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Emergency pandemic disease surveillance encompasses a suite of public health data-based measures 
to monitor and prevent further spread of disease. Early in the COVID-19 pandemic, one important 
method for monitoring local spread of infection involved the deployment of local testing sites. 
However, key concerns for the accuracy and completeness of any surveillance system include 
local access to testing sites, precision in the estimates of disease incidence and prediction of its 
spatiotemporal trajectory, and racial equity in testing availability, concerns often not rigorously taken 
into account in public health policy-making, especially during a public health emergency. In addition, 
the rapid local transmission dynamics of an infectious disease outbreak often require methods able to 
react to spontaneous hotspots and disease clusters in or near real-time. To address these competing 
objectives, we integrate Bayesian spatiotemporal disease modeling using COVID-19 case data into 
a multi-objective optimization solved by an interior-point approach. We show the adaptive multi-
objective method outperforms non-adaptive test-site allocation in terms of time and resources 
required, and sacrifices minimal performance compared to methods optimizing a single objective 
criteria. We hope our method can be used to improve test-site allocation procedures for future local 
and seasonal outbreaks and broader pandemics.
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As of the end of the United States COVID-19 Public Health Emergency on May 11 2023, the COVID-19 global 
pandemic has resulted in over 1.18 million deaths and 104.7 million cases in the United States1. Of these, over 
37.2 thousand deaths and 3.09 million cases occurred in the state of Georgia alone1. While the original public 
health emergency has waned, it is critical to reflect on the pandemic and understand where improvements can be 
made to the elements of the public health response, especially relating to dynamic data-based decision-making.

The severity and transmission of COVID-19 were largely unknown during the early stages of the pandemic 
and rapid and accurate detection of infection represented critical information for local prevention responses 
and staffing of healthcare systems. Measurement and surveillance of COVID-19 through diagnostic testing 
provided the main method to identify clusters of incident infections and to formulate local containment and 
healthcare staffing plans accordingly. Without reliable testing data, non-pharmaceutical interventions (NPIs) 
such as social distancing, school and workplace closures, and city-wide lockdowns were often implemented in 
an ad-hoc manner. With no unified national plan for disease surveillance, state and county level administrations 
were tasked with implementing their own (again, ad-hoc) testing plans, which in some cases resulted in health 
inequities in testing access2,3. In the sections below, we propose an integrated statistical and optimization 
framework providing an effective diagnostic test site allocation plan that balances three key system-wide 
objectives: (i) access to testing for the population of interest, (ii) precision in COVID-19 incidence estimates, and 
(iii) sociodemographic equity among those tested. Each of the three objectives have been considered separately, 
but to our knowledge, treating them jointly with a multi-objective optimization represents a novel contribution 
to improving the analytic infrastructure for public health surveillance and response.

An optimal COVID-19 testing plan for a given area boils down to a spatial problem: where are the best 
locations to place testing sites in order to achieve these objectives? This question of interest falls into a rich 
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history of location-allocation problems wherein one seeks to optimize the location of certain assets. Such 
problems appear frequently within the operations research literature4–7. A common healthcare scenario 
involves allocating a small number of primary healthcare facilities (sites) among a larger number of potential 
site locations. The locations selected for the sites are those that optimally provide service under the objective 
function (or, in our case, functions), often evaluated at a series of demand points. Previous applications include 
allocation of healthcare facilities in Tehran, Iran8 and Hong Kong9 by minimizing the travel costs and distance 
for the populations they are meant to service. While some approaches are single-objective, e.g., only focusing 
on travel distance10, many other studies pursue multiple objectives at once, including land-use incompatibility, 
cost of building a new facility, and total cost borne by the healthcare system8,9,11. A variety of constraints are 
also considered in the literature. Due to the sheer combinatorial size of these location-allocation problems, most 
utilized optimization algorithms rely on heuristic approaches such as the genetic algorithm (GA).

Optimal design is a related field of study focusing on the optimal placement of observation sites in order to 
minimize local and overall prediction error within a spatial prediction framework. Such spatial prediction, treated 
in detail in the field of geostatistics, is often implemented through a process called kriging or Gaussian process 
regression12. A key input into any spatial prediction algorithm is the set of locations at which measurements 
are sampled. Optimal design identifies the best set of sample locations to minimize average prediction error 
and bias in spatial parameter estimation13–17, and is frequently employed in the monitoring of environmental 
contaminants18.

The unique features that place COVID-19 and other infectious disease surveillance beyond location-
allocation and optimal design are the pandemic’s geographic spread and its evolution over time. Both location-
allocation and optimal design, as commonly applied, are better suited for static allocation problems. While many 
of the inputs to the aforementioned allocation problems (demographics, building costs, and land use) are not 
expected to change drastically in a short period of time, COVID-19 hotspots and high-test-demand areas could 
appear and disappear in a region within a few months or even weeks19. These features necessitate an optimal 
testing site allocation strategy designed to adapt to the spread of the virus.

Building on this setting, we propose model-based geostatistics (MBG)20 as an attractive framework to 
capture the spatiotemporal nature of COVID-19 spread for optimal test site allocation, or, more generally, 
test site allocation for any infectious disease (including, e.g., influenza). Several spatiotemporal models have 
been published on the spread of COVID-1921. Because the local transmission and incidence of COVID-19 (or 
other infectious disease) is a process that evolves over time, standard site-allocation methods would be unable 
to adapt their results to the changing spread of the disease. An appropriate site allocation method for public 
health surveillance should be able to add testing sites according to the dynamic nature of infectious disease 
transmission.

Despite MBG’s ability to capture the spatiotemporal nature of the disease, additional methodological 
extensions are required to effectively use the information to allocate test sites. The disease surveillance literature 
has shown recent interest in geospatial model-based adaptive designs, especially related to neglected tropical 
disease (NTD) surveillance. Several NTDs are targets for elimination and require renewed focus on tracking 
approaches that conserve time and resources as their incidence approaches zero22,23. These new adaptive 
geostatistical designs (AGDs) optimize over some design criteria (e.g., prediction variance or precision, hotspot 
classification accuracy, entropy), while guarding against redundancy by incorporating a distance constraint to 
prevent sites from being located too close together24,25. Precision, the inverse variance of a statistical estimate 
(in this case of disease incidence), is especially important in pandemic scenarios. An area with a high precision 
estimate has low uncertainty regarding its disease incidence, whereas an area with low precision indicates highly 
uncertain incidence, and should be a target area for testing to improve monitoring of the pandemic. Precision 
has been used for adaptive optimization criteria in previous applications26,27 and is critical for decision-makers 
to grasp the severity of a pandemic situation and identify areas which need immediate attention.

While precision in COVID-19 descriptive statistics is paramount for researchers and decision makers, access 
and equity among the tested is equally important. Without proper access in testing, individuals in the population 
are unable to make the difficult decisions necessary to navigate a pandemic. Equity in testing ensures vulnerable 
communities receive the aid they need to avoid disproportionate harm from the pandemic. However, there 
is evidence that COVID-19 test site allocation throughout the United States resulted in test sites located in 
predominantly Black and Hispanic neighborhoods to experience higher demand compared to those located in 
whiter neighborhoods28. Symptoms of high demand include long wait times, test shortages, and understaffed 
healthcare facilities. Considering the evidence of disparities in COVID-19 outcomes by race, ethnicity, and 
socioeconomic status29, it is likely the placement of test sites during the early stages of the pandemic did not 
reach vulnerable populations in need of COVID-19 support. Access and equity of testing must be prioritized 
alongside the precision criteria more typically seen in the disease model and optimization literature.

In this paper, we borrow from the adaptive design MBG literature by using a Bayesian areal spatiotemporal 
disease model to capture the dynamic spread of COVID-1930, and incorporate it into a multi-objective 
optimization solved by the linear combination of weights and interior point method31,32. To validate our approach 
we use COVID-19 case data in Atlanta, Georgia to simulate real-time test site placement during the pandemic 
and compare to five other allocation methods. We track each allocation over a month long period starting in 
December 2020 during the peak of the COVID-19 Delta wave (Fig. 1) and calculate three performance metrics 
in access, precision, and equity, plus an aggregate metric equal to their sum, which we refer to as the total score. 
We also compare the number of test sites and time needed for each adaptive approach to achieve the same 
total score as a uniformly random non-adaptive allocation. We show the proposed multi-objective adaptive 
approach saves considerable resources relative to non-adaptive allocation, and does not suffer drastically in 
single-objective performance when compared to other adaptive designs. Although the proposed framework 
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has been validated by COVID-19 incidence, it has broad applications in pandemic disease surveillance, policy 
making and resource management.

Results
In our study, we sought to answer the following three questions. 

	1.	 How does the performance of the proposed multi-objective adaptive allocation compare to that of bench-
mark methods like single-objective and non-adaptive random allocations?

	2.	 How do the spatial distributions between allocation methods differ?
	3.	 How many more (or less) test sites are required for the single-objective and random allocations to reach the 

same performance as our proposed allocation?

To answer the first question, we compared our proposed approach balancing access, precision, and equity to 
the 1) single-objective adaptive allocations for access, precision, and equity, 2) simultaneous access and equity 
(AE) adaptive allocation, 3) a random adaptive allocation, in which at each update step new locations are chosen 
uniformly at random, and 4) a one-shot non-adaptive allocation, a one-time design in which all locations are 
selected uniformly at random. We considered 1,217 candidate locations for test sites corresponding to the total 
number of 2020 census tracts covered by the eleven counties in our study region representing the metropolitan 
Atlanta area. Fig. 2 shows the average of the access (Eq. 1), precision (Eq. 2), and equity (Eq. 3) metrics, and total 

Fig. 2.  Objective function score over time for the total and individual components as defined in Eq. (4) for 
each of the allocation methods under study.
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Fig. 1.  Epidemic curve for COVID-19 cases in Atlanta from 2020 to 2021. The shaded pink area represents the 
time period used in the simulation.
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(Eq. 4) scores over 100 simulations over time (Methods). Each simulation starts with a different set of original 
test sites, and all allocation methods with the exception of the one-shot allocation (which selects 100 test sites 
at random at the beginning of the study period) adaptively add a batch of five new test sites to the original set at 
every time point, according to their designed objectives. The proposed method is competitive with each of the 
single objective methods for all component scores, and outpaces all other methods for the total score. It is only 
second to the single objective allocation optimizing over that exact same metric. In particular, the equity metric 
is achieved close to its maximum and maintained throughout the allocation for the proposed, equity, and AE 
allocations.

In addition to the objective function metrics, we assessed access and equity of the test site allocations through 
empirical distribution curves (ECDF) of distance to the nearest test site by race and ethnicity. We consider 
four racial ethnic groups: non-Hispanic white, non-Hispanic black, non-Hispanic other, and Hispanic. Figure 3 
shows the ECDF curves for the final allocation under the proposed and random methods for one simulation in 
the experiment described in the Methods. Each proposed ECDF curve is higher than that of the random ECDF, 
suggesting more people overall are located closer to test sites, a sign of better access to testing. In addition, the 
ECDF’s for the proposed method are closer together than the ECDF’s for the random method, implying greater 
equity in testing access between the four racial/ethnic groups. Figure 4 maps the final test allocation scheme 
for each of the studied allocation methods for a given simulation. Allocations which include the access score in 
their objective criteria contain an even coverage of test sites across Atlanta. In contrast, the equity and precision 
allocations exhibit more clustering. Visually, our proposed method achieves a balance between the even coverage 
of the access allocation, and the more targeted areas in the precision and equity allocations.

The single-objective and random allocations also required more test sites and resources to achieve similar 
outcomes to our proposed multi-objective approach. Table 1 displays the number of sites needed for each 
method to achieve a similar total score to our proposed method for a 55 site allocation. For example, for a batch 
size of five, the access-only method required 195 test sites and the equity-only method required 105 test sites to 
achieve the same performance as the proposed method for 55 test sites.

We found that the performance of our proposed allocation varied based on the choice of weights (denoted 
as  λ1, λ2, λ3  for access, precision, and equity respectively) placed on each individual objective (Methods). 
Methods with equal weights achieved the highest total scores regardless of number of total sites selected, 
indicating strong performance when balancing all objectives upon appropriate scaling (Tables S1, S2, and S3). 
We selected λ1 = 1, λ2 = 1, and λ3 = 1 for use in our proposed method. A sensitivity analysis demonstrated 
that increasing the weight of an individual objective corresponded to higher scores for that objective, reflecting 
our method’s flexibility in prioritizing specific objectives through weight selection (Figs. S1 and S2).

We also assessed the robustness of our method to the assumption that COVID-19 risk is uniformly distributed 
within counties, meaning that county-level case counts from the Department of Public Health can be allocated 
to census tracts proportionally based on population, as was done in the main analysis. To do this, we repeated the 
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Fig. 3.  Empirical distribution curve (ECDF) of the nearest distance to a test site by race/ethnicity for one run 
out of 100 total simulations for the final allocation decided by each plotted method at the end of the study 
period. Colors differentiate race/ethnicity and line type differentiates whether the ECDF is under the proposed 
multi-objective adaptive allocation or random. Because test sites are located at tract centroids and each 
individual is associated with a census tract, each ECDF curve starts at a positive value.
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analysis using a combined weighting scheme based on both population size and the CDC Social Vulnerability 
Index (SVI), allowing for differential risk by tract, with larger and more vulnerable tracts assigned a higher 
proportion of cases. Figure S3 compares the performance of our proposed approach under both assumptions. 
The results show that our method is robust to this modeling choice, consistently outperforming the alternative 
allocations under both assumptions and yielding similar trends in objective scores.

Discussion
The proposed multi-objective adaptive allocation displayed clear improvement over non-adaptive and single-
objective test site allocation strategies. After a 30-day period in our experiment, the proposed allocation attained 
a higher total score compared to random allocation, without sacrificing performance in any single objective. 
It is also more efficient in terms of the number of test sites required to achieve relevant outcomes compared to 
the single objective allocations, with important implications for resource management. Access and equity in 
testing was also much improved for the proposed method compared to allocations which did not prioritize said 
objectives. For practical purposes, the algorithm only takes a few hours to run lending itself well to real-time 
applications, so long as COVID-19 case data are available and up-to-date.

When comparing the spatial distribution of test sites we noted how prioritizing access manifested in an even 
distribution of test sites across Atlanta while prioritizing equity resulted in many more clusters of test sites. The 
wide difference in allocation between the access and equity allocations, coupled with the compromise given by 
the multi-objective allocations is evidence that access and equity are indeed competing priorities and require a 
systematic approach to achieve optimal balance.

To our knowledge, this is the first application of an adaptive design to multi-objective test site allocation. 
While adaptive designs and location allocation solutions are both recognized methodologies in their respective 
fields, they had not been combined effectively in previous disease surveillance applications. We show despite the 
consideration of multiple objectives, the proposedallocation achieves access, precision, and equity on par with 
single-objective methods optimized exclusively for each metric. It also consistently outperforms and requires 
less resources than non-adaptive random designs, especially in the long run.

While our proposed allocation places test sites at census tract centroids, the approach remains relevant 
for practical planning, particularly when outcomes of interest are defined areally. Because our model defines 
coverage by census tract and evaluates access, equity, and precision based on tract-level areal data, placing a test 
site anywhere within a designated tract would likely be sufficient when areal outcomes are the primary concern. 
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Fig. 4.  Final set of test sites chosen by each allocation method for one run out of 100 total simulations. 
Grey polygons delineate Atlanta county borders, and red points symbolize test site locations chosen by the 
algorithm.

 

Scientific Reports |        (2025) 15:32775 5| https://doi.org/10.1038/s41598-025-13804-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


However, we acknowledge that the model does not explicitly account for logistical constraints involved in setting 
up physical testing sites including availability of necessary infrastructure or public accessibility, which may limit 
the feasibility of implementation in some settings.

Our method has several limitations. First, our method relies on county case counts reported by the Georgia 
Department of Public Health. COVID-19 case counts have been noted to be unreliable relative to COVID-19 
hospitalization and deaths due to different reporting standards across multiple agencies, delays in testing, and 
general under-ascertainment of COVID-19 cases33. Despite these concerns, our method is designed to support 
quick decision making in the midst of a pandemic, which requires real-time data as opposed to waiting for 
higher quality but less timely data. A potential improvement of the proposed method could be to use past 
hospitalizations and deaths to adjust for the bias in case data before input into the allocation model.

Second, higher resolution spatial and demographic case information would be better suited for multi-objective 
allocation (particularly for the equity metric) compared to county case counts. Since we placed candidate test 
sites at the centroid of each census tract, there was a discrepancy between the geographic level of the case data 
and the unit of analysis. We addressed the issue by assuming COVID-19 risk within a county was homogeneous, 
and assigned cases to tracts within each county in proportion to the tract population. However this assumption 
is difficult to verify in practice. We hope national reporting standards for epidemic and pandemic data continue 
to improve to allow the collection of more detailed information conducive for detailed test site allocation.

A third limitation is the inherent subjectivity of selecting objective function weights in Eq. (4). Each 
component objective function is assigned a weight which represents the relative importance of that objective. 
Ideally the decision-maker has enough information to choose those weights effectively, but multiple competing 
objectives can complicate weight selection. Improper scaling of the single objective components can also disrupt 
the optimization. Our sensitivity analysis provides guidance on what magnitude of weights may be suitable for 
users with different priorities for the three evaluation metrics. We found that balanced weights achieve high 
performance, and that increasing the weight does prioritize that objective, but possibly at the expense of the 
other objectives (Fig. S1). While subjectivity may be unavoidable when it comes to multi-objective decision 
making, our method combined with a thorough sensitivity analysis provides guidance for weight selection under 
a wide variety of possible scenarios.

Finally, while our method contains a parameter for test site capacity, several other factors affecting 
accessibility were not accounted for. We assumed all test sites had the same capacity, even though capacity 
most likely varies based on the type of testing site (government mobile pop-up site, pharmacy store, physician 
office, urgent care clinic, hospital, etc.). Staffing, insurance requirements, and especially mobility are also unique 
determining factors for each test site’s accessibility. Our method serves as an approximation to the true scenario 
to demonstrate its practicality, and future extensions of the allocation could more thoroughly account for these 
differences between test sites.

Method
∥a∥

N
∑

i
fi f1 f2 f3

Proposed
5 55 0.35 0.21 0.142 −1.79 × 10−4

10 55 0.346 0.208 0.138 −1.1 × 10−4

Access
5 195 0.355 0.75 0.246 −0.648

10 195 0.337 0.75 0.218 −0.639

Precision
5 275 0.36 0.656 0.565 −0.861

10 245 0.4 0.603 0.528 −0.72

Equity
5 105 0.358 0.222 0.135 −2.58 × 10−6

10 125 0.368 0.248 0.12 −4.3 × 10−7

Access + 5 70 0.359 0.286 0.072 −9.03 × 10−5

Equity 10 75 0.377 0.3 0.07 −1.24 × 10−4

Random
5 275 −0.8 0.663 0.311 −1.775
10 245 −1.19 0.604 0.259 −0.205

One-shot (Non-adaptive) 0 100 −1.91 0.31 0.08 −2.31

Table 1.  Summary of the minimum number of test sites needed for each allocation method to outperform 
proposed multi-objective adaptive allocation as measured by the sum of the evaluation metrics. Column ∥a∥ 
indicates the batch size or number of new test sites added at each time index. We fixed the One-Shot design to 
100 sites and terminated the proposed design once it allocated more than 50% of that capacity. For the other 
adaptive designs, column N  shows how many test sites are needed to either exceed the proposed design’s 
total score 

∑
i
fi or, if that threshold cannot be reached, to attain the highest achievable total score below 

it. Column fi is the individual score for the component. f1 is the access score, f2 is the precision score, and f3 
is the equity score. Note that for each score, higher is better.All listed methods select test sites adaptively, except 
for the “One-Shot (non-adaptive)” approach. The “Random” method is adaptive in the sense that it selects new 
test sites at each time point, but unlike the other adaptive methods–which use criteria such as access, precision, 
equity, or a combination thereof–it selects locations entirely at random.
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While precision in testing is important for decision-makers and researchers to gather the best information 
available to guide the pandemic response, access and equity of testing are equally important for the population 
to guide their own individual pandemic response and make safe decisions in their work and personal lives. 
Our study has demonstrated the value of the proposed multi-objective adaptive allocation in simultaneously 
achieving the key objectives of access, precision, and equity in COVID-19 testing. The adaptive selection of sites 
can further reduce the resources required to set up testing for future administrations. By adaptively balancing 
multiple competing objectives in a principled manner, we hope better and fairer outcomes can be realized for all 
stakeholders under future pandemic scenarios.

Methods
Data
We obtained daily confirmed case counts of COVID-19 from eleven counties in Georgia (Fulton, Cherokee, 
Forsyth, Gwinnett, DeKalb, Clayton, Fayette, Coweta, Carroll, Douglas, Cobb) between March 2, 2020 and July 
13, 20211. The case data were only reported at the county level, however, we defined candidate locations for testing 
sites at the census tract level, totaling 1,217 locations. To allocate county-level case counts to census tracts, we 
proportionally distributed cases based on each tract’s share of the total county population as reported in the 2020 
American Community Survey. For each date and county, we calculated the expected number of cases in each 
tract as the product of the county’s case count and the tract’s population weight. These expected values were then 
floored to ensure integer counts, and any remaining cases (due to rounding) were allocated to the tracts with 
the largest fractional remainders. This approach ensures that the total number of cases assigned across tracts 
matches the rounded county total while maintaining proportionality to the tract-level population. The resulting 
tract-level case counts were then used in subsequent modeling steps. The assumption is that the COVID-19 
cases are distributed uniformly at random within each county, i.e., we define Ŷijk = Yi..(Nijk/Ni..), for county 
i, tract j, and demographic group k where Y represents case counts and N represents population as measured by 
the U.S. Census. The dot notation indicates a sum over the respective subscript.

Optimization criteria and formulation
We propose a test allocation strategy balancing three key objectives: (i) access of the population to COVID-19 
testing (ii) precision of disease models for COVID-19 incidence and (iii) equity across sociodemographic 
lines. Constraints for the optimization are defined through the number and available capacity of test sites. We 
quantitatively define each of these three criteria in the following sections. Candidate locations for test sites were 
restricted to the centroid of each census tract.

Access score
Suppose there are I candidate test site locations and J demand points to be serviced (in this study, demand points 
represent census tracts). We define an allocation plan a ∈ {0, 1}I , with ai = 1 representing a test site to be set 
up at a candidate testing location i. We assume that individuals always choose the closest available test site to 
their census tract of residence. Define indicator variable ej(a) = 1 if demand point j is covered by at least one 
test center, under allocation plan a, and ej(a) = 0 otherwise. A demand point is considered covered if a user-
defined proportion of the demand point’s population, denoted pj , is smaller than the capacity of the nearest test 
site. We define the access score, i.e., the first component of the objective function, as f1, which takes as input an 
allocation plan a:

	
f1(a) =

J∑
j=1

ej(a)pj∑
k

pk
.� (1)

Precision score
The second component of the objective function addresses the precision in COVID-19 incidence estimates. 
Intuitively, new test sites should be placed in areas with the most uncertain COVID-19 incidence estimates 
to increase precision of future estimates. Assuming again that individuals always choose the closest available 
test site to their residence, the test centers serve as point-referenced data in a statistical model for COVID-19 
incidence. Under our proposed multi-objective adaptive approach, any model capable of producing posterior 
variance estimates at unknown locations can be used. In this study we adopt a Bayesian spatiotemporal count 
model30 as follows.

	

Yit|β0, Si, ϵi, γt, αt, δit, ∼ P ois(Pie
β0+Si+ϵi+γt+αt+δit ),

Si|σ2
s ∼ ICAR(σ2

s),
ϵi|σ2

ϵ ∼ N(0, σ2
ϵ ),

γt|σ2
γ ∼ RW 2(σ2

γ),
αt|σ2

α ∼ N(0, σ2
α),

δit|σ2
δ ∼ N(0, σ2

δ ),
β0 ∼ N(0, ∞),
σ2 ∼ LogGamma(0.5, 0.001).
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here, Yit represents the COVID-19 case counts for census tract i at time t, Pi is the population of census tract 
i, Si is a structured spatial intrinsic conditional autoregressive random (ICAR) effect, ϵi is an unstructured 
spatial effect, γt is a structured 2nd order random walk temporal effect, αt is an unstructured temporal effect, 
δit is an unstructured spatiotemporal interaction effect, and β0 is an overall intercept. Unstructured terms refer 
to independent and identically distributed terms indexed by either space or time to account for any variation 
unexplained by the structured spatiotemporal terms (ICAR and random walk). Lastly, each σ2 variance parameter 
has the same weakly informative log-gamma prior. All random effects are designed to induce correlation and 
borrow strength between all census tracts in a principled manner.

An attractive feature of this model is its ability to take advantage of assumed spatiotemporal correlations 
to smooth areal rates without reliance on external covariates. We estimated the model using integrated nested 
Laplace approximation34 implemented in the R-INLA package. The variance of the posterior estimates of Y for 
each tract in candidate locations were then input into the second objective criteria as follows

	
f2(a) =

∑
i

Var(Yi|Ya− ),� (2)

where Ya−  represents the data obtained from the current allocation plan, a−, to be fed into the disease model. 
Our objective function is based on previous work on sequential design / active learning in Gaussian processes35. 
In our case, candidate test site locations with high posterior variance in case count estimates are prioritized by 
our precision score, as they represent areas where model uncertainty is greatest. Typically, these are locations 
with sparse or unreliable data where the model has little information to work with, forcing the allocation to 
explore and expand within the study region. Selecting these sites for new test centers enables targeted data 
collection to reduce uncertainty and refine future predictions.

Equity score
We assume there are u categories of subgroups, e.g., sex and race and ethnicity, and within each categories 
there are Vu sub-populations. Then, our equity score is evaluated by the discrepancy of coverage between sub-
populations, at each demand point:

	
f3(a) = −1000

V1∑
v1=1

· · ·
Vu∑

vu=1

((
J∑

j=1

pv1,...,vu,jej(a)∑
k

pv1,...,vu,k

)
−

(
J∑

j=1

pjej(a)∑
k

pk

))2

,� (3)

where the first term in parentheses represents the empirical conditional probability of being covered for a given 
sub-population, and the second term represents the marginal probability of being covered across the entire 
population. Under this definition, maximum equity is achieved when f3(a) = 0, meaning that the conditional 
probability of being covered by a test site for every sub-population is equal to the marginal probability of 
coverage for the overall population36. This condition implies that access to testing is entirely independent of 
local sociodemographic characteristics. In other words, no subgroup has a higher or lower likelihood of access 
due to their demographic composition. Therefore, we aim to maximize f3 to obtain an equitable allocation plan.

We found that while f1 and f2 tend to have relatively similar magnitudes, f3 can be much smaller than the 
other two objectives due to the sum of squares expression. The linear scaling factor of 1000 is designed to put f3 
at a similar scale as f1 and f2.

In this study, race and ethnicity classifications follow those reported by the U.S. 2020 Census. Group labels 
included non-Hispanic white, non-Hispanic black, non-Hispanic other, and Hispanic.

Constraints
We assume that individuals choose the test site closest to their resident census tract, and enforce two constraints 
in our optimization. The first constraint limits the number of total test sites in an allocation plan, i.e., a⊤1 ≤ K  
where a ∈ {0, 1}I . Here, ai is a decision whether to put a testing site at location i and K is the maximum 
number of test sites. The second constraint forces that if a demand point j is covered, then there must be at least 
one testing location i covering it. This if-then condition is modeled by the “big-M” method in the optimization 
problem. Specifically, first denote coverage matrix Z ∈ {0, 1}I×J  with each element zij  representing whether 
demand point j can be covered by potential test site i. This coverage matrix indicates exactly which demand 
points each test site location can cover when it prioritizes nearest neighbors and respects its testing-volume 
limit. Then, whether or not the demand point j can be covered with an allocation plan a can be modeled by

	

Z⊤a ≤ Me,

Z⊤a ≥ ϵ − M(1 − e).

Here M > 0 represents an finite upper bound of Z⊤a, e.g., K in our case. Additionally, ϵ > 0 represents a 
small value between 0 and 1. In this case, we set ϵ = 0.0001. The first big-M rule states that if a demand point 
j is uncovered (ej = 0), it forces the sum of in-range selected sites 

∑
i
zijai to zero, so no test site location can 

cover it. The second big-M rule states that if a demand point j is covered (ej = 1) then 
∑

i
zijai is forced to be 

positive, so that at least one selected site must cover it.
Importantly, the matrix Z  can be pre-computed based on the testing capability of a testing site, the demands 

of a demand point, and the distance between candidate testing locations and demand points. We assume that 
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each test site, i, can perform up to 1, 000 tests and it will first serve the nearest demand point. Moreover, if a 
demand point j finds that the nearest test site runs out of capacity, it will resort to the second nearest test site.

Final objective function
We seek to maximize the overall access of the testing sites (f1), precision of the disease model (f2), and equity of 
the allocation plan (f3). Therefore, the problem statement for our optimization, for a single location-allocation 
step is

	
max

a
{λ1f1(a) + λ2f2(a) + λ3f3(a)} ,� (4)

where the parameters λ1, λ2, and λ3 ≥ 0 reflect the relative priority of these objectives, to be determined by 
the decision makers. The choice of weights are crucial hyperparameters in our optimization framework, and we 
discuss this choice in detail in the next section.

Optimization
Combining all the objectives and the constraints yields the following optimization problem:

	

max {λ1f1(a) + λ2f2(a) + λ3f3(a)}
s.t. a⊤1 ≤ K

Z⊤a ≤ Me

Z⊤a ≥ ϵ − M(1 − e)
a ∈ {0, 1}I ; e = {0, 1}J

We note that this problem can be categorized as a multi-objective quadratic optimization problem, which can 
be efficiently solved by the interior-point method37. This optimization algorithm is implemented in Python with 
the Gurobi environment.

We note that Zhong et al.38 worked on a similar test-site allocation problem with one time period and 
implemented via a Genetic Algorithm (GA) using the gramEvol R package39. However, a key disadvantage of 
GA is its inability to reveal the quality of any solution40. Although it is generally believed that GA can generate 
high-quality solutions, it is not clear how close the current solution is to the optimum and whether all the 
available resources are fully utilized41. The interior-point method avoids these issues by utilizing the geometric 
properties of our optimization problem to control the optimality gap of the returned solutions.

Weight selection and sensitivity analysis
Weight selection in our optimization is a critical procedure as it directly influences the balance between 
competing objectives in our problem. Other location allocation methods rely on frameworks that clearly 
delineate between the “objective” optimization and “subjective” preference of the user. For example, the decision 
making frameworks TOPSIS42,43 and AHP44 operate by first providing a solution set and then asking the decision 
maker to choose a solution based on the user’s preferences codified into a series of weights. Our method directly 
integrates these weights into the optimization. While different from traditional multi-criteria decision making 
frameworks, this makes our weight selection procedure not much different from “hyperparameter selection” in 
statistical and machine learning methods. We acknowledge traditional methods allow for clear, separate stages 
between optimization and preference specification and allow the decision maker to consider multiple solutions. 
However, we believe our method may be more appropriate in situations like test site allocation during COVID-19, 
where streamlining decision-making is important and evaluating multiple solutions may be inefficient.

Unfortunately, choosing weights in this scenario lacks a universally accepted method. An added difficulty 
is, unlike most statistical problems where cross-validation procedures can be used to evaluate performance 
over a single metric, our evaluation metrics are multi-dimensional and can be in conflict, making an optimal 
choice difficult. Any choice of weights will inevitably reflect trade-offs between competing objectives and have 
large downstream effects on the optimization. In order for decision makers to feel confident in this procedure, 
understanding of its behavior in a wide range of scenarios is critical to advise users. To address these challenges 
in a robust fashion, we conducted a large sensitivity analysis to identify a “region” of weights where the solution 
was stable, as measured by the individual objective functions. The scale of the analysis allowed us to carefully 
balance the competing objectives without oversimplifying the problem into a single evaluation metric.

We first defined a grid of weights and let λ1, λ2, and λ3 be any of the values in {10−4, 10−2, 100, 102}, 
giving us a total of 64 scenarios. For each scenario, we used our proposed method to conduct the sequential 
location allocation and compute each of the three evaluation metrics and the total score, and did this for a final 
allocation of 100, 200, and 500 test sites. The identification of stable solution sets was made visually and the 
weights that balanced good performance and stability in the evaluation metrics were selected.

In another sensitivity analysis assessing the robustness of our assumption of homogeneous risk of COVID-19 
within a county, we repeated the tract-level case allocation procedure mentioned in the Data section, but instead 
of weighting tracts by population, we used the CDC’s Social Vulnerability Index (SVI) as the basis for allocation. 
As a sensitivity analysis, we repeated the tract-level case allocation procedure using a combined weighting scheme 
based on both population size and SVI. After merging tract-level case and population data, we joined SVI scores 
by census tract. For each tract, a raw weight was computed as the product of population and SVI, reflecting both 
the size and vulnerability of the tract. Larger and more vulnerable tracts were assigned a higher proportion of cases 
These raw weights were normalized within each county to form tract-level allocation weights. County-level case 
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counts were then distributed proportionally according to these weights. As in the main analysis, expected counts 
were floored to integer values, and any remaining cases (due to rounding) were allocated to tracts with the largest 
fractional remainders.

All results for sensitivity analyses are reported in the Supplement.

Adaptive design
Once we establish the optimization approach for determining test site locations, we then define the follow approach 
as a way to use the information in an adaptive design. This contrasts with a non-adaptive allocation design, which 
selects all test sites at once without accounting for the evolving nature of the pandemic or incorporating incoming 
data streams such as case counts.

We first assign a uniform selection of initial testing site locations. This assignment defines step 0, and reflects the 
first test site allocation under complete lack of knowledge regarding the spatial distribution of the disease. In actual 
testing scenarios, the initial design is likely informed by expert opinion and not completely uniform in space. We 
then set two parameters for the method: batch size - the number of testing sites we add or re-arrange at each step 
denoted by ∥ai∥ for new locations ai, and time step - the amount of time that passes in between each iteration of 
testing site allocation. We then run the optimization procedure on the current selection of testing sites. The method 
will output an optimal set of locations, based on the testing data provided by the initial random design. This optimal 
set is the testing site allocation for step 1. The next step then proceeds in the exact same way, only now the new 
set of locations in addition to the original set replaces the role of the initial random design. Observational data are 
now collected from the updated set of locations as we move forward in time, and the process repeats itself until we 
achieve a stopping criteria. In the current study, we stopped after a time length of 30 days, but the criteria are not 
subject to strictly temporal limits.

Experiment
We compared the proposed multi-objective adaptive approach with a benchmark non-adaptive random approach, 
and several single-objective adaptive approaches. We decided that the multi-objective function itself was best to 
measure performance in all categories of interest simultaneously. Other metrics like mean squared error (MSE) do 
not capture the multi-objective nature of the problem, and classic classification metrics do not apply since the goal 
of the model is to predict case counts, not a binary variable.

Our experimental procedure to measure the performance of our proposed approach consisted of a series of 
pseudo-simulation studies aimed at comparing the proposed method to several other allocation approaches. The 
dataset comprised of tract-level COVID-19 daily case counts, broken down by race and ethnicity. Each of the 
methods under investigation were used to solve for a final testing allocation, during the peak of the Delta variant 
COVID-19 epidemic in the United States during the winter of 2020–2021. The time period for the experiment is 
shown in Fig. 1.

For the first experiment, to determine which method performed best over time within a fixed time period, 
each adaptive method was used to add five new test sites every day over the course of the 30 days. The same initial 
allocation of five test sites was used for each method. Scores calculated from the multi-objective function were 
compared over time to examine performance in the long run. Results are reported in Fig. 2.

For the second experiment we determined how many test sites were required to achieve similar performance 
to our proposed approach. First, 100 test sites were randomly selected out of all possible test locations to represent 
a non-adaptive random approach denoted as the ”One-Shot (non-adaptive)” allocation. These test sites were 
designated all at once at the beginning of the study period and no sequential adding or rearrangement of test site 
locations was involved. The overall and individual scores for access, precision, and equity score were recorded. 
Then for each adaptive method, starting from zero test sites, five test sites were added each day. We also ran a 
version adding ten test sites a day. Since the non-adaptive design can yield negative total scores, we terminated the 
proposed design once it allocated more than 50% of the testing sites used by the non-adaptive design (over 50 sites 
out of the 100 selected by the one-shot non-adaptive allocation). Then, the other methods under investigation were 
stopped once the overall score for the adaptive method exceeded the score of the proposed design. If a design did 
not achieve a higher total score than the target, we report the results corresponding to the score closest to the target. 
The number of sites required to achieve the target was recorded. Results are reported in Table 1.

We replicated each experiment 100 times. The stochastic nature of the results originates solely from the location 
of the initial test sites—all other elements of the method are deterministic.

Data availibility
Data analysis, modeling and optimization were done in R version 4.1.3, Python version 3.10.5, and Gurobi ver-
sion 9.5.2. Source code and datasets used in this analysis can be found at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​t​X​i​a​o​9​5​/​a​d​a​p​t​i​v​e​-​s​
a​m​p​l​i​n​g​-​c​o​v​i​d​​​​​.​​
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