TB dataset will be made available upon request to the correspondin
g author. The codes used to perform the experiments and generate the results in this study is publicly available
in a repository with the link (Link: https://github.com/VasundharaAcharya/Code_Knowledge_Distillation.git)
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