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This study presents, for the first time, a theoretical investigation into the static bending behaviour 
of a functionally graded (FG) nanobeam integrated with a piezoelectric fibre-reinforced composite 
(PFRC) actuator. The model uniquely combines non-local strain gradient theory with electromechanical 
coupling to capture nanoscale effects accurately. In accordance with non-local strain gradient theory, 
a size-dependent functionally gradient nanobeam with a PFRC actuator formulation that includes 
extra material length size elements is designed. To model the FG nanobeam, we integrate the non-
local strain gradient concept with a modified shear deformation beam theory. Three equations of 
equilibrium are built via the virtual work approach. The impacts of the outside electrical voltage, power 
law index, strain gradient parameter, non-local parameter, and length-to-thickness ratio on the static 
deformation of the nanobeam under electrical and mechanical loads are thoroughly investigated.
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Fibre-reinforced composites have gained prominence in the aerospace, marine, aeronautics, and automotive 
industries in the past few decades. These composites can be customized to satisfy specific material requirements, 
such as high strength, low density, high damping, high stiffness, and high chemical and thermal shock resistance.

Designing materials with a minimum of two simultaneous interactions among electric, magnetic, elastic, and 
thermal materials is essential in manufacturing and engineering since they enable the feasibility and innovative 
usage of multipurpose devices.

Piezoelectric fibre-reinforced composites (PFRCs) have emerged as novel intelligent materials. The 
homogeneous piezoelectric fibres in PFRCs are longitudinally strengthened in an epoxy matrix structure. 
PFRCs can serve as actuators and sensors for adaptive material systems and structural health monitoring. These 
structures can be utilized within nanoelectromechanical structures for a variety of intelligent devices such as 
actuators, generators, sensors, transducers, and resonators.

Functionally graded materials (FGMs) have become common in nanoscale structures such as nanosensors, 
solar cells, artificial structures, and nanoelectromechanical systems. FGMs offer various advantages, namely, 
durability against abrasion, extreme bearing capacity, and extreme temperature capability. These materials are 
composed of multiple elemental components, the most prevalent being ceramics and metals. Several studies have 
been carried out on functionally gradient beams, plates, and shells1–3. Many researchers have been interested 
in incorporating PFRC layers into composite structures4–10. The mechanical properties of nanostructures have 
been extensively addressed in published research11–20.

Given the experimental challenges and high costs associated with nanoscale studies, the mechanical 
behaviour of nanodevices is often investigated through mathematical modelling. However, classic elasticity 
theory is inadequate for capturing size-dependent phenomena at the nanoscale, as it does not account for the 
long-range interatomic interactions inherent in nanostructured materials. As a result, conventional continuum 
mechanics have been extended to incorporate size effects through advanced theories.

Among these theories, various non-local elasticity formulations have been proposed, including Eringen’s 
non-local theory, strain gradient theory, surface stress theory, couple stress theory, and modified couple stress 
theory21–29. These models introduce internal length scale parameters that enable a more accurate representation 
of mechanical responses at reduced dimensions. In particular, Lim et al.7 developed non-local strain gradient 
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theory (NSGT), which integrates two length scale parameters to capture non-local and gradient effects 
simultaneously. Notably, by setting the strain gradient parameter to zero, NSGT reduces to the non-local 
elasticity theory, and vice versa, demonstrating its versatility in modelling nanoscale mechanics.

Several investigators have utilized NSGT to examine the dynamic and static behaviours of nanostructures. 
Tang et al.30 addressed the static characteristics of micro- and nanobeams by adopting an overall strain gradient 
beam framework that accounts for shear and normal deformation interaction implications. Ebrahimi and Barati31 
evaluated the vibration properties of FG viscoelastic nanobeams via NSGT and in hygrothermal environments. 
Rajasekeran and Khaniki32 employed the finite element approach to look at the bending, vibration, and buckling 
of a small-scale beam within the context of NSGT. Lv et al.33 adopted the NSGT to study the effects of material 
imperfections on the nonlinear vibration performance of implanted FG nanobeams. Papargyri-Beskou et al.34 
examined the stability and bending of nanobeams via the Aifantis strain gradient theory. Aydogdu35 used 
generic non-local beam theory to investigate the vibration, bending, and buckling of nanobeams. Aghababaei 
and Reddy36 employed a non-local linear elasticity model to examine the vibration and bending of a nanoplate. 
Komeili et al.37 studied the thermoelectromechanical performance of functionally graded piezoelectric beams 
via a finite element model.

Chu et al.38 incorporated generalized strain gradient theory and explicitly introduced the concept of a 
physically neutral surface, which may deviate from the geometric mid-surface because of material gradation. 
This shift significantly influences the electromechanical behaviour, particularly under flexoelectric coupling. 
Ding et al.39 underlined the need to examine the neutral surface position rather than assume that it is at the 
geometric centre. They reduce the stretching–bending coupling effects induced by asymmetric material 
distributions, resulting in more precise predictions of nonlinear vibration properties.

Jalaei et al.40 investigated the viscoelastic transient response of functionally graded nanobeams with magnetic 
imperfections and employed advanced modelling to capture time-dependent behaviour under magnetic fields. 
Numanoğlu et al.41 presented a dynamic analysis of nanorods, focusing on size-dependent effects through 
non-local elasticity theory and contributing to the understanding of nanoscale mechanical behaviour. In 
their paper, Civalek et al.42 analysed the forced vibration response of composite beams reinforced with carbon 
nanotubes, highlighting the mechanical advantages of nanocomposite materials. Marinca et al.43 explored the 
nonlinear forced vibration of functionally graded nanobeams by incorporating non-local strain gradient theory, 
mechanical impact, electromagnetic actuation, and nonlinear foundation effects, providing a comprehensive 
nonlinear dynamic model.

Lieu et al.44 combined a non-local theory with third-order shear deformation theory to model the static 
bending and buckling of FG sandwich nanobeams. Additional studies on the mechanical features of nanoscale 
structures impacted by electric strain have been published45–48.

Several studies have provided significant insights into the behaviour of functionally graded porous nanoplates 
and micro/nanobeams analysed via non-local strain gradient theories. For example, the static stability under 
various in-plane loads and boundary conditions has been examined, highlighting the influence of porosity 
distributions and size effects on the mechanical response of nanostructures. These works have addressed size-
dependent effects and material gradation, offering enhanced modelling accuracy for nanoscale and composite 
elements49–52.

Recently, Alghanmi53,54 examined the bending of FG nanoplates by applying NSGT and four unknown shear 
theories.

In accordance with this review, several notable studies on the incorporation of PFRC layers into composite 
structures have been published. In addition, different studies on nanostructures have been conducted. To the best 
of the author’s knowledge, this is the first attempt to explore the static bending behaviour of an FG nanobeam 
integrated with a PFRC actuator via the NSGT. This novel coupling of a material system and advanced size-
dependent theory provides an accurate and comprehensive framework for understanding electromechanical 
interactions at the nanoscale. Unlike previous models that consider either FG structures or piezoelectric effects 
separately, the present study accounts for the dual influence of nonlocality and strain gradient effects, alongside 
piezoelectric actuation.

Additionally, the numerical results offer detailed insights into how variations in the electric voltage, power-
law index, strain gradient parameter, non-local parameter, and aspect ratio affect the deformation and stress 
responses of the system.

These findings are not only academically significant but also practically applicable in designing advanced 
nanoelectromechanical system (NEMS) devices such as nanoactuators, sensors, energy harvesters, and 
biomedical devices. The results demonstrate how smart design choices at the nanoscale can dramatically 
influence mechanical performance, making this investigation a valuable reference for researchers and engineers 
working on smart nanostructures.

This study has strong practical relevance in the design of advanced NEMSs. The proposed FG nanobeam 
integrated with a PFRC actuator can be effectively used in nanoactuators and nanosensors requiring high 
precision and electromechanical responsiveness. It is also suitable for nanoscale energy harvesting, converting 
mechanical input into electrical energy.

The model supports applications in soft robotics and adaptive surfaces, where controlled deformation is 
essential. Furthermore, its sensitivity to mechanical and electrical loads makes it ideal for force and pressure 
sensing in biomedical and wearable systems. These applications highlight the importance of accurate modelling 
at the nanoscale for smart multifunctional devices.

Finally, the results of this study were obtained by applying the modified shear deformation theory. Although 
more complex than traditional models, this theory offers significant accuracy improvements in predicting 
transverse shear deformation without requiring shear correction factors.
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Unlike classic or even third-order shear deformation theories, this approach captures both the nonlinearity 
in shear distribution and the coupling behaviour in functionally graded nanobeams more effectively, especially 
at small scales where gradients and electromechanical interactions are prominent.

Theory and formulation
Model description
Figure 1 shows an FG nanobeam with dimensions of l, b, and h. The FG nanobeam is connected to a PFRC 
layer of thickness hp, which functions as an actuator.

The Cartesian system (x, y, z) is utilized, with the origin point situated in the centre of the porous FG plate.
The essential features of the material, such as Young’s modulus E, are defined as follows (Bao and Wang55:

	
E (z) = Em + (Ec − Em)

(
z

h
+ 1

2

)k

,� (1)

The letters c and m represent ceramic and metal, respectively. The letter k ( k ≥ 0) symbolizes the exponent 
of the power law.

This beam is exposed to an electrical potential ψ  and a mechanical load q (x). The electric potential 
variations are identified as (Ray and Sachade14).

	
ψ (z) =

(
z − h

2

)
ψ 0
hp

,
h

2 ≤ z ≤ h

2 + hp,� (2)

where ψ 0 symbolizes the electric voltage applied on the PFRC material in the z-direction.

Nonlocal strain gradient theory
The stress field combines the two types of non-local elastic stress domains, as does the strain gradient stress area. 
The stress can be described as (Lim et al.7)

	 σ ij = σ
(0)
ij − ∇ σ

(1)
ij .� (3)

The stresses σ
(0)
ij  and σ

(1)
ij  refer to the strain ε ij  and the strain gradient ∇ ε ij , respectively, and are 

established by7

	
σ

(0)
ij =

∫

V

cijklα 0(x, x′ , e0a)ε ′
kl

(
x′ )

dx′ ,� (4)

	
σ

(1)
ij = l2

∫

V

cijklα 1(x, x′ , e1a)ε ′
kl

(
x′ )

dx′ ,� (5)

in which l is the nanobeam length. The first- and second-order non-local parameters are designated e0a and 
e1a, respectively. α 0 is the fundamental attenuation kernel function associated with the nonlocality impact of 
the Euclidean distance between point x and its nearby points x′  within the domain V .

The α 1 kernel function describes the nonlocal influence of the first-order strain gradient field. e0 and e1 
are non-local material constants that can be used to calibrate theoretical and experimental data, whereas a is an 
internal characteristic length.

where cijkl denotes the elastic tensor. If the non-local functions α 0(x, x′ , e0a) and α 1(x, x′ , e1a) match 
Eringen’s requirements21, the fundamental relationship of NSGT assumes the next construction

	
[
1 − (e1a)2∇ 2] [

1 − (e0a)2∇ 2]
σ ij = cijkl

[
1 − (e1a)2∇ 2]

ε kl − cijkll
2 [

1 − (e0a)2∇ 2ε kl

]
,� (6)

Fig. 1.  Schematic diagram of a FG nanobeam with a PFRC layer.
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where ∇ 2 = ∂ 2

∂ x2 + ∂ 2

∂ y2 . Considering e1 = e0 = e and omitting terms with order O
(
∇ 2)

, the constitutive 
relationship in Eq. (6) may be recast as (Lim et al.7)

	
[
1 − η ∇ 2]

σ ij = cijkl

[
1 − λ ∇ 2]

ε kl ,� (7)

The parameters η = (ea)2 and λ = l2 represent the nonlocality and strain gradient terms of size, respectively. 
The NSGT measures the stress ( σ ij) and electric displacement ( Di) as56–58

	
[
1 − η ∇ 2]

σ ij = cijkl

[
1 − λ ∇ 2]

ε kl − ekijEk ,� (8a)

	
[
1 − η ∇ 2]

Di = eijkl

[
1 − λ ∇ 2]

ε kl + κ ikEk .� (8b)

Here, cijkl, ekij , and κ ik are the elastic stiffness coefficients, piezoelectric coefficients, and dielectric 
permittivity constants, respectively. Ek  denotes the electrical field components. Thus, the constitutive equation 
for the isotropic linear FG nanobeam can be expressed as56–58

	

(
1 − η ∇ 2) {

σ 11
τ 13

}
=

(
1 − λ ∇ 2) [

ce
11 0
0 ce

55

] {
ε 11
γ 13

}
,� (9)

where

	
ce

11 = E (z)
1 − ν 2 , , ce

55 = E (z)
2(1 + ν ) .� (10)

where ν  and E (z) are the Poisson’s ratio and Young’s modulus, respectively. The constitutive equations for the 
PFRC layer are considered as56–58

	

(
1 − η ∇ 2) {

σ 11
τ 13

}
=

(
1 − λ ∇ 2) [

cp
11 0
0 cp

55

] {
ε 11
γ 13

}
−

[ 0 e31
e15 0

] {
Ex

Ez

}
,� (11)

	

(
1 − η ∇ 2) {

Dx

Dz

}
=

(
1 − λ ∇ 2) [ 0 e15

e31 0
] {

ε 11
γ 13

}
+

[
κ 11 0

0 κ 33

] {
Ex

Ez

}
.� (12)

cp
ij  specifies the stiffness constants. The electrical components of Ei are described as

	
Ex = −∂ ψ

∂ x
, Ez = −∂ ψ

∂ z
.� (13)

Displacement function
In accordance with the revised shear deformation theory proposed by Vo and Thai59, the field of displacement at 
every point of the nanobeam is presented in the following form:

	
u1 (x, z) = u (x) − z ∂ wb

∂ x
− f (z) ∂ ws

∂ x
,

u3 (x, z) = wb (x) + ws (x) .
� (14)

in which wb and ws measure the bending and shear components of the lateral displacements resulting from 
the bending and shear forces, whereas u represents the axial displacement. The shape function is identified as60

	
f (z) = −z

4 +
(5

3

) (
z3

h2

)
.� (15)

The strain shape function in Eq. (15), adopted from Thai and Kim60, offers higher accuracy by satisfying zero 
transverse shear stress at beam surfaces without requiring a correction factor. This function enhances the 
accuracy of shear strain representation for both thin and thick beams, making it more appropriate for nanoscale 
modelling than classic approximations are.

Referring to the displacement field offered in Eq. (14), the strain equations can be interpreted as

	
ε 11 = ∂ u

∂ x
− z

∂ 2wb

∂ x2 − f (z) ∂ 2ws

∂ x2 , γ 13 = ∂ ws

∂ x

[
1 − f ′ (z)

]
� (16)

Governing equations
Following Hamilton’s law, the resulting governing formulae were developed:

	

∫ l

0

∫ h
2 +hp

−h/2
(σ ijδ ε ij − Diδ Ei) dzdx −

∫ a

0
q (δ wb + δ ws) dx = 0.� (17)

Combining Eqs. (13–16) with Eq. (17) yields
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∫ l

0

{
N

∂ δ u

∂ x
− M

∂ 2δ wb

∂ x2 − S
∂ 2δ ws

∂ x2 + Q
∂ δ ws

∂ x
− qδ wb − qδ ws

}
dx = 0,� (18)

where the stress resultants N, M, S, and Q are identified as

	
{N, M, S} =

∫ h
2

− h
2

σ e
x {1, z, f (z)} dz +

∫ h
2 +hp

h
2

σ p
x {1, z, f (z)} dz,� (19)

	
Q =

∫ h
2

− h
2

τ e
13

[
1 − f ′ (z)

]
dz +

∫ h
2 +hp

h
2

τ p
13

[
1 − f ′ (z)

]
dz, � (20)

The equilibrium formulae of the studied theory are constructed through applying the integration by parts and 
placing the coefficients of (δ u, δ wb, δ ws) to zero individually:

	
∂ N

∂ x
= 0,� (21a)

	
∂ 2M

∂ x2 + q = 0,� (21b)

	
∂ 2S

∂ x2 + ∂ Q

∂ x
+ q = 0.� (21c)

The boundary conditions, which represent the general form derived from the current theory and allow either 
displacements or their corresponding force resultants to be specified depending on the physical constraints at 
the beam ends, are as follows:

	 specify u or N,� (22a)

	
specify wb or

∂ M

∂ x
,� (22b)

	
specify ws or

∂ s

∂ x
+ Q ,� (22c)

	
specify

∂ wb

∂ x
or M,� (22d)

	
specify

∂ ws

∂ x
or S,� (22e)

Coupled with the NSGT as described in Eqs. (9) and (11–12), the stress resultants in Eqs. (19–20) are established 
in the following manner:

	
N − η ∇ 2N =

(
1 − λ ∇ 2) (

A
∂ u

∂ x
− B

∂ 2wb

∂ x2 − C
∂ 2ws

∂ x2

)
+ Np,� (23a)

	
M − η ∇ 2M =

(
1 − λ ∇ 2) (

B
∂ u

∂ x
− D

∂ 2wb

∂ x2 − E
∂ 2ws

∂ x2

)
+ Mp,� (23b)

	
S − η ∇ 2S =

(
1 − λ ∇ 2) (

C
∂ u

∂ x
− E

∂ 2wb

∂ x2 − F
∂ 2ws

∂ x2

)
+ Sp,� (23c)

	
Q − η ∇ 2Q =

(
1 − λ ∇ 2) (

G
∂ ws

∂ x

)
.� (23d)

where

	
{A, B, D, C, E, F } =

∫ h
2

−h
2

ce
11

{
1, z, z2, f (z) , zf (z) , f2 (z)

}
dz

	
+

∫ h
2 +hp

h
2

cp
11

{
1, z, z2, f (z) , zf (z) , f2 (z)

}
dz,� (24a)

	
G =

∫ h
2

−h
2

ce
55

[
1 − f ′ (z)

]2
dz +

∫ h
2 +hp

h
2

cp
55

[
1 − f ′ (z)

]2
dz,� (24b)
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{Np, Mp, Sp} =

∫ h
2 +hp

h
2

ψ 0
hp

e31 (1, z, f (z)) dz.� (24c)

Analytical solution
In the present investigation, an analytical solution was developed for a simply supported FG nanobeam under 
the following boundary conditions:

	 wb = ws = M = S = 0, at x = 0, l,� (25)

The electric potential ψ  is set to zero at the beam ends to represent the grounded boundary conditions for 
the PFRC layer, ensuring a consistent electromechanical response in the simply supported configuration. 
The governing equations are theoretically solved through the Navier approach process, with displacements 
considered as follows:

	

{
u

wb, ws, ψ 0)
}

=
{

Umcosα x
(W bm

, Wsm, V )sinα x

}
,� (26)

where α = π /l and (Um, Wbm, Wsm, V ) are the unknown parameters. The mechanical load is expanded 
as

	
q =

∑
∞
m=1Qmsinα x,� (27)

in which Qm is defined for the uniform distributed load as follows:

	
Qm = 4q0

mπ
, m = 1, 3, 5, . . . . . . � (28)

Substituting Eq. (26) into Eq. (21) yields

	

[
a11 a12 a13
a12 a22 a23
a13 a23 a33

] {
Um

Wbm
Wsm

}
=




∂ Np

∂ x

q0 + ∂ 2Mp

∂ x2

q0 + ∂ 2Sp

∂ x2


 ,� (29)

The elements aij = aji are given as

	 a11 = Aα 2, a12 = α 3B, a13 = α 3C,

	 a22 = α 4D, a23 = α 4E,

	 a33 = −α 2 (
G + α 2F

)
.� (30)

Numerical results
The numerical findings reported in this section are designed to illustrate the consequences of the electrical 
voltage, length dimension, and non-local components on the bending of an FG nanobeam linked to a PFRC 
actuator.

The FG nanobeam has dimensions of l = 10 nm, whereas the PFRC layer has a thickness of hp = 0.1 h. The 
properties of the FG material are presumed to be

	 Em = 70 × 109N/m2, ν m = 0.3,

	 Ec = 380 × 109N/m2, ν c = 0.3.� (31)

The elastic and piezoelectric characteristics of the PFRC layer were determined by Mallik and Ray8.

	 cp
11 = 32.6 GP a, cp

12 = 4.3 GP a, cp
13 = 4.76 GP a,

	 cp
23 = 3.85 GP a, cp

22 = cp
33 = 7.2 GP a,

	 cp
44 = 1.05 GPa, cp

55 = cp
66 = 1.29 GPa, e31 = −6.76 C/m2.� (32)

The mechanical load used in the computations is q0 = 1 N/m2..

Verification study
Tables  1, 2 and 3 compare the current analysis to the previous studies of Zemeri et al.41 and Chaht et al.42, 
omitting the PFRC layer and examining only the non-local parameter η .

Across all the tables, the displacement w increases with the non-local parameter η and decreases with the 
power law variable k. This behaviour is consistent regardless of the ratio l/h.
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The findings from the present study (using HSDT) align closely with those from Zemri et al.61 (TSDT) and 
Chaht et al.62 (SSDT), reinforcing the reliability of these models in predicting the transverse displacement of 
FG nanobeams. Understanding the mechanical properties of FG nanobeams under bending requires careful 
consideration of both the η  and k parameters during design and analysis.

Parametric study
This section presents a numerical examination of the bending action of an FG nanobeam linked with a PFRC 
layer. The following formulae are utilized to calculate the dimensionless displacement and stresses:

	
w = 10h3Em

a4q0
u3

(
a

2 ,
z

h

)
, σ x = 100

aq0
σ 1

(
a

2 ,
z

h

)
, τ xz = 10

aq0
τ 13

(
0,

z

h

)
� (33)

Table  4 shows the transverse displacement and stresses of an FG nanobeam alongside a top PFRC layer at 
different electric voltages and fixed non-local parameters ( η , λ ). The results are categorized according to the 
aspect ratios l/h = 10, 20, 100. For l/h = 10, the displacement varies as the voltage changes from V = 5 to 
V = −5. This indicates a significant change in behaviour under applied voltage.

At l/h = 10, the displacement also decreases with increasing negative voltage. For l/h = 100, the 
displacement remains relatively consistent, with values of approximately 0.2699 to 0.2621 across different 
voltages, indicating less sensitivity to electric voltage.

k References Model
η

0 0.25 1 2.25 4

0

Present HSDT 5.2228 5.2367 5.2785 5.3481 5.4455

Zemri et al. [61] TSDT 5.2228 5.2367 5.2785 5.3481 5.4455

Chaht et al. [62] SSDT 5.2228 5.2366 5.2786 5.3480 5.4456

0.3

Present HSDT 3.1475 3.1559 3.1811 3.2230 3.2818

Zemri et al. [61] TSDT 3.1475 3.1559 3.1811 3.2230 3.2818

Chaht et al. [62] SSDT 3.1473 3.1557 3.1809 3.2230 3.2815

1

Present HSDT 2.3732 2.3795 2.3985 2.4301 2.4744

Zemri et al. [61] TSDT 2.3732 2.3795 2.3985 2.4302 2.4744

Chaht et al. [62] SSDT 2.3731 2.3795 2.3984 2.4301 2.4744

3

Present HSDT 1.8892 1.8943 1.9094 1.9346 1.9698

Zemri et al. [61] TSDT 1.8892 1.8943 1.9094 1.9346 1.9698

Chaht et al. [62] SSDT 1.8892 1.8943 1.9094 1.9344 1.9698

10

Present HSDT 1.5488 1.5529 1.5653 1.5860 1.6149

Zemri et al. [61] TSBT 1.5488 1.5529 1.5653 1.5860 1.6149

Chaht et al. [62] SSDT 1.5488 1.5530 1.5653 1.5861 1.6149

Table 2.  The transverse displacement w of FG nanobeam (l/h = 30).

 

k References Model
η

0 0.25 1 2.25 4

0

Present HSDT 5.3383 5.4659 5.8487 6.4867 7.3799

Zemri et al. [61] TSDT 5.3383 5.4659 5.8487 6.4867 7.3799

Chaht et al. [62] SSDT 5.3381 5.4659 5.8485 6.4865 7.3797

0.3

Present HSDT 3.2181 3.2950 3.5258 3.9104 4.4488

Zemri et al. [61] TSDT 3.2181 3.2951 3.5258 3.9104 4.4488

Chaht et al. [62] SSDT 3.2178 3.2946 3.5254 3.9102 4.4482

1

Present HSDT 2.4194 2.4773 2.6508 2.9401 3.3451

Zemri et al. [61] TSDT 2.4194 2.4773 2.6509 2.9401 3.3452

Chaht et al. [62] SSDT 2.4193 2.4772 2.6508 2.9401 3.3449

3

Present HSDT 1.9234 1.9694 2.1074 2.3375 2.6595

Zemri et al. [61] TSDT 1.9234 1.9694 2.1074 2.3375 2.6595

Chaht et al. [62] SSDT 1.9234 1.9693 2.1074 2.3373 2.6596

10

Present HSDT 1.5790 1.6168 1.7301 1.9189 2.1832

Zemri et al. [61] TSBT 1.5790 1.6168 1.7301 1.9189 2.1831

Chaht et al. [62] SSDT 1.5790 1.6169 1.7301 1.9190 2.1831

Table 1.  The transverse displacement w of FG nanobeam (l/h = 10).
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For a fixed voltage, increasing the power index k tends to increase the displacement. For example, at V = 5 
and l/h = 20, the displacement increases from 0.3657 (at k = 0.1) to 0.4919 (at k = 0.5).

With respect to the variation in axial stress, for l/h = 10, the axial stress ranges from −0.1037  (at 
V = 5) to 0.2371 (at V = −5), indicating a significant increase in stress magnitude with negative voltage. At 
l/h = 100 and V = −5, the axial stress can reach as high as 12.4441. With a fixed voltage, the normal stresses 
increase significantly as k increases. This finding highlights the increase in the stress response resulting from the 
electromechanical coupling effects.

With respect to the variation in shear stress, the shear stress follows a similar pattern. At l/h = 10 and 
k = 0.1, the shear stress at V = 5 is 18.7538, which decreases to −18.7328 at V = −5. The applied voltage 
has a substantial effect on the structural integrity of the FG nanobeam, as evidenced by the maximum shear stress 
of 92.8820 for l/h = 100 at V = −5. However, as the voltage increases, the shear stress can reach significant 
negative values, indicating a robust response under mechanical loading.

Table 5 shows the results of the transverse displacement and stresses under varying conditions of utilized 
voltage  V, strain gradient variable λ, and non-local variable η. The applied voltage substantially influences the 

k

l/h = 10 l/h = 20 l/h = 100

V = 5 V = 0 V = −5 V = 5 V = 0 V = −5 V = 5 V = 0 V = −5
−
w

(
a
b , 0

)

0.1 0.6658 0.2725 −0.1208 0.3657 0.2676 0.1695 0.2699 0.2660 0.2621

0.5 0.8633 0.3767 −0.1099 0.4919 0.3705 0.2491 0.3734 0.3686 0.3637

2 1.2999 0.6243 −0.0513 0.7823 0.6138 0.4453 0.6172 0.6105 0.6038

4 1.4735 0.7185 −0.0365 0.8918 0.7036 0.5154 0.7064 0.6989 0.6913
−
σ x

(
a
2 , h

2

)

0.1 −0.1037 0.0667 0.2371 0.0981 0.2662 0.4342 6.5317 6.6494 6.7670

0.5 −0.1294 0.0815 0.2923 0.1171 0.3252 0.5332 7.9771 8.1236 8.2702

2 −0.1276 0.1105 0.3486 0.2053 0.4409 0.6765 10.8358 11.0134 11.1911

4 −0.1207 0.1230 0.3667 0.2490 0.4906 0.7322 12.0640 12.2541 12.4441
−
τ xz

(
0, h

2

)

0.1 18.7538 0.0105 −18.7328 27.9740 0.0210 −27.9320 40.4901 0.1054 −40.2793

0.5 23.2120 0.0132 −23.1856 34.6682 0.0264 −34.6153 50.5538 0.1325 −50.2887

2 30.7831 0.0228 −30.7376 46.6491 0.0457 −46.5577 74.0714 0.2291 −73.6131

4 36.0845 0.0328 −36.0190 55.2209 0.0658 −55.0893 92.8820 0.3300 −92.2220

Table 4.  The transverse displacement and stresses of FG nanobeam integrated with top PFRC layer.

 

k References Model
η

0 0.25 1 2.25 4

0

Present HSDT 5.2096 5.2109 5.2146 5.2209 5.2296

Zemri et al. [61] TSDT 5.2096 5.2109 5.2146 5.2209 5.2296

Chaht et al. [62] SSDT 5.2097 5.2110 5.2146 5.2210 5.2296

0.3

Present HSDT 3.1395 3.1402 3.1425 3.1463 3.1516

Zemri et al. [61] TSDT 3.1395 3.1403 3.1425 3.1463 3.1515

Chaht et al. [62] SSDT 3.1394 3.1404 3.1426 3.1465 3.1517

1

Present HSDT 2.3679 2.3685 2.3702 2.3731 2.3770

Zemri et al. [61] TSDT 2.3679 2.3685 2.3702 2.3731 2.3770

Chaht et al. [62] SSDT 2.3680 2.3686 2.3702 2.3731 2.3771

3

Present HSDT 1.8854 1.8858 1.8872 1.8894 1.8926

Zemri et al. [61] TSDT 1.8854 1.8858 1.8872 1.8894 1.8926

Chaht et al. [62] SSDT 1.8853 1.8858 1.8871 1.8893 1.8926

10

Present HSDT 1.5454 1.5457 1.5469 1.5487 1.5513

Zemri et al. [61] TSBT 1.5454 1.5458 1.5469 1.5487 1.5513

Chaht et al. [62] SSDT 1.5453 1.5457 1.5468 1.5487 1.5513

Table 3.  The transverse displacement w of FG nanobeam (l/h = 100).
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transverse displacement, with a positive voltage increasing the displacement, zero voltage producing a neutral 
state, and negative voltage decreasing the displacement. Increasing V leads to a shift in normal stress values, 
making them more positive or negative depending on the sign of V. The shear stress follows a similar trend, 
where a higher positive voltage increases its value in the positive range, whereas a negative voltage leads to an 
inverse effect.

As the strain gradient variable increases, the transverse displacement decreases, indicating increased 
stiffness, whereas both the normal stress and shear stress slightly decrease. This demonstrates that higher λ  
values increase the rigidity of the beam and reduce stress concentrations, increasing its resistance to deformation 
and stress. As η  increases, the transverse displacement increases, indicating greater flexibility, whereas the 
normal stress slightly decreases, and the shear stress slightly increases. This shows that higher η  values enhance 
the beam’s non-local effects, leading to greater deformation and altered stress distribution, reflecting increased 
material flexibility at the nanoscale.

Figures 2, 3 and 4, and 5 demonstrate how different factors ( V, λ , η , k) alter the displacement profile 
along the thickness of an FG nanobeam.

Figure 2 shows the effect of the applied electric voltage V on the transverse displacement. As V increases, 
the electromechanical coupling intensifies, leading to greater deflections along the beam. Figure 3 presents the 
influence of the strain gradient parameter λ  on the displacement profile. An increase in  λ enhances the stiffness 
of the nanobeam, which reduces the magnitude of transverse displacement along the length.

Figure 4 shows the effect of the non-local parameter η . Higher values of η  result in a more pronounced 
displacement, reflecting the softening behaviour induced by non-local interactions. Figure 5 explores the impact 
of the power-law parameter k, which represents the material gradation. Increasing k generally leads to higher 
displacement magnitudes because of the more pronounced gradation effect in the FG material.

The variations in the axial stresses σ x and the transverse shear stresses τ xz  along the thickness of the FG 
nanobeam as a function of the electric voltage V  with fixed parameters (k = 1, η = 2, λ = 1, a/h = 10) are 
depicted in Fig. 6a and b. Figure 6a shows that σ x distributions tend to be nonlinear, with stress concentrations 
adjacent to surfaces, particularly at the interface with the PFRC layer. As the electrical charge V  increases, the 
axial stress distribution may have a different pattern, potentially leading to greater tensile or compressive stresses 
depending on the material features. Depending on the specific gradation and material characteristics of the FG 
nanobeam, the spread of τ xz  to the mid-plane might be symmetric or asymmetric. Figure 6b shows that the 
presence of the PFRC layer could further impact this distribution, resulting in different stress concentrations at 
the top layer, where the PFRC layer is located. The impacts of the strain gradient parameter λ  on the variation 
in the stresses σ x and the stresses τ xz  through the thickness of the FG nanobeam with the fixed variables 
(k = 2, η = 1, V = 0.1, l/h = 10) are illustrated in Fig. 7a and b.

The axial stress varies considerably near the surface and diminishes towards the centre of the beam. As λ  
increases, the surface stresses may become more intense, resulting in larger stress gradients and strain gradient 
effects. The shear stress is generally greater towards the nanobeam core and lower at the boundaries. As λ  
increases, the shear stress may redistribute more sharply, possibly due to the greater sensitivity of the FG material 
to strain gradients in the transverse direction.

Generally, increasing λ  decreases the axial and transverse shear stresses in the FG nanobeam. This implies 
that greater strain gradient effects (i.e., increased λ ) reduce the material’s internal force response, resulting in 
lower stress concentrations.

Figure  8a and b show the variation in the axial stresses σ x and the transverse shear stresses τ xz  
along the thickness of the FG nanobeam in terms of the non-local parameter η  with the fixed variables 
(k = 2, λ = 1, V = 0.1, l/h = 10).

η

λ = 0 λ = 1 λ = 2
V = 5 V = 0 V = −5 V = 5 V = 0 V = −5 V = 5 V = 0 V = −5

−
w

(
a
2 , 0

)

0 2.0775 0.7263 −0.6250 2.0135 0.6622 −0.6890 1.9593 0.6080 −0.7432

1 2.1470 0.7957 −0.5555 2.0775 0.7263 −0.6250 2.0184 0.6672 −0.6841

2 2.2165 0.8652 −0.4860 2.1416 0.7903 −0.5609 2.0775 0.7263 −0.6250
−
σ x

(
a
2 , h

2

)

0 −0.3486 0.1276 0.6037 −0.3586 0.1175 0.5936 −0.3677 0.1084 0.5845

1 −0.3385 0.1376 0.6138 −0.3486 0.1276 0.6037 −0.3582 0.1180 0.5941

2 −0.3284 0.1477 0.6238 −0.3385 0.1376 0.6137 −0.3486 0.1276 0.6037
−
τ xz

(
0, h

2

)

0 61.5490 0.0283 −61.4925 61.5436 0.0228 −61.4979 61.5412 0.0205 −61.5002

1 61.6503 0.1296 −61.3911 61.5490 0.0283 −61.4925 61.5451 0.0244 −61.4964

2 61.7517 0.2310 −61.2898 61.5544 0.0337 −61.4871 61.5490 0.0283 −61.4925

Table 5.  The transverse displacement and stresses of FG nanobeam integrated with top PFRC layer.
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Increasing the non-local parameter η  causes an increase in σ x through the thickness of the FG nanobeam. 
This means that as nonlocality increases, so do the material’s internal tensions. An increase in η  indicates that 
nonlocal influences increase the material’s responsiveness to applied forces, leading to stiffer behaviour and 
higher stress magnitudes. The transverse shear stress τ xz  increases as  η increases. This behaviour implies that 
larger non-local impacts increase the resistance of a material to shear forces.

Figure 9a and b demonstrate how the homogeneity index  k (η = 2, λ = 4, V = 2, l/h = 10) changes the 
variance of the axial and transverse shear stresses within the thickness of the FG nanobeam.

The material gradation, represented by k, has a direct effect on the distribution of axial stress σ x. As k 
increases, the material properties of the FG nanobeam become more heterogeneous across its thickness. A 
greater k value causes a steeper gradient in material characteristics, resulting in more substantial fluctuations in 

Fig. 3.  Variation of transverse displacement w along the length of the FG nanobeam in terms of λ .

 

Fig. 2.  Variation of transverse displacement w along the length of the FG nanobeam in terms of V .
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axial stress. The difference in stiffness between the beam and the PFRC layer causes more significant fluctuations 
in σ x with increasing thickness, particularly near the interface.

The power law variable k also affects the transverse shear stress τ xz . As k increases, the stress distribution 
along the thickness may display sharper transitions, especially at the surfaces where the material characteristics 
change more quickly. The stress distribution may concentrate on the outer surfaces or interfaces, especially 
at larger k values, causing stress concentrations or regions of increased shear stress, depending on the elastic 
gradient of the material.

The variations in the transverse displacement w as a function of l/h for various factors ( V, λ , η , k) 
are illustrated in Figs. 10, 11, 12 and 13. Figure 10 shows that smaller l/h values result in a thicker nanobeam, 
which is more responsive to the applied electric voltage. In this range, thicker nanobeams deform more due to 

Fig. 5.  Variation of transverse displacement w along the length of the FG nanobeam in terms of k.

 

Fig. 4.  Variation of transverse displacement w along the length of the FG nanobeam in terms of η .
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greater electrostatic forces, leading to a significant increase in w with increasing voltage. This is because a thicker 
nanobeam can store more energy in the form of strain in response to applied electric fields. As the l/h ratio 
increases, the nanobeam thins. The displacement induced by the same voltage becomes less noticeable. This 
reduced sensitivity to electric voltage in narrower beams is most likely due to an increase in beam stiffness as the 
thickness decreases. A thinner nanobeam is more structurally stiff in relation to its length, resulting in a lesser 
increase in displacement even when the same voltage is applied.

Figure 11 reveals that the strain gradient becomes more noticeable for smaller l/h ratios and thicker 
beams. In this range, the transverse displacement w decreases dramatically as λ increases. This implies that for 
thicker beams, the strain gradient stiffens the material, limiting its capacity to deform. Thicker beams are more 
susceptible to microstructural effects; therefore, even slight increases in  λ result in noticeable displacement 
decreases.

Fig. 7.  Variation of stresses along the thickness of the FG nanobeam in terms of λ : (a) The in-plane axial 
stress σ x; (b) The transverse shear stress τ x.

 

Fig. 6.  Variation of stresses along the thickness of the FG nanobeam in terms of V : (a) The in-plane axial 
stress σ x; (b) The transverse shear stress τ x.
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Figure 12 shows that for smaller l/h ratios and thicker beams, the impact of the non-local parameter η is 
increasingly prominent. As η increases, so does the transverse displacement w. This suggests that for thicker 
beams, the addition of non-local effects softens the material, making it more flexible under the same conditions. 
The increase in the non-local parameter reduces the beam’s stiffness, allowing it to have larger displacements.

Figure 13 shows that for smaller l/h ratios (thicker beams), the transverse displacement w increases with 
the power law variable k. Larger l/h ratios (thinner beams) increase the transverse displacement w with 
increasing k, but the effect is less pronounced than that of thicker beams. Thinner beams, despite being more 
flexible due to their geometry, experience less displacement increase from changes in k, as their thinner structure 
is already highly flexible, and the impact of material gradation is less substantial. However, even with thinner 
beams, increasing k leads to larger displacements.

Fig. 9.  Variation of stresses along the thickness of the FG nanobeam in terms of k: (a) The in-plane axial stress 
σ x; (b) The transverse shear stress τ x.

 

Fig. 8.  Variation of stresses along the thickness of the FG nanobeam in terms of η : (a) The in-plane axial 
stress σ x; (b) The transverse shear stress τ x.
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Conclusions
The transverse displacement and stresses of the FG nanobeams integrated with PFRC layers were found to 
be highly sensitive to the applied electric voltage. As the aspect ratio increased, a reduction in displacement 
sensitivity and an increase in stress sensitivity were observed, indicating different mechanical behaviours under 
varying conditions. The bending response was significantly affected by the applied voltage, power-law index k, 
and length-to-thickness ratio. Non-local effects, especially the parameter η , led to an increase in both axial σ x 
and shear τ x stresses, resulting in a stiffer mechanical response than that predicted from classic elasticity. The 
interactions among the electric voltage V , strain gradient parameter λ , non-local parameter η , and power-law 

Fig. 11.  The transverse displacement w as a function of length-to-thickness ratio l/h for different values of 
λ .

 

Fig. 10.  The transverse displacement w as a function of length-to-thickness ratio a/h for different values of 
V .
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index k highlight the complex electromechanical behaviour in FG nanobeams. These findings underscore the 
necessity of incorporating size-dependent effects in the design of nanoscale structures for actuation and sensing 
applications.

Fig. 13.  The transverse displacement w as a function of length-to-thickness ratio l/h for different values of k.

 

Fig. 12.  The transverse displacement w as a function of length-to-thickness ratio l/h for different values of 
η .
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