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In modern power systems, it is crucial to monitor and detect internal faults in power transformers 
promptly and accurately to ensure reliability and prevent disruptions. Failure to identify these faults 
promptly can reduce the transformer’s lifespan, cause system disconnection, and compromise 
network stability. This paper introduces an innovative method for the discrimination, classification, 
and localization of internal short-circuit faults in power transformers, with a focus on three types of 
winding faults: turn-to-turn fault, series short circuits, and shunt short circuits. The proposed method 
introduces an online detection scheme utilizing the ΔV-Iin locus diagram, which leverages existing 
measurement devices without requiring additional hardware. A comprehensive winding model was 
developed in MATLAB to simulate insulation failures, and the method also analyzes the effects of 
faults and harmonic distortions on transformer performance. Features for fault discrimination and 
localization are derived from the ΔV-Iin locus and calculated using the practical design specifications 
of three power transformer models with capacities of 3 MVA, 5 MVA, and 7 MVA, operating at 
50 Hz in a three-phase configuration. Experimental results on the 3 MVA transformer demonstrate 
that the formulated identifier efficiently detected all three types of insulation breakdown with an 
accuracy of 98.51%. Additionally, the fault localization algorithm achieved a fault location accuracy of 
approximately 93.28%. The findings indicate that the proposed approach is a robust and reliable tool 
for assessing the condition of power transformers.

Keywords  Power transformer monitoring, Abnormal condition - internal faults, Artificial neural network 
(ANN), Lear vector quantization (LVQ)

Transformers act as a significant function in power systems by providing a main connection between the 
production and consumption of electricity. Ensuring the reliability of power transformers, particularly by 
preventing faults that could lead to transformer failure, is essential for maintaining network stability. In recent 
years, online transformer monitoring has garnered widespread recognition for its efficacy in rapidly detecting 
faults, prevent complete transformer shutdowns, enhance system reliability, and provide superior service to 
consumers 1.

Traditional differential relays, despite utilizing terminal current waveforms, lack the sensitivity to detect 
minor internal faults, with their performance and settings heavily dependent on specific operational parameters 
1,2. To address these limitations, recent advancements in transformer protection have introduced methods aimed 
at enhancing fault detection accuracy and sensitivity. These techniques are broadly categorized into three groups:

	1.	 Methods based on Current/Voltage.
	2.	 Methods based on Frequency.
	3.	 Methods based on Flux.

Methods based on current/voltage
Current/voltage‐based methods use terminal parameters of a transformer for internal faults protection. 
Researchers widely study such methods. These methods exhibit general shortcomings, including instrument 
saturation and associated errors. The smallest internal fault minimally affects the terminal parameters of the 
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transformer, generating negative and zero sequence components of current and voltage. Methods based on 
positive sequence (PS), such as differential relays, exhibit lower sensitivity when compared to those based on 
negative sequence (NS) and zero sequence (ZS). A healthy transformer consists solely of the primary side (PS) 
component, while the secondary side (NS) component is deemed insignificant. The asymmetrical components 
in currents and voltages are attributed to internal faults in transformers.

The NS-based methods in references 3–5 compute the NS line currents during the preliminary phases of the 
detection technique. The discrete Fourier transformation is employed to estimate the magnitude and phase angle 
of the NS. Differential NS current can differentiate between internal and external faults. Previous studies 3–5 
indicate that the sensitivity of the NS method (3%) surpasses that of the differential relay (10%).

The primary drawback of the NS current-based method is the potential for mal-operation caused by 
differential current during the energization process. The NS voltage serves as a detection mechanism for inrush 
conditions, as indicated in 6. This is due to the fact that the voltage on both sides of the transformer remains 
unaffected during energization by the inrush current. In 7,8, the authors have introduced a comparison for the 
ratio of both the primary and secondary NS line currents (RNSC) and the transformer’s turns ratio as shown 
below:

	
Detector = RNSC − N2

N1
� (1)

Recently, in order to solve the problems of NS methods, A method based on symmetrical components has been 
introduced in 9. This method identifies a useful adaptive characteristic plot for NS relays. The method employs 
the vector difference between the positive sequence impedance (∆ZPos) and the negative sequence current 
component 

(
∆INeg

)
 to detect internal faults.

A Fourier-based analytical method is introduced in 10, demonstrating efficacy in detecting internal faults 
under light load conditions. This approach necessitates adherence to IEEE standards for harmonic distortion 
limits in the input voltage. Complementing this11, proposes a coefficient calculation algorithm derived from 
primary current and voltage measurements. The algorithm establishes baseline coefficients under healthy 
operating conditions by analyzing neutral current patterns, enabling real-time detection of Turn-Turn Faults 
(TTF). However, its implementation requires prior characterization of the load profile, limiting applicability in 
dynamic grid environments.

To identify diverse electrical and mechanical faults in transformers, an online monitoring technique was 
proposed in 12. This method employs a diagnostic approach by analyzing the input current locus diagram plotted 
against the differential voltage (between input and output voltages), which is then compared to reference data 
from a healthy condition. Faults are indicated by deviations in the shape of the elliptical locus, which is generated 
for faults types including axial displacement, turn-turn faults, buckling stress, disk space variation, and varying 
power factors. While each fault alters the locus, pinpointing the root cause based solely on geometric changes 
is challenging. Minor internal faults have negligible effects on the locus diagram, whereas severe faults cause 
significant shifts in its area and rotational orientation. The ΔV-I locus method can detect faults with severity as 
low as 5%, though it requires baseline data from healthy conditions for comparative analysis. A key limitation, 
however, is the difficulty in distinguishing between fault types solely based on changes to the locus’s rotation and 
area parameters.

The Extended Park’s Vector Technique (EPVT) is an online diagnostic technique that employs dual-winding 
current waveform analysis for internal fault detection in transformers 13–16. Characterized by its robustness, 
simplicity, and efficacy, The methodology employs frequency-domain spectral analysis of the alternating current 
component within the Park’s vector modulus, extracted from the transformer’s on-load excitation currents. In 
recent years, EPVA has been increasingly applied to fault diagnosis in electrical systems, including turn-to-turn 
fault (TTF) detection in power transformers and stator winding fault identification in both synchronous and 
induction motors. The methodology entails calculating differential currents for each phase, followed by EPVA-
based derivation of the corresponding d-q axis components from these differential currents.

Even though the sensitivities of instrument transformers (CT and VT) are reduced to a certain extent, these 
methods are still non-invasive. Table 1 presents a comparative analysis encompassing the key strengths, limitations 
of the evaluated methodologies.

Methods based on frequency
Frequency response analysis is a well‐known method for detecting various faults. This technique uses the 
transformer RLC network parameters variation to detect internal faults. This method’s initial application is 
stated in 17. At a later stage, the FRA response can be used as a reference for detecting fault. The behavior of this 
curve is influenced by the distributed elements, which encompass the capacitances present between the various 
turns of a winding, the turns of different windings, and the self- and mutual-inductance of the windings.

Two methods are used to generate the required frequency spectrum: injecting an impulse into the winding 
or employing a frequency sweep with a sinusoidal signal 18. The primary advantage of the impulse response 
approach, in contrast to other techniques, is its reduced measurement duration. Nevertheless, the frequency 
sweep technique, in contrast to the impulse response method, has the following advantages:

An accepted signal-to-noise ratio,
Acts very sensitive in all ranges,
The technique can operate with low number of measuring instruments.
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Prior studies  19–21 have demonstrated the efficacy of statistical parameter analysis in Frequency Response 
Analysis (FRA) for detecting transformer faults. This approach replaces labor-intensive graphical comparisons 
and expert-dependent assessments by synthesizing magnitude and phase-angle data into a unified polar plot. 
Quantitative evaluation of this plot is conducted using three metrics: city-block distance, root-mean-square 
deviation, and image-based Euclidean distance. The framework enables automated identification of critical 
faults, including internal winding defects, axial displacement, and turn-to-turn spacing irregularities, thereby 
enhancing diagnostic objectivity and operational efficiency.

Sweep Frequency Response Analysis (SFRA) facilitates the comparative assessment of multiple SFRA 
signatures to identify electromechanical anomalies. Frequency-dependent deviations such as resonance shifts, 
emergence of new resonant peaks, and spectral amplitude variations serve as robust indicators of electrical or 
mechanical faults. Core-specific defects are detectable within the low-frequency spectrum, as demonstrated in 
27.

Frequency Response Analysis (FRA) is categorized as an offline method, posing significant challenges due 
to strict operational constraints, as utilities often cannot guarantee adequate outage availability. Although FRA 
can precisely identify fault types after a transformer outage, it lacks suitability for real-time monitoring. To 
resolve these limitations, researchers have introduced online FRA solutions; however, these methods remain 
unstandardized, less accurate than offline approaches, and require enhancements across multiple parameters. 
Recent advancements propose online FRA techniques for detecting electrical and mechanical faults in power 
transformers. Transitioning to an online framework, however, faces key hurdles, including 25:

•	 Signal injection system shortage,
•	 Difficulty isolating the transformer’s response from the operational grid,
•	 Need to account for the transformer’s inherent internal state variations.

Method References General features
Non‐invasive/ 
invasive

Sensorless/ 
Sensor Online Offline

Differential relay 1,2

Low sensitivity

Non Sensorless ✓ ✓
Very simple and robust

Mal-operation occurrence during operation

Effect of CT saturation, magnetizing current and errors

Negative sequence 6–9

Reasonable sensitivity (3%)

Non Sensorless ✓ __

Production of negative current in case of un-grounded faults

Impact of CT saturation, magnetizing current and errors

voltage transformer limitations

each side of the transformer must be loaded

Algorithms do not consider incipient nature

Negative 
Sequence-
Based Positive 
Impedance 
Method

9

Error in case of online computations

Non Sensorless ✓ __

Simple calculation process

Reasonable sensitivity (2.5%)

OLTC operation adaptation

Still stable at 10% over-excitation

In case of unbalanced load and source, the algorithm still stable

localization the internal fault cannot be achieved

Zero sequence 22,23

Errors due to using CT and VT

Non Sensorless ✓ __

Still stable in inrush current cases

Needs calibration in delta winding connection

The healthy condition data must be existed

Valid for transformer bank only

ΔV‐I locus 
diagram

12

Can deal with various faults

Non Sensorless ✓ __Errors due to using CT and VT

The healthy condition data must be existed

Extended Park’s 
vector approach

13–16

Cannot acts well for unbalance load

Non Sensorless ✓ __
Cannot operate in transformer energization

Measuring instruments error

Can detect only 4% turns faults

Magnetic Flux 
Test

24

Can detect the faulty phase

Non Sensorless __ ✓
The implementation for Y-connection for 3-phase transformer

Cannot applied for five-leg core

Error due to flux interception

Table 1.  Comparative analysis of current/voltage-based techniques for internal fault discrimination.

 

Scientific Reports |        (2025) 15:32123 3| https://doi.org/10.1038/s41598-025-14242-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Utilizing the bushing tap for signal injection in online monitoring addresses the aforementioned challenges, 
as directly connecting signals to high-voltage buses is impractical. However, older transformers often lack this 
feature 26. For transformers without bushing taps, a non-invasive capacitive sensor mounted on the bushing 
surface can provide real-time monitoring without intrusive hardware. A multi-frequency signal is applied to 
the transformer, and its response is measured via a Rogowski coil 27. By analyzing input and output signals, the 
transfer function can be derived during online operation 28.

In 26, researchers emphasize that this method relies on baseline healthy data to establish the FRA reference 
for fault detection. A key challenge in online FRA is the impact of OLTC operations, which can distort the FRA 
curve at low frequencies studies show this effect occurs within a range of up to 100 kHz.

Abu-Siada et al. 29 proposed a novel 3D frequency response analysis (3D-SFRA) technique that integrates 
magnitude, phase, and frequency data into a unified diagnostic signature, introducing the use of digital image 
processing (DIP) methods such as HOG, LBP and SIFT-3D to automate the detection of subtle mechanical 
faults in power transformers. The main novelty lies in transforming complex SFRA data into a 3D visual format 
that enables fault classification without manual interpretation. However, its limitations include reliance on 
baseline healthy data, often unavailable in aged transformers, transformer-specific threshold calibration, and 
computational complexity, which restrict its scalability and general use. In contrast,  the more recent study 
introduced in 30 presents fault detection technique using 3D FRA signatures paired with CNNs and volumetric 
image processing, enabling deeper feature extraction and higher sensitivity to subtle anomalies. Its novelty lies 
in reducing dependence on reference data and improving generalization across different transformer types and 
fault conditions. Nonetheless, 30 may still face challenges related to implementation complexity and the need 
for validation across larger datasets. Table 2 provides a concise overview of the strengths and limitations of 
frequency-based diagnostic methods.

Methods based on flux
Magnetic flux measurement offers an alternative to terminal current and voltage analysis for detecting internal 
faults in power transformers. This method necessitates specialized sensors to monitor flux distribution. Finite 
element method (FEM) simulations of a transformer model enable comparative analysis of flux behavior under 
healthy and faulty conditions. For example, during an internal fault in the first section of phase V, leakage flux 
reroutes through the transformer tank, insulating oil, and neighboring windings, altering its path 31.

A search coil, consisting of a wound copper conductor, is a widely utilized sensor for magnetic flux measurement 
in power systems. As magnetic flux through the coil fluctuates, a voltage is induced across its terminals, directly 
proportional to the rate of flux change. These sensors achieve exceptional sensitivity, detecting magnetic fields 
as low as 2 × 10−5 nT, with no theoretical upper detection limit. Commonly integrated into electrical equipment 
such as transformers, motors, and generators, search coils are especially effective for non-invasively identifying 
turn-to-turn Faults (TTF) in power transformer windings, enabling precise fault localization 33–35.

Leakage flux–based methods
Internal faults in transformers generate leakage flux, which can be monitored for fault descrimination. Search 
coils are typically installed near the high-voltage (HV) winding at the upper and lower sections of each leg 33,34. 
However, these coils require bulky insulation to meet HV clearance standards, altering transformer design and 
tank dimensions.

A non-invasive leakage flux–based method proposed in 35 addresses these limitations by deploying novel 
sensors near the transformer core, bypassing HV winding installation. These sensors enhance sensitivity, are 
retrofittable to existing transformers, and enable online/offline detection of internal faults, including precise 
identification of the faulty phase and location.

Core flux–based methods
The Core Flux-Based (CFB) method offers a straightforward, sensitive, and reliable approach for detecting 
internal faults in power transformers during online or offline condition monitoring, with the ability to pinpoint 
fault locations. This technique computes flux linkage increments using transformer equations to identify 
anomalies 31.

Alternatively, a method employing three search coils per phase, installed around the HV winding to monitor 
leakage flux 36, enables online fault detection and localization. However, its practicality is limited by insulation 

Method References General features Non‐invasive/invasive
Sensor less/ 
Sensor Online Offline

Frequency 
response 
analysis

21–27

The ability to deal with electrical and mechanical defects in various 
allocation inside the transformer

Non Both ✓ ✓

Healthy condition data must be existed

In traditional signature healthy condition data must be exist

Additional instruments may be installed

Localization process for the internal fault cannot acts well

Mal-operation occurrence

Detailed analysis required to improve detection accuracy

Table 2.  FRA features for various faults approach in power transformers.
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requirements at medium voltage (MV) levels. Positioning the sensors away from the core reduces sensitivity, as 
core flux induces uniform voltages across sensors under normal operation. During internal faults, these voltages 
diminish, allowing fault localization by comparing voltage discrepancies between sensors within each phase.

Transformation action–based method
Recent advancements utilizing search coils 39 have expanded their application to detect both coil displacement 
and Turn-to-Turn Faults (TTF). While current configurations achieve a sensitivity of 2.5%, limited by fewer coil 
turns, this can be enhanced by increasing the number of turns 37. The method demonstrates robustness under 
diverse operating conditions, including inrush currents, over-excitation, current transformer (CT) saturation 
during faults, and On-Load Tap Changer (OLTC) operations. However, its use is currently restricted to medium-
voltage (MV) applications due to performance degradation under extra-high voltage conditions. Fault detection 
relies on an algorithm that calculates the voltage ratio between adjacent search coils to identify defects.

Flux-based methods, which employ sensors like search coils, offer high accuracy and sensitivity for internal 
fault detection. While these techniques outperform other diagnostic approaches, they are typically invasive 
unless coils are integrated during transformer fabrication. Retrofit installations during maintenance or initial 
construction render them non-invasive. Table 3 summarizes these characteristics, highlighting trade-offs 
between sensitivity, invasiveness, and practical implementation constraints.

Paper contribution
In this paper, an online strategy is developed to monitor the operating conditions of a connected transformer 
and evaluate internal fault conditions. The scheme leverages the relationship between ΔV and Iin, which forms 
an elliptical locus whose dimensions vary based on the fault type. This characteristic allows the scheme to extract 
new features effectively, enabling the identification and mapping of faults within power transformer. To address 
internal insulation failure in transformer windings, two approaches are proposed and implemented. The first 
approach classifies three types of internal insulation faults using an artificial neural network with high accuracy, 
while the second approach determines the precise location of these faults along the transformer winding by 
dividing it into sections.

The determination of significant features for internal faults identification in power transformers remains 
a pivotal and evolving area of research. This study presents an innovative advancement by estimating and 
calculating five novel features derived from the ΔV-Iin locus. These features offer substantial improvements in 
the research outcomes, as outlined below:

	1.	 The extracted features enable the Artificial Neural Network (ANN) algorithm to achieve exceptional accura-
cy in internal fault classification, reaching 98.51% across training, testing, and validation phases.

	2.	 The features have been graphically represented for two different transformer models to demonstrate their 
capability to effectively distinguish between various fault types.

	3.	 Additionally, these features enable precise fault localization along the transformer winding, delivering high 
accuracy and simplifying maintenance processes.

Method References General features Non‐invasive/ invasive Sensorless/ Sensor Online Offline

Leakage flux 33,34

Can deal with winding movement

Non Sensor ✓ ✓

Can detect the faulty phase

Insulation process for the high voltage side in case of search coil

The ability for detection the intermediate faulty winding

Search coil must be attached

Core flux 32,38,39

Very simple

Non Sensor ✓ ✓

More accurate

Very high sensitivity (0.1%)

Can detect the faulty phase

Achieve the localization process

Proper performance in all abnormal conditions

Search coil must be attached

Linkage flux 31

Complex equation is needed

Non Sensorless ✓ __
Can detect the faulty phase

Very stable performance in abnormal condition

Low sensitivity level (10%)

Transformer action 37

Can detect 2.5% faulty discs

Non Sensor ✓ __
The ability to deal with winding movement

Valid for high voltage side only

Very stable performance in abnormal condition

Table 3.  Comparison of flux-based methods for internal fault detection and localization in power 
transformers.
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	4.	 A detailed and updated methodology for deriving these five novel features is provided in Sect. “Features 
extraction discrimination technique” of the paper.

	5.	 These features serve as a distinctive fingerprint for any power transformer, as they are based on equations 
utilizing voltage and current data.

This contribution underscores the potential of these novel features in enhancing the reliability and efficiency of 
transformer fault diagnosis and maintenance. For clarification, Fig. 1 illustrates the stages applied to classify and 
locate the most common mechanical and electrical failures within power transformer windings.

Transformer model contains internal faults
The ability to accurately predict transformer behavior during an interruption is crucial for creating effective 
transformer fault detection technologies. The transformer model under study depends on dividing the winding 
into identical sections, which enables the simulation of a number of disks along the winding. A lumped RLC 
circuit can simulate transformer winding very accurately and effectively. In this paper, three different transformer 
models with different technical specifications are simulated. The components of the transformer models (3, 5, 
and 7 MVA) are described in 40. Figure 2 shows the applied model of the winding for the power transformer.

Fig. 2.  Power transformer internal winding Equivalent circuit (Disk type).

 

Fig. 1.  Flowchart of the proposed approach.
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The equivalent circuit of the transformer, depicted in Fig. 2, is employed in this study. The delta connection 
of the disk-type winding at the high-voltage terminal is modeled using a network with lumped parameters. 
Internal faults are simulated by altering the electrical parameters of the winding, such as resistance (R), series 
inductance (L), shunt capacitance (Cg), and series capacitance (Cs). The parameters of the transformer model, 
corresponding to various types of internal faults, are presented in Table 4.

Three different transformer models with different technical specifications are simulated. Each transformer has 
a different power rating with physical characteristics, such as the number of discs in the HV winding, the outer 
diameter of the HV winding, the inner diameters of the HV winding, and the number of turns. These physical 
characteristics directly affect the RLC electrical parameter models. Table 5 introduces detailed parameters of 3, 
5, and 7 MVA power transformers, showing the data for each transformer 40.

Proposed method
The main objective of any diagnostic approach is to identify physical breakdown in a transformer resulting 
from internal faults by leveraging its sensitivity to variations in distributed inductances and capacitances 12. 
This paper focuses on the analysis of input voltage (Vin), input current (Iin), and output voltage (Vout) at the 
rated power frequency (50 Hz) during each complete power cycle. The proposed online monitoring system uses 
a locus diagram to detect physical variation in the configuration of transformer winding. As shown in Fig. 3, 
In this diagram, the x-axis represents the input current of the transformer, while the y-axis shows the voltage 
difference (∆V = Vin—Vout) between the input–output voltages of a specific phase. This monitoring method, first 
introduced in 38, was developed to identify mechanical faults in single-phase transformers. The relationship 
between ∆V and Iin typically forms an elliptical pattern, as illustrated in Fig. 3. It is projected that each type of 
fault will generate a distinct (∆V–Iin) locus, which can be used to identify and differentiate faults through the 
proposed monitoring scheme.

The proposed approach tested by a 15 KVA, 2300/230 V single phase transformer with the following equivalent 
circuit parameters referred to the low voltage side as: Req = 4.45Ω, Xeq = 6.45Ω, Xm = 11KΩ, Rc = 105KΩ. 
the (ΔV–Iin) locus is displayed as shown in Fig. 4, noted that the transformer operates at 0.8 lagging power factor.

To analyze the impact of load power factor and magnitude variations on the proposed locus, simulations were 
conducted for a 15 kVA, 2300/230 V single-phase transformer (Fig. 5). Three operating conditions: 0.8 lagging, 
0.8 leading, and unity power factor, are examined with a constant impedance magnitude, and the corresponding 
loci for each case are constructed, as shown in Fig. 5A.

Similarly, to investigate the effect of load magnitude variation on the proposed locus, different load levels are 
simulated while maintaining a constant power factor. The results are illustrated in Fig. 5B.

Simulation result for healthy and abnormal conditions
An integrated model by applying MATLAB-SIMULINK was implemented for the three transformers models 
with respect to the pre-mentioned electrical parameters. In the proposed model, an AC voltage supply with a low 
amplitude and a frequency of 50 Hz is used. The instantaneous values of ΔV and Iin are sampled for a duration of 
0.02 s (one cycle) with a time step of 10 µsec. The transformer models being tested are constructed for the healthy 
condition with a load impedance of (8 + j6) Ω. Figure 6 shows the proposed model structure for the transformer 

Model Transformer 1 Transformer 2 Transformer 3

1 P Power rating 3 MVA 5 MVA 7 MVA

2 V Voltage rating 33/11 kV 33/11 kV 20/6 kV

3 D Number of discs on the HV winding 89 67 69

4 OD Outer diameters of the HV winding 582 mm 609 mm 702 mm

5 ID Inner diameters of the HV winding 496 mm 503 mm 579 mm

6 T Number of the turns in the HV winding 1428 1206 1104

7 R Resistance per disc 1.4 Ω 2.4 Ω 0.43 Ω

8 L Total inductance per disc 0.16 mH 0.11 mH 0.025 mH

9 Cg Ground capacitance per disc 0.08 pF 0.056 pF 0.12 pF

10 Cs Series capacitance per disc 2.1 pF 9.0 pF 5.1 pF

Table 5.  Detailed parameters of 3, 5 and 7 MVA power transformers.

 

Model parameter Type of fault

Resistances (R) Disk broking, caulking damage and wearing of tap changer

Series inductances (L) Disk misrepresentation, local failure, core perversion, and winding short circuit

Series capacitances (Cs) Insulation aging, moisture infiltration, and disk displacement

Shunt capacitances (Cg) Disk displacement, large mechanical forces buckling, ingress moisture

Table 4.  Parameters of the model and the faults that impact them.
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under study. The modelling structure keep constant in the case of 3 different transformers model (3, 5 and 7 
MVA), only the electrical parameters RLC are changed according to the simulated transformer.

The results from MATLAB-SIMULINK simulations are presented for the three transformers models. 
Simulation results are classified into three categories: transformer healthy condition (No fault), Transformer 
healthy condition under harmonics effect (3rd, 5th and 7th orders) and transformer abnormal conditions (3 
various internal faults) which are explained in detail in the subsequent sections.

Simulating of healthy condition
The (ΔV—Iin) locus diagram for three transformer models is generated under healthy conditions with a 0.8 
lagging power factor and a load impedance of (8 + j6) Ω. Figure 7 illustrates the healthy condition of the 3, 5, and 
7 MVA transformers. Each ellipse represents the unique fingerprint of the corresponding transformer.

From the obtained result in case of 3 different transformer model, for 7 MVA, it is clear that (ΔV–Iin) locus 
has the greater value of current (0.5 A) compared with 3 MVA (0.15 A) and 5 MVA (0.14 A). This observation 
is due to the 7 MVA transformer having the highest value of grounding capacitance 0.12 pF which allows high 
value of current to pass through the winding. The ground capacitance in 3 and 5 MVA power transformers are 
0.08 pF and 0.056 pF respectively.

The narrow ellipse in the three cases is not typical but it almost depends on the physical parameters of 
winding and the technique of transformer modelling. The way of power transformer parameters modelling 
directly affects the values of RLC values.

Fig. 4.  ΔV–Iin locus for a 15-kVA, 2300/230-V single-phase transformer.

 

Fig. 3.  Graphical illustration of ΔV–Iin relationship.
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Simulation of healthy condition under harmonics effect
This section examines the impact of harmonics on the (ΔV—Iin) locus and presents the harmonic waveform 
performed on the 3 MVA power transformer model. As illustrated in Table 6, the recommended voltage 
distortion limits found in IEC 519 at the point of common coupling PPC. These limits should be considered as 
the system design reference for faulty conditions during normal operation. 40

From the data shown in Table 6. It is very clear that the system is run at rated operation 33  kV so, the 
percentage of individual harmonics distortion set at 3.0%. In this paper 3rd ,5th and 7th harmonics applied on 3 
MVA power transformer. Figure 8 shows the effect of harmonics orders on 3 MVA power transformer (ΔV–Iin) 
locus.

Simulating of abnormal conditions
To simulate internal faults within the tested transformers, different insulation failures can be simulated through 
changing the parameters of the simulated model. For the applied models of 3, 5 and 7 MVA power transformers, 
three insulation faults are simulated namely turn-to-turn fault, series short circuit and shunt short circuit. The 
simulation results are compared with the origin fingerprint which is considered the transformer healthy data.

Simulation of turn-to-turn fault (TTF)
Turn to turn short circuits are responsible for approximately 34% of transformer failures in practice 12. In the 
simulated model, during the TTF simulation, the value of the series resistor must be zero (shorted), as shown 
in Fig. 9. To examine the impact of TTF on the formulated (ΔV—Iin) locus, faults at various winding locations 

Fig. 6.  The applied model structures.

 

Fig. 5.  Impact of load Power Factor (PF) and load magnitude on a 15 KVA, 2300/230 V single phase 
transformer.
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are simulated. For the 3 MVA transformer with a total of 89 discs, faults are simulated at 20, 40, 60, and 80 discs. 
For the 5 MVA transformer, which has 67 total discs, faults are simulated at 15, 30, 45, and 60 faulty discs, and 
for the 7 MVA transformer with 69 total discs, faults are simulated at 15, 30, 45, and 60 faulty discs, respectively.

The locus for TTF is displayed in Fig. 10 at different faulty discs for 3, 5 and 7 MVA respectively. The locus 
rotates clockwise and expands in area as the number of defective discs increases.

Bus voltage V at PCC Individual harmonics (%) Total harmonic distortion THD (%)

V ≤ 1.0KV 5.0 8.0

1.0KV < V ≤ 69KV 3.0 5.5

69KV < V ≤ 161KV 1.5 2.5

V > 161KV 1.0 1.5

Table 6.  Limits of voltage distortion according to IEEE standard 519–201441

 

Fig. 7.  (ΔV—Iin) locus of 3, 5 and 7 MVA transformers in healthy condition.
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Fig. 9.  TTF simulation for one disk.

 

Fig. 8.  3rd, 5th and 7th orders harmonics effect on (ΔV–Iin) locus for 3MVA power transformer at healthy 
condition.
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Simulation of series short circuit (SEF)
A series fault refers to an insulation breakdown between the discs. In the simulated model, the faulty disc is 
short-circuited to represent a SEF. Figure 11 shows the representation of SEF at one disk. To evaluate the impact 
of SEF on the (ΔV–Iin) locus, the locus is generated for series short-circuit faults occurring at 20, 40, 60, and 80 
discs for the 3 MVA transformer, and at 15, 30, 45, and 60 faulty discs for the 5 MVA and 7 MVA transformers. 
The resulting faulty (ΔV—Iin) loci are then compared to the healthy condition locus, as shown in Fig. 12 for the 
3, 5, and 7 MVA transformers, respectively. It is evident that the locus moves clockwise and gets smaller as the 
number of defective discs increases.

Simulation of shunt short circuit fault (SHF)
Leakage faults or disc to ground faults in a transformer are primarily caused by insulation deterioration, harm to 
the earth shield, high moisture levels in the windings, hotspots, and insulation aging. Shunt faults, on the other 
hand, arise from insulation breakdown across the winding and earthed parts such as the core or tank 37. In the 
proposed simulation model, a SHF is represented by connecting the faulty disc to ground, as shown in Fig. 13. 
Figure 14 illustrates the loci generated for the three transformer models under various faulty disc conditions, 
compared to the healthy state locus. It is evident that as the number of defective discs increases, the resultant 
diagram twists clockwise, and its overall area enlarges.

Features extraction discrimination technique
This section outlines the methodologies employed to distinguish faults within transformer windings, focusing 
on three distinct types of internal faults applied to three different transformer models. For the technique to be 
practical and reliable, it must demonstrate high accuracy in fault discrimination. Following the simulation of 

Fig. 10.  Effect of turn-to-turn fault (TTF) on (ΔV—Iin) locus for 3,5 and 7 MVA power transformers.

 

Scientific Reports |        (2025) 15:32123 12| https://doi.org/10.1038/s41598-025-14242-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 12.  Effect of series short circuit faults (SEF) on (ΔV—Iin) locus for 3,5 and 7 MVA transformer.

 

Fig. 11.  SEF simulation for one disk.
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Fig. 14.  Effect of shunt short circuit faults (SHF) on (ΔV—Iin) locus for 3,5 and 7 MVA transformer.

 

Fig. 13.  SHF simulation for one disk.
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insulation failures, as presented earlier, the subsequent target of this research is to identify the fault characteristics, 
including the class and precise location of the fault.

Extracting significant features for internal fault identification within the power transformer is still an open 
research area. So, some unrivaled features of the ellipse are used to discriminate between various types of 
insulation failure within power transformer winding. This can be achieved by comparing each of faulty and 
normal condition loci. Some of significant features are extracted from each of 267 loci (3 fault types × 89 
disks location) in case of 3 MVA power transformer features extraction process. The total features extracted 
from simulation 5 MVA power transformer winding is 201 loci (3 fault types × 67 disks location), while to 
discriminate 7 MVA power transformer internal fault, 207 loci features (3 fault types × 69 disks location) have 
been extracted.

Five novel features (F1, F2, F3, F4, and F5) were extracted using a MATLAB script designed to analyze 
the numerical data from the (ΔV–Iin) locus. These new features which are derived from the developed loci to 
characterize internal faults. As shown in Fig. 15, The coordinates of four different locations (P1, P2, P3, and P4) 
are used by the (ΔV–Iin) locus to calculate the suggested features.

The x-coordinate of point P1 determines the first suggested feature, F1, which is equivalent to the greatest 
value of Iin. The second and third features, F2 and F3, are based on the y-coordinates of points P2 and P3, which 
correspond to the minimum and maximum values of ∆V, respectively. The value of F4 is the highest value at 
point P4, which is the ellipse’s intersection with the y-axis. Finally, the absolute value of the y-coordinate of point 
P3 is used to compute the fifth feature, or F5.

The five proposed features are investigated to effectively discriminate and locate three distinct types of 
faults. The presented features are extensively analyzed across every fault classification within the transformer to 
emphasize their effectiveness. Figures 16 and 17 demonstrate the variation of the proposed five features F1, F2, 
F3, F4 and F5 respectively for all fault types at 89 different fault locations along the transformer winding for 3 
MVA power transformer and for 5 MVA power transformer which have 67 total disks respectively.

According to the results obtained in Fig.  16, the five features achieve good discrimination between the 
various types of internal faults TTF, SEF and SHF. F2, F3 and F5 can separate SHF from other types of faults 
which leads to high accuracy in shunt short circuit detection. F4 achieves good separation between TTF and 
SEF which makes the discrimination technique is more accurate and achieves fast detection response. Another 
developed MATLAB code is applied on 5 MVA power transformer showing the features extracted from the 
locus. Figure 17 shows the five features (F1:F5) change against number of defected disks for all fault classes for 
5 MVA transformer which have 67 total disks. These features can discriminate between TTF, SEF and SHF with 
high accuracy discrimination for the three types of faults.

For 3 MVA power transformer winding with 89 disks is modeled as 89 nodes. Three internal fault types 
(TTF, SEF, SHF) are analyzed across these nodes, yielding 267 fault loci (3 fault types × 89 disks). Each locus is 
characterized by five features, forming a dataset where each fault type has an 89 × 5 matrix (89 disk locations × 5 
features). The aggregated input matrix as shown in Eq. 2, combines all fault types into a 267 × 5 structure, while 
i represent the no. of faulty disks along the transformer winding. the output matrix stated in Eq. 3, labels each 
row with the fault type and disk location.

Fig. 15.  Four essential points on the (ΔV—Iin) locus used to derive the five suggested features.
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Fig. 16.  The five features (F1:F5) change against number of defected disks for all fault classes for 3 MVA 
transformer.
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Fig. 17.  The five features (F1:F5) change against number of defected disks for all fault classes for 5 MVA 
transformer.
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Input Matrix =



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...
...

...
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...
F1SHFi F2SHFi F3SHFi F4SHFi F5SHFi




� (2)

	

Output Matrix =




TTF1
...

TTFi
SEF1

...
SEFi
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...
SHFi




� (3)

Internal fault discrimination results
In this work, Artificial Neural Networks (ANNs) with Learning Vector Quantization (LVQ) were intentionally 
selected over more complex deep learning architectures such as CNNs or LSTMs due to the nature and 
dimensionality of the dataset. The proposed method extracts five meaningful features from the ΔV-Iin locus, 
resulting in a compact dataset (267 samples × 4 features) that is well-suited for lightweight, fast-converging 
models like LVQ-based ANNs. Moreover, deep learning models typically require large-scale, high-dimensional 
data and significantly more computational resources, which may not be justified for this specific application.

A multi-class LVQ classifier processes extracted features from faulty ΔV-Iin loci to identify insulation failure 
types. The results of fault identification using LVQ indicate that the selected number of features is sufficient to 
achieve reasonable accuracy in the classification task. To enable ANNs to perform classification, a large dataset 
of faulty condition records is used to train the network. During the process, it was observed that the data matrix 
for fault identification could be reduced to 267 rows and 4 columns (selecting four out of the five features). This 
minimization helps streamline the ANN training procedure while maintaining sufficient achievement. Figure 18 
illustrates the general logic flowchart for the fault classification process, which is implemented using a two-level 
LVQ algorithm comprising ANN 1 and ANN 2, as follows:

•	 Level 1 (ANN 1): At the first level, the LVQ model (ANN 1) focuses on identifying shunt short circuit faults. 
However, it is unable to differentiate between the other two fault types—series short circuits and turn-to-turn 
fault—at this stage.

•	 Level 2 (ANN 2): To address this limitation, the second level of the LVQ model (ANN 2) is utilized. This level 
is specifically designed to classify the remaining faults, effectively distinguishing between turn-to-turn faults 
and series short circuits within the dataset.

•	 A two-level neural network is used to discriminate between the three types of faults because there is a large 
similarity between TTF and SEF.

•	 The proposed LVQ-ANN comprises five subnetworks (ANN1–ANN5), each tailored for specific fault identifi-
cation and localization tasks. The parameter configurations for these networks, including the number of neu-
rons, learning rates, and layer designs, are summarized in Table 7. ANN1 and ANN2 focus on fault identifica-
tion, while ANN3–ANN5 are dedicated to fault localization (detailed in Sect. “Internal fault location results”).

To ensure reproducibility and reduce the non-deterministic nature of ANN training, a fixed random seed was 
applied during all training sessions. Each ANN subnetwork was trained across 10 independent runs, and the 
best-performing model—based on highest validation accuracy—was selected. The training/testing dataset split 
was maintained consistently at 50/50. All network architectures and parameters were kept constant as detailed 
in Table 7.

As shown in Table7, The LVQ subnetworks employ activation functions to introduce nonlinear decision 
boundaries. Hidden layers use Rectified Linear Units (ReLU), while output layers utilize Sigmoid (binary 
tasks) or SoftMax (multi-class tasks). The LVQ prototypes are updated using Euclidean distance and a decaying 
learning rate.

To rigorously assess the proposed LVQ algorithm, three complementary metrics: Precision, Recall, and F1-
Score, were selected. While accuracy provides a surface-level measure of overall correctness, it fails to address 
critical nuances such as fault types. Precision quantifies the reliability of positive predictions as shown in Eq. (4). 
Recall evaluates the model’s ability to capture all relevant cases as stated in Eq. (5), and the F1-Score harmonizes 
these metrics into a single robust indicator as displayed in Eq. (6). A confusion matrix was further employed to 
visualize the model’s performance across fault classes, offering granular insights into true positives (TP), false 
positives (FP), and false negatives (FN). This matrix not only clarifies the distribution of correct and incorrect 
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predictions but also highlights patterns in misclassification (distinguishing Between TTF, SEF and SHF). By 
synthesizing these metrics and visual tools, the evaluation framework ensures a rigorous, interpretable, and bias-
resistant validation of the LVQ algorithm’s diagnostic capabilities.

	
Precision = TP

TP + FP
� (4)

	
Recall = TP

TP + FN
� (5)

	
F 1 − Score = 2 ∗ Precision ∗ Recall

Precision + Recall
� (6)

The proposed LVQ-ANN model’s training performance is illustrated in Fig. 19, which plots the Mean Squared 
Error (mse) against the number of training epochs. The model achieved perfect convergence (MSE = 0) at epoch 
129, with the error decreasing rapidly from an initial value of 120. Intermediate MSE values at epochs 5, 10, 20, 
40, 60, 80, 100, and 120 reflect progressive refinement of prototype vectors. The sharp decline in MSE during 
early epochs indicates efficient feature learning, while the gradual stabilization toward zero suggests careful 
tuning of prototypes to avoid overfitting. This aligns with the high testing accuracy (98.51%) achieved in fault 
identification, confirming robust generalization despite perfect training performance.

Network Task No. of Neurons Learning Rate Training/Testing Split No. of Layers Activation Functions

ANN1 Identify SHF 3 0.1

50%: 50% (132/135) cases

1 ReLU (hidden), Sigmoid (output)

ANN2 Classify SEF, TTF 7 0.07 1 ReLU (hidden), Sigmoid (output)

ANN3 Locate SHF 12 0.05 3 ReLU (hidden), Linear (output)

ANN4 Locate TTF 4 0.08 1 SoftMax (output)

ANN5 Locate SEF 8 0.06 2 Tanh (hidden), SoftMax (output)

Table 7.  Parameter configurations for LVQ-ANN components (ANN1–ANN5).

 

Fig. 18.  General flowchart that describes the fault classification.
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According to achieved results, it is found that the identification scheme has properly identified 265 fault loci 
from 267 total faulty loci. This process is achieved after 42 s training time using 4 features through using 2-levels 
LVQ network. As presented in Table 8, this identification scheme achieves an overall accuracy of approximately 
98.51%. Table 9 summarize the detailed distribution of correct and misclassified predictions.

Internal fault location results
A LVQ multi-level algorithm for sub-classification is proposed to identify the locations of predefined fault types. 
In this approach, the high-voltage winding of the transformer is split into four segments. Sect. “Introduction” 
includes disks numbered from 1 to 22. Section “Paper contribution” continues from disk numbers 23 to 44. 
Section “Transformer model contains internal faults” follows, encompassing disks 45 to 66, while Sect. “Proposed 
method” concludes the segmentation with disks numbered from 67 to 89.

The sub-classification LVQ algorithm is implemented for finding the location of each fault after ending the 
time simulated of the previous 2-levels LVQ algorithm which belongs to fault identification process.

In this stage, the data matrix that is used for the multi-level LVQ localization algorithm includes 267 positions 
records (rows) and 5 features (columns). The fault location procedure is carried out Appling five separate ANNs 

Predicted actual Turn-to-turn fault Series short circuit Shunt short circuit

Turn-to-Turn Fault 43 0 2

Turn-to-Turn Fault 0 45 0

Turn-to-Turn Fault 0 0 45

Table 9.  Confusion matric for fault identification approach.

 

Metric Turn-To-turn fault Series short circuit Shunt short circuit

Tested cases 45 45 45

True positives (TP) 43 45 45

False positives (FP) 0 0 0

False negatives (FN) 2 0 0

Precision 100% 100% 100%

Recall 95.55% 100% 100%

F1-Score 97.7% 100% 100%

Overall Accuracy 98.51%

Table 8.  Overall fault identification results.

 

Fig. 19.  Training performance of the LVQ-ANN model.
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(ANN 3 through ANN 5), with each ANN dedicated to a particular defect class. The roles and descriptions of 
these five ANNs are outlined as follows:

ANN 3: This network, structured in three levels, is responsible for locating the faulty section resulting from 
a shunt short circuit. The three-level design is implemented to account for the similarity in features within 
each faulty section.
ANN 4: In this stage, the location of turn-to-turn fault can be found through 1-levels LVQ network.
ANN 5: this level can distinguish the number of faulty disks for series short circuit fault inside power trans-
former winding.
The LVQ-ANN subnetworks (ANN3–ANN5) utilize the parameter configurations detailed in Table 7 to local-
ize faults across transformer winding segments.

In the insulation failure location process, key features are extracted from each data point. The algorithm 
accurately located 258 out of 267 faulty disks in 1 min and 52 s of training time, using 5 features across 3 LVQ 
networks. Each fault type is localized using a dedicated LVQ network with 4 critical features. The fault location 
accuracy of TTF, SEF and SHF has been achieved as illustrated in Table 10, Table 11 and Table 12 respectively, 
with confusion matrices highlighting correct and misclassified sections for TTF, SEF and SHF displayed in 
Table 13, Table 14 and Table 15 respectively. The total fault location precision across all fault types is 93.275, as 
summarized in Table 16.

Predicted actual Section 1 Section 2 Section 3 Section 4

Section 1 11 0 0 0

Section 2 0 10 1 0

Section 3 0 1 10 0

Section 4 0 0 1 11

Table 13.  Confusion matrix for TTF localization approach.

 

Section Tested cases True positives (TP) False positives (FP) False negatives (FN) Precision Recall F1-Score

Section 1 11 10 1 (predicted Sec 2) 1 90.9% 90.9% 90.9%

Section 2 11 10 1 (predicted Sec 1) 1 90.9% 90.9% 90.9%

Section 3 11 10 1 (predicted Sec 4) 1 90.9% 90.9% 90.9%

Section 4 12 11 1 (predicted Sec 3) 1 91.67% 91.67% 91.67%

Overall result 45 41 4 4 91.0175% 91.0175% 91.0175%

Table 12.  Shunt short circuit fault location results.

 

Section Tested cases True positives (TP) False positives (FP) False negatives (FN) Precision Recall F1-Score

Section 1 11 11 0 0 100% 100% 100%

Section 2 11 10 1 (predicted Sec 3) 1 90.9% 90.9% 90.9%

Section 3 11 10 1 (predicted Sec 4) 1 90.9% 90.9% 90.9%

Section 4 12 12 0 0 100% 100% 100%

Overall result 45 43 2 2 95.45% 95.45% 95.45%

Table 11.  Series short circuit fault location results.

 

Section Tested cases True positives (TP) False positives (FP) False negatives (FN) Precision Recall F1-Score

Section 1 11 11 0 0 100% 100% 100%

Section 2 11 10 1 (predicted Sec 3) 1 90.9% 90.9% 90.9%

Section 3 11 10 1 (predicted Sec 2) 1 90.9% 90.9% 90.9%

Section 4 12 11 1 (predicted Sec 3) 1 91.67% 91.67% 91.67%

Overall result 45 42 3 3 93.36% 93.36% 93.36%

Table 10.  turn-to-turn fault location results.
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Comparison of the proposed scheme with other methods
Table 17 provides a concise comparison between the proposed method and previously published approaches for 
fault identification and location.

Conclusion
This paper investigates three common transformer winding faults—turn-to-turn fault, series short-circuit, 
and shunt short-circuit—at various locations by simulating power transformers with different ratings. These 
simulations include a 33 kV winding for 3 MVA and 5 MVA transformers, as well as a 20 kV winding for a 7 
MVA transformer. The proposed online scheme effectively distinguishes and identifies the locations of these 
insulation failures. The scheme utilizes input voltage, output voltage, and input current data to generate the (ΔV–
Iin) locus. Minor variations in the (ΔV–Iin) locus, caused by different types of insulation failures, are detected in 
real-time using specific features.

The (ΔV–Iin) locus serves as an effective tool for monitoring changes in the transformer. In this research, 
the effects of various harmonic orders—namely the 3rd, 5th, and 7th harmonics—are examined when applied to 
a 3 MVA power transformer. The results demonstrate how these harmonic orders influence the (ΔV–Iin) locus 
of the transformer. To improve the accuracy of insulation fault identification, new features representing fault 
characteristics are extracted from the developed ellipse. These features are derived from the (ΔV–Iin) locus for 3, 
5, and 7 MVA power transformers under various fault conditions.

A multi-class neural network algorithm was developed using training sets derived from extracted features 
to detect deformations in power transformers. The system incorporates two LVQ levels, due to the similarities 
between certain fault features. The results of the fault identification, based on LVQ, demonstrate that four features 
are sufficient to achieve a high level of accuracy. The proposed algorithm successfully identified 265 faulty loci 
out of 267 in just 42 s using the extracted features. As a result, the algorithm achieved an identification accuracy 
of approximately 98.51%.

A multi-level neural network approach is introduced for identifying insulation failure locations within the 
winding disks of power transformers, utilizing the same analytical features. The high-voltage winding of the 
transformer is segmented into four segments. The fault detection method employs three levels of Learning 
Vector Quantization (LVQ) to accurately pinpoint the specific disk experiencing failure within the transformer 
winding. The algorithm demonstrated its effectiveness by correctly locating 258 out of 267 faulty disks, achieving 
a training duration of 1 min and 52 s. As a result, the proposed method attained an overall localization accuracy 
of approximately 93.275%.

Fault type

Fault location accuracy

Section 1 Section 2 Section 3 Section 4 Overall accuracy

Turn-To-Turn Fault 100% 90.9% 90.9% 91.67% 93.36%

Series Short Circuit 100% 90.9% 90.9% 100% 95.45%

Shunt Short Circuit 90.9% 90.9% 90.9% 91.67% 91.0175%

Overall Fault Location Accuracy 93.275%

Table 16.  Overall fault location results.

 

Predicted actual Section 1 Section 2 Section 3 Section 4

Section 1 10 1 0 0

Section 2 1 10 0 0

Section 3 0 0 10 1

Section 4 0 0 1 11

Table 15.  Confusion matrix for SHF localization approach.

 

Predicted actual Section 1 Section 2 Section 3 Section 4

Section 1 11 0 0 0

Section 2 0 10 1 0

Section 3 0 0 10 1

Section 4 0 0 0 12

Table 14.  Confusion matrix for SEF localization approach.

 

Scientific Reports |        (2025) 15:32123 22| https://doi.org/10.1038/s41598-025-14242-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to the proprietary 
nature of the measurement setup and data processing techniques. However, the data are available from the cor-
responding author upon reasonable request.
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