
A graph attention network-based
multi-agent reinforcement learning
framework for robust detection of
smart contract vulnerabilities
Philip Kwaku Adjei 1, Qin Zhiguang1, Isaac Amankona Obiri 2, Ansu Badjie 2,
Christian Nii Aflah Cobblah 2, Ali Alqahtani 3, Yeong Hyeon Gu 4 &
Mugahed A. Al-antari 4

Smart contracts have revolutionized decentralized applications by automating agreement
enforcement on blockchain platforms. However, detecting vulnerabilities in smart contract interactions
remains challenging due to complex state interdependencies. This paper presents a novel approach
using multi-agent Reinforcement Learning (MARL) to identify smart contract vulnerabilities. We
integrate a Hierarchical Graph Attention Network (HGAT) into a Multi-Agent Actor-Critic framework,
decomposing vulnerability detection into complementary policies: a high-level policy encoding
historical interactions and a low-level policy capturing structured actions within contract state spaces.
By modeling interactions as multistep reasoning paths, our MARL framework effectively navigates
complex transaction sequences and resolves semantic ambiguities across different contract states.
Experimental evaluations on real-world blockchain datasets demonstrate significant improvements in
detecting multiple vulnerability types. For reentrancy attacks, our model achieves 93.8% accuracy and
an 89.8% F1 score. The framework also performs strongly in detecting front running (88.9% accuracy),
denial-of-service attacks (91.2% accuracy), and unchecked low-level vulnerabilities (91.6% accuracy),
outperforming existing approaches across all vulnerability categories.

Keywords  Smart contract security, Hierarchical reinforcement learning, Graph attention networks,
Blockchain vulnerability detection, Predictive analytics, Decentralized application

Blockchain technology has profoundly reshaped the digital economy by introducing decentralized frameworks
that ensure secure and transparent transactions, particularly within cryptocurrency ecosystems1,2. A key
development in this domain is the emergence of smart contracts, which are self-executing digital agreements
with embedded predefined operational logic. Decentralized Autonomous Organizations (DAOs) leverage smart
contracts to define operational rules and decision-making processes, facilitating transparent and decentralized
governance. These programmable protocols have gained widespread adoption in various sectors, including
decentralized finance (DeFi), supply chain management, and healthcare data administration, due to their ability
to streamline operations and eliminate intermediaries3.

Smart contracts hold transformative potential but face significant technical challenges that threaten their
security and reliability. Persistent vulnerabilities in their design and coding pose considerable risks, including
financial theft and systemic instability, which can erode trust in blockchain-based infrastructures4. Common
security flaws include coding errors such as integer overflows and underflows5,6, reentrancy attacks7,8, weak
access controls9, and reliance on insecure third-party libraries10. These issues are exacerbated by the immutable
and transparent nature of blockchain, making deployed contracts difficult to update or patch11.

Traditional approaches to vulnerability detection, such as static and dynamic code analysis12–15, provide
foundational tools for identifying security flaws in smart contracts. However, these approaches cannot capture

1School of Information and Software Engineering, University of Electronic Science and Technology of China
(UESTC), Chengdu 611731, China. 2School of Computer Science and Engineering, University of Electronic Science
and Technology of China (UESTC), Chengdu 611731, China. 3Center for Artificial Intelligence and Computer Science
Department, King Khalid University, 61421 Abha, Saudi Arabia. 4Department of Artificial Intelligence and Data
Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea. email:
yhgu@sejong.ac.kr; en.mualshz@sejong.ac.kr

OPEN

Scientific Reports | (2025) 15:29810 1| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports

http://orcid.org/0000-0001-8283-8170
http://orcid.org/0000-0002-1642-0291
http://orcid.org/0009-0005-5301-7521
http://orcid.org/0000-0002-7921-7792
http://orcid.org/0000-0003-1052-2657
http://orcid.org/0000-0002-0002-9386
http://orcid.org/0000-0002-4457-4407
http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-14032-w&domain=pdf&date_stamp=2025-8-14

the nuanced and evolving nature of contract interactions in decentralized applications (DApps). As smart
contracts interact with both on-chain and off-chain entities, understanding these interactions’ contextual and
sequential behavior becomes vital. Static analysis, while effective in identifying code-level issues, may overlook
vulnerabilities that emerge during runtime or in complex operational scenarios16.

Recent improvements in machine learning, particularly Reinforcement Learning (RL)17, present an
advantageous pathway for the detection of vulnerabilitiestracts18. By framing vulnerability detection as a
sequential decision-making problem, RL can analyze the evolving states of contract execution and predict
potential risk scenarios. Unlike traditional RL methods, which often treat each decision in isolation, modern
hierarchical RL approaches can effectively leverage contextual information and hierarchical relationships to
navigate large action spaces. This ability to model and adapt to complex contract behaviors makes RL a powerful
tool for mitigating security risks in smart contracts19.

Inspired by human cognitive processes, Hierarchical Reinforcement Learning (HRL) has emerged as an
effective approach for addressing complex reasoning tasks. By decomposing tasks into sub-tasks, HRL facilitates
structured decision-making, allowing models to manage large action spaces and ambiguous semantics through
layered policies20. These frameworks have demonstrated notable success in domains such as knowledge graph
reasoning, where multi-step inference is required to establish connections between entities across diverse
contexts21.

To improve reasoning capabilities, we incorporate a Hierarchical Graph Attention Network (HGAT) into the
Multi-Agent Actor-Critic framework. The HGAT enables efficient representation learning by capturing complex
relationships between entities and actions within smart contract interactions. The hierarchical nature of HRL
consists of high-level policies that encode historical context and low-level policies responsible for executing
structured actions. The integration of graph attention mechanisms allows the model to focus on the most
relevant interactions, improving predictive accuracy in smart contract vulnerability detection.

Our proposed framework leverages the strengths of HRL and Graph Attention Networks (GAT) to enhance
predictive analytics in smart contracts. The high-level policy captures past interaction sequences to provide
contextual awareness, while the low-level policy focuses on fine-grained contract actions, thereby reducing
ambiguity and improving decision-making precision. Our key contributions are as follows:

•	 We propose a novel graph attention network-based multi-agent reinforcement learning approach for detect-
ing vulnerabilities and conducting predictive analytics in smart contract interactions. Our approach employs
hierarchical policies and graph-based representations to model complex contract behaviors and potential
outcomes.

•	 We address the challenges of multi-action sequences, state dependencies, and relational complexities inherent
in smart contracts through a multi-hop reasoning approach, improving predictive accuracy and robustness.

•	 We evaluate our proposed framework on real-world blockchain datasets, demonstrating its effectiveness in
identifying high-risk scenarios and predicting contract outcomes with superior accuracy compared to exist-
ing methods.

This paper is organized as follows. In Section, we review related work on smart contract analysis, reinforcement
learning, and hierarchical models. Section provides the background on theories and concepts of reinforcement
learning, and Section presents the smart contract vulnerabilities under study and the problem statement. Sections
and 0.0.2 detail our proposed methodology, experimental setup, and performance evaluation, respectively.
Finally, Section 0.0.2 concludes with potential applications and future research directions in smart contract
predictive analytics.

Related work
The application of reinforcement learning (RL) in smart contract analysis is an emerging field that aims to address
the limitations of traditional smart contract analysis techniques, particularly regarding dynamic interactions
in blockchain environments. This section reviews relevant studies in three categories: traditional vulnerability
detection methods, RL-based approaches, and recent advancements in deep learning techniques.

Traditional smart contract vulnerability detection methods
Traditional methods for detecting smart contract vulnerabilities have largely focused on static and symbolic
analysis, which are effective for identifying syntax-based errors and ensuring correctness prior to deployment19.
These methods translate Solidity code and Ethereum Virtual Machine (EVM) bytecode into formal verification
systems to detect vulnerabilities before contracts are executed22–24. However, these techniques are limited
in handling the evolving nature of contracts once deployed, where interactions may introduce unforeseen
vulnerabilities.

Tools such as Oyente25, Securify26, and Zeus27 have advanced symbolic analysis to detect potential
vulnerabilities in smart contracts. However, they suffer from high false negative rates due to the difficulty of
exploring all possible execution paths. To address this, dynamic execution approaches like ContractFuzzer28
and Sereum29 have been introduced, enabling runtime monitoring of data flows. These tools provide a more
comprehensive vulnerability assessment but often require hand-crafted agent contracts to detect specific
issues, such as reentrancy vulnerabilities, limiting their generalizability and scalability in complex contract
environments.

Reinforcement learning approaches for smart contract analysis
In response to the limitations of static and symbolic methods, several studies have investigated using RL to
predict outcomes and detect anomalies in smart contract executions. Chen et al.16 proposed an RL-based

Scientific Reports | (2025) 15:29810 2| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

framework where an agent, trained on historical transaction data, simulates contract interactions to anticipate
outcomes that static methods might overlook. Although this approach captures historical behavioral patterns
effectively, it faces scalability challenges when applied to large contract networks with vast action spaces. This
issue highlights a core challenge in adapting RL to decentralized blockchain systems, where numerous possible
states and actions complicate accurate predictions.

Some RL applications outside the smart contract domain, such as DeepPath21, offer insights into handling
complex dependencies in sequential actions. Originally designed for knowledge graph reasoning, DeepPath
applies multi-hop reasoning to connect entities across a sequence of actions. However, its adaptation to smart
contract analysis presents difficulties; the large action spaces and complex state transitions in blockchain data
often result in suboptimal predictions and inefficiencies. These limitations underscore the need for more tailored
RL approaches to address the unique requirements of smart contract interactions.

To address scalability and complexity challenges, hierarchical reinforcement learning (HRL) has been
proposed as a more structured approach. HRL divides the decision-making process into a hierarchy of high-
level and low-level policies, allowing for refined control over extensive action spaces. Barto and Mahadevan20
demonstrated the advantages of HRL in layered decision tasks, suggesting its potential for smart contract analysis,
where contextual awareness across sequences of states and actions is crucial. By structuring decision processes
hierarchically, HRL offers significant advantages over standard RL methods in complex contract environments.

Deep learning for vulnerability detection
Recent advancements in deep learning, particularly graph neural networks (GNNs), have introduced new
techniques for vulnerability detection in smart contracts. GNNs are effective at processing graph-structured
data, making them suitable for representing relationships within contracts. Approaches include spectral-based
methods like GCN30, which generalize convolutional neural networks for graph data, and spatial-based methods
that use message passing for graph convolutions31,32. For example, Zhuang et al.33 converted smart contract
source code into graph structures and applied GNNs for vulnerability detection, capturing dependencies that
traditional methods might miss.

Liu et al.34 further enhanced GNN-based detection by integrating expert rules, which improved accuracy but
presented challenges in explainability and interpretability. These advancements in GNNs represent a significant
shift toward more complex, data-driven approaches to vulnerability detection. However, issues such as feature
significance and model transparency remain, particularly in high-stakes domains like blockchain security.

Tranformer-based vulnerability detection
Guo et al.35 introduced GraphCodeBERT, a pre-trained model that jointly learns code semantics and data flow
structures to improve code understanding tasks such as vulnerability detection and clone identification. Its novel
lies in integrating data flow graphs with masked language modeling, demonstrating superior performance on
code summarization and classification benchmarks. Koreeda and Manning36 proposed ContractNLI, a dataset
and benchmark for document-level natural language inference on legal contracts. The work emphasizes clause-
level entailment reasoning and highlights challenges in understanding legal semantics, providing a foundational
resource for NLP models in legal AI applications.

Wang et al.37 developed TMF-Net, a multimodal smart contract vulnerability detection framework based
on multiscale transformer fusion of code tokens, abstract syntax trees, and control flow graphs. Their fusion
mechanism outperformed single-modality baselines on vulnerability classification tasks, particularly for
reentrancy and timestamp dependence. Shang et al.38 introduced CEGT, a hybrid architecture combining
Connectivity-Enhanced Graph Convolutional Networks (GCN) and Transformers to capture long-range
dependencies and code execution paths in smart contracts. The model achieved state-of-the-art accuracy on
real-world datasets by effectively modeling both structural and sequential code features.

Despite these advances, several key challenges remain. Existing approaches often lack resilience to real-world
obfuscation, suffer from high false-positive rates in dynamic execution contexts, or do not adequately model
the hierarchical and relational semantics across multi-contract ecosystems. Furthermore, reward shaping and
model interpretability are frequently underexplored in RL-based detection settings. These limitations motivate
our proposed GANS-MARL framework, which integrates hierarchical multi-agent reinforcement learning
with graph attention to improve robustness, semantic reasoning, and predictive accuracy in smart contract
vulnerability detection.

Background
Partially observable Markov game formulation for smart contract vulnerability detection
Smart contract vulnerability detection can be effectively modelled as a Partially Observable Markov Game
(POMG), providing a framework for the multi-agent reinforcement learning approach. A POMG extends the
conventional Markov Decision Process to accommodate multiple agents operating with partial observations
of the environment state, which accurately reflects the nature of smart contract analysis where different
vulnerability detection components observe different aspects of the contract code and execution state. A POMG
for N agents is defined by the tuple ⟨S, {Ai}N

i=1, {Oi}N
i=1, T, {ri}N

i=1, γ, ρ⟩, where each component has a
specific interpretation in the vulnerability detection context:

•	 S represents the complete state space of the smart contract environment, encompassing the full bytecode,
storage variables, execution state, transaction history, and all potential execution paths. The state space is
typically high-dimensional and complex, containing all information about contract vulnerabilities, manifest
or latent.

Scientific Reports | (2025) 15:29810 3| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

•	 Ai denotes the action space available to agent i. In vulnerability detection, actions correspond to various
analysis techniques, code transformations, state explorations, or detection heuristics that can be applied to
identify specific vulnerability patterns. For instance, an action might involve examining the control flow after
external calls to detect reentrancy vulnerabilities or analyzing transaction ordering dependencies to identify
front-running vulnerabilities.

•	 Oi represents the observation space of agent i. Since the complete state s ∈ S is typically too complex to
observe fully, each agent receives a partial observation oi ∈ Oi based on its specialized focus. These obser-
vations might include code segments, execution traces, data flow patterns, or specific contract properties
relevant to the agent’s vulnerability detection domain.

•	 T : S × A1 × · · · × AN → ∆(S) is the state transition function that maps the current state and joint actions
to a probability distribution over the next states. In the vulnerability detection framework, this represents how
the analysis state evolves as different detection techniques are applied, with the next state potentially revealing
new aspects of the contract’s behavior or vulnerability status.

•	 ri : S × A1 × · · · × AN → R is the reward function for agent i, which quantifies the effectiveness of detec-
tion actions. The reward structure is fundamental to guiding the learning process toward successful vulner-
ability detection. For reentrancy vulnerability detection, the reward function might assign high values when
the agent identifies a state modification pattern after an external call without proper guards. For unchecked
low-level calls, rewards might correspond to discovering call operations whose return values are not properly
checked. Front-running vulnerability detection rewards would emphasize identifying time-sensitive opera-
tions with transaction ordering dependencies. Denial of service detection rewards would focus on recogniz-
ing patterns that could lead to resource exhaustion or blocking of contract execution.

•	 γ ∈ [0, 1] is the discount factor that balances the importance of immediate versus future rewards, allowing
the agent to consider the long-term consequences of its detection strategies rather than merely focusing on
immediate indicators.

•	 ρ : S → [0, 1] defines the initial state distribution, which in our context represents the starting point of the
analysis, typically the initial state of the smart contract before any vulnerability detection techniques are
applied.

In this framework, each agent i aims to learn a policy πi : Oi → ∆(Ai) that maximizes its expected discounted
return:

	
V π

i = Eπ,T,ρ

[
∞∑

t=0

γtrt
i

]
� (1)

where rt
i represents the reward received by agent i at time step t. The expectation is taken over the trajectories

generated by the joint policy π = (π1, . . . , πN), the transition dynamics T, and the initial state distribution ρ.
The POMG formulation capture the complexity of vulnerability detection, where multiple specialized agents

must coordinate their analysis strategies to uncover different types of vulnerabilities while operating with
incomplete information about the smart contract’s full state.

Deterministic policy gradient
At its core, MADDPG builds upon the Deterministic Policy Gradient (DPG) framework, which aims to learn
a deterministic policy µθ : S → A parameterized by θ that directly maps states to actions. The objective is to
maximize the expected return:

	 J(θ) = Es∼ρµ [R(s, µθ(s))] ≈ Es∼ρµ [Qµ(s, µθ(s))]� (2)

where ρµ is the state distribution induced by policy µ, and Qµ(s, a) is the action-value function that estimates
the expected return when taking action a in state s and following policy µ thereafter.

In the DPG framework, the policy parameters θ are updated using the gradient:

	 ∇θJ(θ) = Es∼ρµ

[
∇θµθ(s)∇aQµ(s, a)|a=µθ(s)

]
� (3)

This gradient comprises two components: ∇θµθ(s), which represents how the policy’s action changes with
respect to the policy parameters, and ∇aQµ(s, a)|a=µθ(s), which indicates how the Q-value changes with
respect to the action. Together, they guide the policy toward actions that maximize the expected return.

Deep deterministic policy gradient
Deep Deterministic Policy Gradient (DDPG) extends DPG by approximating both the policy µθ and the
Q-function Qµ(s, a) using deep neural networks. DDPG employs an actor-critic architecture where:

•	 The actor network µθ : S → A represents the policy, mapping states to deterministic actions.
•	 The critic network Qϕ(s, a) estimates the action-value function, evaluating the quality of state-action pairs.
•	 DDPG incorporates several techniques to stabilize learning:
•	 Experience Replay: Transitions (s, a, r, s′) are stored in a replay buffer D and randomly sampled for training,

breaking the temporal correlations in sequential experiences.
•	 Target Networks: Separate target networks µθ′ and Qϕ′ with delayed parameters are used to compute the

target values, reducing the non-stationarity of the learning targets.

Scientific Reports | (2025) 15:29810 4| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

•	 The critic is updated by minimizing the temporal difference error:

	 L(ϕ) = E(s,a,r,s′)∼D

[
(Qϕ(s, a) − y)2]

� (4)

where y = r + γQϕ′ (s′, µθ′ (s′)) is the target value.
The actor is updated using the deterministic policy gradient:

	 ∇θJ(θ) = Es∼D

[
∇θµθ(s)∇aQϕ(s, a)|a=µθ(s)

]
� (5)

Smart contract vulnerabilities
Vulnerability definitions
Reentrancy vulnerability
Reentrancy vulnerabilities occur when an external call is made before state variables are updated, allowing an
attacker to recursively re-enter the calling function and manipulate the contract’s state. This vulnerability was
famously exploited in the 2016 DAO attack39, resulting in a loss of approximately $60 million. The fundamental
issue lies in the execution order of operations within a function, where premature external calls provide an
opportunity for malicious contracts to exploit partially updated states.

Definition 1  (Reentrancy Vulnerability) Given a contract C with state variables S = {s1, s2, . . . , sn}
and functions F = {f1, f2, . . . , fm}, a function fi ∈ F has a reentrancy vulnerability if: ∃ ex-
ecution trace τ = {op1, op2, . . . , opk} of fi such that ∃j, l ∈ {1, 2, . . . , k} where j < l and
opj = ExternalCall(addr, val, data) and opl = StateUpdate(sp) with sp ∈ S

Here, ExternalCall(addr, val, data) represents a call to an external contract at address addr, with value val
and calldata data, while StateUpdate(sp) represents a modification to state variable sp. The attack vector
emerges when the external contract called can execute malicious code that re-enters the original function
before the state update occurs, allowing multiple withdrawals or other state manipulations. This pattern is
particularly dangerous in financial contracts, as it can lead to unauthorized fund drainage through repeated calls
to withdrawal functions.

Unchecked low-level call vulnerability
Unchecked low-level calls occur when return values from external calls such as send, call, or delegatecall
are not properly verified, allowing execution to continue even when the external call has failed. This can lead to
inconsistent contract state and unexpected behavior. The vulnerability stems from Ethereum’s design choice to
continue execution after a failed call unless explicitly checked, contrasting with the automatic reversion behavior
of high-level interface calls.

Definition 2  (Unchecked Low-Level Call Vulnerability) For a function fi ∈ F containing low-level calls
L = {l1, l2, . . . , lq}, an unchecked low-level call vulnerability exists if: ∃lj ∈ L such that ̸ ∃ condition c in the
control flow graph after lj where c depends on the return value of lj .

This vulnerability can lead to silent failures where important operations like payments fail without the contract
recognizing the failure, potentially causing funds to be locked or accounting to become inconsistent. Smart
contracts often use these low-level calls for Ether transfers or contract interactions, and failure to verify their
success can break the fundamental assumptions of business logic. The disconnect between expected and actual
behavior creates a security gap that can be exploited or can simply result in broken contract functionality that
becomes apparent only under specific conditions.

Front-running vulnerability
Front-running vulnerabilities arise when the order of transaction execution can be manipulated by miners or
other participants to gain an unfair advantage. In blockchain systems, transactions wait in a memory pool before
being selected and ordered by miners, creating an opportunity for adversaries to observe pending transactions
and insert their own transactions ahead of them. This vulnerability exploits the time gap between transaction
submission and confirmation, a fundamental characteristic of decentralized systems.

Definition 3  (Front-running vulnerability) For a set of transactions T = {t1, t2, . . . , tr} that interact with
contract C, a front-running vulnerability exists if: ∃(ti, tj) ∈ T × T , i ̸= j such that Outcome (ti → tj) ̸=
Outcome(tj → ti) and ∃ party P that can profit from controlling execution order.

Here, Outcome(ti → tj) represents the resulting state after executing transaction ti followed by tj , and P
represents any participant in the system who can observe pending transactions. Common instances of front-
running vulnerabilities occur in decentralized exchanges, NFT minting, and auction mechanisms where
transaction ordering directly impacts asset prices or availability. The economic incentives for front-running can
be substantial, making this attack particularly common in high-value markets. The strategy typically involves
observing profitable pending transactions and submitting competing transactions with higher gas prices to
ensure earlier execution.

Scientific Reports | (2025) 15:29810 5| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Denial of service vulnerability
Denial of Service (DoS) vulnerabilities allow attackers to render contracts inoperable by exploiting resource
limitations or control flow dependencies. These vulnerabilities can completely halt contract operations,
preventing legitimate users from accessing services or funds. The immutable nature of blockchain makes these
attacks particularly severe, as vulnerable contracts often cannot be easily modified once deployed.

Definition 4  (Denial of service vulnerability) For a function fi ∈ F , a denial of service vulnerability exists if
either: ∃ execution path p in fi such that GasConsumption(p) scales unboundedly with input or state parameters.
Or: ∃ control flow condition c in fi such that c depends on actions of external actors who can force c to always
evaluate to false.

DoS vulnerabilities can manifest through several mechanisms. Gas limit exploitation forces loops to iterate
over large data structures, potentially exceeding block gas limits. External call dependencies make critical
functions rely on external contracts that can be disabled. Block stuffing prevents specific transactions from being
included in blocks by manipulating gas prices and network congestion. Poison data attacks supply input that
causes excessive computation or storage, rendering functions unusable. These attack vectors are particularly
problematic in smart contracts due to their autonomous nature and the lack of administrative intervention
capabilities in truly decentralized applications.

Challenge formulation
Problem statement
Given the formal vulnerability definitions above, we formulate the challenge of automated vulnerability detection
in smart contracts as follows:

Definition 5  (Smart contract vulnerability detection) For a given smart contract C with state variables S and
functions F , identify the set of vulnerabilities V = {v1, v2, . . . , vp} present in C, where each vi is an instance
of one of the defined vulnerability types. Each identified vulnerability should specify the vulnerable function
fj ∈ F , the vulnerability type (reentrancy, unchecked call, front-running, or DoS), the specific execution path
or condition that triggers the vulnerability, and the potential impact of successful exploitation.

Computational challenges
The detection of these vulnerabilities presents several significant computational challenges. State space explosion
represents a fundamental obstacle, as the number of possible execution paths grows exponentially with contract
complexity. For a contract with n branches, there can be up to O(2n) distinct execution paths, making exhaustive
analysis computationally intractable for complex contracts. This combinatorial explosion limits the effectiveness
of brute-force verification approaches and necessitates more sophisticated techniques.

Partial observability further complicates detection, as no single analysis technique can observe all aspects of
contract behavior. Static analysis may miss dynamic vulnerabilities that only manifest during specific execution
conditions, while dynamic analysis cannot guarantee complete coverage of all execution paths. This limitation
forces detection systems to balance different analysis methods, each with their own blind spots and strengths.

Semantic complexity introduces another layer of difficulty, as vulnerabilities often depend on subtle semantic
properties and inter-contract interactions. The context in which a contract operates, including its interaction
with other contracts and the underlying blockchain protocol, can introduce vulnerabilities that are not apparent
from analyzing the contract in isolation. The meaning and implications of certain operations change based on
the broader ecosystem, requiring analyzers to account for this contextual information.

The challenge of adaptive adversaries stems from the evolving nature of vulnerability patterns as attackers
develop new exploitation techniques. New vulnerability classes emerge as the ecosystem evolves, requiring
detection systems to adapt to previously unknown patterns. This cat-and-mouse game between attackers and
defenders means that detection mechanisms must generalize beyond known vulnerability patterns to identify
novel variations.

The false positive/negative trade-off presents a practical challenge for deployment, as increasing detection
sensitivity typically leads to more false positives while reducing sensitivity increases the risk of missing
vulnerabilities. Finding the optimal balance between these competing objectives depends on the specific security
requirements and risk tolerance of the contract being analyzed.

Multi-agent reinforcement learning approach
We propose formulating the detection task as a multi-agent reinforcement learning problem where specialized
agents focus on different vulnerability types while sharing information to build a comprehensive understanding
of contract security.

Definition 6  (MARL vulnerability detection framework) We define a multi-agent system M = {A1, A2, . . . , Aw}
where each agent Ai specializes in detecting a specific vulnerability type. The state space Si for agent Ai in-
cludes relevant contract features and execution traces. The action space Ai consists of vulnerability detection
decisions and information sharing. The reward function Ri : Si × Ai → R incentivizes correct vulnerability
identification while penalizing false positives. A communication protocol P facilitates information sharing be-
tween agents to improve collective detection accuracy.

This approach enables specialization, as each agent can develop expertise in a specific vulnerability pattern.
Knowledge transfer becomes possible as agents share insights about contract behavior to improve collective

Scientific Reports | (2025) 15:29810 6| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

detection. The system gains adaptability by learning to recognize new vulnerability patterns through
reinforcement learning. Comprehensive coverage is achieved as multiple agents working in parallel examine
different aspects of contract security. The ultimate goal is to develop a robust, adaptive system that can identify
both known vulnerability patterns and novel variations, providing developers with actionable security insights
before contracts are deployed to production networks. By leveraging the collective intelligence of specialized
agents, this approach addresses the computational challenges inherent in vulnerability detection while
maintaining flexibility to evolve alongside the smart contract ecosystem.

Method: hierarchical graph attention-based multi-agent actor-critic framework
Our proposed model integrates hierarchical graph representation learning with multi-agent reinforcement
learning. The unique contributions of each component of our proposed framework are:

	1.	 Multi-Agent Reinforcement Learning (MARL): Conventional single-agent models, such as standard hier-
archical Graph Attention Networks (GAT), encounter significant scalability issues and limitations in parallel
exploration within the context of smart contracts, which involve multiple interacting entities and concurrent
transactions. In contrast, our multi-agent reinforcement learning (MARL) framework effectively addresses
these challenges by partitioning the action space among multiple agents. Each agent can focus on specific
aspects of contract behavior, such as fund flow, function invocation, and external call interactions. This ap-
proach mirrors the decentralized nature of Decentralized Autonomous Organizations (DAOs) and Decen-
tralized Applications (DApps), where actions are both distributed and interdependent. Additionally, MARL
facilitates parallelized learning, which improves convergence rates and enhances robustness in environments
characterized by sparse reward signals.

	2.	 Hierarchical Reinforcement Learning (HRL): The hierarchical decomposition of tasks elucidates the com-
positional attributes of vulnerabilities in smart contracts. At the high level, policies encapsulate overarching
patterns, such as execution context variables and trends derived from historical behavior, whereas low-lev-
el policies delve into specific actions, including sequences of reentrancy calls. Hierarchical Reinforcement
Learning (HRL) enhances temporal abstraction and structured exploration, thereby reducing sample com-
plexity when compared to traditional flat Reinforcement Learning approaches. This hierarchical architec-
ture is crucial for detecting vulnerabilities that emerge across multiple transactions or contract invocations,
which are often overlooked by more simplistic, monolithic frameworks, as highlighted in21.

	3.	 Graph Attention Networks (GAT): The components of smart contracts–encompassing functions, storage
variables, and external calls–naturally configure into a graph structure. While both DA-GNN and DR-GCN
provide fundamental message-passing capabilities, they generally operate on the premise that all neighbor-
ing interactions hold equal importance. In contrast, the Graph Attention Network (GAT) introduces a dy-
namic attention mechanism that allows the model to selectively weigh interactions based on their relevance,
particularly concerning known attack vectors such as reentrancy or unauthorized access patterns. This tar-
geted approach is especially effective in mitigating the effects of irrelevant or noisy nodes and edges within
the graph, improving overall model performance in the context of security analyses.

Foundation
The foundation consists of a multi-dimensional graph representation pipeline that transforms smart contract
bytecode and source code into four specialized graph structures. The Control Flow Graph (CFG) maps execution
pathways and branching logic, capturing the runtime traversal of code. The Data Flow Graph (DFG) traces
variable dependencies and state mutations, revealing how values propagate through the contract. The Function
Call Graph (FCG) documents the invocation hierarchy between methods, exposing potential callback chains.
The Inter-Contract Graph (ICG) models cross-boundary interactions, essential for detecting vulnerabilities that
manifest only in the complex interplay between multiple contracts. Together, these graph representations form a
comprehensive computational model of smart contract behavior suitable for deep structural analysis.

Building on this graph-theoretic foundation, we implement a dual-level attention mechanism within our
neural architecture. This hierarchical graph attention network functions as a trainable feature extractor that
automatically identifies vulnerability-relevant subgraphs within the contract’s structure. At the micro level, intra-
graph attention weights emphasize critical nodes and edges that exhibit vulnerability signatures. At the macro
level, inter-graph attention mechanisms establish cross-references between the four graph representations,
enabling the model to correlate execution paths with data dependencies and cross-contract calls. This multi-
resolution approach facilitates both fine-grained bytecode-level scrutiny and high-level architectural pattern
recognition, mirroring the multi-faceted analysis performed by expert security auditors.

To operationalize vulnerability detection, we implement a distributed multi-agent system where agents
are partitioned into specialized detection clusters. Each cluster employs domain-specific neural network
architectures tailored to particular vulnerability classes. The reentrancy detection cluster utilizes recursive neural
networks to identify unsafe state modifications following external calls. The unchecked-call cluster employs
control-dependency analysis to trace return value propagation through execution paths. The front-running
vulnerability cluster implements temporal logic verification to detect transaction-ordering dependencies.
The denial-of-service cluster applies resource consumption modeling to identify unbounded operations and
potential execution blockages. This modular design allows each agent cluster to optimize its neural architecture
for specific vulnerability patterns.

These components are orchestrated through a multi-agent actor-critic reinforcement learning framework.
The system employs centralized training with a decentralized execution paradigm, where each agent maintains
an independent policy (actor) for local decision-making while sharing a vulnerability-specific critique that
evaluates joint actions. During training, agents interact with a diverse corpus of smart contracts, receiving positive

Scientific Reports | (2025) 15:29810 7| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

reinforcement signals for correctly identified vulnerabilities and negative feedback for false alarms. Through
gradient-based policy optimization, the framework evolves increasingly refined detection strategies without
requiring hard-coded heuristics. This self-improving architecture continuously adapts to novel vulnerability
patterns, achieving a level of detection sophistication that surpasses static analysis approaches.

System architecture
As illustrated in Fig. 1, our approach consists of four primary components: (1) smart contract graph
representation, (2) hierarchical graph attention network, (3) multi-agent actor-critical framework and (4)
vulnerability detection mechanism. These components work in concert to identify complex vulnerability
patterns across multiple contract interactions.

Smart contracts are transformed into graph-based representations that capture their structural and semantic
properties. Given a smart contract C, we construct four complementary graph representations:

Control flow graph
The Control Flow Graph (CFG) GCF = (VCF , ECF) represents the execution paths within
the contract, where VCF is the set of basic blocks (consecutive statements without branching)
and ECF ⊆ VCF × VCF is the set of possible control transfers between blocks. Thus:
ECF = {(vi, vj) | execution can transfer from block vi to block vj}.

Data flow graph
The Data Flow Graph (DFG) GDF = (VDF , EDF) models data dependencies, where VDF represents
variables and operations, and EDF indicates data dependencies. For variables or operations vi, vj ∈ VDF :
(vi, vj) ∈ EDF ⇐⇒ value of vi affects value of vj

Fig. 1.  System architecture for smart contract vulnerability detection using hierarchical graph network.

Scientific Reports | (2025) 15:29810 8| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Function call graph
The Function Call Graph (FCG) GF C = (VF C , EF C) represents the call relationships between functions,
where VF C corresponds to the functions in the contract, and (fi, fj) ∈ EF C indicates that function fi calls
function fj .

Inter-contract graph
The Inter-Contract Graph (ICG) GIC = (VIC , EIC) models interactions between multiple contracts, where
VIC represents contracts and (Ci, Cj) ∈ EIC indicates that contract Ci interacts with contract Cj .

These graph representations collectively capture the structural, behavioral, and semantic properties of smart
contracts necessary for vulnerability detection.

Hierarchical graph attention network
The core of our approach is the Hierarchical Graph Attention Network (HGAT), which processes the graph
representations to extract vulnerability-relevant patterns. The HGAT consists of two key components: agent
clustering and hierarchical attention mechanisms.

Agent clustering
We organize detection agents into K specialized groups {C1, C2, . . . , CK}, where each group Ck focuses on a
specific vulnerability type:

C1: Reentrancy vulnerability detection agents C2: Unchecked low-level call detection agents C3: Front-
running vulnerability detection agents C4: Denial of service detection agents

This clustering introduces an inductive bias that reflects the natural grouping of vulnerability patterns,
allowing agents to develop specialized expertise.

Node embedding with inter-agent attention
For each vulnerability group k and agent i, HGAT computes embeddings between the agent and code components
in its observation range. Given a local observation oi = {sj | j ∈ V (i)}, where sj is the local state of code
component j and V(i) defines the observation range of agent i, we compute:

	 hk
ij = fk

M (si, sj ; wk
M) ∀j ∈ Ck ∩ V (i)� (6)

Where fk
M is a neural network parameterized by wk

M that captures vulnerability-specific relationships.
These embeddings are aggregated using an inter-agent attention mechanism:

	

h̄k
i =

∑
j∈Ck∩V (i)

αk
ijhk

ij � (7)

The attention weight αk
ij quantifies the importance of code component j to agent i in the context of vulnerability

type k:

	
αk

ij =
exp(ek

ij)∑
l∈Ck∩V (i) exp(ek

il)
� (8)

Where ek
ij = fk

α(si, sj ; wk
α) is computed by a neural network fk

α .

Hierarchical state representation with inter-group attention
The group-level embeddings {h̄1

i , h̄2
i , . . . , h̄K

i } are further aggregated through an inter-group attention
mechanism:

	
hi =

K∑
k=1

βk
i h̄k

i � (9)

The inter-group attention weight βk
i determines the focus on each vulnerability type given the current code

context:

	
βk

i = exp(qk
i)∑K

l=1 exp(ql
i)

� (10)

Where qi = [q1
i , . . . , qK

i] = fβ([h̄1
i , . . . , h̄K

i]; wβ) is computed by a neural network fβ .
This hierarchical attention mechanism enables the model to adaptively focus on different vulnerability types

based on the specific code characteristics, producing a comprehensive embedding hi that captures vulnerability-
relevant patterns at multiple levels of abstraction.

Scientific Reports | (2025) 15:29810 9| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Multi-agent actor-critic framework
The HGAT embeddings feed into a Multi-Agent Actor-Critic (MAAC) framework that learns vulnerability
detection policies. The MAAC follows the Centralized Training with Decentralized Execution paradigm, where
agents share information during training but act independently during deployment.

Dual embeddings for critic and actor
For each agent i, we compute two separate embeddings:

hC
i : Used for critic computation, capturing information needed to evaluate state-action pairs.

hA
i : Used for actor computation, focusing on information needed for action selection.

These embeddings are computed by two separate HGAT instances, allowing specialization for different
purposes.

Centralized critics and decentralized actors
The critic for agent i in vulnerability group c(i) evaluates state-action pairs:

	 Qc(i)(o, a) ≈ Qc(i)(hC
i ; ϕc(i))� (11)

Where ϕc(i) are the critic network parameters for vulnerability group c(i).
The actor for agent i determines actions based solely on local observations:

	 ai = µc(i)(oi) ≈ µc(i)(hA
i ; θc(i))� (12)

Where θc(i) are the actor network parameters for vulnerability group c(i).
Agents within the same vulnerability group share networks, enhancing generalization and knowledge transfer.

Training procedure
The training procedure utilizes an Experience Replay Buffer D to store interaction histories. The critic is trained
by minimizing:

	 L(ϕk) = E(o,a,ri,o′)∼D

[
(Qµ

k(o, a; ϕk) − yi)2]
� (13)

Where yi = ri + γQµ′

k (o′, a′; ϕ′
k)|a′

j
=µ′(o′

j
;θ′) is the target value and reward ri is formulated to reflect

detection performance:

	 ri = wT P · IT P − wF P · IF P − wF N · IF N � (14)

where IT P , IF P , and IF N are indicator functions for true positives, false positives, and false negatives respectively,
and wT P , wF P , and wF N are their corresponding weights. The actor is updated using the deterministic policy
gradient:

	

∇θk J(θk)
= E(o,a)∼D

[
∇θk µk(oi; θk)∇ai Qµ

k(o, a; ϕk)|ai=µk(oi;θk)
]� (15)

The training procedure is summarized in Algorithm 1.

Scientific Reports | (2025) 15:29810 10| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 1.  GANS-MARL Training Procedure

As shown in Fig. 1, each vulnerability-specific agent cluster produces actions that contribute to the final
vulnerability assessment. These actions correspond to detecting specific patterns associated with each
vulnerability type:

Reentrancy detection
Reentrancy detection agents identify functions where state modifications occur after external calls. The action
space includes flagging suspicious control flow patterns, identifying state variables modified after calls, and
detecting missing reentrancy guards. The detection mechanism forms a binary classification for each function
fi:

	
R(fi) =

{
1 if ∃ path with state

modification after external call
0 otherwise

� (16)

Unchecked call detection
Unchecked call detection agents identify low-level calls whose return values aren’t properly verified. The action
space includes analyzing error handling patterns, tracking return value propagation, and identifying critical
operations that proceed without verification. For each low-level call lj , the detection produces:

	
U(lj) =

{ 1 if return value not checked
0 otherwise � (17)

Scientific Reports | (2025) 15:29810 11| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Front-running detection
Front-running detection agents identify operations vulnerable to transaction ordering manipulation. The action
space includes analyzing time-sensitive operations, identifying value calculations dependent on the state that
could be front-run, and detecting missing commit-reveal patterns. For transaction-sensitive operations tk :

	
F (tk) =

{ 1 if operation vulnerable to front-running
0 otherwise � (18)

Denial of service detection
DoS detection agents identify patterns that could lead to resource exhaustion or execution blocking. The action
space includes analyzing loop conditions, identifying gas-intensive operations, and detecting control flow
dependencies that could be manipulated. For each potential DoS vector dm:

	
D(dm) =

{ 1 if vector can cause denial of service
0 otherwise � (19)

The final vulnerability assessment combines these individual detections to provide a comprehensive security
analysis of the smart contract.

Reward processing and learning mechanism
The reward mechanism plays a crucial role in guiding our multi-agent framework toward effective vulnerability
detection. We define rewards based on detection accuracy, with positive reinforcement for correctly identified
vulnerabilities and penalties for false positives and false negatives.

Reward processing and learning mechanism
Our framework employs a reward processing mechanism to guide the multi-agent system toward effective
vulnerability detection. For each vulnerability group k and agent i, reward ri in equation (14) quantifies detection
performance by balancing true positives against false positives and negatives. These rewards directly inform the
learning process through an Experience Replay Buffer D that stores interaction histories, as described in Eq.
(13). The critic networks are trained by minimizing the loss function L(ϕk) shown in equation (13), which
measures the temporal difference error between predicted and target Q-values. This approach enables our agents
to learn from past experiences and generalize to new smart contract instances.

The reward signals play a crucial role in shaping the hierarchical attention mechanisms that form the core
of our detection system. As agents receive rewards for successful detections, the attention weights αk

ij and βk
i

defined in Equations (8) and (10) adapt dynamically. The inter-agent attention weights αk
ij gradually concentrate

on code components that consistently contribute to accurate vulnerability identification, while the inter-group
attention weights βk

i shift focus toward vulnerability types where the detection performance is strongest. This
adaptive attention mechanism allows the system to efficiently allocate computational resources to the most
promising aspects of code analysis.

The actor networks, which determine the detection actions, are updated using the deterministic policy gradient
approach specified in Equation (14). This gradient-based optimization reinforces actions that yield higher
expected rewards according to the critic’s evaluation. As training progresses, the agents develop increasingly
sophisticated detection strategies that can identify subtle vulnerability patterns across different smart contract
structures. The entire reward processing pipeline creates a positive feedback loop where successful detection
behaviors are reinforced, allowing our framework to continuously improve its capability to identify complex
vulnerability patterns while maintaining high detection accuracy across different smart contract architectures
and programming patterns.

Experimental setup and performance evaluation
In this section, we conduct extensive experiments to evaluate the performance of our Graph Attention Network-
Based Multi-Agent Reinforcement Learning approach for robust smart contract vulnerability detection (GANs-
MARL). Our simulation aims to determine how effectively the GANs-MARL framework detects vulnerabilities
through real-time node communications and monitors dynamic interactions within a blockchain network.
Specifically, we address the following:

	1.	 Dynamic Exploitation: How can the vulnerability detection module capture and exploit the dynamic inter-
dependencies among blockchain entities to enhance vulnerability detection?

	2.	 Context-Dependent Analysis: Can the proposed method dynamically analyze context-dependent vulnera-
bilities in smart contracts to improve early detection and mitigation?

These investigations comprehensively assess GANs-MARL’s capability in real-time vulnerability detection and
response in blockchain environments.

Experimental setup
We evaluated our GANs-MARL framework using two smart contract datasets: the SB Curated Dataset, which
contains 69 vulnerable contracts totaling 3,799 lines of code, and the SB Wild Dataset, which includes 47,518
contracts totaling approximately 9.7 million lines of code40. We synthetically expanded these datasets; the
SB Curated Dataset now comprises over 16,761 functions from 5,170 contracts, while the SB Wild Ethereum
Dataset obtained from Etherscan includes over 437,696 functions from 50,332 contracts. This expansion

Scientific Reports | (2025) 15:29810 12| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

involved pattern matching, static analysis, cross-referencing with vulnerability databases to identify relevant
contracts, and blockchain scanning, deduplication, and filtering based on complexity, interaction, transaction
behavior, and code uniqueness.

To further explain, the SB Curated Dataset was expanded by leveraging a combination of pattern-based
vulnerability detection, static analysis tools (eg, Slither and SmartCheck), and cross-referencing with established
vulnerability databases such as SmartBugs41, SolidiFI42, and DASP43. To identify functions indicative of known
exploit classes, we applied custom pattern-matching rules that targeted specific vulnerability signatures,
including reentrancy call patterns, unchecked call value usage, and improper access modifiers. In parallel, the
SB Wild dataset was filtered using a set of heuristics derived from contract interaction graphs, code complexity
metrics, and transaction behavior. This process ensured that the extracted contract samples represented diverse
and realistic deployment scenarios, improving the dataset’s quality and its alignment with real-world smart
contract ecosystems.

In our extended datasets, vulnerabilities were classified into four categories using pattern matching, static
analysis, database cross-referencing, blockchain scans, deduplication and intelligent filtering. For reentrancy,
i.e., recursive calls and cyclic interactions, the curated dataset contains about 32 instances, and the wild dataset
contains about 1,000. Unchecked low-level calls where external calls (e.g., call() and delegate call ()) create time-
varying dependencies, comprising about 26 instances in the curated dataset and 900 in the wild dataset. Front-
running, which results from the sequence of transactions and the mutual dependency within a block, comprises
about 29 instances in the curated data set and almost 850 in the wild data set. Denial of service, characterized by
computational overload and dynamic interaction propagation, comprises about 28 cases in the curated dataset
and about 1,050 in the wild dataset.

Implementation details
All experiments were conducted on an Intel® Xeon® W-2255 CPU with 256GB RAM and 2 × GeForce RTX
3090 GPUs running Ubuntu 20.04. Our vulnerability detection system comprises three main components:
Graph Generation, Node Embedding using a Graph Attention Network (GAT), and a Multi-Agent Actor-Critic
Deep Q Network. All code is implemented in Python, with the deep learning modules built using the PyTorch
framework.

Parameter settings
The GANs-MARL framework combines multi-agent actor-critic deep reinforcement learning with a GAT to
analyze smart contract interactions44. The architecture features a GAT module that transforms 128D vectors into
64D embeddings, which feed into dual networks: an actor for vulnerability detection and a critic for state value
estimation. Both networks use two hidden layers (256/128 neurons). Optimization employs Adam (learning
rate: 10−4, β1 = 0.9, β2 = 0.999) with key hyperparameters including a 0.99 discount factor, 128 batch size,
and 1M replay buffer. Training uses 80% of data with epsilon-greedy exploration decreasing from 1.0 to 0.144.

Benchmarks
We compare GANs-MARL with several state-of-the-art smart contract vulnerability detection methods,
encompassing both traditional analysis tools and machine learning approaches:

•	 Mythril45: A symbolic execution and taint analysis tool that systematically explores execution paths to detect
security flaws.

•	 Slither46: A static analysis framework that constructs and inspects data/control flow graphs to uncover vul-
nerability patterns without executing the code.

•	 MythSlith45: A hybrid solution combining Mythril’s dynamic techniques with Slither’s static analysis for more
comprehensive detection.

•	 Graph Neural Network (GNN)47: Processes contracts as graphs, iteratively propagating information between
nodes to learn vulnerability patterns from structural and data-flow relationships.

•	 Graph Convolutional Network (GCN)48: An extension of GNNs that applies convolutional operations on
graph data, capturing local neighborhoods for semi-supervised tasks.

•	 Degree-Free Graph Convolutional Network (DR-GCN)49: Improves on GCN by accommodating variable
node degrees and multi-relational graphs, enhancing feature propagation in complex structures.

•	 Dual Attention Graph Neural Network (DA-GNN)50: Transforms the control-flow graph into node-level
features, then employs a dual attention mechanism within a graph attention network. The final embeddings
are aggregated via self-attention to detect security vulnerabilities.

Detection performance across multiple vulnerability categories
In this section, we compare our proposed GANs-MARL with 4 smart contract vulnerability detection tools
(Smartcheck, Mythril, Slither, and MythSlith) and 4 neural network based methods (GNN, GCN, DR-GCN, and
DA-GNN) under four critical vulnerability categories: Reentrancy, Unchecked Low Level Calls, Front Running,
and Denial of Service. In this experiment, we evaluate the performance in terms of accuracy, recall, precision,
and F1-score, which are widely adopted metrics in vulnerability detection tasks. Accuracy measures the overall
correctness of detection, recall indicates the model’s ability to identify all existing vulnerabilities, precision
reflects the reliability of positive predictions, and F1-score provides a balanced measure between precision and
recall.

As shown in Table 1, our evaluation across four critical smart contract vulnerability types reveals that neural
network-based methods consistently outperform conventional detection tools. For Reentrancy vulnerabilities,
which represent one of the most sophisticated attack vectors in smart contracts, GANs-MARL achieves a

Scientific Reports | (2025) 15:29810 13| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

remarkable accuracy of 93.8%, substantially surpassing traditional tools like Smartcheck (62.5%) and Mythril
(75.3%). This significant performance gap demonstrates GANs-MARL’s enhanced capability in capturing
complex patterns of recursive calls and state-dependent vulnerabilities. In detecting Unchecked Low-Level Calls,
GANs-MARL maintains its superior performance with 91.6% accuracy, while conventional methods like Slither
and MythSlith achieve only 76.1% and 79.8% accuracy, respectively, highlighting the advantages of our approach
in analyzing cross-contract interactions. The results from Table 1 further indicate GANs-MARL’s robust
performance in detecting Front Running vulnerabilities, achieving 88.9% accuracy compared to traditional tools
that struggle to surpass 80%. For Denial of Service detection, GANs-MARL sets a new benchmark with 91.2%

Analysis of recall metrics in Table 1 reveals the superior capability of GANs-MARL in identifying actual
vulnerabilities across all categories. For Reentrancy detection, GANs-MARL achieves a recall of 90.7%,
significantly outperforming traditional tools like Smartcheck (58.3%) and Mythril (71.8%). This substantial
improvement demonstrates GANs-MARL’s enhanced ability to capture complex vulnerability patterns that
conventional static analysis often misses. In detecting Unchecked Low-Level Calls, GANs-MARL maintains its
strong performance with 88.4% recall. At the same time, conventional tools like Smartcheck and Mythril achieve
only 54.1% and 68.7%, respectively, indicating their limitation in identifying vulnerabilities within low-level
contract interactions. The performance gap becomes even more pronounced for Front Running vulnerabilities,
where GANs-MARL achieves 85.8% recall, substantially surpassing traditional methods like Slither (69.5%) and
MythSlith (73.2%). Similarly, in Denial of Service detection, GANs-MARL sets a new benchmark with 88.1%
recall, compared to conventional tools that struggle to exceed 70% recall rates.

Precision metrics in Table 1 demonstrate GANs-MARL’s superior ability to minimize false positives
across all vulnerability types. For Reentrancy detection, GANs-MARL achieves 88.9% precision, substantially
outperforming both traditional tools like Smartcheck (55.7%) and advanced approaches like DA-GNN (86.2%).
In detecting Unchecked Low-Level Calls, GANs-MARL maintains high precision at 86.1%, significantly above
conventional methods like Slither (69.1%) and Mythril (65.2%). Similar performance gaps are observed in Front
Running and Denial of Service detection, where GANs-MARL achieves 83.2% and 85.4% precision respectively,
demonstrating its robust capability to accurately identify legitimate vulnerabilities while minimizing false
alerts. The F1-scores in Table 1 provide a balanced assessment of GANs-MARL’s overall detection capability.
For Reentrancy, GANs-MARL achieves an F1-score of 89.8%, significantly surpassing both traditional tools
(Smartcheck: 57.0%, Mythril: 70.3%) and other neural network approaches. This superior performance extends
to Unchecked Low-Level Calls (87.2% F1-score), Front Running (84.5%), and Denial of Service (86.7%),
consistently demonstrating GANs-MARL’s balanced approach in vulnerability detection.

Convergence performance for neural network detection approaches
Figure 2a illustrates the progression of mean reward over iterations for different vulnerability detection models
in smart contracts. The trends indicate how well each model optimizes its performance as learning progresses.
Among the models, GANs-MARL exhibits a unique trajectory, where its hierarchical structure initially limits its
performance, resulting in a slower reward accumulation in the early stages. This is likely due to the multi-level
learning approach, where different layers must coordinate effectively before achieving optimal results. However,
once the model fully adapts to the vulnerability patterns, GANs-MARL outperforms all other models in the later
iterations, demonstrating its superior learning capability and adaptability.

DR-GCN shows the fastest initial improvement, achieving high mean rewards early in the training process.
This suggests that decentralized graph convolutional networks can effectively learn from contract vulnerabilities
in a structured way, quickly optimizing decision-making. However, its performance stabilizes and fluctuates in
later iterations, indicating possible limitations in long-term learning efficiency or generalization. On the other
hand, DA-GNNs and GCNs exhibit moderate performance growth, with steady improvements but without
surpassing GANs-MARL in the final stages. This suggests that while graph-based models can efficiently extract
vulnerability structures, they lack the adaptive learning capability of reinforcement-learning-driven models.
Overall, GANs-MARL achieves the highest final mean reward, reinforcing the effectiveness of hierarchical

 Methods

Reentrancy
Unchecked Low Level
Calls Front Running Denial of Service

Acc Rec Prec F1 Acc Rec Prec F1 Acc Rec Prec F1 Acc Rec Prec F1

Smartcheck 62.5 58.3 55.7 57.0 58.2 54.1 52.3 53.2 55.8 51.2 49.6 50.4 60.1 56.4 53.8 55.1

Mythril 75.3 71.8 68.9 70.3 72.4 68.7 65.2 66.9 69.5 65.8 62.4 64.1 71.8 68.2 64.7 66.4

Slither 78.9 75.2 72.6 73.9 76.1 72.4 69.1 70.7 73.2 69.5 66.3 67.9 75.5 71.8 68.4 70.1

MythSlith 82.4 78.9 76.2 77.5 79.8 76.1 73.2 74.6 76.9 73.2 70.1 71.6 79.2 75.6 72.3 73.9

GNN 85.7 82.3 79.8 81.0 83.2 79.8 76.9 78.3 80.4 76.8 73.9 75.3 82.7 79.2 76.1 77.6

GCN 87.9 84.6 82.1 83.3 85.6 82.3 79.5 80.9 82.8 79.4 76.5 77.9 85.1 81.7 78.8 80.2

DR-GCN 89.2 86.1 83.7 84.9 87.1 83.9 81.2 82.5 84.5 81.2 78.4 79.8 86.8 83.4 80.6 82.0

DA-GNN 91.5 88.4 86.2 87.3 89.3 86.1 83.6 84.8 86.7 83.5 80.8 82.1 88.9 85.6 82.9 84.2

GANs-MARL 93.8 90.7 88.9 89.8 91.6 88.4 86.1 87.2 88.9 85.8 83.2 84.5 91.2 88.1 85.4 86.7

Table 1.  Performance comparison of vulnerability detection methods across different vulnerability types.
Values are shown in percentages (%). Acc = Accuracy, Rec = Recall, Prec = Precision. Best results are shown in
bold.

Scientific Reports | (2025) 15:29810 14| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

learning combined with reinforcement optimization. Although its performance was initially constrained by
complex learning dependencies, its ability to refine strategies over time allows it to surpass other models in the
long run. This highlights the advantage of hierarchical reinforcement learning in smart contract vulnerability
detection, where early-stage inefficiencies are compensated by enhanced long-term performance and adaptability.

Figure 2b also shows the performance in terms of loss reduction across different models over training
iterations. The loss function represents the error between predicted vulnerability classifications and actual
vulnerabilities in smart contracts. As seen in the figure, all models experience a sharp decline in loss in the initial
training phases, indicating rapid learning and adaptation. However, GANs-MARL achieves the lowest final
loss, demonstrating its superior ability to generalize and optimize during training. Initially, GNNs and GCNs
exhibit relatively high loss values, suggesting that their structural learning approaches require more training to
converge. Although GNNs show an early decline, they eventually stabilize at a higher loss value compared to
GANs-MARL and DR-GCN. DA-GNNs and DR-GCNs demonstrate faster convergence than GNNs and GCNs,
showing strong adaptability in smart contract vulnerability detection. The GANs-MARL model, despite starting
with a higher loss due to its hierarchical complexity, achieves the most stable and lowest loss across iterations,
indicating improved optimization and feature extraction. A key observation is the final stabilization of loss
values. GANs-MARL and DR-GCN achieve the lowest final loss, suggesting they have effectively minimized
misclassification errors. On the other hand, GNNs and GCNs settle at relatively higher loss values, reinforcing
their limitations in vulnerability detection compared to reinforcement-learning-based methods. This confirms
that models integrating hierarchical learning (GANs-MARL) and decentralized decision-making (DR-GCN)
yield more precise and reliable vulnerability detection in smart contracts, as they consistently maintain lower
loss values across extended training iterations.

Reward sensitivity analysis
We conducted a reward weight sensitivity study by varying the reward weights (wT P , wF P , wF N) across three
configurations:

•	 Balanced: wT P = 1.0, wF P = 1.0, wF N = 1.0
•	 Precision-Focused: wT P = 1.0, wF P = 1.5, wF N = 1.0
•	 Recall-Focused: wT P = 1.0, wF P = 0.5, wF N = 1.5

The results, shown in Fig. 3 and Table 2 of the revised manuscript, indicate that:

•	 The precision-focused configuration improved the F1-score by 2% in low-FP scenarios.
•	 The recall-focused setting enhanced vulnerability recall by 4%.

Analyzing the convergence using the mean episode reward and loss trajectory across 2,000 iterations. The
recall-focused setting led to slower early convergence but better final performance, while the balanced reward
configuration yielded faster convergence with robust but slightly less specialized detection results, as shown in
Fig. 3.

ROC performance for vulnerability detection
In this section, we analyze the Receiver Operating Characteristic (ROC) curves to evaluate the performance of
different models in detecting various types of software vulnerabilities. Using the ROC curve, we can determine
the trade-off between the true positive rate (TPR) and the false positive rate (FPR) and gain insight into the
effectiveness of each model in distinguishing between vulnerable and non-vulnerable instances. Using the ROC
curves, we can assess which models achieve high detection accuracy with minimal false positives, ultimately
identifying the most robust approaches for detecting vulnerabilities. Figure 4a shows that for reentrancy
detection, GANs-MARL quickly reaches a high TPR with a low FPR, outperforming DR-GCN, while traditional

(a) (b)

Fig. 2.  Convergence performance.

Scientific Reports | (2025) 15:29810 15| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

GNNs lag. DA-GNNs and GCNs perform moderately, with DA-GNNs leading. In Fig. 4b, all models improve on
front-running detection. It is noteworthy that GANs-MARL once more exhibits superior performance, attaining
a near-perfect true positive rate (TPR) over 0.9 alongside minimal false positive rates. This is followed by DR-
GCN, with DA-GNNs demonstrating a marked improvement over GCNs. In the context of DoS detection, as
illustrated in Fig. 4c, both GANs-MARL and DR-GCN achieve TPR values exceeding 0.9 and false positive rates
(FPR) below 0.2, with DA-GNNs effectively narrowing the performance disparity.

Nevertheless, GNNs and GCNs exhibit limitations, particularly in addressing the intricate decision
boundaries required for effective DoS detection. In the context of Unchecked Low-Level vulnerability detection,
as depicted in Fig. 4d, the disparity in performance is negligible, indicating that this particular vulnerability is
more readily identifiable. While GANs-MARL remains the preeminent approach, its advantage diminishes, given
that all models attain a high TPR (> 0.8) with an FPR of 0.2. Traditional GNNs perform optimally compared
to historical benchmarks, yet they remain the least efficacious in a comparative analysis. The ROC analysis
delineates a distinct hierarchy: GANs-MARL leads, followed by DR-GCN, with DA-GNNs being moderately
effective, whereas GCNs and traditional GNNs are notably less effective, particularly for complex vulnerabilities
such as reentrancy and front running.

Detection speed analysis (time-to-detection per vulnerability type)
This experiment evaluates model speed in identifying vulnerabilities, balancing precision and recall, as shown in
Fig. 5. Detection time is plotted against the FPR, revealing that increased FPR reduces detection time. At an FPR
of 0.05, GNNs require about 80 time units, whereas GANs-MARL need only 10 units, showing their efficiency.
Allowing a slight increase in false positives leads to faster detection. GANs-MARL consistently demonstrates the
quickest detection across scenarios, followed by DR-GCN, excelling in early detection, particularly in Reentrancy
and Front Running, detecting vulnerabilities under 5-time units at an FPR above 0.2. This highlights the benefits
of hierarchical reinforcement learning and adversarial training in speeding up detection while maintaining high
precision. In Fig. 5a, GANs-MARL show the fastest detection times for Reentrancy vulnerabilities across all
FPRs, detecting them in 5-time units at an FPR of 0.1, compared to 8-time units for DR-GCN. DA-GNNs, GCNs,
and GNNs are much slower, with GNNs taking up to 50 time units. Similar results occur in Front Running
detection (Fig. 5b), where GANs-MARL and DR-GCN maintain low FPR and quick detection. At an FPR of
0.15, DR-GCN detects vulnerabilities in 7-time units, while DA-GNNs need about 15, and GNNs over 40-time
units. This indicates that GANs-MARL and DR-GCN are optimized for fast vulnerability patterns.

In Fig. 5c, the DoS detection experiment shows a clustered performance among top models, with GANs-
MARL and DR-GCN leading. DA-GNNs narrow the gap, detecting vulnerabilities in 18-time units at an FPR of
0.1, compared to 6-time units for GANs-MARL and 10 for DR-GCN. In contrast, GCNs and GNNs take over
40-time units, rendering them less effective for real-time applications. For Unchecked Low-Level vulnerability

Reward Setting Recall (%) Precision (%) F1-Score (%) Convergence Epoch

Balanced (1.0, 1.0, 1.0) 85.9 87.2 86.5 940

Precision-Focused (1.0, 1.5, 1.0) 83.1 89.4 86.1 1020

Recall-Focused (1.0, 0.5, 1.5) 88.7 84.1 86.3 1170

Table 2.  Effect of reward weight configurations on detection performance. The bold values signifies the best
results.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

0.2

0.4

0.6

0.8

1

1.2

Training Episodes

M
ea
n
E
p
is
o
d
e
R
e
w
ar
d

Balanced Precision-Focused Recall-Focused

Fig. 3.  Training convergence under different reward configurations, showing average episode reward
progression over 2000 episodes. Precision-focused rewards suppress false positives while recall-focused
rewards encourage detection of rare vulnerabilities.

Scientific Reports | (2025) 15:29810 16| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

detection shown in Fig. 5d, the performance gap is smaller, indicating easier detectability. Although GANs-
MARL remains the most efficient–detecting vulnerabilities in 4-time units at an FPR of 0.2–the differences
among models are less pronounced, with DR-GCN at 6-time units, DA-GNNs at 12, and GNNs at up to 25-
time units. ‘The link between detection speed and FPR shows that GANs-MARL and DR-GCN offer quick and
accurate detection, suitable for real-time security. Meanwhile, traditional GCNs and GNNs detect more slowly,
especially with complex vulnerabilities such as reentrancy, highlighting the advantages of using GANs-MARL,
where the graph module enables the efficient extraction of intricate dependency patterns and the MARL allows
each agent to dynamically optimize detection strategies based on evolving threat scenarios.

Detection latency performance analysis
In this section, we analyze the detection time for various models in identifying smart contract vulnerabilities, as
shown in Fig. 6a. The graph plots detection time versus window size, highlighting performance differences. GANs-
MARL uses a hierarchical approach to decompose complex decisions, improving scalability and generalization.
Graph Attention Networks (GATs) enhance this by prioritizing key interactions, while reinforcement learning
continuously refines detection based on past behaviors. Consequently, GANs-MARL exhibits the lowest
detection times, outperforming traditional GNNs and centralized GCN-based models. At a window size of 30,
GANs-MARL achieves a detection time of approximately 0.2, compared to 10.05 for DR-GCN, 20.11 to 25 steps
for DA-GNNs and GCNs, and 46.26 to 53.73 steps for traditional GNNs. The effectiveness of GANs-MARL can
be attributed to its multi-agent architecture, which facilitates parallel processing of contract interactions, while
its attention mechanism effectively filters out irrelevant information. Conversely, traditional models are required
to process the entire contract graph sequentially, resulting in computational bottlenecks with increasing window

(a) (b)

(c) (d)

Fig. 4.  ROC curves comparing the performance of different graph neural network architectures (GNNs,
GCNs, DA-GNNs, DR-GCN, and GANs-MARL) across four smart contract vulnerability detection tasks.

Scientific Reports | (2025) 15:29810 17| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

(a) (b)

Fig. 6.  Detection performance with varying window sizes and detection-reward trade-offs.

(a) (b)

(c) (d)

Fig. 5.  Time to detect vs. false positive rate for smart contract vulnerability detection tasks per Vulnerability
Type.

Scientific Reports | (2025) 15:29810 18| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

sizes. Moreover, the experience replay mechanism in GANs-MARL enables the utilization of previously acquired
patterns, thereby substantially diminishing redundant computations when examining similar vulnerability
structures across various contracts.

Figure 6b shows the tradeoff between “normalized reward” and detection rate for vulnerability detection
using hierarchical reinforcement learning with graph attention networks (GANs-MARL). The graph reveals
that combining hierarchical attention with reinforcement learning forms a more robust and adaptable detection
system compared to traditional methods. GANs-MARL excels by analyzing smart contracts at various levels,
from individual operations to overarching vulnerabilities. Traditional GNNs, with their centralized processing,
cannot effectively optimize reward signals across levels, leading to rapid performance degradation and a drop to
0.1 reward at a 2.0 detection rate due to their monolithic structure. GANs-MARL successfully integrates local
and global contract features through hierarchical attention, dynamically adjusting detection strategies based
on past performance. This enhances detection accuracy and surpasses the limitations of centralized GNNs,
especially in identifying complex or novel vulnerabilities requiring an understanding of both local and global
contract aspects.

Ablation study
Table 3 presents an ablation study of our GANs-MARL architecture over different vulnerability types. The complete
model consistently achieves better performance in all categories and metrics. For reentrancy detection, the most
complex type of vulnerability, our complete model achieves an accuracy of 93.8% and F1 score of 89.8%, with
performance gradually decreasing as key components are removed. The sharpest drop in performance occurs
when the reinforcement learning component is removed, resulting in an 8.1% drop in accuracy for reentrancy
detection. Front running detection shows similar trends, with the full model achieving 88.9% accuracy and
performance dropping to 80.4% without reinforcement learning. DoS and Unchecked Low-Level vulnerabilities
continue to exhibit robust performance within the comprehensive model, achieving 91.2% and 91.6% accuracy,
respectively. The performance demonstrates the model’s resilience to several vulnerabilities. Each component
of the proposed architecture significantly increases the efficiency of the model, and their integration leads to
superior results. The Graph Attention Network selectively prioritizes critical interactions by filtering out noise
and highlighting important structural patterns, while the Reinforcement Learning Agent dynamically adjusts
the detection strategy based on evolving threat scenarios.

Robustness to obfuscation and code perturbations
To assess GANS-MARL’s resilience against real-world obfuscation tactics, we constructed an adversarial contract
evaluation set using the following transformations:

•	 Minification: Removal of all comments and whitespaces.
•	 Block Reordering: Reordering of non-dependent code blocks (eg, function declarations).
•	 Variable Renaming and Literal Shuffling: Using semantic-preserving transformations.

This test set includes 320 obfuscated contracts from EtherScan (https://etherscan.io/) covering Unchecked Low
Level Calls vulnerability types.

Results: As shown in Table 4, the model retains strong accuracy and F1-score, only marginally lower than
on the canonical SB Wild dataset. This suggests that GANS-MARL effectively captures semantic and relational
structure rather than superficial syntax.

Perturbation type Acurracy (%) Recall (%) Precision (%) F1-Score (%) ∆ F1-Score

No Obfuscation (Baseline) 91.3 85.9 86.5 87.2 –

Minified Solidity 90.4 83.2 84.7 86.3 -0.9

Reordered Code Blocks 89.6 81.9 83.7 85.7 -1.5

Renamed Variables + Literals 88.9 80.3 82.5 84.8 -2.4

All Perturbations Combined 88.3 81.5 82.7 83.9 -3.3

Table 4.  Model performance on obfuscated and perturbed smart contracts.

Model variation Metric (%)

Reentrancy Front Running DoS Unchecked low-level

Acc Rec Prec F1 Acc Rec Prec F1 Acc Rec Prec F1 Acc Rec Prec F1

Full GANs-MARL Value 93.8 90.7 88.9 89.8 88.9 85.8 83.2 84.5 91.2 88.1 85.4 86.7 91.6 88.4 86.1 87.2

Without MARL Value 89.2 86.1 83.7 84.9 84.5 81.2 78.4 79.8 86.8 83.4 80.6 82.0 87.1 83.9 81.2 82.5

Without graph attention Value 87.9 84.6 82.1 83.3 82.8 79.4 76.5 77.9 85.1 81.7 78.8 80.2 85.6 82.3 79.5 80.9

Without RL Value 85.7 82.3 79.8 81.0 80.4 76.8 73.9 75.3 82.7 79.2 76.1 77.6 83.2 79.8 76.9 78.3

Table 3.  Ablation study of GANs-MARL model variations across different vulnerability types.

Scientific Reports | (2025) 15:29810 19| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

https://etherscan.io
http://www.nature.com/scientificreports

False-positive analysis and case examples
We reviewed predictions on 150 manually validated clean contracts (verified on Etherscan) to quantify and
explain false positives.

False Positive Rate: 6.8% overall, primarily in complex multi-contract systems.
Common Patterns:

•	 Contracts using custom proxy patterns or inline assembly triggered false alarms due to novel execution traces.
•	 Mislabeling occurred when internal function invocations mimicked known vulnerability paths.

We included two anonymous case studies below detailing why GANS-MARL flagged these benign contracts and
proposed model adjustments (eg, integrating proxy detection heuristics).

Case 1—Proxy Contract Misclassification: The model flagged a verified upgradable proxy contract that
included fallback functions and delegate calls. While safe by design, its structure mimicked known reentrancy
attack patterns. The model over-relied on control flow similarity between benign and malicious contracts. Future
improvements will integrate proxy-aware logic to reduce such confusion.

Case 2—Inline Assembly Confusion: The contract used inline assembly for gas optimization and low-level
call management. These patterns activated the model’s path attention mechanism due to their syntactic overlap
with low-level exploit routines. We hypothesize that this confusion arose from sparse training samples featuring
safe inline assembly. Augmenting the training set with verified assembly-based contracts is planned as future
work.

Overall, these false positives illustrate that while GANS-MARL generalizes well, some semantic-rich patterns
still challenge its interpretability.

Impact of class imbalance
We conducted an imbalanced setting test by training on downsampled vulnerability subsets (ratio 1:5, vulnerable
: clean). The model was then evaluated on the full SB Wild dataset.

Findings (see Table 5):

•	 F1-score dropped, mainly due to reduced recall.
•	 Precision remained above, showing the model’s robustness to class skew.

Cross-validation performance analysis
To address the issue of overfitting, we conducted 5-fold cross-validation on the complete dataset. The performance
metrics for both training and validation, specifically accuracy and F1 score, are presented comprehensively in
Table 6 across all folds.

From Table 6 the key observations include:

•	 Small generalization gap: Mean training-validation accuracy difference is only 0.6%
•	 Low variance across folds: Standard deviation < 0.3% for all metrics
•	 Consistent F1-score performance: Training and validation F1-scores differ by only 0.3%

Generalization gap analysis across vulnerability types
The data presented in Table 7 indicates only minimal overfitting across the different vulnerability categories. The
consistently low generalization gaps, remaining under 1% for all vulnerability types, imply robust generalization
capabilities rather than a susceptibility to overfitting on specific patterns.

Fold Training Acc (%) Validation Acc (%) Training F1 (%) Validation F1 (%) Variance

1 94.2 93.1 90.1 89.3 0.8

2 93.9 93.6 89.8 89.9 0.1

3 94.1 93.4 90.0 89.6 0.4

4 93.8 93.8 89.7 89.8 0.1

5 94.0 93.2 89.9 89.4 0.5

Mean 94.0 ± 0.15 93.4 ± 0.29 89.9 ± 0.16 89.6 ± 0.25 0.38

Table 6.  5-Fold cross-validation results for GANs-MARL. The bold values signifies the best results.

Metric Original training (Balanced) Imbalanced (1:5) + Weighted Loss ∆ (Weighted vs. Imbalanced)

AUC (%) 91.3 88.7 89.4 +0.7

Recall (%) 85.9 78.2 82.4 +4.2

Precision (%) 87.2 85.6 84.9 -0.7

F1-Score (%) 86.5 81.8 83.6 +1.8

Table 5.  Impact of training under imbalanced class distribution (1:5 ratio).

Scientific Reports | (2025) 15:29810 20| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Conclusion
In this paper, we presented the GANS-MARL framework, a novel hierarchical reinforcement learning approach
for smart contract vulnerability detection. Our model integrates high-level strategic policies with low-level
execution tactics to capture long-term dependencies and immediate action requirements in complex contract
interactions. The framework’s key innovation lies in its two-tier policy structure. The high-level policy analyzes
the historical context to establish strategic sub-goals, while the low-level policy efficiently executes targeted
actions within contextually relevant clusters. This architecture reduces decision-making complexity and
enhances interpretability, making GANS-MARL particularly valuable for real-world blockchain applications
where transparency is crucial. GANS-MARL effectively detects complex vulnerabilities like reentrancy and
front-running, overcoming challenges of contextual dependencies faced by traditional methods. Its multi-agent
architecture and efficient attention mechanism enable faster detection than conventional GNN approaches. Future
research will focus on improving adaptability with real-time feedback, expanding blockchain compatibility,
and using adversarial training for robustness. GANS-MARL lays a groundwork for hierarchical reinforcement
learning in decentralized environments, enhancing smart contract security systems.

Data availability
The dataset can be accessed through the SmartBugs repository, https://github.com/smartbugs/smartbugs. It is
organised into ten distinct directories, each labelled according to a DASP vulnerability category, facilitating its
use in various analytical or experimental contexts. Each directory includes smart contracts associated with the
corresponding category. Furthermore, a file named –vulnerabilities.json– is provided, which offers comprehen-
sive metadata on each vulnerable contract, including the contract name, source URL, file path, affected lines of
code and the classification of the vulnerability.

Received: 22 April 2025; Accepted: 29 July 2025

References
	 1.	 Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Bitcoin.org Whitepaper (2008). Available online: ​h​t​t​p​s​:​/​/​b​i​t​c​o​i​n​.​o​r​g​

/​b​i​t​c​o​i​n​.​p​d​f​​​​​.​​​
	 2.	 Wood, G. et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151, 1–32 (2014).
	 3.	 Buterin, V. Ethereum: A next-generation smart contract and decentralized application platform. Ethereum White Paper 3, 2–1

(2013).
	 4.	 FBI, Internet Crimes Complaint Center (IC3) Cyber criminals increasingly exploit vulnerabilities in decentralized finance

platforms to obtain cryptocurrency, causing investors to lose money (2022). I-082922-PSA.
	 5.	 Lai, E. & Luo, W. Static analysis of integer overflow of smart contracts in ethereum. In Proceedings of the 2020 4th International

Conference on Cryptography, Security and Privacy, 110–115 (2020).
	 6.	 Huang, Q., Zeng, Z. & Shang, Y. An empirical study of integer overflow detection and false positive analysis in smart contracts. In

Proceedings of the 2024 8th International Conference on Big Data and Internet of Things, 247–251 (2024).
	 7.	 Alkhalifah, A., Ng, A., Watters, P. A. & Kayes, A. A mechanism to detect and prevent Ethereum blockchain smart contract

reentrancy attacks. Front. Comput. Sci. 3, 598780 (2021).
	 8.	 Li, B., Pan, Z. & Hu, T. Redefender: Detecting reentrancy vulnerabilities in smart contracts automatically. IEEE Trans. Reliabil. 71,

984–999 (2022).
	 9.	 Prasad, B. & Ramachandram, S. Vulnerabilities and attacks on smart contracts over blockchain. Turk. J. Comput. Math. Educ. 12,

5436–5449 (2021).
	10.	 Destefanis, G. et al. Smart contracts vulnerabilities: A call for blockchain software engineering? In 2018 International Workshop on

Blockchain Oriented Software Engineering (IWBOSE), 19–25 (IEEE, 2018).
	11.	 Perez, D. & Livshits, B. Smart contract vulnerabilities: Vulnerable does not imply exploited. In 30th USENIX Security Symposium

(USENIX Security 21), 1325–1341 (2021).
	12.	 Feist, J., Grieco, G. & Groce, A. Slither: A static analysis framework for smart contracts. In 2019 IEEE/ACM 2nd International

Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), 8–15 (IEEE, 2019).
	13.	 Tikhomirov, S. et al. Smartcheck: Static analysis of Ethereum smart contracts. In Proceedings of the 1st International Workshop on

Emerging Trends in Software Engineering for blockchain, 9–16 (2018).
	14.	 Choi, J. et al. Smartian: Enhancing smart contract fuzzing with static and dynamic data-flow analyses. In 2021 36th IEEE/ACM

International Conference on Automated Software Engineering (ASE), 227–239 (IEEE, 2021).
	15.	 Colin, L. S. H., Mohan, P. M., Pan, J. & Keong, P. L. K. An integrated smart contract vulnerability detection tool using multi-layer

perceptron on real-time solidity smart contracts. IEEE Access 12, 23549–23567 (2024).
	16.	 Chen, X., Xu, B., Lu, M. & Chen, N. A survey of blockchain applications in different domains. ACM Comput. Surv. (CSUR) 53, 1–25

(2020).
	17.	 Kaelbling, L. P., Littman, M. L. & Moore, A. W. Reinforcement learning: A survey. J. Artif. Intell. Res. 4, 237–285 (1996).
	18.	 Andrijasa, M. F., Ismail, S. A., Ahmad, N. & Yusop, O. M. Enhancing smart contract security through multi-agent deep

reinforcement learning fuzzing: A survey of approaches and techniques. Int. J. Adv. Comput. Sci. Appl.15 (2024).

Vulnerability type Train Acc (%) Test Acc (%) Gap (%) Train F1 (%) Test F1 (%) Gap (%)

Reentrancy 94.5 93.8 0.7 90.3 89.8 0.5

Unchecked Calls 92.1 91.6 0.5 87.8 87.2 0.6

Front Running 89.4 88.9 0.5 85.1 84.5 0.6

DoS 91.8 91.2 0.6 87.2 86.7 0.5

Average 91.95 91.38 0.58 87.6 87.0 0.55

Table 7.  Generalization gap analysis across vulnerability types. The bold values signifies the best results.

Scientific Reports | (2025) 15:29810 21| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

https://github.com/smartbugs/smartbugs
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://www.nature.com/scientificreports

	19.	 Franklin, J. & Rogers, W. Blockchain and smart contract security: Analysis and future directions. J. Secur. Cryptol. 11, 102–115
(2018).

	20.	 Barto, A. G. & Mahadevan, S. Recent advances in hierarchical reinforcement learning. Discrete Event Dyn. Syst. 13, 41–77 (2003).
	21.	 Xiong, W., Hoang, T. & Wang, W. Y. Deeppath: A reinforcement learning method for knowledge graph reasoning. In Proceedings

of the 2017 Conference on Empirical Methods in Natural Language Processing, 564–573 (2017).
	22.	 Bhargavan, K. et al. Formal verification of smart contracts: Short paper. In Proceedings of the 2016 ACM Workshop on Programming

Languages and Analysis for Security, 91–96 (ACM, 2016).
	23.	 Hirai, Y. Defining the ethereum virtual machine for interactive theorem provers. In International Conference on Financial

Cryptography and Data Security, 520–535 (2017).
	24.	 Grishchenko, I., Maffei, M. & Schneidewind, C. A semantic framework for the security analysis of ethereum smart contracts. In

International Conference on Principles of Security and Trust, 243–269 (2018).
	25.	 Luu, L., Chu, D.-H., Olickel, H., Saxena, P. & Hobor, A. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, 254–269 (ACM, 2016).
	26.	 Tsankov, P. et al. Securify: Practical security analysis of smart contracts. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, 67–82 (2018).
	27.	 Kalra, S. B., Goel, A., Dhawan, M. & Sharma, S. Zeus: Analyzing safety of smart contracts. In Network and Distributed Systems

Security Symposium (2018).
	28.	 Jiang, B., Liu, Y. & Chan, W.-K. Contractfuzzer: Fuzzing smart contracts for vulnerability detection. In International Conference on

Automated Software Engineering, 259–269 (2018).
	29.	 Rodler, M., Li, W., Karame, G. O. & Davi, L. Sereum: Protecting existing smart contracts against re-entrancy attacks. In Proceedings

of the NDSS (2019).
	30.	 Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In: International Conference on

Learning Representations (2017).
	31.	 Micheli, A. Neural network for graphs: A contextual constructive approach. IEEE Trans. Neural Netw. 20, 498–511 (2009).
	32.	 Velickovic, P. et al. Graph attention networks. arXiv:1710.10903 (2017).
	33.	 Zhuang, Y. et al. Smart contract vulnerability detection using graph neural network. In Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI), 3283–3290 (2020).
	34.	 Liu, Z. et al. Combining graph neural networks with expert knowledge for smart contract vulnerability detection. IEEE Trans.

Knowl. Data Eng. 35(2), 1296–1310 (2021).
	35.	 Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svyatkovskiy, A., Fu, S., Tufano, M., Deng, S. K., Clement,

C., Drain, D., Sundaresan, N., Yin, J., Jiang, D., & Zhou, M. GraphCodeBERT: Pre-training Code Representations with Data Flow
(2020). arXiv:2009.08366

	36.	 Koreeda, Y. & Manning, C. D. ContractNLI: A dataset for document-level natural language inference for contracts. In Findings of
the Association for Computational Linguistics: EMNLP 2021. Association for Computational Linguistics (2021).

	37.	 Wang, T., Zhao, X. & Zhang, J. TMF-Net: Multimodal smart contract vulnerability detection based on multiscale transformer
fusion. Inf. Fus. https://doi.org/10.1016/j.inffus.2025.103189 (2025).

	38.	 Shang, J. et al. CEGT: Smart contract vulnerability detection via connectivity-enhanced GCN-transformer. J. Syst. Softw. 227,
112454. https://doi.org/10.1016/j.jss.2025.112454 (2025).

	39.	 Shadab, J. Understanding the DAO Attack, CoinDesk (2022). Available: ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​c​o​i​n​d​e​s​​k​.​c​​​o​m​/​l​e​a​​​r​n​/​u​n​​d​e​r​s​t​a​​n​d​​i​n​g​​-​​t​h​e​​-​d​a​o​-​a​
t​t​a​c​k

	40.	 Durieux, T., Ferreira, J.A.F., Abreu, R. & Cruz, P. Empirical review of automated analysis tools on 47,587 ethereum smart contracts.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, ICSE ’20, 530–541. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​4​
5​/​3​3​7​7​8​1​1​.​3​3​8​0​3​6​4​​​​ (Association for Computing Machinery, New York, NY, USA, 2020).

	41.	 di Angelo, M., Durieux, T., Ferreira, J.F., & Salzer, G. SmartBugs 2.0: An execution framework for weakness detection in ethereum
smart contracts. In Proc. 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), 2102–2105. IEEE
Computer Society (2023).

	42.	 SolidiFI Project, SolidiFI: Smart Contract Vulnerability Detection Tools and Benchmarks. Available: https://www.solidifi.com/
	43.	 Decentralized Application Security Project (DASP). DASP Top 10: Smart Contract Vulnerabilities, 2018. [Online]. Available:

https://dasp.co
	44.	 Shao, Y., Li, R., Zhao, Z. & Zhang, H. Graph attention network-based drl for network slicing management in dense cellular

networks. In 2021 IEEE Wireless Communications and Networking Conference (WCNC), 1–6. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​W​C​N​C​4​9​0​5​
3​.​2​0​2​1​.​9​4​1​7​3​2​1​​​​ (2021).

	45.	 Colin, L. S. H., Mohan, P. M., Pan, J. & Keong, P. L. K. An integrated smart contract vulnerability detection tool using multi-layer
perceptron on real-time solidity smart contracts. IEEE Access 12, 23549–23567. https://doi.org/10.1109/ACCESS.2024.3364351
(2024).

	46.	 Feist, J., Grieco, G. & Groce, A. Slither: A static analysis framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB), 8–15. https://doi.org/10.1109/WETSEB.2019.00008 (2019).

	47.	 Wang, Z. et al. Smart contract vulnerability detection for educational blockchain based on graph neural networks. In 2022
International Conference on Intelligent Education and Intelligent Research (IEIR), 8–14. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​E​I​R​5​6​3​2​3​.​2​0​2​2​.​1​0​
0​5​0​0​5​9​​​​ (2022).

	48.	 Chen, D., Feng, L., Fan, Y., Shang, S. & Wei, Z. Smart contract vulnerability detection based on semantic graph and residual graph
convolutional networks with edge attention. J. Syst. Softw. 202, 111705. https://doi.org/10.1016/j.jss.2023.111705 (2023).

	49.	 Zhuang, Y. et al. Smart contract vulnerability detection using graph neural network. In Bessiere, C. (ed.) Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, 3283–3290, https://doi.org/10.24963/ijcai.2020/454
(International Joint Conferences on Artificial Intelligence Organization, 2020). Main track.

	50.	 Zhen, Z., Zhao, X., Zhang, J., Wang, Y. & Chen, H. Da-gnn: A smart contract vulnerability detection method based on dual
attention graph neural network. Comput. Netw. 242, 110238. https://doi.org/10.1016/j.comnet.2024.110238 (2024).

Acknowledgements
This research was supported by the IITP (Institute of Information & Communications Technology Planning &
Evaluation)-ITRC (Information Technology Research Center) grant funded by the Korea government (Ministry
of Science and ICT) (IITP-2025-RS-2024-00437191). This work was also supported by the Deanship of Scientific
Research, King Khalid University, Saudi Arabia, under Grant number (RGP2/314/45).

Author contributions
Each named author has substantially contributed to conducting the underlying research and drafting of the
manuscript. P. K. A. was responsible for the conceptualization of the study, methodology, software development,
and writing of the original draft. Z. Q. contributed to the methodology, supervision, and funding acquisition.
I. A. O. was involved in writing, reviewing, editing, and coding. A. B. also contributed to data extraction and

Scientific Reports | (2025) 15:29810 22| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2009.08366
https://doi.org/10.1016/j.inffus.2025.103189
https://doi.org/10.1016/j.jss.2025.112454
https://www.coindesk.com/learn/understanding-the-dao-attack
https://www.coindesk.com/learn/understanding-the-dao-attack
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1145/3377811.3380364
https://www.solidifi.com/
https://dasp.co
https://doi.org/10.1109/WCNC49053.2021.9417321
https://doi.org/10.1109/WCNC49053.2021.9417321
https://doi.org/10.1109/ACCESS.2024.3364351
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/IEIR56323.2022.10050059
https://doi.org/10.1109/IEIR56323.2022.10050059
https://doi.org/10.1016/j.jss.2023.111705
https://doi.org/10.24963/ijcai.2020/454
https://doi.org/10.1016/j.comnet.2024.110238
http://www.nature.com/scientificreports

manuscript proofreading. C. N. A. C. assisted with reviewing, editing, and proofreading. A.A. was involved with
manuscript editing and proofreading. Y. H. G. contributed to data acquisition, preprocessing, and validation. M.
A. A. was involved in data extraction and proofreading the manuscript.

Declarations

 Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.H.G. or M.A.A.-a.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:29810 23| https://doi.org/10.1038/s41598-025-14032-w

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿A graph attention network-based multi-agent reinforcement learning framework for robust detection of smart contract vulnerabilities
	﻿Related work
	﻿Traditional smart contract vulnerability detection methods
	﻿Reinforcement learning approaches for smart contract analysis
	﻿Deep learning for vulnerability detection
	﻿Tranformer-based vulnerability detection

	﻿Background
	﻿Partially observable Markov game formulation for smart contract vulnerability detection
	﻿Deterministic policy gradient
	﻿Deep deterministic policy gradient

	﻿Smart contract vulnerabilities
	﻿Vulnerability definitions
	﻿Reentrancy vulnerability
	﻿Unchecked low-level call vulnerability
	﻿Front-running vulnerability
	﻿Denial of service vulnerability

	﻿Challenge formulation
	﻿Problem statement
	﻿Computational challenges
	﻿Multi-agent reinforcement learning approach

	﻿Method: hierarchical graph attention-based multi-agent actor-critic framework
	﻿Foundation
	﻿System architecture
	﻿Control flow graph
	﻿Data flow graph
	﻿Function call graph
	﻿Inter-contract graph

	﻿Hierarchical graph attention network
	﻿Agent clustering
	﻿Node embedding with inter-agent attention
	﻿Hierarchical state representation with inter-group attention

	﻿Multi-agent actor-critic framework
	﻿Dual embeddings for critic and actor
	﻿Centralized critics and decentralized actors
	﻿Training procedure
	﻿Reentrancy detection
	﻿Unchecked call detection
	﻿Front-running detection
	﻿Denial of service detection

	﻿Reward processing and learning mechanism

