

OPEN

DFT investigation of efficient hydrogen storage utilizing Li and Na decorated co-doped graphene (B/N)

N. N. Mostafa^{1,3}, Kamal A. Soliman^{2,3}✉, S. M. Abd El Haleem¹ & W. S. Abdel Halim¹✉

This study investigates the hydrogen storage capacity of co-doped graphene with non-bonded B and N atoms (BC_4N) using density functional theory (DFT). The optimized structure reveals the introduction of co-doping ripples the surface, enhancing potential hydrogen storage applications. The adsorption behavior of Li and Na atoms on the BC_4N surface is examined, demonstrating a higher binding energy, surpassing their cohesive energies. Density of State (DOS), Partial Density of State (PDOS), and charge transfer analyses indicate electron donation from Li and Na to BC_4N monolayer, establishing BC_4N as an electron acceptor. The investigation extends to H_2 adsorption on $\text{Li/BC}_4\text{N}$ and $\text{Na/BC}_4\text{N}$ systems, revealing a non-dissociative form and a cooperative effect with increasing H_2 molecules. The hydrogen storage gravimetric density is calculated, and desorption temperatures are determined, highlighting the potential of $\text{Li/BC}_4\text{N}$ and $\text{Na/BC}_4\text{N}$ as promising candidates for efficient hydrogen storage.

Keywords Hydrogen storage, Co-doped graphene, Li and na decoration, DOS, PDOS, Gravimetric density, Desorption temperature

The focus on hydrogen as an ideal energy resource has grown due to its favorable characteristics, including high energy density, renewability, and friendly to the environment. Its potential to replace fossil fuels has led to a significant emphasis on developing a stable and cost-effective storage system^{1–6}. The US Department of Energy has a target for hydrogen storage capacity of 5.5 wt% of weight density⁷, emphasizing the importance of achieving optimal binding energy for effective hydrogen recycling at near-ambient conditions^{8,9}. Various carbon nanostructures, such as carbon nanotubes, and graphene have been investigated for their hydrogen adsorption capabilities, driven by their reversibility, fast kinetics, and high capacities^{10–15}. The interest in the processes of adsorption and desorption with carbon-based materials from the intrinsic advantageous properties these materials possess. These include low density, high chemical stability, and the capacity to manipulate pore structures and surface areas, rendering them compelling options for hydrogen storage technologies¹⁶. Among carbon-based materials, the focus of research has notably turned towards graphene-based carbon materials. This shift is primarily driven by the extraordinary features exhibited by graphene, such as an exceptionally high specific surface area, mechanical flexibility, robustness, and a lightweight composition. These attributes position graphene as a promising candidate for hydrogen storage devices, emphasizing its potential for practical applications¹⁷.

Furthermore, graphene an exceptional two-dimensional carbon material known for its distinctive properties has become a focal point of research interest due to recent advancements in its large-scale production¹⁸. Apart from its prevalent applications in electronics, graphene plays a pivotal role in sensor production and serves as a molecular adsorbent. While previous studies extensively explored graphene's efficacy in adsorbing various small molecules, its potential as hydrogen (H_2) adsorbent is limited, and hydrogen passivation may even compromise the mechanical properties of graphene¹⁹. To address these challenges, sophisticated techniques are necessary for effective hydrogen uptake. Some studies have opted for innovative approaches, such as utilizing curved graphene or graphene hollows to enhance interactions with H_2 /adsorbent²⁰. On the other hand, alternative strategies involve employing planar graphene sheets with doped heteroatoms. Transition metals such as titanium (Ti)²¹, iron (Fe)²², nickel (Ni)²³, palladium (Pd)²⁴, and platinum (Pt)²⁵ can be useful for this purpose.

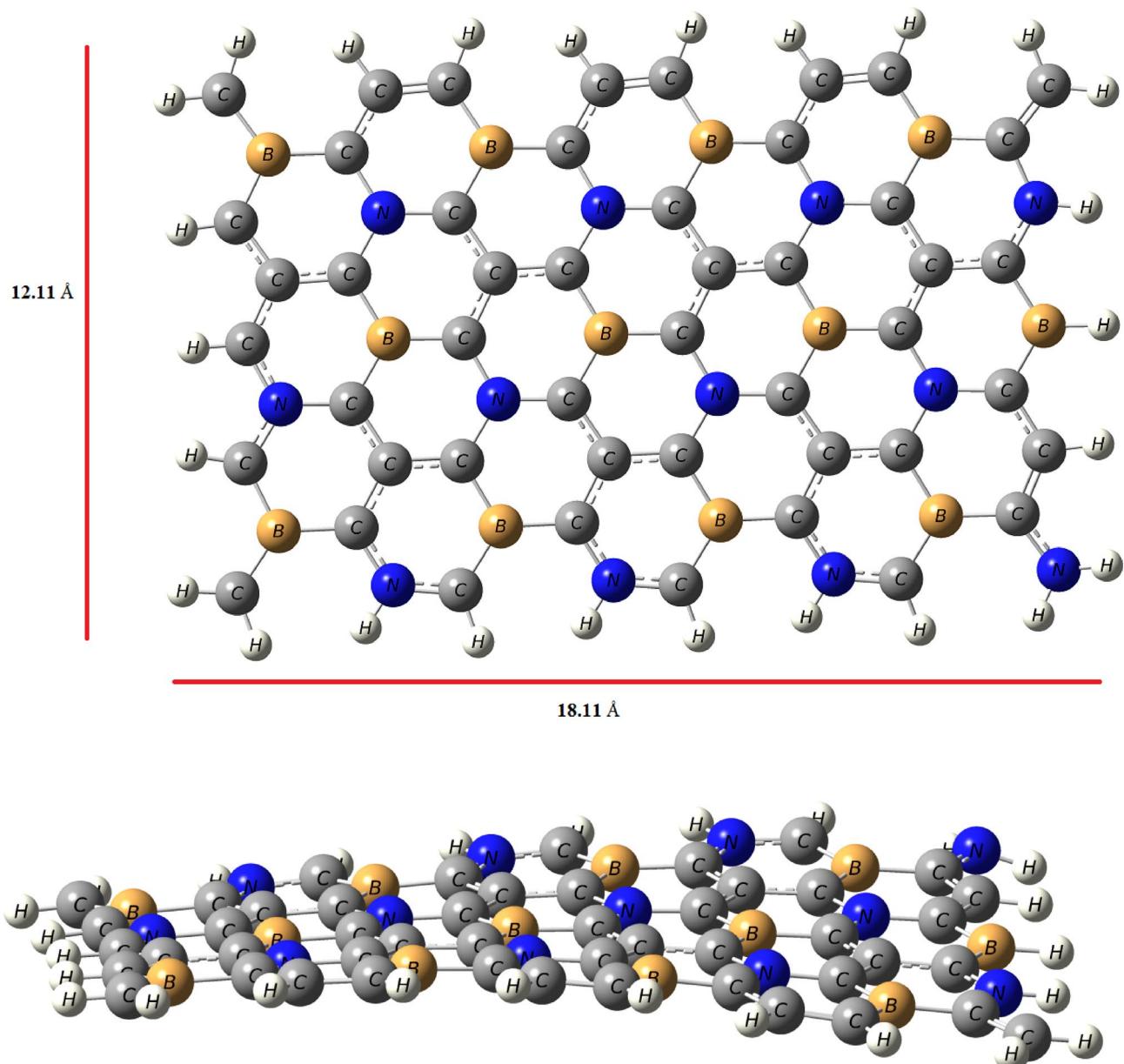
¹Department of Chemistry, Faculty of Science, Zagazig University, P.O.Box 44519, Zagazig, Egypt. ²Department of Chemistry, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt. ³ N. N. Mostafa, Kamal A. Soliman contributed equally to this work as first authors. ✉email: kamalsoliman@gmail.com; kamal.soliman@fsc.bu.edu.eg; wsahalim@zu.edu.eg

Ao et al. explored Al-doped porous graphene by DFT study. Their investigations demonstrated the efficient adsorption of H_2 molecules by such structures with adsorption energy of -0.41 eV¹⁵. Huo et al. employed theoretical methods to investigate Ti-decorated boron-doped porous graphene in adsorbing H_2 molecules²⁶. They investigated that boron-doped porous graphene decorated with titanium atoms can consistently capture sixteen hydrogen molecules, achieving a gravimetric hydrogen uptake of 8.58 wt%.

Researchers conducted both experimental and theoretical investigations on graphene to enhance hydrogen storage capacity. The studies revealed that modifying the electronic properties of dispersed carbon-based materials through doping with nonmetallic elements (such as B and N) or intentionally creating vacancies could be a promising strategy. This approach has been shown to enhance the adsorption performance of hydrogen according to various works^{27,28}. Yang et al.²⁹ demonstrated that, under conditions of 298 K and 10 Mpa, the hydrogen storage capacity increased to 1.2 wt% through hydrogen spillover on ruthenium-decorated boron-doped microporous carbon. In the study conducted by Wu and colleagues³⁰, they observed that B-doped graphene has a superior ability to adsorb hydrogen compared to pristine graphene. This increased adsorption capability is attributed to the presence of low activation barriers, particularly under ambient conditions. Furthermore, Lee et al.³¹ conducted research on the utilization of Li-decorated graphene for hydrogen storage. In this study, they introduced nitrogen defects that are experimentally feasible to enhance the overall performance of the hydrogen storage system.

This study introduces an approach by suggesting a unique arrangement of graphene sheets that co-doped with boron and nitrogen and featuring Li, and Na atoms to enhance hydrogen storage. The B, and N atoms co-doped graphene are non-bonded that be more efficient catalyst when compared to bonded B-N co-doped graphene^{32,33}. To assess the influence of this co-doped structure on hydrogen adsorption, the study utilizes first-principle analyses based on density functional theory (DFT).

Results and discussion


Structural properties of co-doped graphene (B and N atom), decorated by Li, and Na atom

To explore the hydrogen storage capacity of co-doped graphene with B, and N atom that is non-bonded, the optimized geometry of this system (BC_4N) is shown in Fig. 1, and the corresponding data are compiled in Table 1. A vibrational frequency calculation was also performed on the optimized BC_4N sheet (B3LYP/6-31G(d, p)); no imaginary frequencies were found, confirming that the structure shown in Fig. 1 corresponds to a true local minimum. As seen in Table 1, the bond lengths between B-C, C-C, and C-N are 1.50 Å, 1.43 Å, and 1.41 Å respectively. The structure of pristine graphene is flat and by co-doped with B, and N atom that are non-bonded, the presence of ripples appears that is may be effective in hydrogen storage application. Initially, the study of binding of single atom decorated the surface such as Li, and Na atoms was determined. As seen in Fig. 2, the optimized Li, and Na atom on the BC_4N surface are prefer to be adsorbed on hollow center of the hexagon and Cartesian coordinates for the Li/ BC_4N and Na/ BC_4N are shown in Table S1 and S2. This corresponds well with the preferred site for Li atom adsorption on both pure graphene and porous graphene^{2,34,35}. In the optimized structures, the distance between Li/Na and nearest carbon atom is 2.17/2.53 Å, respectively as presented in Table 1. The binding energies for Li and Na atom over the surface were found to be -2.51 eV, and -1.95 eV respectively that is higher than their cohesive energies^{36,37}. The results show that co-doped graphene with B, and N atom has the capacity to significantly enhance the binding energy of Li, and Na atoms, exceeding the cohesive energy of Li and Na. This intentional effect results in the suppression of Li, and Na adatom clustering on BC_4N system. Therefore, co-doped graphene with B, and N atom demonstrates significant potential for hydrogen storage due to its characteristic of maintaining geometric stability.

The interaction of the adsorbed Li, and Na atom on the BC_4N system were also studied by calculating the Density of State (DOS), Partial Density of State (PDOS), and charge transfer that obtained from natural bond orbital (NBO). The analysis reveals an electronic charge transfer from the Li, and Na adatom to the substrate, as illustrated in Table 1. Essentially, the adsorbent functions as an electron acceptor in relation to the Li, and Na adatom. Based on these results, it can be inferred that BC_4N systems exhibit a higher binding energy for Li, and Na adatoms on the surface. Despite the fact that the charge transfer from Na to BC_4N surface is greater than that from Li, the binding energy of Li on BC_4N is greater. This seemingly strange finding can be explained by the fact that both Li and Na are electrostatically attracted to BC_4N π -electrons. Li atom experiences stronger electrostatic attraction than Na atom due to its smaller size and higher nuclear charge, and the smaller size of Li allows its orbitals to overlap more efficiently with BC_4N π -orbitals, developing stronger covalent bonding, whereas Na atom's larger size makes its orbital overlap with BC_4N less optimal, limiting the covalent contribution to its binding. By analyzing the density of states (DOS) and projected density of states (PDOS) as seen in Fig. 3, The observation that peaks in the density of states (DOS) increase after decorating BC_4N with Li, and Na atom. When Li and Na atom are deposited on BC_4N surface, they interact with its π -electron system and this interaction can be understand by PDOS. The Fig. 3, when Li atom sit on hollow site, its 2s-orbital of Li atom directly overlap with the 2p orbitals of the surrounding C, B, and N atom in the BC_4N surface at energies -1.64 eV, 1.39 eV, and 3.25 eV. Also, Na decorated BC_4N surface show overlap between 3s-orbital of Na atom with 2p orbitals of the C, B, nad N atom in the BC_4N surface at energies 0.55 eV, at -2.24 eV and 1.99 eV there is overlap between 3s-orbital of Na atom with 2p-orbitals of N and C atom of the BC_4N surface.

Hydrogen storage properties

The optimized structures of H_2 adsorbed on Li/ BC_4N and Na/ BC_4N systems are illustrated as seen Figs. 4 and 5. The Cartesian coordinates for H_2 adsorbed on the Li/ BC_4N and Na/ BC_4N are shown in Table S1 and S2. The PDOS of H_2 molecules on Li/ BC_4N and Na/ BC_4N are seen in Figs 6 and 7. During the optimization of the first molecule of H_2 on Li/ BC_4N and Na/ BC_4N systems, the H_2 adsorbed on Li, and Na with tilted orientation on a lithium and sodium atom and This initial configuration establishes a specific binding geometry. By analyzing the

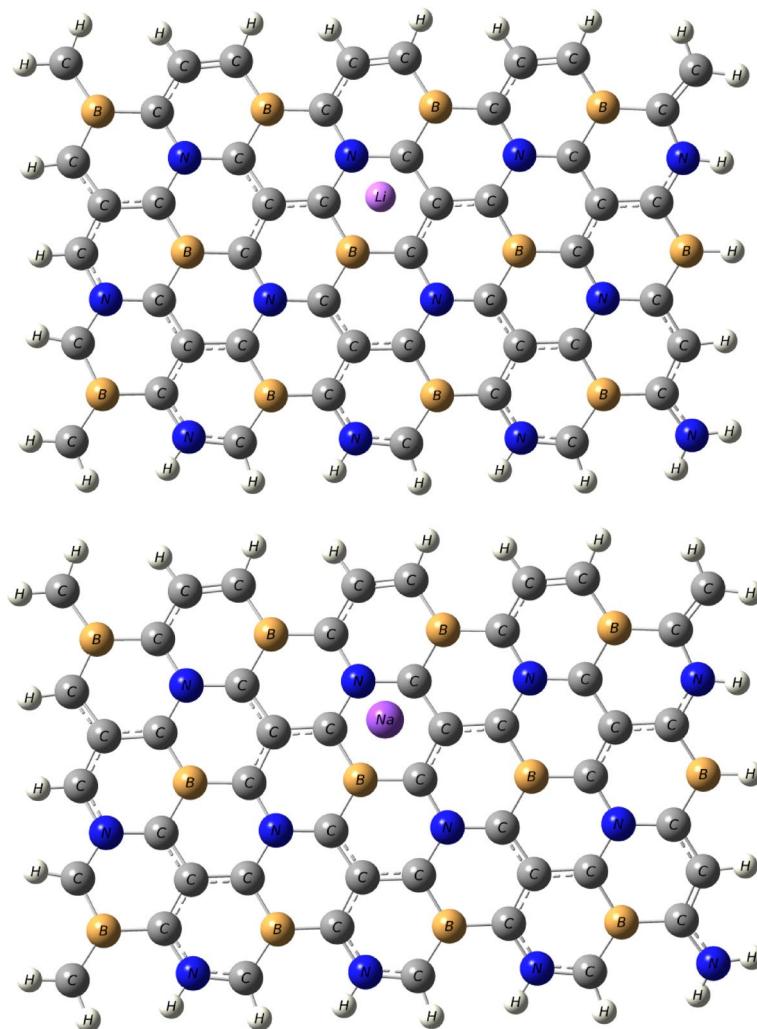


Fig. 1. The optimized structure of B, and N co-doped graphene; top- (up) and side- (down) view.

System	d (Å)	E_b (eV)	Q_{NBO} (e)
BC_4N	1.50 (B-C) 1.43 (C-C) 1.41 (N-C)		
Li/BC_4N	2.17 (Li-C)	-2.51	0.90 (Li)
Na/BC_4N	2.53 (Na-C)	-1.95	0.95 (Na)

Table 1. Equilibrium distance (d, Å), binding energies of li, and Na decorated BC_4N monolayer and the charge.

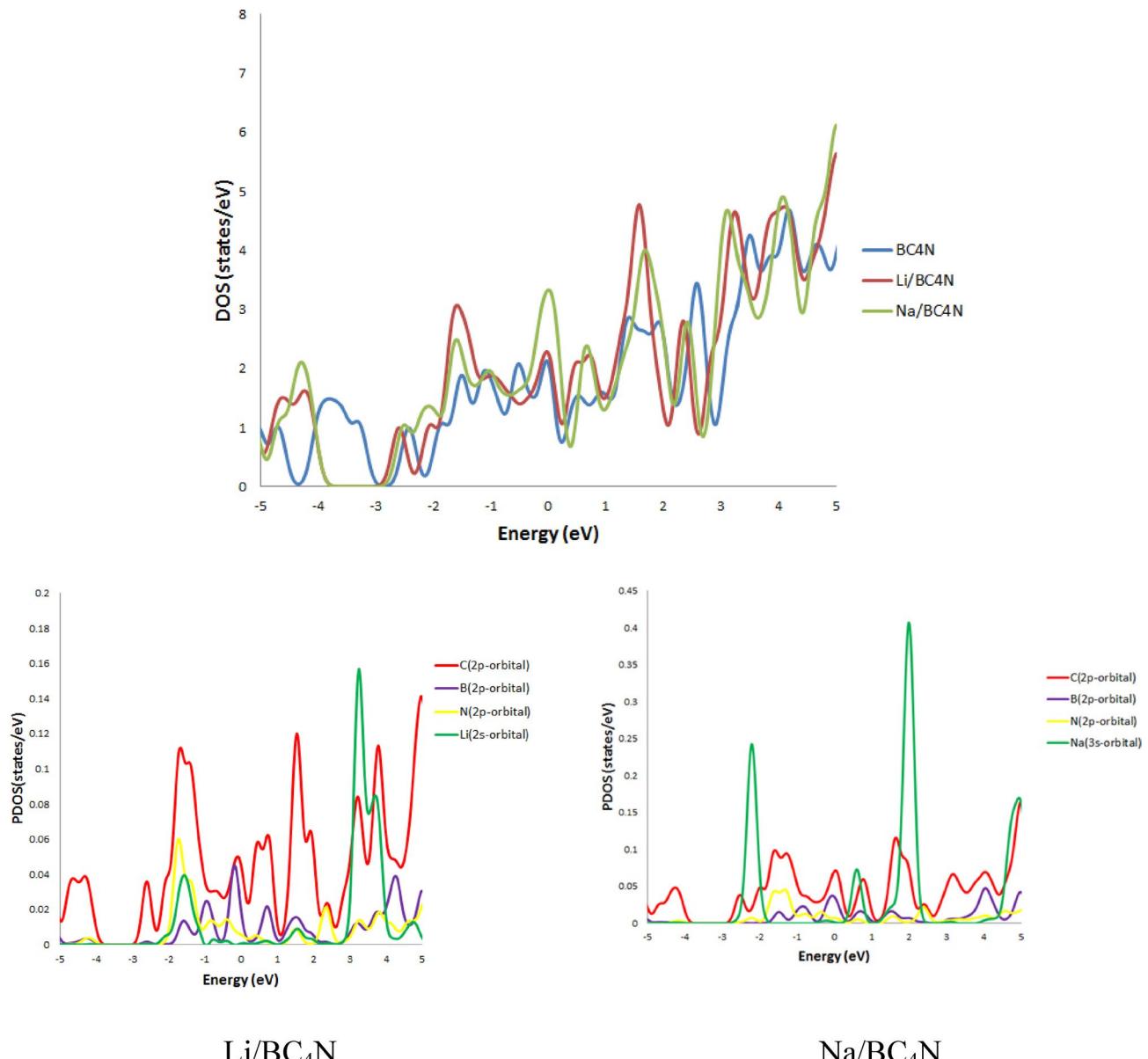
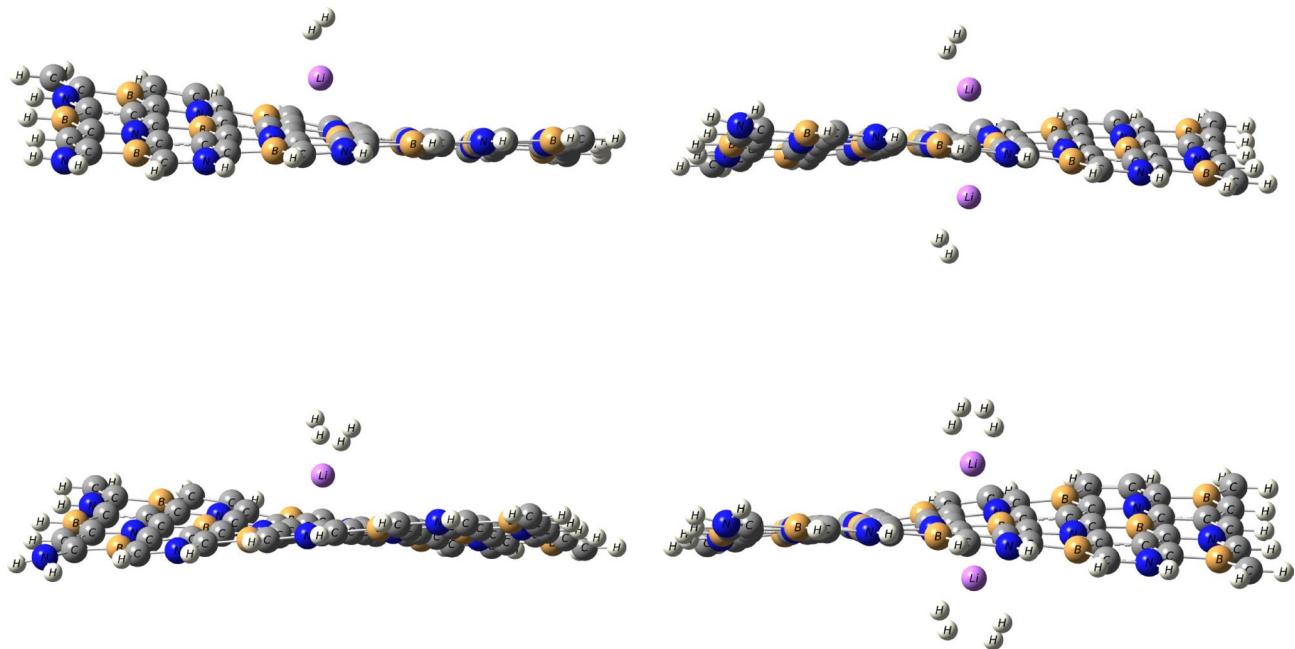

results that collected in Tables 2 and 3, we can find out that the adsorption energy of -0.12 eV, and, the distance of d_{Li-H} is 2.09 Å in $H_2/Li/BC_4N$, and the distance of d_{Na-H} is 2.49 Å in $H_2/Na/BC_4N$. For each configuration the H-H bond lengths of H_2 molecules are 0.75 Å, which are consistent with the calculated free H_2 molecule (0.750 Å), indicating that the adsorbed H_2 molecule is in the non-dissociative form. To further validate the physisorptive nature and reliability of our H_2 adsorption data, we re-examined the H-H bond length before and after adsorption. In our calculations (GGA- $\overline{P}BE + D3$), the free H-H bond length is 0.750 Å, and upon adsorption

Fig. 2. The optimized structure of Li “up”, and Na “lower” decorated BC_4N monolayer.


it remains 0.750 \AA . This negligible change is fully consistent with the findings of Dange et al.³⁸, who report that charge polarization driven H_2 physisorption on NLi_4 decorated boron phosphide biphenylene induces an H-H elongation of only $\approx 0.003\text{ \AA}$. Therefore, the unchanged H-H distance in our system confirms that we are describing a true physisorption process with no spurious chemisorption artifacts. The adsorption of another hydrogen molecule on the opposite side of the Li and Na decorated BC_4N system. The adsorption energy increases to -0.27 eV for $\text{Li/BC}_4\text{N}$ and -0.19 eV for $\text{Na/BC}_4\text{N}$ surface, suggesting a stronger interaction. The charge on Li is 0.85e , on Na is 0.93e and the charges of H_2 on Li and Na are $0\text{e}, 0.04\text{e}$, $0.04\text{e}, -0.03\text{e}$ respectively. This indicates potential charge redistribution within the system, impacting bonding and stability. The high dipole moment (19.86 Debye and 19.60 Debye) for the first adsorbed H_2 molecule signifies significant polarization, implying the H_2 molecule is distorted upon interaction with the Li and Na atom. The rippling of the BC_4N surface evident in Figs. 4 and 5 arises directly from the physisorption of H_2 , the weak van der Waals interaction and slight charge polarization at the adsorption site pull the nearest B and N atoms out of the plane, producing the observed distortion. To ensure that these distorted geometries are true minima, we have performed full vibrational frequency calculations on each H_2 adsorbed configuration with no imaginary modes, confirming that the rippled structures are stable adsorption complexes rather than transition state artifacts.

With an increasing number of hydrogen molecules, a noteworthy trend is observed. The adsorption energy continues to increase that the two, Three, and four H_2 molecules on Li/ BC_4N surface are -0.19 eV , -0.25 eV , and -0.27 eV respectively. Binding strength increases with the number of adsorbed H_2 molecules, reaching a maximum with four molecules (-0.27 eV). This suggests cooperative effects enhance binding as more H_2 are present. As shown in Table 2, the distance between Li decorated BC_4N surface are 2.17\AA , 2.18\AA for the two H_2 molecules, 2.24\AA , 2.30\AA , 2.26\AA for the three H_2 molecules on Li/ BC_4N surface, but when the four H_2 molecules we found that one H_2 is far away from the Li decorated BC_4N surface, and the charges obtained from NBO of Li atom is decreased by increasing H_2 molecules adsorbed as seen in Table 2 implying a cumulative effect of hydrogen adsorption. Simultaneously, the charge on lithium decreases. This suggests a dynamic charge transfer during the adsorption process. Li-H distances and charge transfer to H_2 molecules slightly increase with more

Li/BC₄NNa/BC₄NFig. 3. Total DOS and PDOS of BC₄N and Li, Na atom decorated BC₄N surfaces.

H₂ adsorption. This indicates stronger electrostatic interactions between Li and H₂ molecules. As shown in Fig. 8, regions of electron accumulation (yellow) appear primarily around the Li and Na sites and the nearest H₂ molecules, while corresponding depletion (cyan) is observed on adjacent B and N atoms. This polarization pattern confirms that H₂ adsorption is driven by charge-induced dipole interactions at the metal centers, reinforcing the physisorptive mechanism without covalent bond formation. The increasing adsorption energy with multiple H₂ molecules and efficient utilization of Li sites are encouraging characteristics. As seen in Table 3, we observed in Na/BC₄N surface that the recorded adsorption energies of two, three, and four H₂ molecules are -0.19 eV, -0.25 eV, and -0.23 eV respectively. Also as seen in Table 3, the distance between Na-H are 2.52\AA , 2.50\AA for two H₂ molecules, 2.55\AA , 2.56\AA , 2.52\AA , and one H₂ molecules are far away when adsorbing four H₂ molecules. The distances of H-H bond are in range 0.74\AA – 0.75\AA . To account for dispersion interaction, DFT-D3 method, the adsorption energy of hydrogen molecules on Li and Na decorated BC₄N surface as listed in Tables 2 and 3 are lower when using the Grimme D3 dispersion correction. D3 adds an attractive dispersion term to the potential energy surface, accounting for the weak interaction between hydrogen molecules with the Li and Na decorated BC₄N surface. This stronger attractive interaction leads to a lower (more negative) adsorption energy, indicating a more stable binding.

As seen in Table 2 dipole moment of Li-decorated graphene increases with the number of adsorbed H₂ molecules (from 12.87 Debye for two H₂ to 13.57 Debye for four H₂) is an interesting phenomenon with potential implications for hydrogen storage and other applications. When H₂ interacts with Li or Na on BC4N surface, charge transfer occurs. H₂ slightly donates some electron density to the Li, and Na atom, creating a small

Fig. 4. Optimized structures of H_2 molecules on $\text{Li}/\text{BC}_4\text{N}$ monolayer.

individual dipole moment around each $\text{H}_2\text{-Li}$, and $\text{H}_2\text{-Na}$ pair. When the H_2 adsorbs on the opposite side of Li or Na atom decorated BC_4N surface, its individual dipole moment might partially cancel out the dipole moment created by the H_2 molecules that adsorbed on one side. This could occur if the two H_2 molecules are oriented in a specific way, with their positive and negative ends pointing towards each other.

The partial density of states (PDOS) provides valuable insights into the electronic interactions between adsorbed H_2 molecules and the Li- and Na- decorated BC_4N surface, as shown in Figs. 6 and 7. The third hydrogen molecule's adsorption energy on Li, Na atom decorated BC_4N surface is slightly higher than the initial two, as depicted in Tables 2 and 3. This behavior is elucidated by examining the Partial Density of States (PDOS). The energy bands associated with absorbed H_2 molecules exhibit splitting below the Fermi.

level when increasing hydrogen molecules at ~ -14 eV. This observation implies interplay between the absorbed hydrogen molecules, indicating a potential interaction between them and proposed to enhance the adsorption strength of the third hydrogen molecule, resulting in the elevated adsorption energy. Additionally, the overlap of H_2 orbitals with Li-2s in specific energy intervals from -1 eV to 5 eV, and from -2 eV to 4 eV for the overlap $\text{H}_2\text{-1s}$ orbitals with Na-3s orbitals signifies electrostatic interactions.

In determining the maximum hydrogen storage gravimetric density (GD) of Li and Na decorated BC_4N monolayers, a systematic addition of both metal atoms and H_2 molecules is required. For the Li and Na atom decorated BC_4N monolayer, it was observed that three H_2 molecules on the upper layer represent the maximum capacity, as adding an extra H_2 molecule is too distant from the decorated atom. In the case of decorating both sides with Li and Na on the BC_4N monolayer, the maximum storage capacity increased to six H_2 molecules. The gravimetric capacity is calculated by the following equation:

$$\text{GD} = \frac{nm_{\text{H}_2}}{m_{\text{adsorbent}} + nm_{\text{H}_2}} \times 100\% \quad (1)$$

Where nm_{H_2} , and $m_{\text{adsorbent}}$ are the mass of H_2 molecules and mass of adsorbent respectively. n is the number of hydrogen molecules. By using the above equation, $\text{Li}/\text{BC}_4\text{N}$ storage 12.2 % of hydrogen molecules, and $\text{Na}/\text{BC}_4\text{N}$ has 9.2 % storage capacities.

Desorption temperature represents the temperature at which hydrogen molecules, previously adsorbed onto a storage material, are released from the material, making the stored hydrogen available for use. The desorption temperature is a critical parameter in hydrogen storage systems, influencing the efficiency and practicality of the release process. Understanding and optimizing desorption temperatures is essential for designing.

effective storage materials. The hydrogen desorption temperature (TD) in a hydrogen storage system can be approximated using the Van't Hoff formula³⁹:

$$T_D = -\frac{E_{\text{ads}}}{K_B} \left(\frac{\Delta S}{R} - \ln \frac{p}{p^\circ} \right)^{-1} \quad (2)$$

Where K_B is Boltzmann constant, ΔS is the entropy change from gas to liquid phase of H_2 molecule, R is the universal gas constant, p° and p are standard atmospheric pressure (1 atm) and equilibrium pressure respectively^{40–42}. The T_D for $6\text{H}_2\text{--}2\text{Li}/\text{BC}_4\text{N}$, and $6\text{H}_2\text{--}2\text{Na}/\text{BC}_4\text{N}$ are 745 K and 664 K respectively. The

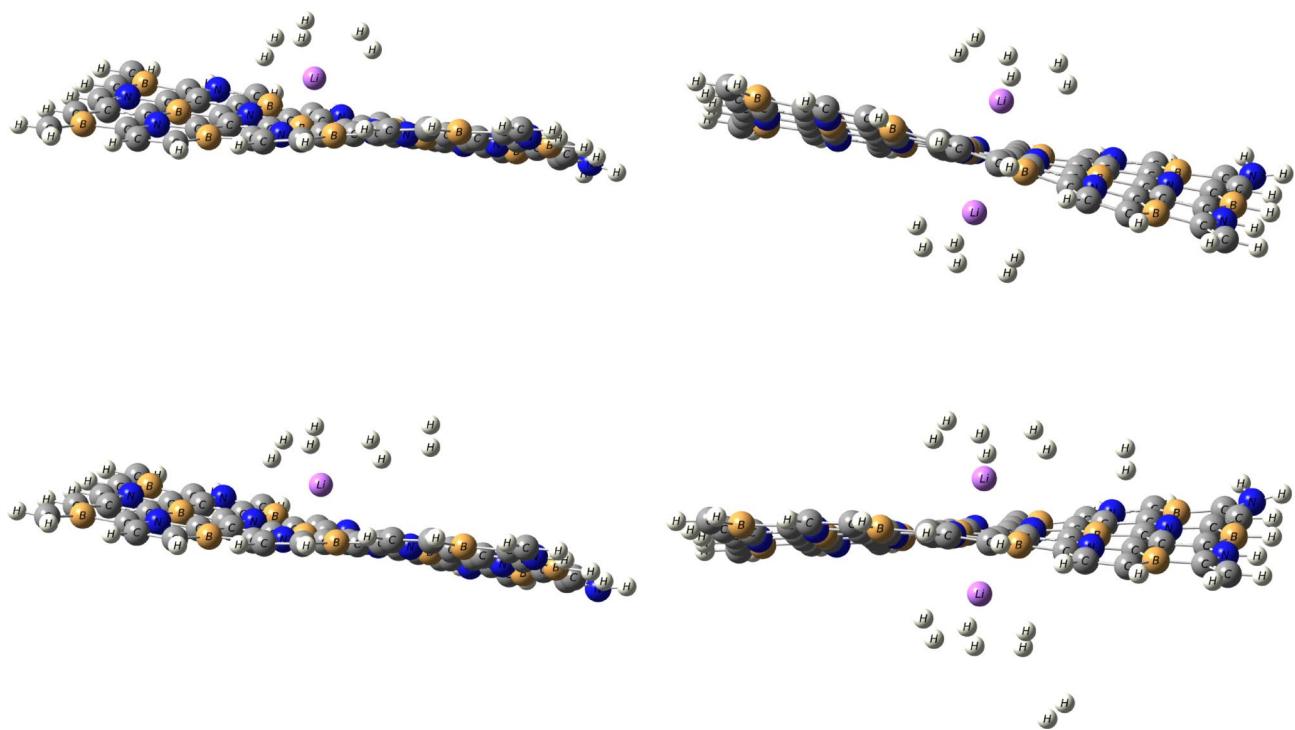
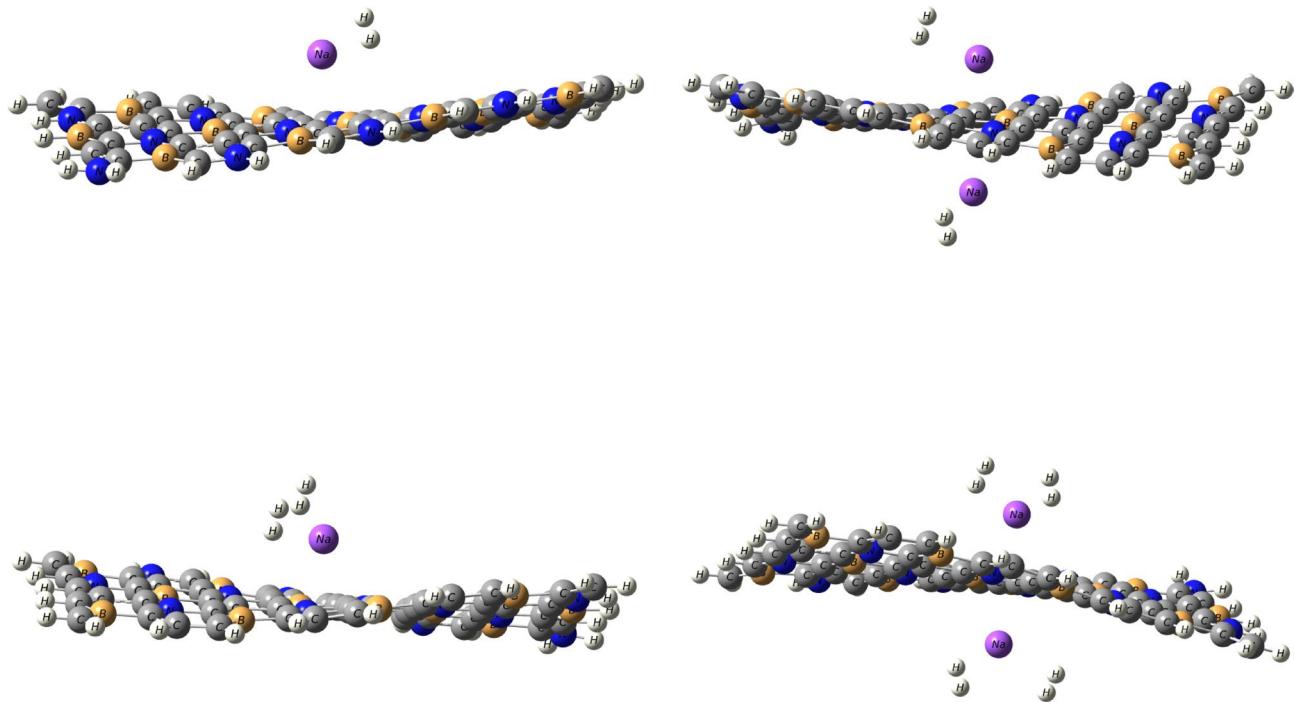



Fig. 4. (continued)

Fig. 5. Optimized structures of H_2 molecules on $\text{Na}/\text{BC}_4\text{N}$ monolayer.

connection between the desorption temperature of H_2 molecule and the applied pressure, noting that a decrease in pressure leads to a lower T_{D} . This trend is explained by the proportional association between the chemical potential of H_2 gas and pressure. Utilizing this insight, it becomes possible in practical scenarios to achieve the release of all stored H_2 molecules at temperatures considered acceptable by effectively modulating the pressure.

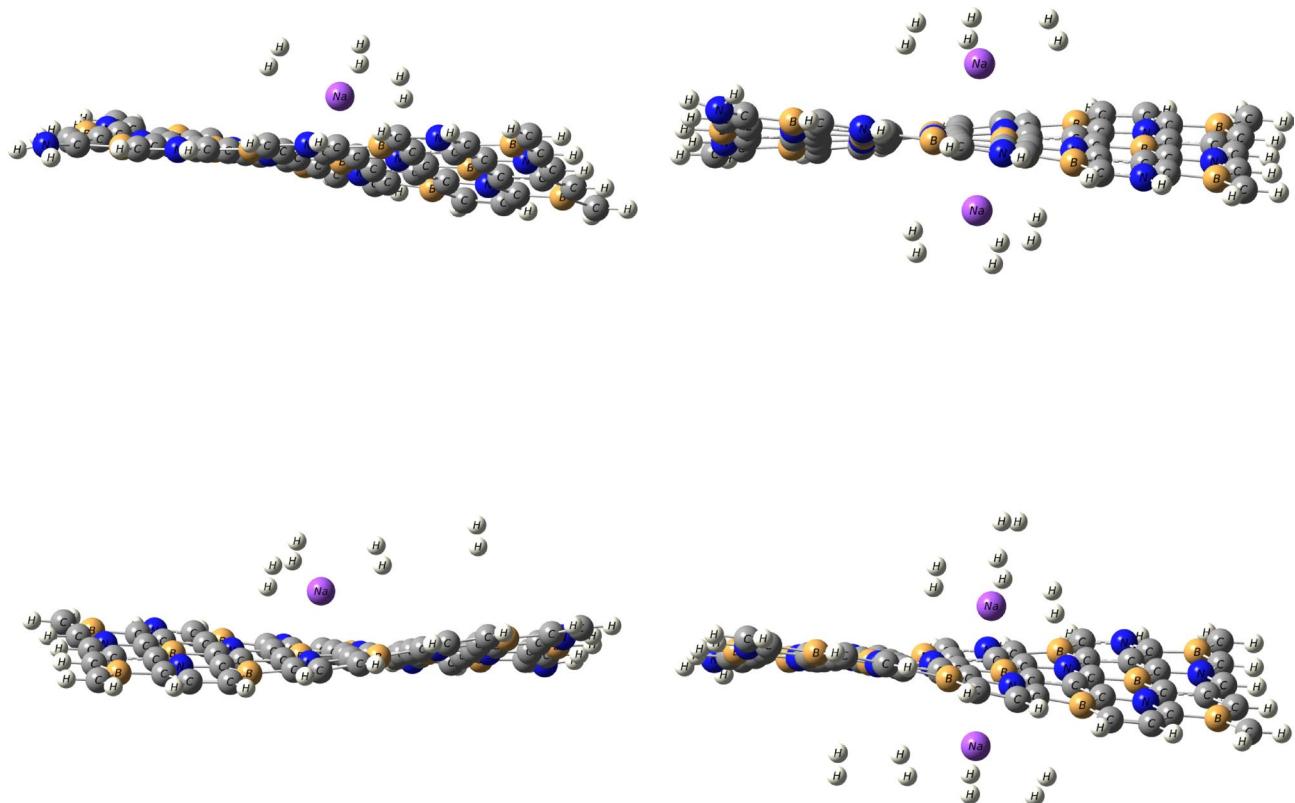


Fig. 5. (continued)

System	$d_{Li-H}(\text{\AA})$	$d_{H-H}(\text{\AA})$	$E_{ads}(\text{eV})$	$Q^{Li}(\text{e})$	$Q^H(\text{e})$	μ (Debye)
$1H_2\$Li/BC_4N$	2.09	0.75	-0.12 (-0.21)	0.82	0.03, 0.01	19.86
$2H_2\$Li/BC_4N$	2.18, 2.17	0.75	-0.19 (-0.36)	0.74	0.02, 0.03, 0.04, 0.01	12.87
$3H_2\$Li/BC_4N$	2.24, 2.30, 2.26	0.75	-0.25 (-0.48)	0.66	0.04, 0.01, 0.01, 0.04, 0.06, -0.00	12.91
$4H_2\$Li/BC_4N$	6.04, 2.24, 2.31, 2.26	0.74, 0.75	-0.27 (-0.59)	0.66	0.04, 0.01, 0.01, 0.04, 0.06, -0.00, 0.01, -0.01	13.57
$2H_2\$Li_2/BC_4N$	2.10, 2.10	0.75	-0.27	0.85, 0.85	0.04, 0.00, 0.04, 0.00	8.00
$4H_2\$Li_2/BC_4N$	2.18, 2.15, 2.18, 2.15	0.75	-0.45	0.77, 0.77	0.01, 0.04, 0.05, 0.00, 0.01, 0.04, 0.04, 0.00	8.29
$6H_2\$Li_2/BC_4N$	2.25, 2.24, 2.22, 2.23, 2.21, 2.28	0.75	-0.59	0.68, 0.68	0.05, 0.00, 0.01, 0.04, 0.05, 0.01, 0.01, 0.04, 0.05, 0.01, 0.00, 0.05	8.12
$8H_2\$Li_2/BC_4N$	6.53, 2.25, 2.24, 2.22, 4.60, 2.22, 2.20, 2.28	0.74, 0.75	-0.61	0.68, 0.68	0.05, 0.00, 0.01, 0.04, 0.05, 0.01, 0.01, 0.04, 0.05, 0.01, 0.00, 0.05, 0.01, 0.01, -0.00, 0.01, -0.02	8.28

Table 2. Structural and energetic properties for the hydrogen molecule adsorbed on Li/BC4N on one and two sided. The smaller Li-H distance (d_{Li-H}), the bond length of H-H, charge transfer (Q), dipole moment (μ).

AIMD computations

To assess the thermal and structural stability of the H_2 adsorbed complexes at finite temperature, we performed ab initio molecular dynamics (AIMD) simulations (300 K, and Berendsen thermostat) on the $3H_2\$Li/BC_4N$ and $3H_2\$Na/BC_4N$ systems. Figure 9 shows that the temperature remains well controlled around 300 K, and Fig. 9 illustrates that the total energies of both systems fluctuate within a narrow window of ± 0.02 eV, with no drift towards positive energies. Visual inspection of snapshots throughout the 10 ps trajectory revealed no bond breaking or surface reconstructions. These results confirm that the Li- and Na- decorated BC_4N monolayers can stably host up to three H_2 molecules at ambient conditions, with both structural integrity and adsorption reversibility maintained.

System	$d_{\text{Na}-\text{H}}(\text{\AA})$	$d_{\text{H}-\text{H}}(\text{\AA})$	$E_{\text{ads}}(\text{eV})$	$Q^{\text{Na}}(\text{e})$	$Q^{\text{H}}(\text{e})$	$\mu(\text{Debye})$
$1\text{H}_2\text{Na/BC}_4\text{N}$	2.49	0.75	-0.12 (-0.14)	0.92	0.05,-0.03	19.60
$2\text{H}_2\text{Na/BC}_4\text{N}$	2.52,2.50	0.75	-0.19 (-0.33)	0.87	-0.01, 0.03, 0.05, -0.03	19.06
$3\text{H}_2\text{Na/BC}_4\text{N}$	2.55,2.56,2.52	0.75	-0.25 (-0.41)	0.81	0.04,-0.01,0.00, 0.03,0.05,-0.02, 0.01,-0.01	12.90
$4\text{H}_2\text{Na/BC}_4\text{N}$	2.53,2.53,2.52,6.18	0.74, 0.75	-0.23 (-0.53)	0.81	0.04,-0.01,0.00, 0.03,0.05,-0.02, 0.01,-0.01	19.29
$2\text{H}_2\text{Na}_2\text{/BC}_4\text{N}$	2.48,2.52	0.75	-0.19	0.93, 0.93	0.04,-0.03, 0.04,-0.03	7.20
$4\text{H}_2\text{Na}_2\text{/BC}_4\text{N}$	2.52,2.49,2.50,2.53	0.75	-0.35	0.89, 0.89	-0.01,0.03,0.04, -0.02,-0.01,0.03, 0.04,-0.02	7.41
$6\text{H}_2\text{Na}_2\text{/BC}_4\text{N}$	2.54,2.54,2.54, 2.52,2.55,2.54	0.75	-0.52	0.83, 0.83	0.04,-0.02,-0.01, 0.04,0.04,-0.02, -0.01,0.03,0.04, -0.02,-0.02,0.05	7.25
$8\text{H}_2\text{Na}_2\text{/BC}_4\text{N}$	2.54,2.54,2.54,6.39, 2.57,2.59,2.55,2.85	0.74, 0.75	-0.56	0.83, 0.78	0.04,-0.02,-0.01, 0.04,0.04,-0.02, -0.01,0.03,0.05, -0.02,-0.02,0.05, 0.01,0.01,0.02, -0.02	7.29

Table 3. Structural and energetic properties for the hydrogen molecule adsorbed on $\text{Na/BC}_4\text{N}$ on one and two sided. The smaller Na-H distance ($d_{\text{Na}-\text{H}}$), the bond length of H-H , charge transfer (Q), dipole moment (μ).

Conclusion

Co-doped graphene (BC_4N) exhibits favorable characteristics for hydrogen storage applications. The co-doping introduces structural ripples, enhancing binding energies for Li and Na atoms, preventing clustering. Results reveal that charge transfer from Li and Na to BC_4N surface. H_2 adsorption on $\text{Li/BC}_4\text{N}$ and $\text{Na/BC}_4\text{N}$ systems shows non-dissociative behavior. The calculated hydrogen storage gravimetric density suggests significant storage capacities for both $\text{Li/BC}_4\text{N}$ and $\text{Na/BC}_4\text{N}$. Desorption temperatures are determined, providing insights for practical applications. Overall, co-doped graphene BC_4N emerges as a promising material for efficient and practical hydrogen storage.

Computational details

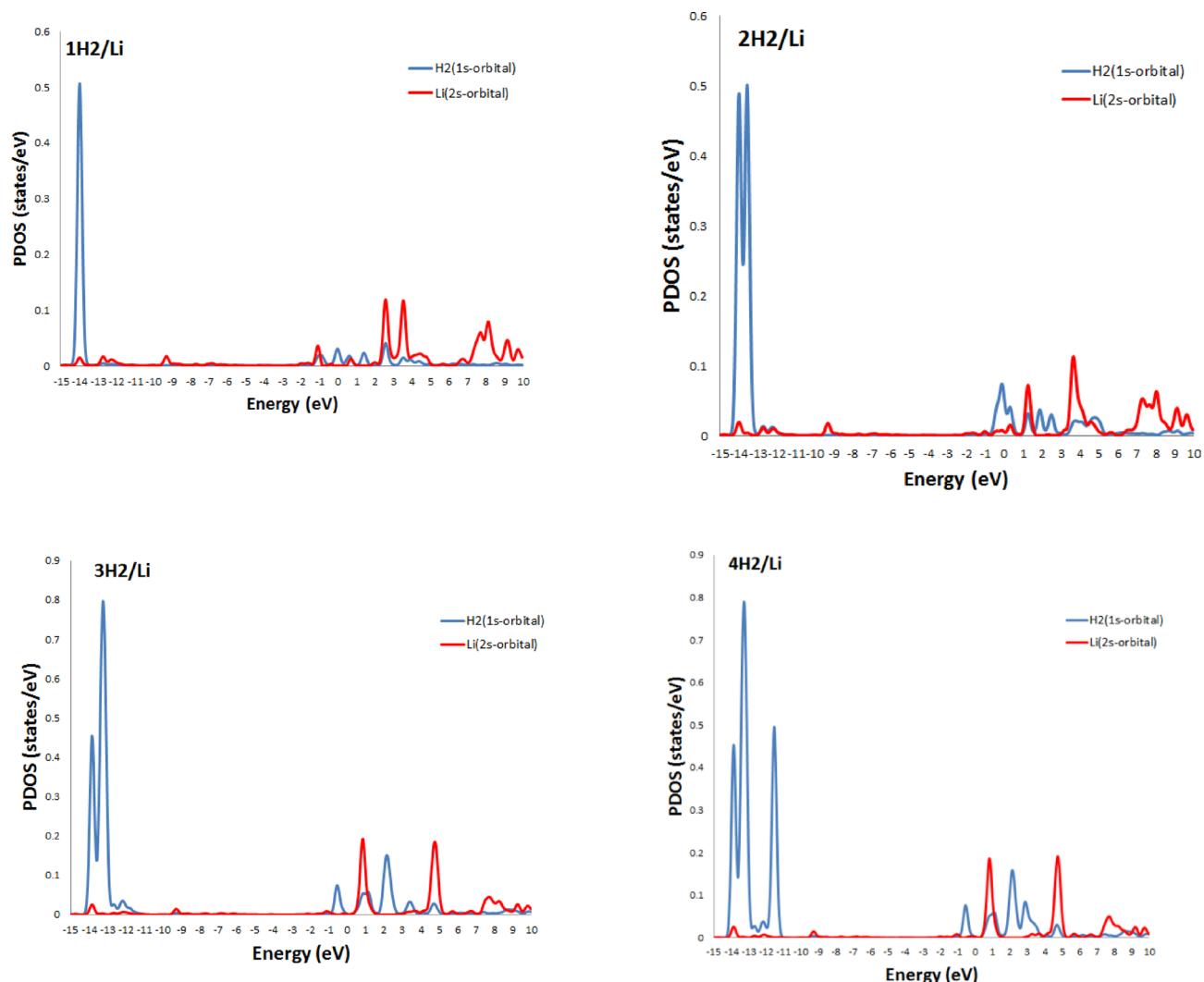
The study involves a comprehensive geometry optimization of various structures, conducted using the B3LYP/6-31 g(d, p) level of theory. The calculations are executed through the Gaussian 09 code⁴³. The study also incorporates the dispersion correction method known as DFT-D3, based on the Grimme scheme⁴⁴. This method is employed to accurately account for weak van der Waals interactions occurring between H_2 molecules and the substrates under consideration.

The focus of the investigation is on co-doped graphene, where non-bonded B and N atoms (BC_4N) are present, and these structures are terminated with hydrogen atoms. The binding energy (E_b) between lithium and sodium decorated BC_4N monolayers calculated are shown as following:-

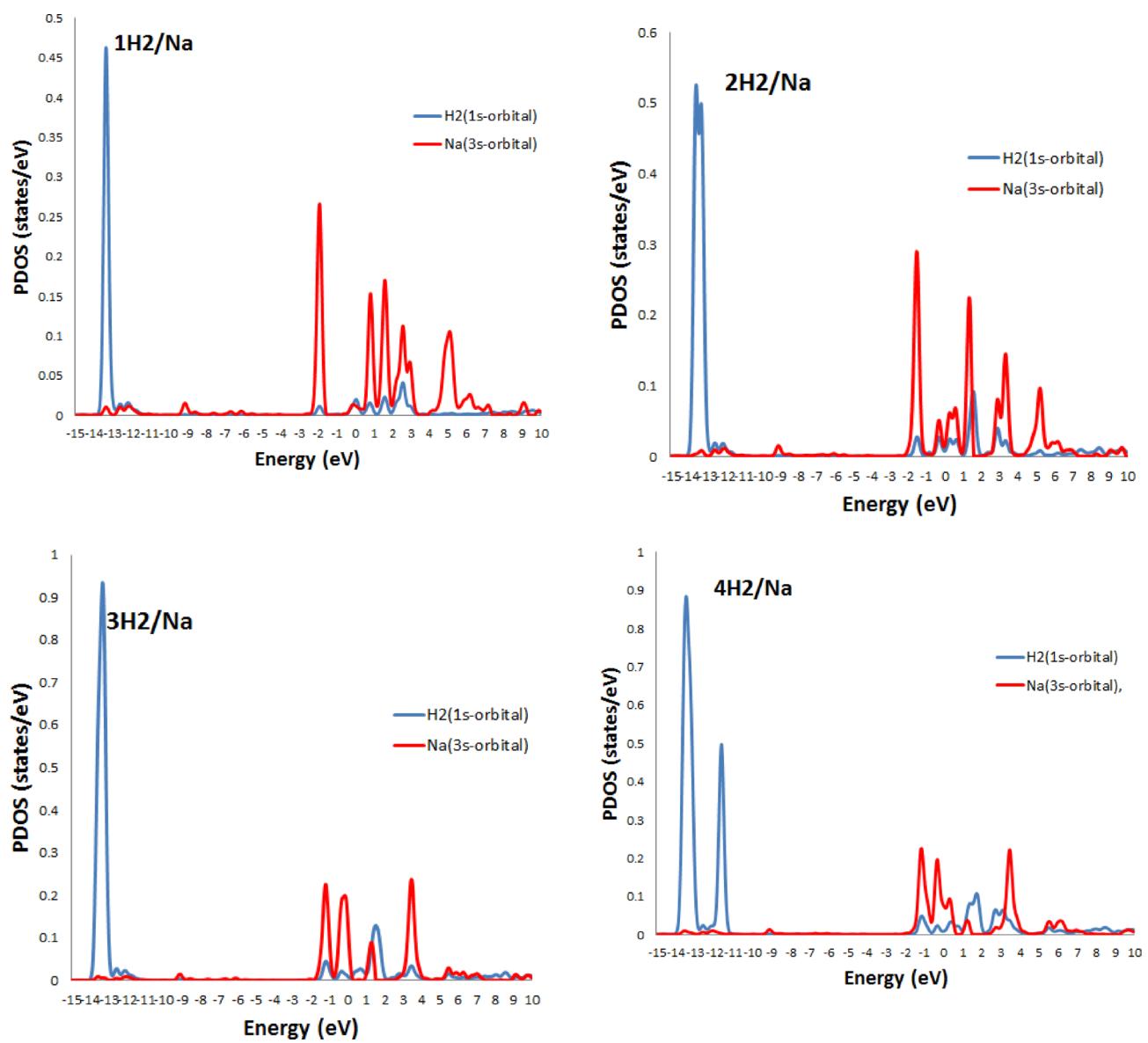
$$E_b = E_{M/\text{BC4N}} - (E_{\text{BC4N}} + E_M) \quad (3)$$

Where $E_{M/\text{BC4N}}$, E_{BC4N} , and E_M are the total energies of Li, Na decorated BC_4N , energy of BC_4N , and energy of the isolated decorated-atom respectively.

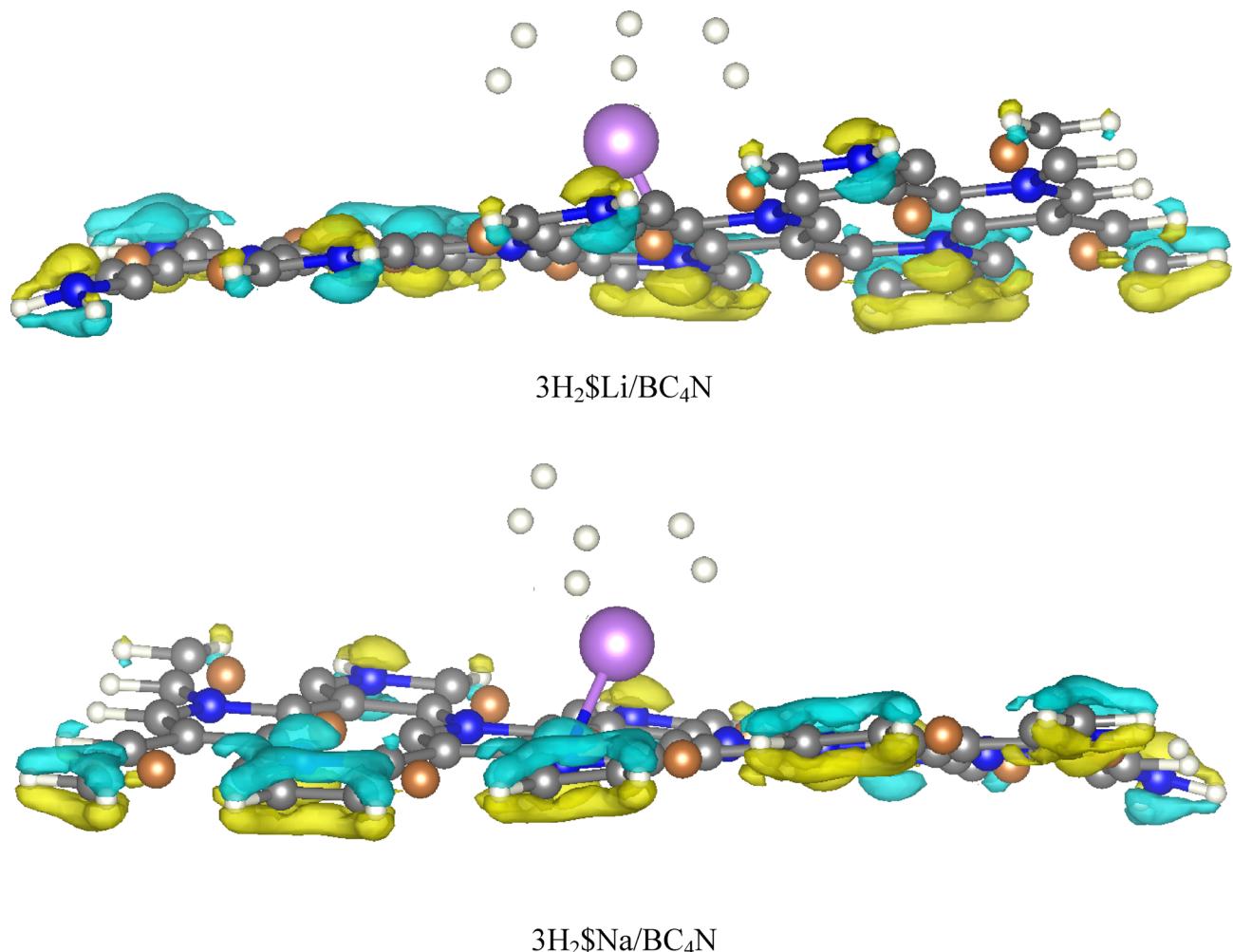
The calculation of hydrogen adsorption energy (E_{ads}) on a Li, and Na over the stable position was calculated using equation:


$$E_{\text{ads}} = E_{H2\text{M/BC4N}} - (E_{M/\text{BC4N}} + E_{H2}) \quad (4)$$

Where $E_{H2\text{M/BC4N}}$, $E_{M/\text{BC4N}}$, and E_{H2} are referred to the H_2 molecules adsorbed on decorated atom, and the energy of the free H_2 molecules respectively.


Charge density difference (CDD) plots were utilized to investigate the electron rearrangement accompanying H_2 adsorption. The CDD was computed as³⁸.

$$\Delta \rho = \rho_{3\text{H2M/BC4N}} - \rho_{\text{M/BC4N}} - \rho_{3\text{H2}} \quad (5)$$


Where $\rho_{3\text{H2M/BC4N}}$ is the total charge density of the Li, and Na decorated BC_4N sheet with three adsorbed H_2 molecules, and $\rho_{\text{M/BC4N}}$ and $\rho_{3\text{H2}}$ are those of the Li, and Na decorated BC_4N sheet and gas phase H_2 cluster, respectively.

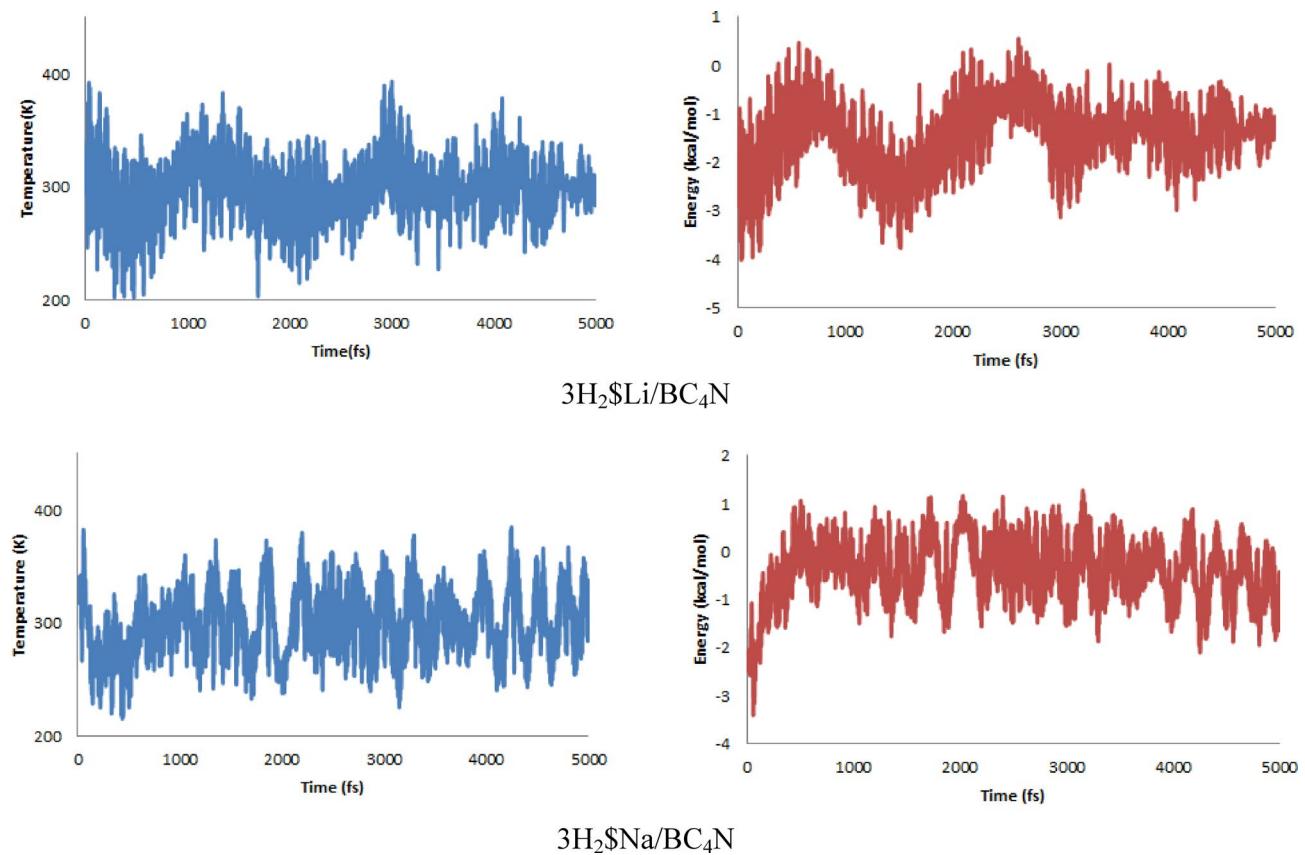

Fig. 6. PDOS of H₂ molecules on Li/BC₄N monolayer.

Fig. 7. PDOS of H₂ molecules on Na/BC₄N monolayer.

Fig. 8. The Charge density difference of 3H_2 on Li, and Na decorated BC_4N .

Fig. 9. Temperature and Energy profiles from AIMD simulations of 3H₂ on Li, and Na decorated BC₄N.

Data availability

No datasets were generated or analysed during the current study.

Received: 13 April 2025; Accepted: 29 July 2025

Published online: 19 August 2025

References

1. Zhou, Y. et al. Enhanced hydrogen storage on Li-doped defective graphene with B substitution: A DFT study. *Appl. Surf. Sci.* **410**, 166–176 (2017).
2. Zheng, N. et al. A DFT study of the enhanced hydrogen storage performance of the Li-decorated graphene nanoribbons. *Vacuum* **171**, 109011 (2020).
3. Choudhary, A. et al. First principles calculations of hydrogen storage on Cu and Pd-decorated graphene. *Int. J. Hydrg. Energy* **41** (39), 17652–17656 (2016).
4. van den Berg, A. W. C. & Areán, C. O. *Materials for hydrogen storage: current research trends and perspectives*. *Chem. Commun.*, **6**, 668–681 (2008).
5. Jiang, M. et al. *Light metal decorated graphene-like Si₂BN monolayers as hydrogen storage media: A DFT investigation*. *Int. J. Hydrg. Energy*, **50**, 865–878 (2023).
6. Reshak, A. H. et al. First-principles calculations of structural, elastic, electronic, and optical properties of perovskite-type KMgH₃ crystals: novel hydrogen storage material. *J. Phys. Chem. B* **115** (12), 2836–2841 (2011).
7. Parkar, P. & Chaudhari, A. Reversible hydrogen storage on multiple Ti-doped B₁₂C₆N₆ nanocage. *J. Energy Storage* **62**, 106910 (2023).
8. Lee, H. et al. Ab initio study of dihydrogen binding in metal-decorated polyacetylene for hydrogen storage. *Phys. Rev. B* **76** (19), 195110 (2007).
9. Fair, K. M. et al. Hydrogen adsorption capacity of Adatoms on double carbon vacancies of graphene: A trend study from first principles. *Phys. Rev. B* **87** (1), 014102 (2013).
10. Xu, W. C. et al. Investigation of hydrogen storage capacity of various carbon materials. *Int. J. Hydrg. Energy* **32** (13), 2504–2512 (2007).
11. Ozturk, Z. et al. Hydrogen storage in heat welded random CNT network structures. *Int. J. Hydrg. Energy* **40** (1), 403–411 (2015).
12. Liang, H. et al. Manipulating active sites on carbon nanotube materials for highly efficient hydrogen storage. *Appl. Surf. Sci.* **619**, 156740 (2023).
13. Liu, M. et al. Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH₂ for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities. *Nano Energy* **61**, 540–549 (2019).
14. Tang, L. et al. A DFT study on defects and N doping to enhance hydrogen storage in Mg-decorated graphene. *Appl. Surf. Sci.* **648**, 159078 (2024).
15. Ao, Z. et al. Hydrogen storage in porous graphene with Al decoration. *Int. J. Hydrg. Energy* **39** (28), 16244–16251 (2014).

16. Zheng, Q., Wang, X. & Gao, S. Adsorption equilibrium of hydrogen on graphene sheets and activated carbon. *Cryogenics* **61**, 143–148 (2014).
17. Zheng, Q. et al. Analysis of adsorption equilibrium of hydrogen on graphene sheets. *Int. J. Hydrol. Energy.* **38** (25), 10896–10902 (2013).
18. Bonaccorso, F. et al. Production and processing of graphene and 2d crystals. *Mater. Today* **15** (12), 564–589 (2012).
19. Chu, Y. et al. Mechanical properties of hydrogen Edge-Passivated chiral graphene nanoribbons. *J. Nanomechanics Micromechanics*. **5** (4), 04015001 (2015).
20. Ashna, G. E. et al. Hydrogen adsorption on vacancy-bent graphene nanosheets: A DFT study. *Mater. Today Commun.* **37**, 107319 (2023).
21. Chakraborty, B. et al. High capacity reversible hydrogen storage in titanium doped 2D carbon allotrope Ψ -graphene: density functional theory investigations. *Int. J. Hydrol. Energy.* **46** (5), 4154–4167 (2021).
22. Sterlin Leo Hudson, M. et al. Hydrogen uptake of reduced graphene oxide and graphene sheets decorated with Fe nanoclusters. *Int. J. Hydrol. Energy.* **39** (16), 8311–8320 (2014).
23. Ismail, N., Madian, M. & El-Shall, M. S. Reduced graphene oxide doped with ni/pd nanoparticles for hydrogen storage application. *J. Ind. Eng. Chem.* **30**, 328–335 (2015).
24. Parambath, V. B. et al. Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene. *J. Phys. Chem. C.* **115** (31), 15679–15685 (2011).
25. Jung, H. et al. Bio-inspired graphene foam decorated with Pt nanoparticles for hydrogen storage at room temperature. *Int. J. Hydrol. Energy.* **41** (9), 5019–5027 (2016).
26. Huo, Y. et al. Boron-doping effect on the enhanced hydrogen storage of titanium-decorated porous graphene: A first-principles study. *Int. J. Hydrol. Energy.* **46** (80), 40301–40311 (2021).
27. Du, A., Zhu, Z. & Smith, S. C. Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations. *J. Am. Chem. Soc.* **132** (9), 2876–2877 (2010).
28. Beheshti, E., Nojeh, A. & Servati, P. A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage. *Carbon* **49** (5), 1561–1567 (2011).
29. Wang, L., Yang, F. H. & Yang, R. T. Hydrogen storage properties of B- and N-doped microporous carbon. *AIChE J.* **55** (7), 1823–1833 (2009).
30. Wu, H. Y. et al. DFT study of hydrogen storage by spillover on graphene with Boron substitution. *J. Phys. Chem. C.* **115** (18), 9241–9249 (2011).
31. Lee, S. et al. Effect of nitrogen induced defects in Li dispersed graphene on hydrogen storage. *Int. J. Hydrol. Energy.* **38** (11), 4611–4617 (2013).
32. Shao, Y. et al. Progress in Nonmetal-Doped graphene electrocatalysts for the oxygen reduction reaction. *ChemSusChem* **12** (10), 2133–2146 (2019).
33. Zhao, Y. et al. Can Boron and nitrogen Co-doping improve oxygen reduction reaction activity of carbon nanotubes?? *J. Am. Chem. Soc.* **135** (4), 1201–1204 (2013).
34. Seenithurai, S. et al. Li-decorated double vacancy graphene for hydrogen storage application: A first principles study. *Int. J. Hydrol. Energy.* **39** (21), 11016–11026 (2014).
35. Wang, F. et al. Li-decorated porous graphene as a high-performance hydrogen storage material: A first-principles study. *Int. J. Hydrol. Energy.* **42** (15), 10099–10108 (2017).
36. Chan, K. T., Neaton, J. B. & Cohen, M. L. First-principles study of metal Adatom adsorption on graphene. *Phys. Rev. B.* **77** (23), 235430 (2008).
37. Zhang, H. et al. First-principles study of sodium adsorption and diffusion on vacancies, N, S, and NS-codoped graphene. *Mater. Today Commun.* **32**, 103817 (2022).
38. Dange, D., Beniwal, P. & Dhilip Kumar, T. J. Efficient hydrogen storage in superalkali NLi_4 -Decorated Boron phosphide biphenylene. *ACS Appl. Energy Mater.* **8** (11), 7594–7604 (2025).
39. Durgun, E., Ciraci, S. & Yildirim, T. Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage. *Phys. Rev. B.* **77** (8), 085405 (2008).
40. Mahamiya, V. et al. Remarkable enhancement in catechol sensing by the decoration of selective transition metals in biphenylene sheet: A systematic first-principles study. *J. Phys. D.* **55** (50), 505401 (2022).
41. Naderizadeh, A., Baizaei, S. M. & Kahnouji, H. Density functional theory study of reversible hydrogen storage in monolayer beryllium hydride by decoration with Boron and lithium. *Int. J. Hydrol. Energy.* **48** (20), 7400–7418 (2023).
42. Faye, O. & Szpunar, J. A. An efficient way to suppress the competition between adsorption of H_2 and desorption of $\text{nH}_2\text{-Nb}$ complex from graphene sheet: A promising approach to H_2 storage. *J. Phys. Chem. C.* **122** (50), 28506–28517 (2018).
43. Frisch, M. J. et al. *Gaussian 09 Rev. D.01* (Wallingford, 2009).
44. Grimme, S. et al. A consistent and accurate Ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. *J. Chem. Phys.* **132** (15), 154104 (2010).

Author contributions

N. N. Mostafa: Methodology, Validation, Formal analysis, Investigation, Data Curation, Visualization, Writing - Original Draft; Kamal A. Soliman: Conceptualization, Methodology, Writing - Review & Editing; S.M. Abd El Haleem: Conceptualization, Supervision, Writing - Review & Editing; W.S. Abdel Halim: Conceptualization, Validation, Supervision, Writing - Review & Editing.

Funding

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Declarations

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1038/s41598-025-14088-8>.

Correspondence and requests for materials should be addressed to K.A.S. or W.S.A.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

© The Author(s) 2025