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Convolutional neural network
based system for fully automatic
FLAIR MRI segmentation in
multiple sclerosis diagnosis

Ali Arian Darestani, Mahsa Naeeni Davarani*2", Virginia Guillen -Cafias*3, Hasan Hashemi*,
Amin Zarei®, Sanaz Heydari Havadaragh® & Mohammad Hossein Harirchian’

This study presents an automated system using Convolutional Neural Networks (CNNs) for segmenting
FLAIR Magnetic Resonance Imaging (MRI) images to aid in the diagnosis of Multiple Sclerosis (MS).
The dataset included 103 patients from Imam Khomeini Hospital, Tehran and an additional 10 patients
from an external center. Key preprocessing steps included skull stripping, normalization, resizing,
segmentation mask processing, entropy-based exclusion, and data augmentation. The nnU-Net
architecture tailored for 2D slices was employed and trained using a fivefold cross-validation approach.
In the slice-level classification approach, the model achieved 83% accuracy, 100% sensitivity, 75%
positive predictive value (PPV), and 99% negative predictive value (NPV) on the internal test set. For
the external test set, the accuracy was 76%, sensitivity 100%, PPV 68%, and NPV 100%. Voxel-level
segmentation showed a Dice Similarity Coefficient (DSC) of 70% for the internal set and 75% for the
external set. The CNN-based system with nnU-Net architecture demonstrated high accuracy and
reliability in segmenting MS lesions, highlighting its potential for enhancing clinical decision-making.
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Multiple Sclerosis (MS) is a chronic neurological disorder where the immune system attacks the central nervous
system, causing demyelination and various neurological impairments'. The diverse characteristics of MS
lesions, including variations in size, shape, and location, create substantial challenges for effective diagnosis
and monitoring®®. Magnetic Resonance Imaging (MRI), particularly with Fluid-Attenuated Inversion Recovery
(FLAIR) sequences, is crucial for diagnosing and managing MS because of its excellent capability to detect
demyelinating lesions in the white matter®.

Manual segmentation of MS lesions from FLAIR MRI images is labor-intensive and prone to inter- and
intra-observer variability, leading to inconsistent and subjective outcomes’. As MS lesions significantly impact
patient prognosis and treatment plans, there is a critical need for automated, accurate, and reproducible
segmentation methods®’. Recent advancements in artificial intelligence (AI) and machine learning, particularly
Convolutional Neural Networks (CNNs), have shown great promise in medical image analysis®®. CNNs excel
in feature extraction and pattern recognition from complex datasets, making them highly suitable for MS
lesion segmentation. The nnU-Net, a self-adapting neural network framework, represents a state-of-the-art
approach in medical image segmentation, offering flexibility and high performance without the need for manual
configuration!®!,

This study proposes an automated system based on the nnU-Net architecture for segmenting MS lesions
in FLAIR MRI images. Our system leverages extensive preprocessing steps, including skull stripping,
normalization, resizing, segmentation mask processing, and entropy-based exclusion, combined with advanced
data augmentation techniques to enhance model robustness and accuracy. We assembled a dataset comprising
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FLAIR MRI images from 103 MS patients from Imam Khomeini Hospital in Tehran and an external validation
set of 10 patients from another center. The nnU-Net architecture was specifically configured for 2D image slices
and trained using a fivefold cross-validation approach on an NVIDIA GeForce RTX 3090 GPU. Performance
metrics such as accuracy, sensitivity, positive predictive value (PPV), and negative predictive value (NPV) were
employed to evaluate the model on both internal and external test sets.

Our research aims to address the limitations of manual segmentation and enhance the diagnostic workflow
for MS. By providing a reliable automated segmentation tool, we seek to facilitate more consistent and precise
identification of MS lesions, ultimately improving patient outcomes. The study also explores future directions in
distinguishing active from non-active lesions and validating the model on larger, more diverse datasets to ensure
its broad applicability.

Our study introduces a fully automatic CNN-based system for segmenting FLAIR MRI images in MS
diagnosis, leveraging the nnU-Net architecture for enhanced accuracy and reliability. Unlike previous works
that often require manual intervention or are limited by dataset size'?, our approach demonstrates superior
performance on both internal and external test sets, achieving high sensitivity and specificity in lesion detection.
This automation and robustness distinguish our method from earlier studies, offering a scalable solution that
reduces subjectivity and improves reproducibility in clinical settings.

Related work

MS is a chronic neurological disorder marked by the immune system attacking the central nervous system,
causing demyelination and various neurological impairments. MRI, particularly with FLAIR sequences,
is crucial for diagnosing and managing MS due to its capability to detect demyelinating lesions in the white
matter!3. However, manual segmentation of these lesions is labor-intensive and prone to variability, necessitating
automated, accurate, and reproducible segmentation methods!.

Recent studies have explored various CNN-based methods for segmenting MS lesions in MRI images. For
instance, Naeeni Davarani et al.'® introduced an efficient approach for the segmentation of active and inactive
plaques within FLAIR images using a DeepLabV3Plus SE model with an EfficientNetB0 backbone, demonstrating
superior performance compared to other CNN architecturesl. This study highlights the potential of advanced
deep learning models in improving the accuracy and reliability of MS lesion segmentation.

Advances in Al and machine learning, specifically CNNs, have shown significant promise in medical image
analysis®. CNNs are particularly adept at feature extraction and pattern recognition in complex datasets, making
them well-suited for MS lesion segmentation'®. Numerous studies have explored CNN-based methods for
segmenting MS lesions in MRI images, each demonstrating unique approaches and varying levels of success.
Below is a summary of notable research in this field:

In continuation of Table 1, detailed explanations for the summarized studies are provided below:

Brown RA et al'7 aimed to automatically segment orbital fat to remove technical intensity artifacts using a
Fully Convolutional Neural Network (FCNN). The study involved their own dataset and showed good agreement
with manual segmentation, achieving a Dice Score of 0.74.

Coronado I et al'® focused on the automatic segmentation of gadolinium-enhancing lesions in their own
dataset of 1,006 RRMS patients using a 3D CNN. Despite a high false-positive rate in small lesions, the method
achieved a Dice Score of 0.77.

Authors Datasets Methods Limitations Results
Brown RA et al'? Own dataset FCNN Agreement with manual segmentation Dice score: 0.74 (Jacard index)
Coronado I et al'® Own dataset 3D CNN High false-positive rate in small lesions Dice score: 0.77

Essa E et al’?

MICCATI 2008 MS challenge dataset

Region-based Convolutional
Neural Network (R-CNN)

Need for large annotated datasets

Dice score: 0.83

Birenbaum A et al*

2015 Longitudinal MS Lesion
Segmentation Challenge

Single View CNN (V-Net) and
Longitudinal Network (L-Net)

Performance compared to trained human raters

Dice score: 0.627

Dice score: 0.6114 (ISBI),

. 21 . L . o
Aslani S et al ISBI 2015, Private dataset Deep end-to-end 2D CNN Requires validation on larger datasets 0.6655 (Private)

- 2 ey - -
Nichyporuk et al*. Clinical trials datasets TnalA condmoned_ CIN, naive Handling biases in the label generation process Dice scores: 0.795,
(2022) pooling, single-trial baselines

Wiltgen et al?®

In-house dataset, MSSEG, ISBI 2015,
MICCAI 2008

Ensemble of three 3D UNets

Requires large dataset for training, limited
generalizability to unseen data

Dice score: 0.67

Variations in class sizes, reliance on multimodal

Dice scores: 0.95 (WM), 0.96

2 . L )
Gabr et al CombiRx clinical trial dataset FCNN MRI data (GM), 0.99 (CSF), 0.82 (T2
lesions)
Duong et al?® gospltal of Fhe University of 3D U-Net CNN Varlgb}l}ty in lesion characteristics and Dice score: 0.789,
ennsylvania acquisition parameters
. . . Dice scores: ISBI: 0.67

2 >
Afzal et al ISBI, MICCALI datasets Cascaded 2D CNNs Overlapping lesions, lesions near cortex MICCAL 0.72
de Oliveira et al”/ ISBI 2015, In-house dataset FCNN Limited test group size, need for larger validation | -

Table 1. The table below summarizes recent studies on MS lesion segmentation using CNNG. It includes the
purpose, datasets, methods, limitations, and key results of each study, highlighting advancements and effective
approaches in this field.
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Essa E et al'® presented a competitive segmentation method for MS lesions using the MICCAI 2008 MS
challenge dataset. Their approach, based on a Region-based Convolutional Neural Network (R-CNN),
highlighted the need for large annotated datasets and achieved a Dice Score of 0.83.

Birenbaum A et al?® proposed an improved MS lesion segmentation method using the 2015 Longitudinal
MS Lesion Segmentation Challenge dataset. They employed a Single View CNN (V-Net) and a Longitudinal
Network (L-Net), reporting a Dice Score of 0.627.

Aslani S et al?! developed a high accuracy MS lesion segmentation technique using the ISBI 2015 and a
private dataset of 37 MS patients. Their deep end-to-end 2D CNN with a multi-branch down-sampling path
required validation on larger datasets and achieved Dice Scores of 0.6114 (ISBI) and 0.6655 (private).

Nichyporuk et al?? addressed the impact of annotation style on medical image segmentation performance
using RRMS, SPMS, and PPMS datasets from clinical trials. Their trial-conditioned CIN, naive pooling, and
single-trial baselines method handled biases in the label generation process, achieving Dice scores ranging from
0.731 to 0.795 across different conditions.

Wiltgen et al?® proposed a deep learning ensemble for accurate MS lesion segmentation using an in-house
dataset, MSSEG, ISBI 2015, and MICCAI 2008 datasets. Their ensemble of three 3D UNets with a composite loss
function required large datasets for training and demonstrated limited generalizability to unseen data, achieving
an overall Dice Score of 0.67 and 0.65 for MSSEG-1.

Gabr et al?*. (2019) used a Fully Convolutional Neural Network (FCNN) for brain and lesion segmentation in
MS patients, utilizing the CombiRx clinical trial dataset. Their approach, which relied on multimodal MRI data,
reported Dice Scores of 0.95 (WM), 0.96 (GM), 0.99 (CSF), and 0.82 (T2 lesions).

Duong et al*® developed an automated FLAIR lesion segmentation method across multiple pathologies using
a 3D U-Net CNN architecture. Evaluated on training and validation cases from the Hospital of the University
of Pennsylvania, the method achieved a Dice Score of 0.789 and a correlation with true lesion volume of 0.99.

Afzal et al*® focused on the robust segmentation of MS lesions using cascaded CNNs with datasets from ISBI
and MICCAL. Their cascaded 2D CNNs method for initial segmentation and false positive reduction addressed
overlapping lesions and lesions near the cortex, achieving Dice Scores of 0.67 (ISBI) and 0.72 (MICCAI).

de Oliveira et al” aimed to quantify brain lesions in MS patients using the ISBI 2015 and an in-house dataset.
Their method employed FCNN and preprocessing steps such as rigid registration, skull stripping, and bias
correction. Despite the limited test group size, their approach contributed to the volume quantification with a
test group range of 0.51 x 10A4—5.85x 10A4 mm?>.

Dataset

In this study, we used FLAIR MRI images from multiple sclerosis (MS) patients. Initially, we collected data from
120 patients. Detailed patient information is described in Table 1. However, after a thorough re-evaluation by
experts, we excluded some patients due to insufficient information, resulting in a final dataset comprising 103
patients. All images were collected from Imam Khomeini Hospital in Tehran, following the imaging protocol
described in Table 2.

Category Original center patients count | External validation patients count

Female 75 7
Gender Distribution

Male 28 3

Number of patients 103 10

Mean Age 33.07 years 33.7 years

Standard deviation 10.61 11.1

Minimum age 16 years 18 years
Age distribution

Maximum age 64 years 60 years

25th percentile 24 29

50th percentile 33 33

75th percentile 42 44

Relapsing-remitting (RR) 68 7

Secondary progressive (SP) 4 1
Disease type

Primary progressive (PP) 1 1

Missing data 30 1

Dimethyl fumarate (DMF) 4 2

Glatiramer acetate (GA) 6 0

Rituximab (RTX) 5 6
Treatments

Interferon beta-1a (AVONEX) | 3 0

Other Treatments (each) 51 0

Missing Data 34 2

Table 2. This table summarizes patient demographics and clinical characteristics from the original center and

external validation groups, including gender, age distribution, disease type, and treatments received.
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The FLAIR MRI images were acquired with a resolution of 512 x 512 pixels, using a 1.5 T MRI scanner with
a repetition time (TR) of 9000 ms and an echo time (TE) of 120 ms. The slice thickness was 5.5 mm with a
1 mm gap between slices, ensuring sufficient coverage of brain structures critical for MS lesion detection. These
acquisition parameters, detailed further in Table 3, were consistently applied across all patients to maintain
uniformity in the dataset.

Additionally, for external testing, we utilized data from two additional centers outside of Imam Khomeini
Hospital, comprising an additional 10 patients. This external dataset provided further validation and assessment
of our proposed methods and models.. Details of these patients are also described in Table 2.

Table 3 outlines the imaging protocol utilized for MRI acquisition. It includes specific details regarding
the imaging plane, acquisition type, receiver coil, field strength, flip angle, manufacturer, number of rows and
columns, pixel spacing in both X and Y directions, slice spacing, and slice thickness.

The table illustrates that the axial plane, which is crucial for diagnosing Multiple Sclerosis (MS), was selected
as the primary imaging plane for each patient. Each MRI volume was subsequently divided into individual slices
within this plane, generating approximately 20-25 slices per patient. Every slice was meticulously examined and
labeled by experts using the Pixlr Suite program. The labeling process was validated by a radiologist who ensured
the presence of lesions across axial, sagittal, and coronal dimensions. Ground truth masks were provided for
slices identified with lesions to facilitate the training and validation of the model.

In total, approximately 1200 slices with ground truth masks were selected from Imam Khomeini Hospital in
Tehran. Additionally, data from an external center contributed 23 more slices with ground truth masks, further
enriching the dataset and ensuring robust model training and evaluation.

Preprocessing
In preparation for training and validating the convolutional neural network (CNN) model, the following
preprocessing steps were applied to the FLAIR MRI images and their corresponding segmentation masks:

1. Skull Stripping: Each volume of FLAIR MRI images underwent skull stripping using FMRIB Software
Library (FSL) (https://fsl.fmrib.ox.ac.uk/). This process removes non-brain tissue, ensuring that subsequent
processing focuses only on brain structures relevant to multiple sclerosis (MS) lesion segmentation. An
example of a skull-stripped MRI image is shown in Fig. 1.

2. Normalization: Grayscale images were normalized to the range [0, 1]. This step ensures uniformity in pixel
values, facilitating consistent input data for the CNN.

3. Resizing: Images were resized to 512x 512 pixels to maintain consistent dimensions across the dataset.
Standardizing the image size enhances processing efficiency and supports effective feature extraction by the
CNN.

4. Segmentation Mask Processing: Ground truth segmentation masks were preprocessed to match the di-
mensions of the resized images (512 % 512 pixels) and ensure alignment with each MRI slice. Additionally,
Masks generated from different segmentation tools were standardized into a uniform format: 0 indicates
background (no lesion), and 1 indicates the presence of a lesion (foreground), representing both active and
non-active plaques of multiple sclerosis (MS). This standardization enables consistent model training and
validation across varying segmentation sources.

5. Entropy Check: To address errors in the brain extraction algorithm and distortions typically occurring in
the initial and final slices of brain-extracted images, we implemented an entropy-based exclusion criterion.
Segmentation masks related to these problematic slices often contained minimal lesion content and only a
small number of pixels. We calculated the Shannon entropy for each slice’s mask using Eq. (1).

H= fzipilogz(pi) (1)

Masks with an entropy lower than 0.01 were removed from the dataset. This step ensures the exclusion of images
with insufficient lesion information as well as the initial and final slices that often crashed after skull stripping,
thereby improving the overall dataset quality.

6. Data Augmentation: Data augmentation is employed to enrich the dataset and improve the model’s robust-
ness. Random transformations are applied to each image slice, generating additional variations for training.
The augmentation criteria include:

1. Rotation range: +40 degrees

2. Width shift range: £20% of the image width

Acquisition plane: AXIAL MR acquisition type: 2D

Receive coil name: BrainArrayll | Field Strength: 1.5 Tesla

Flip Angle: 90 degrees Manufacturer: GE MEDICAL SYSTEMS
Rows: 512 Pixel Spacing X: 0.42969 mm ~
Columns: 512 Pixel Spacing Y: 0.429688 mm ~

Spacing Between Slices: 6.5 mm | Slice Thickness: 5.5 mm

Table 3. Imaging protocol was used for MRI acquisition.
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Fig. 2. nnU-Net complete workflow.
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These transformations generate five new images for each original slice in the dataset, effectively expanding the
dataset size. This augmentation strategy introduces variability in MS lesion characteristics, enhancing the CNN’s
ability to generalize and improve its performance on unseen data.

These preprocessing steps prepare the dataset effectively for training a CNN model to accurately segment MS
lesions in FLAIR MRI images, ensuring robust performance and interpretation.

Proposed method
The proposed method involves a UNet architecture specifically designed for the segmentation of medical images,

particularly FLAIR MRI images in the context of multiple sclerosis. The architecture includes:

1. Network Architecture: The architecture used in this study is nnU-Net!!. nnU-Net is an open-source tool
that can be effectively used out-of-the-box, rendering state-of-the-art segmentation and catalyzing scientific
progress as a framework for automated method design. It provides an end-to-end automated pipeline that
can be trained and inferred on any medical dataset for segmentation. Figure 2 illustrates the architecture of

nnU-Net!!,
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nnU-Net systematically analyzes the provided training cases and creates a dataset fingerprint, allowing it to
automatically configure a matching U-Net-based segmentation pipeline. For each dataset, nnU-Net creates
several U-Net configurations:

1. 2D U-Net: Designed for both 2D and 3D datasets, this configuration processes each slice of 3D images in-
dependently.

2. 3D Full Resolution U-Net: Operates on high-resolution 3D images (for 3D datasets only).

3. 3D Low Resolution > 3D Cascade Full Resolution: A 3D U-Net cascade where an initial 3D U-Net oper-
ates on low-resolution images and a second high-resolution 3D U-Net refines the predictions of the first (for
large 3D datasets only).

In our study, we utilized the 2D U-Net configuration because our dataset consists of 2D slices of patient images.
This approach allows the model to effectively process and segment each slice independently while leveraging the
power of nnU-Net’s automatic adaptation and configuration capabilities.

2. Hardware Specifications: Training and validation were performed on an NVIDIA GeForce RTX 3090 GPU
with 24 GB VRAM, an Intel Celeron(R) G5905 CPU, 24 GB DDR4 RAM, and a 256 GB SSD for fast data
access.

3. Model Training: The depth of the network is automatically determined based on the input image size and
the desired patch size, ensuring efficient feature extraction!!. The architecture typically begins with 32 initial
filters, doubling with each downsampling layer, and utilizes standard 3x3 convolutional kernels'!. Down-
sampling is achieved through 2x2 max pooling operations. The model employs a combination of Dice and
binary cross-entropy loss functions with equal weighting to effectively handle class imbalance. Training is
conducted using Stochastic Gradient Descent (SGD) with Nesterov momentum set at 0.99 and a weight
decay of 3e-5. The initial learning rate is set to 0.01 and follows a polynomial decay schedule throughout
training. The network components are trained using 5-fold cross-validation, with each fold trained for a
total of 250 epochs!!. Batch size is determined automatically based on available GPU memory, typically
ranging between 2 and 12. The patch size is adaptively set to cover a significant portion of the input image,
ensuring efficient training.

4. Model Evaluation: The performance of the segmentation pipeline that was developed was evaluated by
comparing the voxel-level results of the fully automatic segmentation mask with the manual segmenta-
tion of the corresponding internal and external test sets. To ensure a thorough evaluation of the network’s
performance, evaluation metrics were calculated at two levels, assessing the model’s ability to perform two
different computer vision tasks: slice-level classification and voxel-level segmentation.?®

1. Slice-Level Classification: This refers to the model’s ability to accurately predict whether a slice scan is
positive or negative. A positive scan is defined as a scan where at least one MS-avid lesion is detected in the
ground truth manual segmentations. To be considered a true positive prediction, the model must detect at
least one lesion in a positive scan with a volumetric overlap of at least 10% compared to the ground truth. A
true-negative prediction is when the model does not predict any positive voxels in a negative scan. The accu-
racy, sensitivity, PPV, and negative predictive value (NPV) are used to assess the classification performance.

2. Voxel-Level Segmentation: Network segmentation accuracy is evaluated by comparing the automated
model output with the ground truth contour at the voxel level. This is quantified using the Dice Similarity
Coefficient (DSC), PPV, Intersection over Union (IoU), and sensitivity.

nnU-Net has set a new benchmark in the field of medical image segmentation without the need to fine-tune
a new architecture for every dataset individually. The pipeline itself takes care of hyper-parameter tuning and
requires no change in the network architecture to achieve state-of-the-art results. This configuration allows
for efficient processing of 2D FLAIR MRI slices, ensuring high performance in segmenting multiple sclerosis
lesions.

For more details on the nnU-Net design choices and empirical pipeline configurations based on dataset
properties, refer to Fabian Isensee et al.!! and the associated GitHub repository (https://github.com/ MICDKF
Z/nnUNet).

Results

To evaluate the performance of the trained model, 25% of the images from all patients in the dataset were used
as internal test samples. Care was taken to prevent data leakage during the division of the data into train and
validation sets. We ensured that the image slices of any patient in the test samples were not present during
the training process. Additionally, the validation data used for the fivefold process were separated from the
training data and isolated before performing augmentation. Table 4 reports the validation accuracy for the

Fold1 | Fold2 | Fold 3 | Fold4 | Fold 5 | Mean +std
Validation DSC | 83.5 89.4 88.4 87.5 84.5 86.7+2.54

Table 4. the validation dice score for the proposed model in each of the 5 folds.
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Fig. 3. model training and validation performance before(left) and after(right) augmentation.

Task Metric Center 1 Center 2
Accuracy | 83.3% (79.5-86.5%) | 76.1% (62.1-86.1%)
Sensitivity | 99.5% (98.3-99.9%) | 100% (92.3-100%)
Slice-level classification
PPV 75.1% (70.8-78.9%) | 67.7% (53.2-79.4%)
NPV 99.3% (98.0-99.8%) | 100% (92.3-100%)
DSC 70.3% (68.3-72.3%) | 74.8% (70.6-78.9%)
PPV 75.3% (73.2-77.3%) | 88.9% (83.7-94.2%)
Voxel-level segmentation | IoU 56.0% (53.9-58.1%) | 60.5% (55.6-65.5%)
Sensitivity | 71.19%(68.4-73.8%) | 68.1% (60.6-75.5%)
Hd95 28.3(23.5-33.1) 31.5 (15.0-48.0)

peeuds dee

Table 5. The model performance calculated on the dedicated test sets of two centers.

proposed model in each of the 5 folds. The maximum Dice validation score was achieved in fold 2. The mean
Dice validation score across the 5 folds was 86.7%, with a standard deviation of 2.54%.

In Fig. 3, the model’s performance during learning on train and validation samples before and after data
augmentation over 250 epochs is shown. As observed, data augmentation resulted in reduced overfitting and
improved model performance. Specifically, before data augmentation, the training loss rapidly decreased and
reached a low level, while the validation loss plateaued at a higher level, indicating overfitting. However, after
applying data augmentation, both training and validation losses decreased more gradually and consistently,
resulting in a lower final validation loss. This demonstrates that data augmentation effectively enhanced the
model’s generalization ability by introducing variability and preventing the model from overfitting to the
training data.

The performance of the model for slice-level classification and voxel-level segmentation is presented in
Table 4. The detailed performance metrics calculated on the dedicated test sets from two centers are further
summarized in Table 5. To select normal slices, we used slices that specialists did not diagnose any abnormalities
in and had no labels. Additionally, to prevent data imbalance during evaluation, normal data were randomly
selected in quantities equal to the existing test data and used for the classification process.

In terms of slice-level classification, the model achieved an accuracy of 83%, sensitivity of 100%, PPV of
75%, and NPV of 99% for the internal testing set (center 1). Out of the 218 positive scans, the model correctly
classified 146 scans as positive, and out of the 218 negative scans, the model correctly classified 217 scans as
negative.

For the external testing set (center 2), the model achieved an accuracy of 76%, sensitivity of 100%, PPV of
68%, and NPV of 100%. Out of the 23 positive scans, the model correctly classified 12 scans as positive, and out
of the 23 negative scans, the model correctly classified all 23 scans as negative.

Figures 4 and 5 show the alteration in calculated metrics as the true-positive threshold is adjusted for the
tasks of slice-level classification for center 1 (internal testing set) and center 2 (external testing set), respectively.

In terms of voxel-level segmentation, the automated method demonstrated robust performance across both
testing centers. For the internal validation set (Center 1), the model achieved a Dice Similarity Coefficient (DSC)
0f 70.3% (CI 68.3-72.3%), with strong precision (PPV: 75.3% (CI 73.2-77.3%)) and sensitivity (71.1% (CI 68.4-
73.8%)). The Intersection over Union (IoU) reached 56.0% (CI 53.9-58.1%), while boundary accuracy measured
by HD95 was 28.3 mm (CI 23.5-33.1 mm).

The external validation (Center 2) showed even higher segmentation precision with DSC of 74.8% (CI
70.6-78.9%) and notably improved PPV (88.9% (CI 83.7-94.2%)). While sensitivity remained strong at 68.1%
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Fig. 4. Plots depicting the alteration in calculated metrics as the true-positive threshold is adjusted for the
tasks of scan malignancy classification for center 1 (internal testing set).
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Fig. 5. Plots depicting the alteration in calculated metrics as the true-positive threshold is adjusted for the
tasks of scan malignancy classification for center 2 (external testing set).

(CI 60.6-75.5%), the IoU improved to 60.5% (CI 55.6-65.5%). The boundary measurement HD95 was slightly
higher at 31.5 mm (CI 15.0-48.0 mm), reflecting expected variability in external datasets.

For classification performance, the model maintained excellent accuracy in both centers (Center 1: 83.3% (CI
79.5-86.5%); Center 2: 76.1% (CI 62.1-86.1%)), with perfect sensitivity (99.5% (CI 98.3-99.9%) and 100% (CI
92.3-100%), respectively). The high NPV values (99.3% (CI 98.0-99.8%) and 100% (CI 92.3-100%)) confirm
reliable negative case identification.

These comprehensive metrics demonstrate the model’s consistent performance across different clinical
environments, with particularly strong precision in external validation (PPV: 88.9% (CI 83.7-94.2%)) and
reliable sensitivity in both datasets (> 68%). The narrow confidence intervals for DSC (CI +2-4%) indicate stable
segmentation performance across various slices and patient cases.

In Fig. 6, four examples of slices from the test set are depicted. The images in the first-row show slices in the
axial plane, along with their actual labels. The corresponding predicted images by the network are shown in the
second-row. It is evident that the model has achieved high accuracy in identifying regions of plaques in brain
tissue.

The proposed CNN-based system demonstrated significant improvements in the automatic segmentation
of FLAIR MRI images for MS diagnosis. By effectively leveraging convolutional neural networks, the system
achieved enhanced accuracy and reliability in segmenting both active and non-active lesions (plaques) specific
to multiple sclerosis. These results highlight the system’s ability to provide detailed and precise segmentation,
thereby advancing the capability to diagnose and monitor MS-related abnormalities more effectively through
MRI imaging.
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Sample Image 1 with Predicted Mask

Sample Image 1 with GT Mask

Sample Image 2 with GT Mask Sample Image 3 with GT Mask Sample Image 4 with GT Mask

Sample Image 2 with Predicted Mask Sample Image 3 with Predicted Mask Sample Image 4 with Predicted Mask

Fig. 6. Example slices from the dataset in the axial plane, displaying actual labels (top row) and corresponding
predicted labels by the network (bottom row).

Discussion

In this study, we developed and evaluated a CNN-based system for the automatic segmentation of FLAIR
MRI images aimed at enhancing the diagnosis of multiple sclerosis (MS). Our results demonstrate significant
advancements in both slice-level classification and voxel-level segmentation tasks.

Slice-level classification

Our CNN model achieved promising results in slice-level classification, accurately distinguishing between MS-
positive and MS-negative scans. For the internal testing set (center 1), the model achieved an accuracy of 83%,
sensitivity of 100%, PPV of 75%, and NPV of 99%. Similarly, for the external testing set (center 2), the model
achieved an accuracy of 76%, sensitivity of 100%, PPV of 68%, and NPV of 100%. These findings indicate robust
performance in identifying MS-specific abnormalities across different datasets.

Voxel-level segmentation

The CNN-based segmentation model demonstrated substantial improvements in voxel-level segmentation of
MS lesions. In the internal testing set (center 1), the model achieved average values of 70% for DSC, 75.3% for
PPV, 56% for intersection over union (IoU), 71% for sensitivity, and 28.3 for HD5. For the external testing set
(center 2), corresponding values were 75% for DSC, 89% for PPV, 61% for IoU, 68.1% for sensitivity, and 31.5 for
HD5. These metrics underscore the model’s effectiveness in accurately delineating MS lesions from brain tissue
in MRI scans, highlighting its potential clinical utility.

Impact of data augmentation
Data augmentation played a crucial role in improving model generalization and mitigating overfitting. By
artificially expanding the training dataset with augmented images, we observed a reduction in validation loss
and enhanced performance across both classification and segmentation tasks. This approach ensured that the
CNN model learned robust features and patterns essential for accurate MS lesion detection without being overly
sensitive to variations in input data.

Clinical implications

The enhanced accuracy and reliability of our CNN-based segmentation system have significant clinical
implications for multiple sclerosis (MS) management. Accurate segmentation of MS lesions supports clinicians
in timely diagnosis, treatment planning, and disease monitoring. The ability to differentiate between active and
non-active lesions is particularly valuable, providing crucial insights into disease progression and response to
therapy. This capability facilitates the development of personalized patient management strategies tailored to
individual disease dynamics.

Future directions

Differentiating between active and non-active lesions represents a critical area for future investigation. While
our study demonstrates the feasibility of segmenting MS lesions, further research is warranted to enhance
the model’s capability in distinguishing lesion types based on dynamic imaging features. Future studies will
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explore advanced imaging modalities and longitudinal data analysis to improve sensitivity to lesion activity and
chronicity. These advancements aim to enhance the clinical utility of our segmentation model in personalized
MS management strategies.

While our model demonstrates high accuracy, it is important to note that variations in MRI acquisition
protocols across different centers may affect the generalizability of the model. Factors such as differences in
field strength, slice thickness, or scanner manufacturers could introduce variability in image quality and lesion
visibility, potentially impacting segmentation performance. Future work should include testing on datasets from
multiple centers to ensure robustness against such variations.

Limitations

Despite the promising results, several limitations need consideration. The performance of the CNN model may
vary depending on dataset diversity and size used for training and testing. Further validation on larger and more
diverse cohorts is essential to assess generalizability across different clinical settings and populations. Integration
of multimodal imaging data and longitudinal studies could bolster the model’s robustness and expand its clinical
applicability.

Conclusion

In conclusion, our study demonstrates that CNN-based segmentation of FLAIR MRI images is a promising
approach for enhancing MS diagnosis and lesion characterization. The developed system shows considerable
improvements in both accuracy and efficiency, paving the way for more reliable clinical decision-making in MS
management. Future research efforts should focus on refining the model’s performance through collaborative
efforts and large-scale validation studies, ultimately aiming to translate these advancements into routine clinical
practice.

Future research should focus on integrating multi-modal MRI data, such as T1-weighted and T2-weighted
images, to further improve segmentation accuracy and provide a more comprehensive assessment of MS lesions.
Additionally, exploring the application of our model in clinical settings, such as real-time diagnostic workflows
or longitudinal monitoring of disease progression, could validate its practical utility and impact on patient care.

Data availability
The datasets generated and analyzed during the current study are not publicly available due to patient privacy
concerns but are available from the corresponding author on reasonable request.
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