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Entanglement distribution is essential for unlocking the potential of distributed quantum information 
processing. We consider an N-partite network where entanglement is distributed via a central source 
over lossy channels, and network participants cooperate to establish entanglement between any 
two chosen parties under local operations and classical communication (LOCC). We develop a general 
mathematical framework to assess the average bipartite entanglement shared in a lossy distribution, 
and introduce a tractable lower bound by optimizing over a subset of single-parameter LOCC 
transformations. Our results show that probabilistically extracting Bell pairs from W states is more 
advantageous than deterministically extracting them from GHZ-like states in lossy networks, with 
this advantage increasing with network size. We further extend our analysis analytically, proving that 
W states remain more effective in large-scale networks. These findings offer valuable insights into the 
practical deployment of near-term networks, and corroborate a trade-off relationship between the 
success conversion probability of entanglement distribution protocols and their robustness to loss.
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Quantum entanglement is fundamental for realizing the potential of distributed quantum information 
processing (DQIP). In this context, entanglement can be usefully pictured as a resource that is harnessed by 
physically separated parties, constrained by local operations and classical communication (LOCC), to perform 
various informational tasks. In such LOCC transformations, each party can measure their part of the system 
and broadcast the outcomes through a classical channel. This broadcasted information subsequently informs 
updates in the measurements of other parties. Understanding the capabilities and limitations of such operations 
is crucial, as many quantum information tasks, including teleportation, superdense coding1, one-way quantum 
computation, quantum secure direct communication2,3, quantum conference key agreement, and entanglement 
distribution, rely on the LOCC paradigm.

Random-party entanglement distillation (RED) is a critical problem in DQIP. It involves investigating 
protocols to transform multipartite entangled states into a Bell pair shared among unspecified parties. The 
advantages of random-party over specified-party entanglement distillation protocols were first highlighted in4–6. 
In particular, it was shown that a W state can be reliably converted into a Bell pair via a RED protocol with a 
probability of success asymptotically reaching the unity for infinitely many rounds of LOCC operations4 — and, 
contrary to multiple-copies settings7–9, such protocol does not resort to quantum purification as it relies on a 
single copy of a W state. Although initially promising, subsequent findings demonstrated that LOCC operations 
cannot achieve this limit10, as they belong to a class of operations that is not topologically closed11,12. These 
results have revealed the major role of LOCC round complexity analysis in RED protocols, a topic only recently 
scrutinized in the specific case of W states13. Altogether, the study of RED protocols has many subtleties and 
open questions.

W and Greenberger-Horne-Zeilinger (GHZ) states represent two distinct, nonequivalent entanglement classes 
for three-qubit systems14,15. As claimed in16, their distinction lies in their entanglement structure: Although any 
bipartition of a GHZ state has maximal entanglement (exactly one ebit), the bipartite entanglement content of a 
W state is strictly less than one ebit. This structure results in two complementary aspects: while GHZ states can 
be deterministically converted into Bell pairs (e.g., with a single qubit measurement in the Pauli-X basis) but are 
sensitive to loss (all the entanglement is gone if any of the qubits are lost); W states can only be probabilistically 
converted into Bell pairs, yet are robust to loss (some entanglement can be retrieved even if any of the qubits are 
lost). In this sense, for three-qubit systems, there is a clear tradeoff relationship between the success probability 
of entanglement conversion protocols for a given resource and the resource’s robustness to losses. For instance, a 
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deterministic conversion comes at the expense of loss sensitivity, making each class preferable depending on the 
distributed information-processing scenario.

Although entanglement distillation has been widely studied in both random and specified scenarios, few 
works have addressed these aspects in the context of near-term quantum networks17–20. Motivated by the tradeoff 
relationship between the success probability of entanglement conversion protocols for a given resource and the 
resource’s robustness to losses present in three-partite entangled states, we developed a theoretical framework to 
assess bipartite entanglement conversion of arbitrary resources in a lossy network and employed it to compare W 
and GHZ-like states’ performance in different network settings. This work examines the performance of single-
copy, RED protocols in an N-partite centralized lossy network. Our primary contributions include:

•	 Developing a comprehensive theoretical framework to compute the average bipartite entanglement shared 
among a pair of parties within an N-partite centralized lossy network;

•	 Assessing single-parameter LOCC entanglement conversion performance for W and GHZ-like states by de-
veloping computationally efficient lower bounds for the figure of merit;

•	 Demonstrating W state’s advantage over GHZ-like states numerically (and analytically for particular cases), 
corroborating the extension of a tradeoff relationship between the success probability of entanglement con-
version protocols for a given resource and the resource’s robustness to losses to multi-party states.

The remainder of this paper is organized as follows. In Section 1, we define the general problem, mathematical 
model, and notation, as well as our figure of merit and benchmark. In Section  2, we introduce a tractable 
lower bound for our figure of merit and its simplifications for single-round, single-parameter (SP) LOCC 
transformations, applying it in Section  3 to compare the performance of W and GHZ-like states in lossy 
entanglement distribution. We conclude our discussion and provide possible future directions in Section 4.

Problem statement: entanglement distribution in a lossy network
We consider an N-partite network that is served by a centralized source that generates and then distributes an 
N-qubit state (resource) ψ to the network participants. The links from the source to each node are assumed 
to be lossy, i.e., a particle generated at the source gets lost in the link with probability ϵ. Losses in all links are 
considered to be independent and identically distributed. The participants cooperate by measuring the received 
particles to generate entanglement between any two participants A and B. Each node can perform ri ≥ 1 rounds 
of measurement on its received particle and broadcast the outcomes of each round to the network via a classical 
broadcast channel, i.e., the parties are constrained by LOCCs. Given this entanglement distribution scenario, 
we want to: 

	1.	 Evaluate the amount of entanglement shared on average between two network participants as a function of ϵ
, for a given parameter region (N, ri) and a resource state ψ;

	2.	 Compare W and GHZ-like states’ performance over different parameter regions, including asymptotic re-
gimes (e.g., N → ∞).

Next, we formalize the above concepts and goals.

Mathematical model and notations
We arbitrarily label the participants of interest by A and B and the helper participants by C with an index, i.e., 
C1, C2, ..., Ci, ..., CN−2 as depicted in Fig. 1. Labeling is arbitrary because in a RED protocol success is deemed 

Fig. 1.  On the left, entanglement distribution, and LOCC processing in a lossy network. On the right, the 
sequence of ri global measurements Mjx , namely M ri

j , is detailed.
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whenever some entangled bipartite state (not necessarily the maximally entangled one) is obtained between any 
two parties5,12,13. In the distribution phase, any of the N particles can be lost, but if more than N − 2 are lost, 
nothing can be done locally to increase the entanglement. Then, the probability that i ∈ {0, 1, · · · , N − 2} 
particles are lost is

	
qi (N, ϵ) =

(
N − 2

i

)
ϵi(1 − ϵ)N−2−i.� (1)

When exactly i particles are lost, the overall state of the system is

	 σN
i := TrC1,C2,...Ci |ψ⟩⟨ψ|,� (2)

or simply σi when the ψ’s dimension can be inferred from the context. For the particular case of W and GHZ 
states, the above equation simplifies to

	
σN

i = 1
N

[
|0⟩⟨0|⊗N−i + (N − 1)σN−1

i−1
]

,� (3)

and

	
σN

i = IN−i

N − i
≡ πN−i� (4)

respectively, with σN
0 = |ψ⟩⟨ψ|. These equations explicitly show the loss-robustness (-sensitivity) of W (GHZ) 

states: while losing any number of particles from a GHZ state results in a maximally mixed state (4), with no 
bipartite entanglement; losing up to N − 2 particles from a W state results in a noisy EPR pair, which can be 
seen by applying (3) recursively. The received states and their corresponding probabilities form an ensemble

	 ψ → {qi, σi}.� (5)

After the distribution phase, all the remaining parties, Ci+1, Ci+2, ..., CN−2 = C′, A, and B, take turns 
measuring their local systems and broadcasting the results. Since each party holds a qubit, local measurements 
can be described by the 2 × 2 Kraus operators {Mκ

k }k . We can assume, without loss of generality13, that each 
Mκ

k  is in the upper triangular form

	
Mκ

k =
(√

ak bk

0 √
ck

)
,� (6)

where κ = (ak, bk, ck), ak, ck ≤ 0, and the completion relation implies that 
∑

k
ak = 1 and 

∑
k

ck ≥ 1.
Each received state σi is processed by an ri-round LOCC transformation L ri

i  that converts it into a state ρi,j 
with probability pi,j. In other words, an ri-round LOCC transformation can be viewed as a map

	 L ri
i : σi → {pi,j, ρi,j},� (7)

where

	 pi,j = Tr
(
M ri

j

)†
M ri

j σi, � (8)

	
ρi,j =

TrC′M ri
j σi

(
M ri

j

)†

pi,j
. � (9)

In the above expression, M ri
j  represents a sequence of ri global measurements given by the following 

composition rule

	

{
M ri

j = ⃝ri
x=1Mjx

}
j=jri

,jri−1,...,j1
� (10)

wherein every Mjx  is expressed as the tensor product of LOCCs over the remaining N − i subspaces, i.e.,

	
{
Mjx = ⊗N−i

m=1Mκm
km

}
jx=ki+1,ki+2,...,kN

.� (11)

in which Mκm
km

 has the form of (6), parameterized by κm = (akm , bkm , ckm ). It is worth noting that, in general, 
the LOCCs performed in each node differ among the nodes κm ̸= κm′  and from round to round Mjx ̸= Mjx′ . 
Likewise, each node can perform its LOCCs a different number of times ri ̸= ri′ . Later, in order to simplify our 
problem, we will consider a particular class of transformations where the LOCCs are identical in every round, 
identical for every system and each node is constrained by the same amount of rounds.

We are interested in quantifying the amount of bipartite entanglement shared on average among A and B 
after ri rounds of LOCC transformations, i.e., the entanglement content of the reduced state ρi,j. Since system 
labeling is arbitrary for RED protocols, we can always choose AB as the bipartition with the maximum amount 
of entanglement and C′ as the remaining partitions. This implies in equivalent states, i.e., reduced states with the 
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same amount of bipartite entanglement. Next, we present the figure of merit that takes this into account as well 
as its benchmark.

Figure of merit and benchmark
We propose the average bipartite entanglement optimally shared among the target parties through a lossy network 
in r = (r0, r1, ..., ri, ..., rN−2) rounds as the figure of merit, defined as follows

	
⟨E⟩r,ψ(ϵ) :=

∑
i

qi(N, ϵ)Ē∗
ri,σi

,� (12)

stop where

	
Ē∗

ri,σi
:= sup

L
ri
i

∑
j

pi,jE(ρi,j),� (13)

and E is some bipartite entanglement measure, e.g., the entanglement of formation or concurrence21. We will 
adopt the latter in our numerical evaluations.

The definitions above are averages of the shared bipartite entanglement over the lossy distribution (5) and the 
probabilistic conversion (7) distributions. More specifically, whereas (13) is the average bipartite entanglement 
optimally achieved given a received state σi via L ri

i  protocols; (12) is the average of (13) over the ensemble of 
received states. Therefore, our definitions fully consider the statistical nature of the problem.

A similar definition to (13) is presented in13 for a different entanglement distribution context. Applied to our 
distribution scenario, this definition could be written as supri

Ē∗
ri,σi

 and interpreted as the optimal average 
bipartite entanglement given any LOCC protocol, which includes protocols with an unbounded number of 
rounds. We adopted (13) to avoid unbounded LOCC protocols and to distinguish the effect of the number of 
rounds in the figure of merit.

According to22, for finite-copy entanglement distillation, an entanglement measure is any nonnegative 
function E which is monotonically nonincreasing under LOCC transformations. Despite the lack of consensus 
on the necessary conditions that an entanglement measure must satisfy, monotonicity is often claimed as the 
essential property22. In a quick inspection, we observe that (13) is an entanglement measure by definition, while 
(12) is also an entanglement measure as it represents the average of (13).

We benchmark W states against two-centered GHZ graph states. As detailed in the Appendix, two-centered 
GHZ graph states have the property of being loss-robust. More precisely, it has been shown23 that if multiple 
qubits adjacent to the same root are lost, the remaining state is always a GHZ state, and if qubits adjacent to both 
roots or the roots themselves are lost, the remaining state is fully separable. Such an entanglement structure 
simplifies our analysis, as after the distribution phase the received state is either a GHZ state, which can be 
deterministically converted to Bell pairs in a single round with a single measurement, or is fully separable, having 
no distillable entanglement whatsoever. In both cases, (13) is trivially and exactly computed — Ē∗

r0,σ0 = 1 if 
none of the qubits is lost and Ē∗

ri,σi
= 0 if any qubit is lost.

Methodology
In this section, we establish a tractable lower bound for the figure of merit by optimizing (12) over the subset of 
single-parameter LOCC (SP-LOCC) transformations. We then analyze the properties of single-round, SP-LOCC 
transformations to derive explicit expressions for (9) and enhance computational efficiency in evaluating the 
lower bound.

Lower bound
In the general formulation of the problem, the local operations performed are different from one node to 
the other and have the form (6) whose parameters ak, bk, ck  can change in every round of the protocol, as 
emphasized in 1.1. For simplicity, we will restrict ourselves to the family of SP-LOCC transformations L r,κ

i , 
where the measurements are 

	1.	 identical for every system, i.e., κm = κm′ ∀ m, m′ ∈ [1, N − i]
	2.	 identical in every round, i.e., Mjx = Mjx′ ∀ x and x′ ∈ [0, ri]
	3.	 single parameterized κm = κ, i.e., the Kraus operators have the simplified form 

	
Mκ

0 =
(√

1 − κ 0
0 1

)
, Mκ

1 =
(√

κ 0
0 0

)
,� (14)

	 where κ ∈ [0, 1] as proposed in4.

Moreover, we assume the same number of rounds for every received state, i.e., ri = r ∀ i. These assumptions 
allow us to simplify the set of Kraus operators (10) and (11) as follows

	
{
M r

j = ⃝r
x=1Mjx

}
j=jr,jr−1,...,j1

� (15)

with
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{
Mjx = ⊗N−i

m=1Mκ
km

}
jx=ki+1,ki+2,...,kN

.� (16)

These assumptions are the same as presented in4 to show the asymptotic optimality of converting a three-party 
W state in a Bell pair. Here we extend them to any σi state, which includes mixed states σi̸=0.

By considering only the family of SP-LOCC transformations L r,κ
i , we define the following lower bound

	
⟨Ê⟩r,ψ(ϵ) :=

∑
i

qi(N, ϵ) sup
κ

∑
j

pi,jE(ρi,j),� (17)

which is trivially upper bounded by (12) as the optimization runs over the subset of transformations. In the 
above, κ is a function of r, since bigger and smaller protocols have different optimal sets of LOCCs.

SP-LOCC transformations applied to W states
Finite-state Markovian chains (FSMCs) set the mathematical framework to compute pi,j and to keep track of ρi,j 
in a r-round SP-LOCC transformations. More precisely, by associating every set {ρr

i,j}j to the sampled values of 
a random variable Xr  for every r ≥ 0, the process {Xr}r≥0 can be interpreted as an FSMC process — i.e., its 
Markovian state space X  is a finite set, and its evolution only depends on the previous time step (see also the 
Appendix for the complete proof).

The corresponding Markovian state space and transitioning probabilities of a lossless r-round SP-LOCC 
transformations L r

0  are depicted in Fig. 2 with states given by

	
ρ0,j =

{
Wj if j ≥ 3
ϕ if j = 2
|0⟩⊗N if j = 1,

� (18)

where j is the number of 0s in the string j = jx = ki + 1, ki + 2, . . . , kN , Wj  is a j-qubit W state and ϕ is 
an EPR pair. This protocol is an adaptation of Fortescue and Lo’s protocol4 to a N-qubit W state (see also the 
Appendix). For the general case i > 0 the Markovian state space increases polynomially with the number of 
rounds and number of nodes N and full pictorial representation is not possible. In the following, we discuss the 
particular case of single-round SP-LOCC transformations. To avoid notation clutter, we will omit r = 1 in the 
following sections.

Single-round SP-LOCC transformations applied to W states
Given the symmetry of σi = TrC′ W , the form of (14) and the arbitrary discardment of C′, there will be reduced 
states with the same amount of entanglement. These so-named equivalent states lead to redundancies in the 
evaluation of (17), the same term in the second summation is computed and optimized repeatedly, which 
naturally slows the computation. To eliminate these redundancies and speed up the numerical computations, 
as well as to obtain simpler analytical expressions, we focus on the subset of non-equivalent states and their 
corresponding probabilities.

Therefore, we define the following non-equivallent ensemble {℘i,j , ρi,j}, where ℘i,j  is the probability of 
obtaining any equivalent state ρi,j . This restriction allows us to find the following explicit expressions

	
℘i,j =

(
N − i

j

)
j

N − i
κN−i−j(1 − κ)j−1 � (19)

	
ρi,j =

(
N − i

j

) TrC′MjσiMj

℘i,j
� (20)

where j is the number of 0s in the string j = j1 = k1, k2, ..., km, ..., kN−i. The first simplification comes from 
observing that permutations of km in  do not alter the number of 0s and therefore correspond to the same state. 
The second is simply (9) expressed in terms of ℘i,j . These states and probabilities can be mapped to a single-trial 
FSMC as depicted in Fig.  3.

Fig. 2.  Markovian chain representation of a lossless r-round LOCC protocol L r
0 . Nodes and arrows represent 

the quantum states of (18), and their corresponding probabilities, respectively. Further, end nodes (that 
terminate the protocol once reached) are depicted in green and red, representing, respectively, Bell and 
separable states.
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Application
In this section, we use the previously defined lower bound (17) to compare the performance of W and GHZ-
like states in our lossy entanglement distribution scenario 1. Our results demonstrate that, in a lossy network, 
extracting Bell pairs from W states is more advantageous than from GHZ-like states, even though the former is 
only achievable probabilistically, whereas the latter can be done deterministically. Furthermore, we analytically 
extend these findings in the Appendix, proving that W states serve as more effective resources in large networks.

W states’ advantage in lossy networks
We observed that probabilistically extracting Bell pairs from W states is more advantageous than doing it 
deterministically from GHZ-like states in lossy networks. In Fig. 4 we compare our figure of merit for W and 
GHZ-like states for different network sizes. It is clear that above a certain threshold in loss (when the curves 
intersect each other) more bipartite entanglement can be obtained on average from W than from GHZ-like states 
in single-round transformations, showcasing some advantage in using W states as initial resources. Moreover, 
such an advantage considerably increases when a higher number of rounds are allowed, as can be noticed when 
comparing the single- with multiple-round LOCC transformation depicted in solid and dashed lines in Fig. 4 
respectively. We must stress that since we are comparing a lower bound of the average bipartite entanglement 
(17) extracted from the W states against the exact average bipartite entanglement extracted from GHZ-like 
states, the real threshold must be even lower than the one depicted in the plots. The plots also indicate that this 
threshold decreases as the network size increases, as observed for network sizes of N = 4, 6, 8.

W states’ advantage in large lossy networks
The numerical examples of Fig. 4 indicate an inverse proportionality between the network size and the value 
of the threshold, as the network size increases from 4 to 8 the threshold decreases (from approximately .2 to .1 
when comparing the W and GHZ states, for example). As we formally prove in Appendix this trend persists for 
any N, leading to the conclusion that, for large lossy networks (N → ∞), extracting Bell pairs from W states is 
always more effective, according to our figure of merit, than from GHZ-like states. As detailed in the Appendix, 
the proof derives from the loss-robustness of W states15 and the inexistence of deterministic W-to-EPR state 
conversions10.

Conclusion
In this work, we explore RED in lossy networks, focusing on whether the loss robustness of the W states outweighs 
the deterministic conversion of GHZ-like states into Bell pairs. We considered an N-partite network where 
entanglement is distributed through a central source over lossy channels, and network participants cooperate 
to establish entanglement between any two chosen parties. To analyze this scenario, we introduced a tractable 
lower bound for the expected shared entanglement by optimizing our figure of merit (12) over the subset of 
SP-LOCC transformations. By leveraging the properties of single-round SP-LOCC, we eliminated redundancies 
in the bound evaluation, improving general computational efficiency, and derived explicit expressions for (9).

Our results demonstrate that probabilistically extracting Bell pairs from W states is more advantageous than 
doing it deterministically from GHZ-like states in lossy networks. We further extended our analysis analytically, 

Fig. 3.  Markovian chain representation of a single-round LOCC protocol. Nodes and arrows represent the 
non-equivalent ensemble given by (20). Further, end nodes (that terminate the protocol once reached) are 
depicted in green and red, representing, respectively, Bell and separable states. Note that every line corresponds 
to an independent Markov chain, where the first one represents the lossless single-round LOCC, a special case 
of Fig. 2.
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proving that W states remain more effective in large-scale networks. This has direct implications for designing 
optimal entanglement distribution policies — e.g., while GHZ-like states are preferable in small, low-loss 
networks, W states emerge as better options in large and high-loss settings. These findings provide valuable 
insights into the practical deployment of lossy quantum networks, highlighting the fundamental trade-offs 
between probabilistic and deterministic entanglement distribution protocols.

Future endeavors include finding better bounds for the figure of merit by considering the general optimization 
problem in (12), whose LOCC measurements are multi-parameterized and can be adjusted from round to round. 

Fig. 4.  The average bipartite entanglement shared between the target parties in a lossy network, considering 
single-round (multiple-rounds) SP-LOCC transformations of W, GHZ and two-centered GHZ graph states as a 
function of the loss probability ϵ in solid (dashed) blue, red and green. From top to bottom, these quantities are 
depicted for a network of size 4, 6 and 8. The intersection point common to the blue and red lines defines the 
lossy threshold over which bipartite conversion of W states outperforms GHZ-like states.
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Alternatively, diversity and multiplexing schemes24,25 could be exploited to improve RED, as entanglement 
distribution over a centralized QN can be framed as a multi-mode communication system26.

Data availability
The related data is available upon reasonable request by contacting the first author, Leonardo Oleynik.
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