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In vertebrate females, plasma calcium concentrations decrease after the reproductive period to 
prevent calcium from leaking from the body. Goldfish scales store calcium internally, which is released 
into the blood by osteoclast resorption. Previously, we found that melatonin increases calcitonin (CT), 
an osteoclast inhibitor, through melatonin receptors in goldfish scales, and inhibits osteoclast activity. 
However, the physiological function of the melatonin-dependent suppression of osteoclast activity is 
unclear. In this study, we found that plasma calcium levels increased during the reproductive stage in 
female goldfish and decreased during the post-reproductive stage. Histological and mRNA expression 
analyses of osteoclast marker molecules revealed that osteoclasts in the scales were inactivated 
during the late and post-reproduction stages when the expression of CT and its receptor increased in 
female goldfish scales. Moreover, exogenous melatonin suppressed plasma calcium levels in female 
goldfish during their late reproductive stage in cases of increased melatonin receptor expression. Taken 
together, these results suggest that melatonin inactivates scale osteoclast resorption by increasing CT 
levels in the scales and prevents calcium leakage from the body during the late and post-reproductive 
stages of female goldfish.
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Seasonal changes have serious consequences for an organism’s survival and species conservation1–3. Therefore, 
organisms maintain their species by limiting their reproductive stages to certain seasons and by adapting to 
environmental changes4. For example, horses have a gestational period of approximately 1 year, whereas hamsters 
have a gestation period of a few weeks, and birds experience a short breeding period during spring5,6. They all 
give birth during spring and summer, and their pups are programmed to develop when provided plenty of food.

Melatonin is a small, amphiphilic, indoleamine molecule that exhibits a variety of biological activities7,8. It was 
originally considered an endocrine hormone that is primarily synthesized in the pineal gland and released into 
the blood to interact with melatonin receptors throughout the body9,10. However, melatonin is also produced in 
small amounts in other tissues and organs, including the brain, retina, intestine, ovary, skin, crystalline lens, and 
bone11,12. Furthermore, it regulates diverse physiological functions, such as the sleep–wake cycle10,13, circadian 
clocks14,15, glucose metabolism16,17, immune system activity18, and bone metabolism19,20. In particular, evidence 
suggests that melatonin acts as a reproduction regulator21–23.

Previous studies in quails reported that type 2 deiodinase (Dio2), which is involved in the seasonal 
reproduction (season-dependent testis development) of males, is induced by the mediobasal hypothalamus of 
the brain during reproduction24. It converts the low active form of thyroid hormones in the hypothalamus into 
an active form [i.e., triiodothyronine (T3)], which then promotes testicular development25. Notably, in hamsters 
exhibiting seasonal reproduction26, Dio2 expression has been reportedly suppressed by daily injections of 
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exogenous melatonin27. The antigonadotrophic effect of melatonin has also been reported in female mammals21. 
For example, daily injection of melatonin into female rats decreases the incidence of estrus and reduces ovary 
weight28. In humans, melatonin receptors are expressed in various cell types of the female reproductive tract29–33. 
Furthermore, clinical and in vitro studies have provided evidence that melatonin inhibits human ovulation34–37.

Proper control of plasma calcium concentrations is important for numerous physiological functions, such 
as neurotransmission, muscle contraction, and blood coagulation38,39. In vertebrate females, calcium demands 
are exacerbated during the reproductive stage. For example, a study using a mouse model with hypocalcemia 
revealed that calcium deficiency results in a significantly reduced number of oocytes after ovarian stimulation, 
as well as a reduced ability to mature40. This suggests that serum calcium levels play an important role in 
determining the number and maturation of oocytes in mammals. In nonmammalian vertebrates, including bony 
fishes, plasma calcium levels increase exactly at the same time as reproductive development in females41–44. 
Conversely, the calcium supply is terminated immediately after reproduction to prevent it from leaving the body. 
Whether this occurs and how the plasma calcium concentration decreases from the late reproductive to non-
reproductive stages is unclear.

Mammalian bone tissue consists of osteoblasts, osteoclasts, osteocytes, and calcified bone matrices45. It stores 
calcium and is involved in regulating blood calcium levels8. Parafollicular cells in the thyroid gland produce 
calcitonin (CT)46, a hormone that binds to the CT receptor on osteoclasts and inhibits their activity to reduce the 
blood calcium level47. In contrast, the parathyroid gland secretes parathyroid hormone (PTH), which promotes 
osteoclast activity to increase blood calcium levels48.

The regulatory mechanisms for internal calcium are similar between bony fishes and mammals8,49. Freshwater 
bony fishes, such as goldfish and rainbow trout, store internal calcium in their scales50, which, like mammalian 
bone, are comprised of osteoblasts, osteoclasts, osteocytes, and calcified bone matrix and are involved in 
regulating calcium levels in the blood51–53. Notably, freshwater bony fishes rely on their internal calcium stores 
in their scales to increase calcium availability during the reproductive period.

In freshwater bony fish scales, PTH activates osteoclasts54, whereas CT acts as an inhibitor of osteoclastic 
activity55,56. Previously, we found that melatonin increases CT levels and suppresses osteoclastic resorption in the 
goldfish scale57,58. Therefore, we hypothesized that melatonin-induced CT-dependent suppression of osteoclast 
activity in scales may reduce plasma calcium concentrations following reproduction in female goldfish. This 
study provides evidence supporting our hypothesis, and we propose that the anti-calcium effect of melatonin is 
required for the efficient transition from the reproductive to non-reproductive stages in these fish.

Results and discussion
The plasma calcium level increases during the reproductive stage in female goldfish and 
sharply decreases after the reproductive stage
The reproductive stage of goldfish was reported to be from March to May59–61. It was also reported that the level 
of the gonadosomatic index (GSI), an indicator of gonadal development, was low in goldfish around August, 
demonstrating that August is the non-reproductive stage of goldfish59–61. To identify the reproductive stage of 
female goldfish in our experimental setting and to determine whether blood calcium levels change during the 
reproductive stage, the GSI and the plasma calcium levels in female goldfish were measured from December to 
August. Figure 1A displays that the GSI level was highest in March, which was significantly higher than those 
in December, June, and August, but not when compared with the other months tested. Based on this result, the 
reproductive stage of female goldfish in our experimental setting was confirmed to occur from January to May. 
In addition, December was defined as the pre-reproductive stage, and June to August as the post-reproductive 
stage in our experimental setting.

The plasma calcium level was highest in May and sharply decreased thereafter (Fig. 1B). The plasma 
calcium level in May was significantly higher than those in December, January, June, and August, but not when 
compared with the other months tested. These results indicate that plasma calcium levels increase during the 
reproductive stage in female goldfish and decrease at the post-reproductive stage. Consistent with our results 
here, previous studies showed that plasma calcium, which is required for the formation of yolk proteins62, is 
elevated in reproductive stage bony fishes43,50. Saltwater fish use calcium transport mechanisms in their gills and 
gastrointestinal tract to obtain calcium from the environment and regulate plasma calcium levels63,64. Freshwater 
fish such as goldfish and rainbow trout rely on internal calcium stores in their scales as well as environmental 
sources to increase calcium availability during the reproductive period65,66. There is also evidence that osteoclasts 
detected in bony fish scales regulate plasma calcium levels49,67,68. To determine whether scales are involved in 
elevated plasma calcium during the reproductive stage of female goldfish, we evaluated osteoclast activity in 
female goldfish scales during and after the reproductive stage, as described below.

Osteoclasts in the scales of the female goldfish are activated during the reproductive stage
Tartrate-resistant acid phosphatase (TRAP) is the characteristic marker of osteoclast activity69. We first 
examined whether the osteoclastic activities in the female goldfish scales are higher in the reproductive stage 
(January to April) than in the post-reproductive stage (June) by TRAP staining assay. Consistent with a previous 
study54, TRAP was detected in the scales of female goldfish (Fig.2A). Ratios of scales expressing TRAP in female 
goldfish were determined from January to August (Fig. 2B). The ratio at the late reproductive stage (April) was 
significantly higher than that at the early reproductive stage (January). Then, the ratios of TRAP-negative scales 
in the female goldfish were determined. The ratio at the post-reproductive stage (June) was significantly higher 
than those at the reproductive stage (February and April).

Next, the gene expression levels involved in the osteoclast activation, such as cathepsin K (cathK)70, Vacuolar-
ATPase subunit d2 (V-ATPase)71, and receptor activator of NF-κB ligand (rankl)72, were examined in the scales 
of female goldfish before (December), during (from January to May), and after (June and/or August) the 
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reproductive stage (Fig. 2C). The cathK expression during the late reproductive stage (April) was significantly 
higher than that in other months tested. Additionally, cathK expression during the reproductive stage (January to 
April) was significantly higher than during the pre-reproduction stage (December). V-ATPase expression during 
the mid-reproductive stage (March) was significantly higher than during the pre- and post-reproductive stages. 
Furthermore, V-ATPase expression during the early reproductive stage (January to March) was significantly 
higher than during the post-reproductive stage. Rankl expression during the reproductive stage (January to April) 
was significantly higher than that of the pre-reproductive stage. Furthermore, the rankl expression at the part 
of the reproductive stage (January and April) was significantly higher than that of the post-reproduction stage 
(June). Overall, our results reveal that osteoclasts in female goldfish scales are activated during the reproductive 
stage, and further, this activation is suppressed during the final part of the stage. The activated osteoclasts in the 
scales are speculated to contribute to increased plasma calcium levels49,60, which is required for the formation of 
the egg yolk protein in female individuals during the reproduction stage73,74.

17β-estradiol (E2) is a female-dominant sex hormone that plays a critical role in reproduction and sexual 
differentiation in vertebrates75,76. Studies have shown that E2 receptor is expressed in scale osteoclasts of sea 
bream (Sparus auratus) and Mozambique tilapia (Oreochromis mossambicus)77, and that E2 increases the 
osteoclast activity in rainbow trout scales68. E2 receptor has also been shown to be expressed in goldfish scales78. 
Additionally, plasma E2 concentrations have been shown to increase during the reproductive stage in female 
goldfish59. Based on these findings, we tested whether E2 activates osteoclasts in female goldfish scales, as 
described below.
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Fig. 1.  Seasonal changes in gonadosomatic index (GSI) and plasma calcium levels in female goldfish. GSI (A) 
and plasma calcium levels (B) of female goldfish were measured from December 2008 to August 2009 (each 
month n = 10-23). Different letters indicate significant differences (P < 0.05). Abbreviations: Dec, December; 
Jan, January; Feb, February; Mar, March; Apr, April; Jun, June; Aug, August.
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Fig. 2.  Seasonal changes in osteoclast activity in female goldfish scales. (A) Representative samples of 
goldfish scale expressing tartrate-resistant acid phosphatase (TRAP) (left panel) and the TRAP negative scale 
(right panel); white arrows indicate TRAP-stain-positive area. (B) Ratios of TRAP-positive scales in female 
goldfish (left graph) and the ratios of TRAP-negative scales in female goldfish (right panel) from January 
2009 to August 2009 (each month n = 4-6; 200 scales were analyzed for each individual). Different letters 
indicate significant differences (P < 0.05). (C) Expression levels of genes involved in osteoclast activation were 
examined in female goldfish scales from December 2008 to August 2009 [for cathepsin K (cathK) and receptor 
activator of nuclear factor κβ ligand (rankl)] or June 2009 [for vacuolar- ATPase subunit d2 (V-ATPase)] (each 
month n = 8 for each gene examined). Different letters indicate significant differences (P < 0.05). Average 
expression levels in December (Dec) were set to 1. Abbreviations: Dec, December; Jan, January; Feb, February; 
Mar, March; Apr, April; Jun, June; Aug, August.
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Plasma E2 level in female goldfish increases during the reproductive stage, and exogenous E2 
promotes expression of gene involved in osteoclast activation
We compared plasma E2 levels during and after the reproductive period. As shown in Fig. 3A, the E2 level in late 
March (March 24th) was significantly higher than that in early March (March 8th). It was also significantly higher 
than those of late and post-reproduction stages. On the other hand, the E2 level in late March (March 24th) was 
not significantly different from those of April. Although the number of goldfish used in this measurement was 
small (n=3-5 at each point), these results are consistent with a previous study, which showed elevated plasma E2 
levels during the reproductive period in female goldfish59.

In October, during the non-reproductive stage, exogenous E2 (4 μg/g of body weight) was injected 
intraperitoneally into female goldfish. Expression of the gene involved in osteoclast activation, cathK70, was 
determined in the scales. As shown in Fig. 3B, exogenous E2 significantly increased the expression of cathK in 
the scales, evidence that E2 increases osteoclast activity in goldfish scales. It is important to note that the number 
of goldfish used in this measurement was small (4 in the control group and 3 in the E2-administered group). Our 
results are consistent with those of previous studies where E2 treatment increased scale osteoclastic activity and 
decreased scale calcium content, indicating an E2-mediated increase of scale resorption in rainbow trout66,68. 
In freshwater bony fishes, including goldfish65, killifish65, and rainbow trout66–68, the increased demand for 
calcium during the reproductive stage is met through mobilization of internal calcium stores, predominantly 
from the scales, so bone is initially preserved. E2 treatment has been shown to decrease pharyngeal bone 
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Fig. 3.  Changes in plasma 17β-estradiol (E2) levels in female goldfish and effects of exogenous E2 on 
expression of osteoclastic gene in the scales of female goldfish. (A) Plasma E2 levels of female goldfish were 
measured from March 2016 to June 2016 (each month, n = 3-6). Different letters indicate significant differences 
(P < 0.05). (B) mRNA expression of cathepsin K (cathK) in the scales of goldfish without (CNT) and with 
injection of E2 (E2). The female goldfish were injected intraperitoneally with 4 μg/g body weight of exogenous 
E2 in October 2016. *P < 0.05 indicates a significant difference vs. control.
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resorption in rainbow trout66, consistent with E2’s physiological role in mammals and birds, where E2 decreases 
bone resorption79,80. It appears that in freshwater teleosts, E2 promotes scale resorption and supplies calcium to 
protect the skeleton during the reproductive stage.

mRNA expression of calcitonin (CT) and its receptor (CTR) in the scales of female goldfish 
increases during the late and post-reproductive stages
CT binds to CTR on osteoclasts and inhibits their activity, reducing the amount of calcium that enters the 
bloodstream8. In addition, osteoblast lineage cells produce CT, which inhibits the activity of osteoclasts in scales 
of bony fish, including goldfish57,58. To examine whether CT is involved in the decreased osteoclast activity in 
the scales of female goldfish during the late and post-reproductive stages, the mRNA expression of CT and CTR 
was determined from female goldfish scales during the reproductive (March to May) and post-reproductive 
(June) stages. As shown in Fig. 4, the mRNA expression of CT was highest at late April (April 25th), and this was 
significantly higher than that at late March (March 24th) and early April (April 11th). In addition, the mRNA 
expression of CTR at late April (April 25th) and early May (May 9th) was significantly higher than that in March 
(March 8th and 24th) and early April (April 11th). These mRNA expression profiles of CT and CTR support the 
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average expression on March 8 was set to 1.
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idea that CT function in goldfish scales increases during the late and post-reproductive stages, which could 
decrease goldfish scale osteoclast activity and plasma calcium levels in female goldfish.

mRNA expression of the melatonin receptor Mel1a1.4 in the scales of female goldfish 
increases during the late reproductive and post-reproductive stages
In a previous study, we found that melatonin treatment increases CT expression and suppresses osteoclast activity 
in cultured goldfish scales58, suggesting that melatonin may play a role in reducing the scales’ osteoclast activity 
and the plasma calcium level in female goldfish during the late reproductive stage. To test this idea, melatonin 
levels were measured during (March to May) and after (June) the reproduction stage. As melatonin levels have 
been known to change during day and night9,81, they were separately measured at different times of the day and 
night. As shown in Fig. 5A, melatonin levels were higher at night than during the day. Furthermore, melatonin 
levels both at daytime and nighttime were unchanged during and after the reproduction stage. Accordingly, in 
the current study, plasma melatonin levels did not correlate with reproductive activity in female goldfish. It is 
important to note that the number of goldfish used in this measurement was small (n=4 at each point).

Melatonin shows its effects by binding to melatonin receptors in the plasma membrane to activate the 
intracellular signaling pathways82,83. In addition, our previous study reported that melatonin acts on osteoblast 
lineage cells by binding to melatonin receptors, which promotes CT production in goldfish scales58. Accordingly, 
the melatonin receptor mel1a1.4 expression levels in the scales of female goldfish were determined during and 
after the reproduction stage. As shown in Fig. 5B, nighttime mel1a1.4 expression levels reached their peak during 
the late reproductive stage [from late April (April 25th) to early May (May 9th)]. These levels were significantly 
higher than during the middle reproduction stage [from early March (March 8th) to early April (April 11th)]. In 
addition, daytime mel1a1.4 expression level was highest at late April (April 25th). The mel1a1.4 expression level 
at late April (April 25th) was significantly higher than that in early March (March 8th), but not when compared 
with the other time points tested. In particular, the nighttime mel1a1.4 expression level supports the idea that 
melatonin suppresses osteoclast activity in the scales to reduce plasma calcium levels in female goldfish during 
the late part of the reproductive stage. The expression of melatonin receptors during reproduction has been 
enhanced in organisms other than goldfish. For example, the mRNA levels of the melatonin receptors MT1 
and MT2 in the developing ovarian follicles of mares were higher during the reproductive than during the non-
reproductive periods84. The mRNA levels of two of the three melatonin receptors in turbots, a flatfish species, 
were also elevated in the female gonads during the late reproductive stage85. A similar seasonal regulation of 
melatonin receptor expression was also observed in the testes of birds86. These findings suggest that the seasonal 
regulation of physiological functions’ response to melatonin is driven by reproduction-related changes in 
melatonin receptor expression.

Exogenous melatonin suppresses plasma calcium levels in female goldfish during the late 
reproductive stage
To gather further evidence of the role of melatonin in the regulation of plasma calcium levels in female goldfish 
during the reproductive stage, the effects of intraperitoneally administered exogenous melatonin on plasma 
calcium levels in female goldfish were measured (Fig. 6A). Various melatonin doses were intraperitoneally 
injected into female goldfish during the late reproductive stage. Plasma calcium levels were then measured in 
melatonin-treated goldfish. High-dose melatonin (10 μg/g of body weight) suppressed plasma calcium levels, 
whereas low-dose melatonin (0.1 μg and 1 μg/g of body weight) did not. Previous studies have used high 
exogenous melatonin concentrations to demonstrate its remarkable effects on physiological processes, including 
bone metabolism in rats87, hypnotic effects on humans88,89, and human fertilization90,91. Next, the effects of 
intraperitoneally administered exogenous melatonin on plasma calcium levels in female goldfish were measured 
at various time points during the reproduction stage (Fig. 6B). Exogenous melatonin significantly suppressed 
plasma calcium levels when administered during the late reproductive stage (April). Conversely, exogenous 
melatonin did not affect plasma calcium levels when administered at the early reproductive stage (February). 
Previously, we found that melatonin increases CT levels, an inhibitor of osteoclastic resorption55,56, in goldfish 
scales57,58. Thus, the suppression of plasma calcium concentration by exogenous melatonin may be mediated by 
the CT-dependent suppression of osteoclast activity in scales. In addition, mel1a1.4 expression at night in female 
goldfish scales was higher during the late reproductive stage (April) compared with the mid-reproductive stage 
(March) (Fig. 5B). The upregulation of mel1a1.4 expression was induced during the late reproductive stage, 
which suggests a mechanism for the period-dependent suppressive effect of melatonin on plasma calcium levels 
in female goldfish (Fig. 6B).

In freshwater bony fish, such as goldfish and rainbow trout, E2 increased osteoclastic activity in the scales 
and released calcium stored in the scales into the blood to increase its availability during the reproductive 
period49,67,68. The plasma E2 levels were enhanced during reproduction in female goldfish (Fig. 3A). In 
addition, exogenous E2 injection increased the expression of cathK, which is involved in osteoclast activation 
in female goldfish scales70 (Fig. 3B). These results suggest that scales contribute to the plasma calcium supply 
during reproduction in female goldfish. We also found that plasma calcium levels decreased during the post-
reproductive stage. Previously, we reported that melatonin acts on osteoblast lineage cells by binding to melatonin 
receptors and promoting CT production, an inhibitor of osteoclast resorption55,56, in goldfish scales57,58 (Fig. 7). 
We propose that the melatonin-induced CT-dependent suppression of osteoclast activity in scales contributes to 
a decrease in plasma calcium levels after reproduction in female goldfish, based on the following findings (Fig. 
7). First, osteoclast marker expression in the scales decreased during the late and post-reproductive stages in 
female goldfish (Fig. 2). Second, the expression of CT and CTR in female goldfish scales increased during the 
late and post-reproductive stages (Fig. 4). Third, the expression of the melatonin receptor mel1a1.4 in female 
goldfish scales increased during the late reproductive and post-reproductive stages (Fig. 5B). Finally, exogenous 
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differences (P < 0.05). The average expression on March 8 was set to 1.
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melatonin suppressed plasma calcium levels in female goldfish during the late reproductive stage in cases of 
increased melatonin receptor expression (Fig. 6). Because calcium is needed for eggshell protein formation in 
fish73,74, the melatonin-mediated decrease in plasma calcium levels could halt the reproduction stage, potentially 
preventing calcium excretion from the body.

Methods
Ethical treatment of animals
This study was conducted in accordance with the recommendations in the ethical guidelines of Tokyo Medical 
and Dental University (TMDU). All experimental protocols were approved by the Animal Welfare Committee 
of TMDU (permit number: 0170339 A). Additionally, the protocols were in accordance with the ARRIVE 
guidelines 2.092. All experiments were performed in a manner that minimized pain and discomfort.
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Fig. 6.  Effects of melatonin on plasma calcium levels in female goldfish. (A) Effects of different doses (0.1 
μg, 1 μg, and 10 μg/g body weight) of exogenous melatonin on plasma calcium levels in female goldfish were 
evaluated at midnight (n = 9 or 10) in April 2010. The horizontal axis in the graph depicts the time (hours) 
after exogenous melatonin administration. Value at time point 0 was set as 100% for each result of the 
melatonin doses. *P < 0.05 indicates significant difference vs. control at 24 h after melatonin (10 μg/g body 
weight) injection. Close circle, control group; close triangle, 0.1 μg/g body weight melatonin-administered 
group; open triangle, 1 μg/g body weight melatonin-administered group; and open circle, 10 μg/g body weight 
melatonin-administered group. (B) Effects of exogenous melatonin (10 μg/g body weight) on plasma calcium 
levels in female goldfish were evaluated (each time point n = 8-12) in April 2009 (left graph) and February 
2009 (right graph). The horizontal axis in each graph shows the time (hours) after exogenous melatonin 
administration. The value at time point 0 was set as 100% for each graph. *P < 0.05 and **P < 0.01 indicate 
significant differences vs. control at each time point. Close circle: control groups, open circle: melatonin-
administrated groups.
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Goldfish
Female goldfish (Carassius auratus) were purchased from Higashikawa Fish Farm (Yamatokoriyama, Japan). The 
origin of the female goldfish used in the current study was of the Wakin variety (Japanese goldfish). All of the 
fish were bred for generations in the Higashikawa Fish Farm and had typical Wakin characteristics, which are the 
closest to the original goldfish species, with a carp-like tail, carp-like shape, and red body color. The mean and 
standard error for the weight of the goldfish used in this study were 41.85 ± 1.24 g.

Goldfish were maintained under outdoor conditions during experimental periods (described in each figure) 
at an open site on the rooftop of the third building of College of Liberal Arts and Sciences of the TMDU, 
Ichikawa. Here, seasonal changes in the gonadosomatic index (GSI), plasma calcium concentrations, and scale 
osteoclast activity were examined.

Determination of the GSI
Goldfish were weighted and sacrificed with benzocaine (Sigma-Aldrich, St Louis, MO, USA). Ovaries were 
collected and weighed. Based on these measurements, the GSI, i.e., the ovarian (gonad)-to-body weight ratio 
(gonad weight/body weight × 100) was calculated. The number of goldfish used in this analysis was 20 in 
December, 16 in January, February, March, and April, 23 in May, 14 in June, and 10 in August.

Measurement of plasma calcium, E2, and melatonin concentrations
To collect plasma, goldfish were first anesthetized with benzocaine, and whole blood was collected from the 
caudal vein using a 1-mL heparinized syringe with a 21-G needle (Terumo Corporation, Tokyo, Japan). Plasma 
samples were obtained after blood centrifugation at 1000 × g for 5 min at 4 °C and then stored at −80°C to 
measure the plasma calcium or melatonin concentration.

Plasma calcium concentrations were measured using the Calcium E Test Wako (FUJIFILM Wako Pure 
Chemical Industries, Osaka, Japan) following the manufacturer’s instructions. The number of goldfish used in 
this measurement was 20 in December, 16 in January, February, March, and April, 23 in May, 14 in June, and 10 
in August.

Plasma E2 concentrations were measured using the estradiol enzyme-linked immunosorbent (ELISA) assay 
kit (Cayman Chemical, Ann Arbor, MI, USA) following the manufacturer’s instructions. The number of goldfish 
used in this measurement was 4 on March 8th, 6 on March 24th, April 11th, April 25th, May 9th and June 2nd, 5 on 
May 23rd, and 3 on June 20th.

For the measurement of plasma melatonin concentration, four times the volume of acetone was added 
to the goldfish plasma and stirred 10 min using a vortex mixer, followed by centrifugation at 20,800 × g for 
10 min. Supernatants were then transferred into clean test tubes and dried at 65 °C under a stream of nitrogen 
gas. After dissolving residues into 100-µL of Milli-Q water, mixtures were filtered through 0.22 μm-pore filters 
(Centrifugal Filter Units Ultrafree-MC-GV 0.22 μm, Merck Millipore, Darmstadt, Germany) and stored at 
−80°C until liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis. The number of goldfish 
used in this measurement was 4 for each time point.

For the LC-MS/MS analysis of melatonin, 10 µL samples were injected into an HPLC system (AC30AD, 
Shimadzu Corporation, Kyoto, Japan) equipped with a C18 2.0 × 150-mm, 3 µm Kinetex column (Tosoh, Tokyo, 
Japan). The mobile phase comprised 10 µM ammonium acetate in 0.05% (v/v) acetic acid with varying MeOH 
concentrations. The linear gradient was run for over 20 min from 5% to 50% and then maintained at 100% 
MeOH for 10 min. The flow rate was 0.3 mL/min, and the auto sampler and column oven were maintained at 
4 °C and 25 °C, respectively. Melatonin was detected using a triple quadrupole mass spectrometer (LC-MS-8050, 
Shimadzu) and quantified using the multiple reaction monitoring method with transitions of parent ions to 
product ions. The transition for melatonin was m/z 233.0–130.0. The limit of sensitivity for melatonin was 11.1 
fg for a 2:1 signal-to-noise ratio. Intra- and inter-assay variation coefficients were 3.94% and 4.60%, respectively.

Melatonin Melatonin receptor 
(Mel1a1.4)

Osteoblast Osteocyte

Pre-Osteoclast CTCT Mature Osteoclast

Calcium
supply to
plasma

Fig. 7.  Proposed model of the mechanism underlying the suppressive effect of melatonin on plasma calcium 
level. T lines denote inhibitory effects on target pathways. Suppressed pathways are indicated in gray. CT: 
calcitonin.
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Evaluation of the effect of exogenous melatonin on plasma calcium levels in female goldfish
Sexually mature female goldfish were anesthetized with benzocaine and intraperitoneally injected with 
melatonin (FUJIFILM Wako Pure Chemical Industries, Ltd.) in February or April. Melatonin was dissolved 
in dimethyl sulfoxide (FUJIFILM Wako Pure Chemical Industries). Goldfish were kept continuously under 
outdoor conditions. Their plasma calcium levels were determined at 12 and 24 h after the injection of melatonin, 
as described in the previous section. The number of goldfish used in the evaluation in Fig. 6A was 9 for the 
control group and 0.1 μg/g body weight melatonin-administered group, 10 for 1 μg/g body weight melatonin-
administered group and 10 μg/g body weight melatonin-administered group. The number of goldfish used in the 
February 2009 evaluation in Fig. 6B was 12 in the control group and 11 in the melatonin-administered group, 
respectively. The number of goldfish used in the April 2009 evaluation in Fig. 6B was 8 for each of the control 
and melatonin-administered groups.

Evaluation of the effect of exogenous E2 on osteoclastic gene expression in female goldfish 
scales
Sexually mature goldfish were maintained under outdoor conditions prior to the experiment. They were then 
acclimated for 1 week under indoor conditions with a 12L:12D photoperiod and a controlled temperature of 
26 °C ± 1°C. The female goldfish were anesthetized with benzocaine and injected intraperitoneally with 4 μg/g 
body weight of E2 (Sigma-Aldrich). Osteoclastic gene expression in the scales was analyzed with RT-PCR at 3 
days after injection of E2. The number of goldfish used in the evaluation was 4 in the control group and 3 in the 
E2-administered group.

Histological observations of tartrate-resistant acid phosphatase (TRAP) activity in goldfish 
scales
Two hundred scales on the right side of the body were collected from each fish and then fixed in 10% formaldehyde 
in a 0.05 M cacodylate buffer (pH 7.4). Simultaneously, eight scales on the left side of the body of each fish were 
collected in ISOGEN (Nippon Gene, Tokyo, Japan) for quantitative real-time polymerase chain reaction (RT-
PCR) analysis, as described in the next section.

The scales were stained to check for the presence of TRAP using a commercial acid phosphatase leukocyte 
kit (Sigma-Aldrich). The scales were washed using distilled water and incubated with TRAP-staining solution 
for 1 h at 37 °C under dark conditions. The assay components comprised naphthol AS-BI phosphate solution, 
diazotized fast garnet GBC base solution, sodium nitrite solution, acetate solution (pH 5.2), and 10 mM of L(+)-
tartrate solution.

The scales were examined under two different conditions based on TRAP staining and scale erosion level: 
TRAP-stained negative and TRAP-stained positive scales. The former group was characterized by the total 
absence of TRAP staining points inside the scale, whereas the latter group was stained inside the scale and 
absorbed over five ridges (incremental line of scale) by the osteoclasts. The numbers of TRAP-stained negative 
and TRAP-stained positive scales were counted, and the proportion of each scale was determined. The number 
of goldfish used in the histological observations was 6 in January, February, March, April, and June, and 4 in 
August.

RT-PCR
Total RNA was extracted from goldfish scales using ISOGEN (Nippon Gene) following the manufacturer’s 
instructions. Then, the total RNA was reverse-transcribed into cDNA using PrimeScript RT-PCR kit (Takara, 
Shiga, Japan). Each quantitative RT-PCR was performed using the MX3000 P ® QPCR System (Agilent, Tokyo, 
Japan). For a 10 μL PCR reaction, 1-μL containing the cDNA template was combined with 9 μL of the SYBR® 
Premix Ex TaqTM (Takara) and mixed with appropriate primers to a final concentration of 200 nM. The reaction 
mixture was incubated at 90 °C for 10 s, followed by 40 cycles at 95 °C for 30 s and at 60 °C for 40 s. β-actin was 
used for normalization. PCR primer sequences used in the current study are listed in Supplementary Table S1. 
The number of goldfish used in the RT-PCR at each time point was 8 for cathk, V-ATPase, and rankl and 6 for 
ct, ctr, and mel1a1.4.

Statistical analysis
The data are presented as means ± standard errors. Means of more than two groups were compared using analysis 
of variance. Multiple comparisons were evaluated with Tukey’s honestly significant difference tests. Differences 
between the two groups were assessed with a Student’s t-test. P-values <0.05 were considered statistically 
significant.

Data availability
Data that support the study findings are available from the corresponding authors upon reasonable request.
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