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The identification of unknown parameters for proton exchange memberane fuel cells (PEMFCs) 
using nature-inspired optimization algorithms has emerged as a significant field of research in recent 
years. In the present study, a novel approach is presented, namely the hybrid Gray Particle Cuckoo 
(GPC) algorithm based on the hybrid properties of the grey wolf optimizer (GWO), particle swarm 
optimization (PSO), and cuckoo search (CS) to address the identification problem associated with 
PEMFCs. The effectiveness of the proposed GPC algorithm is evaluated on four commercially available 
PEMFCs (BCS500-W, Ballard Mark V, Temasek, as well as NedStack PS6). The fitness function has been 
expressed as the sum of the squared errors (SSE) that occurred between the estimated voltage and the 
data that corresponded to it. To further validate the model of the PEMFC, it is contrasted with other 
complex algorithms. The GPC algorithm showed the lowest SSE across all cases, resulting in SSE values 
of 0.011699, 0.813912, 2.267687, and 0.123276775 for the BCS500-W, Ballard Mark V, NedStack PS6 
and Temasek PEMFC stack, respectively. Also, the PEMFC stacks are evaluated using different partial 
temperature and pressure conditions. In addition to real-world challenges, the GPC algorithm has been 
assessed on 100-digit CEC 2019 benchmarks and contrasted to other MH algorithms. Furthermore, 
both the parametric and non-parametric statistical tests are conducted to evaluate the efficacy of 
the GPC algorithm. The results in terms of mean square error (MSE), individual absolute error (IAE), 
mean bias error (MBE), mean absolute error (MAE), and root-mean-square error (RMSE) demonstrate 
that the GPC algorithm is the optimal choice contrasted to other algorithms due to its better solution 
quality and faster convergence time.
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TSA	� Transient Search Optimization
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FOA	� Firefly Optimization Algorithm
SMBOA	� Slime Mould based Optimization Algorithm
ESSA	� Enhanced Salp Swarm Algorithm
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SSO	� Salp Swarm Optimizer
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OOA	� Osprey Optimization Algorithm
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WSO	� War Strategy Optimization
IFMO	� Improved Fish Migration Optimizer
ZOA	� Zebra Optimization Algorithm
PSA	� Propagation Search Algorithm
CDO	� Chernobyl Disaster Optimizer
COA	� Coati Optimization Algorithm
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MH	� Meta-heuristic
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MAE	� Mean Absolute Error
IAE	� Individual Absolute Error
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RMSE	� Root-Mean Square Error
TSEs	� Total Squared Errors
SQEs	� Sum of Quadratic Errors
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The depletion of fossil fuels, caused by the increasing consumption of energy, as well as increased awareness 
of environmental conservation, has led individuals and governments to focus on alternative energy sources. 
As a result, researchers have presented significant interest in exploring other energy sources that are more 
environmentally friendly, such as wind, solar and wave energy1,2. These sources have gained considerable 
attention because of their potential to mitigate the negative impacts of traditional energy production methods 
on the environment. Therefore, various studies and investigations have been conducted to assess the feasibility 
and efficiency of these greener energy sources. The main obstacles associated with the sources mentioned are 
their unpredictable characteristics and dependence on climatic factors. However, these constraints have clearly 
highlighted the crucial need for energy storage. Hydrogen, a topic of current interest, has the potential to serve 
as an energy storage medium to effectively store renewable energy until it can be converted to electricity by 
an energy conversion device3. A fuel cell (FC) is a very important technology for converting energy, usually 
generating electricity, by employing a chemical reaction between hydrogen as well as oxygen. The PEMFC has 
become popular in many fields, including automotive, on-site generation, as well as portable electronic devices, 
because of its advantages, which include high power density, low operating temperature, and solid electrolyte4.

Enhancing the efficiency as well as performance of PEMFCs has become an important area of study. The 
mechanical model incorporates the internal dynamics of cells through mass and heat conservation laws, 
alongside chemical reaction equations, whereas the empirical model represents the external properties of cells 
using empirical formulas derived from experimentation, which are less complex than those of the mechanical 
model. The precise identification of the model’s parameters remains to be a considerable challenge5,6. This paper 
utilises a semi-empirical model that integrates a mechanism model with empirical components, presenting a 
voltage model that thoroughly addresses active polarisation loss, ohmic polarisation loss, and concentration 
polarisation loss7,8. A precise mathematical model is essential to accurately represent the actual behavior of 
the system under various operating scenarios9,10. Identifying the optimal values of the unknown parameters 
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results in a mathematical model that exhibits a high level of precision11. As a result of the related non-linearity 
of the FC, the modeling procedure becomes complex due to the presence of certain unknown parameters in the 
manufacturer’s datasheet12.

In recent decades, extensive research has been done on estimating unknown parameters in the literature, 
categorising studies into two primary areas, such as MH as well as deterministic optimization techniques. 
Deterministic optimization methods, including derivative-based optimization as well as linear programming, 
depend on precise mathematical principles. MH and deterministic methods offer unique advantages that depend 
on the specific characteristics of the problem at hand13,14. Deterministic techniques provide efficient and accurate 
solutions for small-scale and linear problems, ensuring optimal results. These methods may be insufficient 
for complex problems characterised by multiple variables and non-linear relationships, as they are prone to 
convergence on suboptimal solutions. The MH optimization algorithms have gained significant popularity for 
addressing various optimisation problems due to their flexibility, derivation-free approach, and simplicity15–17. The 
complicated nature of the PEMFC parameter identification challenge has resulted in the inadequate performance 
of conventional search strategies in accurately determining the best possible solutions18,19. In addition, various 
other MHA have been implemented to improve both the accuracy and the effectiveness of the model, including 
Dimension Learning-based Modified Grey Wolf Optimizer (DLHMGWO)5, Improved Heap-based optimizer 
(IHBO)20, Lightning Search Algorithm (LSA)21, Artificial Hummingbird Algorithm (AHA)22, Repairable Grey 
Wolf Optimization (RGWO)23, Shark Smell Optimizer (ShSO)24, Manta Rays Foraging Optimizer (MRFO)25, 
Flower Grey INFO Naked (FGIN)26, Hybrid Vortex Search Differential Evolution (VSDE)27, Honey Badger 
Optimization Algorithm (HBA)28, Improved Artificial Bee Colony (IABC)29, Imperialist Competitive Algorithm 
(ICA)30, Flower Pollination Algorithm (FPA)31, Pathfinder Algorithm (PFA)32, Transient Search Optimization 
(TSO)33, Dandelion Optimize (DO)34, Hunger Games Search Marine Predator Algorithm (HGS-MPA)35, 
Aquila Optimizer Arithmetic Algorithm Optimization (AOAAO)36, Parrot Optimizer (PO)37, Hybrid Artificial 
Bee Colony Differential Evolution Optimizer (ABC-DE)38, Chaotically based-bonobo optimizer (CBO)39, 
Enhanced Salp Swarm Algorithm (ESSA)40, Honey Badger Optimizer (HBO)9, Autonomous Groups Particle 
Swarm Optimization (AGPSO)8, Gorilla Troops Optimizer (GTO)41, Enhanced Walrus Optimization (EWO)42, 
Improved Artificial Ecosystem Optimizer (IAEO)43, Combined Owl Search Algorithm (COSA)44, War Strategy 
Optimization (WSO)45, Improved Fish Migration Optimizer (IFMO)46, Ali Baba and forty thieves (ABFT)47, 
Puma Optimizer (PuO)48, Kepler Red Meerkat Grey (KRMG)49 and so on. Also, a comparative literature table 
has been included in order to clarify existing research on PEMFC parameter estimation, summarizing essential 
elements such as optimization algorithm, PEMFC stack utilization, objective functions, and the use of statistical 
analysis is given in Table 1.

Now, there is the shortage of a dependable and efficient method for getting an accurate estimating procedure 
that can serve as a unique reference for research objectives. In addition, the no-free lunch (NLF) theorem 
motivates researchers to create novel optimization techniques or enhance/hybrid existing ones to address the 
real-world challenges across several domains50. Thus, a research gap needs to be addressed by determining 
the most appropriate algorithm for PEMFC and exploring other algorithms that have not been utilized in the 
PEMFC area. These MHAs provide several approaches to optimize the parameters of PEMFC systems and 
enhance their performance. However, it is possible for them to get trapped in local minima while performing 
the search, resulting in a gradual decline in their efficiency with every repetition. This paper presents a novel 
hybrid optimization (GPC) algorithm to optimally estimate the unknown parameters of PEMFC. Furthermore, 
Eleven MH optimization algorithms consisting of the Zebra Optimization Algorithm (ZOA)51, sinh cosh 
optimizer (SCHO)52, Propagation Search Algorithm (PSA)53, SABO54, Young’s Double-Slit Experiment 
(YDSE)55, exponential distribution optimizer (EDO)56, RIME57, Chernobyl Disaster Optimizer (CDO)58, Coati 
Optimization Algorithm (COA)59, Harris Hawks Optimizer (HHO)60, and GWO61,62, and the results obtained 
through these eleven algorithms are also compared with GPC algorithm. To further validate the GPC algorithm, 
it has been tested on CEC 2019 benchmark challenges63,64 and compared to some of the well-known and recently 
presented algorithms including, BWOA65, CDO58, COA59, flower pollination algorithm (FPA)66, HHO60, 
YDSE55, ZOA51, ARNMRA67, FROBLGJO68, as well as jDE10069.

This paper’s main contributions can be summarized as follows.

•	 To precisely estimate the parameters of the PEMFC, a hybridized algorithm known as the Grey Particle Cuck-
oo (GPC) algorithm has been presented and validated.

•	 The GPC algorithm has been tested with CEC 2019 challenges and compared to BWOA65, CDO58, COA59, 
FPA66, HHO60, YDSE55, ZOA51, ARNMRA67, FROBLGJO68, and jDE10069. Also, non-parametric test (Fried-
man and Wilcoxon signed rank test) analysis, as well as the box plot, have been conducted to verify the preci-
sion as well as reliability of the GPC algorithm in comparison to existing MH algorithms.

•	 Four different commercial FC stacks (NedStack PS6, Ballard Mark V, Temasek, as well as the BCS 500 W 
PEMFC model) have been evaluated to assess the accuracy as well as reliability of the GPC algorithm.

•	 Comparing the PEMFC results obtained from the proposed GPC algorithm with other MH algorithms 
(ZOA51, SCHO52, PSA53, SABO54, YDSE55, EDO56, RIME57, CDO58, COA59, HHO60, and GWO61), it was 
evident that the GPC algorithm performed significantly.

•	 In addition, the GPC algorithm is applied for an optimal analysis of the PEMFC stacks with changing pressure 
(PH2 / PO2) and temperature levels.

•	 Statistical studies such as SSE, IAE, MBE, MAE, MSE and RMSE, as well as nonparametric test (Friedman 
and Wilcoxon signed rank test) have been performed to demonstrate the superiority of the GPC algorithm 
compared to the other eleven MH optimization algorithms.
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S.No Optimization Year
PEMFC
 stack

Objective
 functions

Other 
analysis Reference

1 DLHMGWO 2025
Heliocentris FC50, BCS-
500 W 250 W,
AVISTA SR-12 500 W, 
Temasek 1 kW

SSE RMSE, boxplots, 
convergence curve

5

2 HGS-MPA 2025
50-W stack, 
NedStack PS6, 
BCS 500-W

SSE Convergence curve 35

3 HGS-MPA 2025
50-W stack, 
NedStack PS6, 
BCS 500-W

SSE Convergence curve 35

4 AOAAO 2025
Horizon 500 W, BCS 
500 W, Nedstack PS6,
 H-12 , 500 W SR-12

SSE MBE, Box-Plot, 
Convergence Curve

36

5 PO 2025
STD 250 W, BCS 500 W, 
SR-12 W, Horizon H-12, 
Ballard Mark V, Nedstack 
600 W PS6,

SSE Box-Plot, Convergence
 Curve

37

6 ABFT 2025
Ballard Mark V, 
NedStack PS6, 
250 W Stack, 
BCS 500 W

SSE Friedman’s, Wilcoxon rank test, 
convergence, box plot

47

7 PuO 2025

NedStack PS6, 
Avista SR-12, 
Horizon H-12, 
BCS 500 W, 250 W, 
Ballard Mark V

SSE Convergence, box plot 48

8 FGIN 2024
Stack 250 W, Ballard 
Mark V, Horizon H-12, 
NedStack PS6, BCS 500-W

SSE
IAE, MAE, MAPE, MBE, 
MSE, RMSE, Convergence 
curve

26

9 ESSA 2024 250 W, BCS500 SSE RMSE, MAE, 
RE, convergence

40

10 AGPSO 2024 250Wstack and BCS-500W TSEs RMSE, MAE, RE, 
convergence, box plot

8

11 EWO 2024
AVISTA SR-12 500 W, 
TEMASEK 1 kW, Nedstack 
PS, 250 W

SSE Convergence 42

12 WSO 2024 Horizon 500 W, NedStackPS6,
BCS500W, 250 W SSE Convergence 45

13 KRMG 2024 Horizon H 12, Ballard Mark-V, 
Stack 250 W SSE

RMSE, MAE, IAE, MBE, 
MSE, MAPE, Friedman’s, 
Wilcoxon rank test

49

14 AHA 2023 250 W, BCS 500 W, NedStack 
PS6, H-12, Mark V5, SR-12 SSE Convergence curve, 

Boxplot
22

15 RGWO 2023 250 W SSE - 23

16 IABC 2023 NedStack PS6 stack, 250W 
FC, BCS 500W SSE Convergence curve, 

ANOVA
29

17 CBO 2023 250 W, 500 W stacks SSE Friedman rank, mean
 convergence

39

18 DO 2023 Ballard Mark V and 
BCS 500-W SSE Convergence curve 34

19 GTO 2023 BCS 500-W, Nedstack 
PS6, 250-W SSE Convergence 41

20 LSA 2022
BCS 500 W, Nedstack
 PS6 6 kW, Ballard Mark
 V 5 kW

SSE Convergence curve 21

21 HBA 2022 250-W stack, NedStack
 PS6, BCS 500-W SSE Convergence curve 28

22 TSA 2022
Ballard, Mark V, Nedstack 
PS6, Horizon H-12
 stacks

SSE Convergence curve 33

23 ABC-DE 2022
NedStack PS6, Modular 
SR-12, Ballard Mark V, 
Horizon H-12

SSE MAE, RMSE, 
convergence

38

24 HBO 2022 Ballard Mark, SR-12, 
250 W stacks SQEs Convergence 9

25 PFA 2021 Mark V, H-12 SSE Convergence curve 32

Continued
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The structure of the paper is as follows. Section II outlines the mathematical concept of a PEMFC and the 
optimization challenge of identifying the unknown parameters of a PEMFC. The details of the proposed 
approach are presented in Section III. Section IV presents the experimental results as well as a related discussion. 
The conclusion and future scope of the presented work are given in Section V. The graphical outline of the article 
is given in Fig. 1.

Mathematical modeling of PEMFC
A PEMFC is made up of two electrodes, an anode as well as a cathode, with a thin solid membrane that conducts 
protons placed between them70,71, as illustrated in Fig. 2. In addition, Fig. 2 illustrates the reactions that take 
place at two electrodes. In the catalyst layer of the cathode, the oxygen reacts with the electrons and protons, 
resulting in the production of water and electricity. The overall reaction is given below:

	
H2 + 1

2O2
pt→ H2O + electricity + heat� (1)

The electrochemical model is utilized to mathematically show the behaviour of the electrolyzer. Also, the 
PEMFC equivalent circuit diagram is presented in Fig. 3. The mathematical representation for the output voltage 
(VST AC) of the stack, as shown in Equation 2, consists of many cells connected in series (Nnum)72,73.

	 VST AC = Nnum [ENERS − VACT I − VOHM − VCONCENT ]� (2)

Where, reversible open circuit voltage (ENERS), activation voltage loss (VACT I ) due to the activation of both 
the anode and cathode, concentration over-potential (VCONCENT ), and ohmic voltage loss (VOHM ). The 
ENERS  is determined using the Nernst equation, as shown in Eq. (3)29.

	 Ener = 1.229 − 8.5 ∗ 10−04 [Tot − 298.15] + 4.3085 ∗ 10−05 ∗ Tot

[
ln

(
PH2 +

√
PO2

)]
� (3)

Fig. 1.  Graphical outline of the article.

 

S.No Optimization Year
PEMFC
 stack

Objective
 functions

Other 
analysis Reference

26 IHBO 2021
500 W BCS, AVISTA 
SR-12 500 W, NetStack, 
H-12 stack

SSE MAE, MAPE, 
convergence curve

20

27 IAEO 2021 BCS 500-W, NedStack 
PS6, 250 W stack SSE Wilcoxon test, 

convergence, box plot
43

28 VSDE 2020 250 W stack, BCS 500-W, 
SR-12 500 W, NedStack PS6 SSE Convergence curve 27

Table 1.  Overview of existing works on PEMFC parameter estimation.
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where the cell operating temperature (Tot), partial pressure (atm) of hydrogen and oxygen (PH2 as well as PO2), 
can be calculated using Eq. (4), as well as (5)74,75.

	
PH2 = 0.5 × RHa × PH2O

[(
exp

(
1.635

(
Ioc
A

)
Tot

1.334

)
× RHa × PH2O

P a

)−1

− 1

]
� (4)

	
PO2 = RHc × PH2O

[(
exp

(
4.192

(
Ioc
A

)
Tot

1.334

)
× RHa × PH2O

P c

)−1

− 1

]
− 1 � (5)

Where, the inlet pressure of the cathode as well as the anode (P c and P a), saturation pressure of water vapor 
(PH2O), operating current (Ioc), and PEM area (A).

The VACT I , which is the 2nd term on the right side of Eq. (2), can be computed utilizing the Eq.  (6)71.

	 VACT I = − [ξa + ξb ∗ Tot + ξc ∗ Tot ∗ l n (CO2) + ξd ∗ Tot ∗ l n (Ic)]� (6)

Fig. 3.  PEMFC equivalent circuit.

 

Fig. 2.  PEMFC model.
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Where, semi-empirical coefficients (ξa, ξb, ξc, and ξd), the concentration of oxygen (CO2) and is defined as Eq. 
(7)40,76.

	
CO2 = PO2

5.08 × 106 × exp( −498
Tot

) � (7)

The VOHM , which is the term 3rd on the right side of Eq. (2), can be mathematically represented in Eq. (8)77,78.

	 VOHM = Ioc [Rmemb + Rcon]� (8)

Where, the resistance of the connections (Rcon), as well as the membrane resistance (Rmemb), that can be 
obtained by utilizing Eq. (9).

	
Rmemb = ρmemb

(
lthic

A

)
� (9)

where, the thickness of the membrane (lthic), as well as the specific resistivity of the membrane (ρmemb), can be 
calculated using Eq. (10).

	
ρmemb =

(
181.6000

[
1 + 0.0620

(
Tot
303

)2 ∗ J2.500 + 0.0300 ∗ J2
])

(
[λ − 3.0000 ∗ J − 0.6340)] exp

(
4.1800

(
Tot−303

Tot

))) � (10)

Where, actual current density (J), and parameter λ are adjustable and are associated with the water content of 
the membrane.

The drop in concentration voltage (VCONCENT ) is caused by changes in the concentration of reactants on 
the electrode surface and can be mathematically expressed in Eq. (11):

	
VCONCENT = −β ∗ ln

[
1 −

(
J

Jmax

)]
� (11)

Where, the symbol β serves to represent the semi-empirical coefficient.
The main objective of our investigation is to determine the most optimal values for the parameters (ξa, ξb, 

ξc, ξd, Rcon, λ and β) through the application of the GPC algorithm. This helps ensure that the output voltage 
of the model aligns with the experimental data.

Objective Function
The Eqs. (2–11), present a set of equations where the operation parameters Tot, RHc, P c, RHa, PH2, P a, 
as well as PO2 are measurable and their values depend on the specific operating conditions. Additionally, the 
physical parameters (ξa, ξb, ξc, ξd, Rcon, λ, and β) are unknown. Due to the significant impact of the unknown 
parameter on the model outcomes, it is essential to extract them with the greatest accuracy to be precisely 
matched with the actual voltage-current (V-I) characteristic of the PEMFC.

Before determining the unknown parameter (ξa, ξb, ξc, ξd, Rcon, λ, and β), it is imperative to determine an 
objective function. In order to compare with previous literature, the objective of optimization in this study is to 
determine a set of parameter values that will reduce the SSE between the experimental voltage (Vexper) as well 
as the model-estimated voltage (Vestimat) as determined by Eq. (12).

	
Minimize(OF ) : Fobj(SSE) =

Nvolt∑
k=1

[Vexper − Vestimat]2� (12)

Where, the number of voltage data samples (Nvolt), and the proposed constraints are presented as.

	

S.t




ξi,min ≤ ξi ≤ ξi,max∀i ∈ {a, b, c, d}
λmin ≤ λ ≤ λmax
βmin ≤ β ≤ βmax

Rcon,min ≤ Rcon ≤ Rcon,max

� (13)

In the next section, we present the basics of nature-inspired algorithms and proposed methodology used to 
optimize the objective function discussed above.

Basics of nature-inspired algorithms
This section presents the fundamental principles underlying the algorithms utilized to develop a novel GPC 
optimization algorithm. This is an outline of the recently employed algorithms, including GWO, PSO, and CS 
optimization algorithms:

Grey Wolf Optimizer
In 2014, Mirjalili et al. proposed the GWO algorithm, inspired by the social behaviour as well as hunting strategies 
of wild grey wolves, scientifically known as Canis lupus61. These wolves reveal social behaviour and maintain a 
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rigid social hierarchy, categorised into four distinct ranks: alpha (α), beta (β), delta (δ), as well as omega (ω). The 
mathematical framework of GWO depends on the social structure and hunting techniques of grey wolves. The 
fundamental aspects of hunting involve tracking, encircling, and subsequently attacking the prey79.

Social hierarchy
In the development of the GWO, the social hierarchy of wolves is mathematically expressed by identifying the 
optimal solution as the α. Therefore, the 2nd and 3rd most efficient solutions are designated as β as well as δ 
accordingly. The remaining candidate solutions have been assumed to be ω. The optimization process of the 
GWO algorithm is governed by α, β, and δ. The ω wolves follow the group of 3 wolves (α, β, and δ).

Encircling prey
Grey wolves encircle their prey while hunting, as mentioned earlier. In order to represent encirclement behaviour 
numerically, the following equations are given.

	
→
R =

∣∣∣→
E.

→
Tp (t) −

→
T (t)

∣∣∣ � (14)

	
→
T (t + 1) =

→
T p(t) −

→
Q.

→
R � (15)

where variables 
→
T (t + 1), t, and 

→
T p(t) denote the position of the ith grey wolf, the current iteration, and the 

location of the prey, respectively. The vectors 
→
Q and 

→
E acting as control parameters are computed using Eqs. 

(16) and (17).

	
→
Q = 2

→
b .

→
r1 −

→
b � (16)

	
→
E = 2.

→
r2 � (17)

where components 
→
b  are linearly decreased from 2 to 0 throughout the iterations, while 

→
r1 and 

→
r2 are random 

vectors within the interval [0, 1].

Hunting
Grey wolves identify the location of prey and encircle it, with direction from the α. The β and δ may also engage 
in the hunt. The optimum location (prey) remains unknown. To model wolf hunting behaviour, it is assumed that 
the α, β, and δ possess superior knowledge regarding potential prey locations. Retain the three best solutions 
and adjust the positions of other search agents based on the positions of the top-performing agents.

	

→
Rα =

∣∣∣ →
E1.

→
Tα −

→
T

∣∣∣ ;
→
Rβ =

∣∣∣ →
E2.

→
Tβ −

→
T

∣∣∣ ;
→
Rδ =

∣∣∣ →
E3.

→
Tδ −

→
T

∣∣∣ � (18)

	
→
T1 =

→
Tα −

→
Q1.(

→
Rα );

→
T2 =

→
Tβ −

→
Q2.(

→
Rβ );

→
T3 =

→
Tδ −

→
Q3.(

→
Rδ ) � (19)

	
→
T (t + 1) =

→
T1 +

→
T2 +

→
T3

3
� (20)

Attacking the prey
Grey wolves finalise the hunt by focussing on the prey once it becomes stationary. To build a mathematical model 
of the hunter advancing towards its prey, decrease the value of 

→
b . The range of 

→
Q decreases by the effect of 

→
b . 

→
Q 

is a randomly chosen value within the interval of -2b to 2b, where 
→
b  is progressively decreased from 2 to 0 during 

the repetitions. When random values of 
→
Q range from [-1,1], the subsequent location of a search agent may lie 

anywhere between its current location and the location of the prey. The coefficient
→
T  additionally regulates the 

exploratory phase of the algorithm. This component allocates arbitrary weights to prey to avoid stagnation at 
local optima, enabling the algorithm to incorporate randomization during the optimization process. In doing 
so, grey wolves engage in a hunting process characterized by repetitive behaviors of encircling and pursuing, as 
mentioned above.

Particle Swarm Optimization
The PSO is a stochastic optimization method based on population dynamics. It was Ist proposed by Kennedy and 
Eberhart in 1995, drawing inspiration from the social behaviours exhibited in bird flocking and fish schooling80.

Mathematical formulation
In PSO, a particle is characterised by its location as well as velocity within a d-dimensional search space. Let 
Ti(t) = (Ti1, Ti2..........Tid) be the location of particle i at iteration (t), and velocity Ui(t) = (ui1, ui2..........uid). 
The individual optimal location of the particle is ki(t) = (ki1, ki2..........kid), while the global best location 
identified by the entire swarm is kg(t) = (kg1, kg2..........kgd). The Eqs. (21), and (22) determine the updates 
for velocity as well as location:

Scientific Reports |         (2026) 16:1116 8| https://doi.org/10.1038/s41598-025-14297-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 ud
i,t+1 = ud

i,t + L1 ∗ rand ∗
(
kd

i,t − td
i,t

)
+ L2 ∗ rand ∗

(
kd

g,t − td
i,t

)
� (21)

	 td
i,t+1 = td

i,t + ud
i,t+1 � (22)

The formulation of a new velocity update equation follows from the addition of inertia weight (S) to the velocity 
update formula.

	 ud
i,t+1 = S ∗ ud

i,t + L1 ∗ rand ∗
(
kd

i,t − td
i,t

)
+ L2 ∗ rand ∗

(
kd

g,t − td
i,t

)
� (23)

	
S(t) = Smax − t

Tmax
(Smax − Smin) � (24)

where, t and Tmax are the current iteration as well as maximum iteration. The Smax and Smin indicate the 
maximum as well as lower limits of the range of inertia weight (S(t)) parameter.

Cuckoo search algorithm
The CS algorithm has been motivated by the obligatory brood behavior of cuckoos as well as relies on three 
fundamental principles such as.

•	 Each cuckoo lays one egg at a time, depositing it in a randomly selected nest.
•	 The nests with the best quality eggs (i.e., best fitness solutions) are carried over to the next generation.
•	 There are a fixed number of host nests, and there is a probability that the worst nests will be replaced by new 

ones, representing the discovery of alien eggs by host birds.

The CS algorithm primarily focuses on exploration as well as exploitation of cuckoo species, as outlined by these 
three principles. The process is divided into two main stages: a local search stage that addresses exploitation 
and a global search stage that deals withexploration. Another parameter functions as the governing element 
of the CS algorithm. The parameter selected randomly from a uniform distribution is referred to as the switch 
probability, denoted as p. The subsequent subsections provide an expanded discussion of each of the previously 
covered stages.

Global search phase
The cuckoo search has been executed in accordance with the three rules. A Lévy flight is executed to provide a 
new solution Y for the ith cuckoo. This process is referred to as a global random walk and is outlined in Eq. (25)

	 T p+1
i = T p

i + α ⊗ L(λ)(Tbest − T p
i )� (25)

where as T p
i  denotes the previous solution, while T p+1

i  is current soloution. This step follows the newly generated 
solutions using Lévy flights (L(λ)). The main reason for using such this mechanism is the longer tail and better 
flight trajectory of the Lévy flight mechanism, which helps to provide better search capabilities to the algorithm. 
Apart from that, the Lévy flight mechanism is given in Eq. (26).

	
L(λ) ∼ λΓ(λ) sin(πλ/2)

π

1
s1+λ

(s ≫ s0 ≫ 0)� (26)

where s = U
|V |1/λ

U ∼ N(0, σ2), V ∼ N(0, 1) and σ2 =
{

Γ(1+λ)
λΓ[(1+λ)/2] .

sin(πλ/2)
2(λ−1)/2 . Also, Γ(λ) is a gamma 

function and the value of λ is equal to 1.5. During this exploration phase, the parameter N is sampled from a 
standard Gaussian distribution with a mean of 0 and a variance of σ2. This process is designed to explore the 
solution space effectively. To generate a new solution, the current best solution (Tbest) is utilised in conjunction 
with the sample parameter.

Local search phase
The 2nd phase of CS algorithm is the local random-walk mechanism, which aligns with the exploitation process. 
This phase involves the generation of a new solution (T p+1

i ) through a local search using two randomly selected 
solutions from the search pool.The local random walk is presented in Eq.  (27).

	 T p+1
i = T p

i + α ⊗ (ϵ) ⊗ (T p
j − T p

k )� (27)

where T p
j  and T p

k  correspond to two random solutions, ϵ ∈ [0, 1] is a uniformly distributed random number.

The proposed approach
This section deals with the proposal of the GPC algorithm, starting with the motivation behind the proposal, the 
details of the proposal and finally the computational complexity of the proposed approach.

Motivation behind the proposal
In optimization, the trade-off between searching for new, potentially better solutions (exploration) and refining 
known good solutions (exploitation) is a critical determinant of algorithmic success. Exploration enables 
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coverage of diverse and unexplored regions in the search space, increasing the likelihood of escaping local 
optima, while exploitation ensures refinement of promising solutions for accelerated convergence81. Striking an 
effective balance between these two processes is essential, as overemphasis on either may lead to an inefficient 
search or premature convergence. Addressing this, the proposed GPC algorithm adopts a modular, phase-wise 
hybridization strategy to enforce a temporal and spatial balance between exploration and exploitation.

The algorithm utilizes CS-based L’evy flight updates in the early stages to ensure a wide exploratory radius, 
leveraging the heavy-tailed distribution to traverse far-reaching regions of the search space. As the algorithm 
progresses, the leadership-driven model of GWO is introduced to promote guided, yet diverse, exploitation 
through hierarchical decision-making. To further intensify convergence in later iterations, PSO-based velocity 
updates are incorporated with adaptively tuned inertia weights. This phase-wise hybridization is not a simple 
combination, but a role-specific assignment, where each component algorithm governs a particular aspect of the 
search. Unlike traditional hybrids that apply all components uniformly or in a static blend, GPC dynamically 
partitions the population and allocates algorithms temporally, allowing each strategy to dominate in its optimal 
phase. This role-based hybridization not only enhances search efficiency, but also reduces algorithmic bias. The 
adaptability of the framework ensures resilience in diverse problem landscapes, in accordance with the No Free 
Lunch Theorem50. Thus, the novelty of GPC lies in the structured orchestration and transition of exploration–
exploitation roles, rather than merely the selection of constituent algorithms.

The Grey Particle Cuckoo Algorithm
Although individual metaheuristic algorithms such as PSO80, GWO61 and CS82 have demonstrated merit in 
solving complex optimization problems, each suffers from specific limitations. PSO is prone to premature 
convergence due to loss of diversity and stagnation in local optima. GWO lacks exploratory capabilities in the 
early stages and tends to focus narrowly on leader-driven search. CS, despite its exploratory strength through 
Lévy flights, exhibits instability in convergence and often fails to fine-tune solutions effectively. An inherent 
limitation of these basic algorithms lies in their suboptimal exploration capability, given their tendency to follow 
smaller step sizes. This behavior leads to the clustering of new solutions, impeding the exploration process. 
Consequently, the algorithm tends to confine its search to specific regions within the search space, resulting 
in an inefficient approach to exploration and an overall sub-par operational performance. Although there are 
problems with basic algorithms, the organizational structure of CS has been found to be very efficient and can 
be used as a benchmark to propose new algorithms81.

To counter these deficiencies, GPC proposes a layered hybridization model that restructures both global 
and local search dynamics. The global search capability is enhanced by embedding new movement equations 
that encourage distant but purposeful solution updates. Gleichzeitig, the local exploitation phase is improved 
through mechanisms that capitalize on the proximity of current best solutions, continuously benchmarking 
new candidates against elite ones, and accelerating convergence toward global optima. The GPC architecture is 
designed to preserve the useful traits of its constituents (GWO, PSO, and CS) while mitigating their drawbacks. 
Retain the organizational efficiency of CS, refine the hierarchical strategy of GWO for better guidance, and 
incorporate the adaptive velocity control of PSO for convergence tightening. These elements are integrated 
without disrupting the structural integrity of the parent algorithms, making GPC an inherently robust and 
versatile optimization framework. We now formally define the algorithmic steps, population management, and 
GPC control parameters.

The algorithm begins by setting N within a constrained search space, as defined by (29)

	 yj
i,0 = yj

min + a(yj
max − yj

min) j = 1, 2, ..., D� (28)

for the ith member of the search space, j is the D dimensional problem, a ∈ [0, 1] ymin and ymax are the lower 
bound and upper bounds of the Dth problem. After initialization, we divide the population into two iterative 
halves.

Stage I : p = 1 : pmaximum
2

In the first step, we follow the basic search equations of CS algorithm. This step follows the newly generated 
solutions using Lévy flights. The main reason for utilizing this mechanism is the longer tail and better flight 
trajectory of the Lévy flight mechanism, which helps to provide better search capabilities to the algorithm. The 
general equation for this stage is given by

	 zp+1
i = zp

i + α ⊗ L(λ)(zbest − zp
i )� (29)

where
Apart from that, the Lévy flight mechanism is given by

	
L(λ) ∼ λΓ(λ) sin(πλ/2)

π

1
s1+λ

(s ≫ s0 ≫ 0)� (30)

The local search phase is the local random-walk mechanism, which aligns with the exploitation process. This 
phase involves the generation of a new solution (zp+1

i ) through a local search using two randomly selected 
solutions from the search pool. The overarching equation for the local search phase is provided as follows:

	 zp+1
i = xp

i + α ⊗ (ϵ) ⊗ (zp
j − xp

k)� (31)
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where zp
j  and zp

k  correspond to two random solutions, ϵ ∈ [0, 1] is a uniformly distributed random number.
The local search phase is activated only for a certain fraction of iterations and depends on the probability 

switch parameter (sp). In the current scenario, this parameter is adjusted using an exponential decreasing inertia 
weight operator. This phase helps to decide the extent of exploration and exploitation. The general equation is 
thus given by

	
sp(p) = ηmin + (ηmax − ηmin)exp

[
− p

( pmax
10 )

]
� (32)

where ηmax as well as ηmin are maximum and minimum random values [0,1].

Stage II : p = pmaximum
2 + 1 : pmaximum

In this phase, the main concern is to have lower exploration and more exploitation. During this phase, the global 
search phase is divided into two parts, and here also the first half of the population follows a similar approach 
as used in the generalized algorithm. This is done to make the algorithm perform intensive exploration along 
with some exploitation operation. For the second half of the population, GWO based equations are used. These 
equations are meant for the initialization of new solutions within the search space, are generally generated using 
three new solutions, and are formulated as

	
fCauchy(0,h)(δ) = 1

π

h

(h2 + δ2) � (33)

	
y = 1

2 + 1
π

arctan( δ

h
) � (34)

	
δ = tan(π(y − 1

2)) � (35)

	 zp+1
i = zp

i + α × D(δ)(zbest − zp
i ) � (36)

	

z1 = zi − J1(H1.znew − zp
i );

z2 = zi − J2(H2.znew − zp
i );

z3 = zi − J3(H3.znew − zp
i )

� (37)

	
zp+1

i = z1 + z2 + z3

3
� (38)

	 N = 2b.r1 − b; N = 2.r2 � (39)

During this phase, the local search equation is further categorized into two distinct population segments. For 
the Ist half of the population, again CS based local search is followed, but for the second half of the population, 
a more rigorous approach is used. Here we are using a PSO-based equation as given by

	 zt+1
i = zt

i + F × (zbest − zt
i ) + I × (gt

best − zt
i )� (40)

where gbest is the personal best solution, zbest is the current best solution, F = c1.r1 is a random number 
initialized using simulated annealing inertia weight and is given by

	 c1 = ηmin + (ηmax − ηmin) × a(T −1)� (41)

where, the variables T, r1 ηmax, and ηmin are uniformly distributed in the range [0,1]. Furthermore, the value 
of a is set to 0.95.

I = c2.r2 is another random number initialized using the sigmoid inertia weight operation as given by

	
c2 = ηmin − ηmax

1 + e−u×(p−h×gen) + ηmax � (42)

	 u = 10log(gen)−2� (43)

where, ηmax = 0.9, ηmin = 0.5, gen = 51, r2 and h, k ∈ [0, 1].

Population adaptation
To address a reduction in population size, a strategy outlined in82 is followed. The proposed approach involves 
modifying the population size during algorithm iterations, emphasizing greater exploration initially and 
transitioning towards adaptive exploitation later. The reduction in population size as iterations progress aims 
to optimize the algorithm by efficiently utilizing search agents. In simpler terms, the algorithm employs a larger 
population during exploration to thoroughly cover the search space, while exploitation, focused on specific 
areas, is achieved with a smaller population. This adaptive population adjustment ensures effective exploration 
in the early stages and targeted exploitation in the later stages, striking a balance between resource utilization 
and optimization.
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In this study, a proportional population reduction phenomenon is employed, inspired by the ideas presented 
in82. This method involves reducing the population size in proportion to the increase in fitness. The rationale 
behind adopting this approach lies in its suitability for addressing multimodal problems, where solutions need 
to explore extensive areas. When confronted with a large initial population size, it becomes possible for new 
solutions to explore the entire search space. As the iterations progress, these solutions may converge toward the 
global best solution, which lies in a specific direction. Consequently, the size of the population can decrease. 
This reduction in population size facilitates improved genetic drift, allowing the discovery of new solutions 
without compromising the retention of the best solution. Toward the conclusion of the process, each member of 
the population is given an equal opportunity to potentially become the best global solution. In a more general 
context, the equation governing population reduction is expressed as

	
Qp+1 =

{
(1 − σfbest

p )np, if σfbest
p ≤ σfbest

max

(1 − σfbest
max)np, if σfbest

p > σfbest
max

minn, if Qp+1 < minn

� (44)

Where, Qp+1 represents the population at generation p, σfbest
p  is stated by (

fbest
p−1 −fbest

p−2
|fbest

p−2 | ) indicates the change 

in the best fitness, and σfbest
max presents the threshold value.

Selection operation
In the last phase, it is important to carefully select the individuals who are the most appropriate from both the 
candidates generated in the current iteration and those from previous iterations. The selection technique is 
determined by comparing the fitness of the new solution, indicated as f(znew), with the fitness of the previously 
known solution, represented as f(zp

i ).If the fitness of the new solution, denoted as (f(znew)), is found to be 
superior to the fitness of the previous known solution, denoted as (f(zp

i )), then the new solution replaces the 
original solution as the one selected. However, if the previous solution (zi) has a higher level of fitness, it will be 
retained as the selected solution for the subsequent stages of the process.

	
zp+1

new =
{

znew if f(znew) < f(zp
i )

zp
i otherwise � (45)

This selection mechanism ensures that the most suitable individuals remain in the population, encouraging 
improved fitness and ultimately leading to a more optimal and efficient solution for the problems under 
consideration. The pseudocode of the GPC algorithm is presented in Algorithm  1. The pseudocode of the 
proposed algorithm is shown in Fig. 4.

Algorithm 1.  Pseudocode of proposed GPC algorithm.

Complexity of the proposed GPC algorithm
The computational complexity of the proposed GPC algorithm is governed by the operations performed during 
initialization and across each iteration of the main loop. Let N be the population size, D be the dimensionality of 
the optimization problem, and tmax be the maximum number of iterations.
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•	 Initialization: Each of the N individuals is initialized in a D-dimensional space. This step requires O(N · D) 
operations.

•	 Stage I (t = 1 to tmax/2): Each individual undergoes a global update based on Lévy flights and, with some 
probability, a local search using two random solutions. Both operations are O(D) per individual per iteration, 
resulting in O(N · D) per iteration.

•	 Stage II (t = tmax/2 + 1 to tmax): The population is divided into two segments. One-half uses GWO-based 
updates (involving three directional updates and averaging), while the other-half uses a PSO-based update 
with adaptive inertia weights. Each of these update mechanisms requires O(D) operations per individual per 
iteration.

Combining all stages, the total computational complexity of the GPC algorithm is as follows.

	
O(N · D + tmax

2 · N · D + tmax

2 · N · D) = O(tmax · N · D)� (46)

Comparison with baseline algorithms
To contextualize the computational efficiency of the proposed GPC algorithm, we compare its complexity with 
those of the canonical CS, PSO and GWO, as

•	 CS involves Lévy flight-based position updates and optional random walk-based local search, both operating 
in D dimensions. The total complexity is: 

	 O(tmax · N · D)� (47)

•	 PSO updates each particle’s velocity and position based on personal and global best positions. Each update 
involves D-dimensional operations: 

Fig. 4.  Flowchart of GPC algorithm.
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	 O(tmax · N · D)� (48)

•	 GWO updates the position of each individual based on three leading solutions (α, β, δ), requiring three vec-
tor operations per update: 

	 O(tmax · N · D)� (49)

Although all four algorithms share the same asymptotic complexity of O(tmax · N · D), the proposed 
GPC algorithm incurs higher constant factors due to its dual-phase architecture and hybridization strategy. 
Specifically, GPC integrates the Lévy flight exploration of CS, the leader-based exploitation of GWO, and the 
adaptive velocity-driven convergence of PSO. This structured combination leads to increased per-iteration 
operations, but significantly improves the algorithm’s ability to balance exploration and exploitation. Therefore, 
despite similar theoretical complexity, GPC achieves superior performance in diverse and complex optimization 
scenarios leveraging richer update dynamics.

Results and discussion
This section demonstrates the experimental results to show the effectiveness of the hybrid algorithm (GPC) 
proposed in this paper. This section is divided into three subsections. In the Ist subsection, details of the test suite 
and parameter settings of all MH algorithms used for comparative analysis are discussed. In the next subsection, 
the performance of the GPC algorithm is determined by performing experiments on the numerical optimization 
challenges of CEC 2019. The results of the GPC optimization algorithm are compared with the other MH 
optimization such as BWOA65, CDO58, COA59, FPA66, HHO60, YDSE55, ZOA51, ARNMRA67, FROBLGJO68, 
and jDE10069. In the third subsection, GPC is applied for parameter extraction of PEMFC models (Temasek, 
NedStack PS6, Ballard MarkV, and BCS 500W PEMFC model). The effectiveness of the GPC algorithm is 
compared with various well-recognized MH algorithms, including ZOA51, SCHO52, PSA53, SABO54, YDSE55, 
EDO56, RIME57, CDO58, COA59, HHO60, and GWO61.

Test suite and parameter settings
The implemented Algorithm (GPC) has been executed using the MATLAB R2023b software environment. The 
computational experiments have been conducted on a laptop equipped with an Intel® Core (TM) i5-12500H 
operating system at a clock speed of 2.50 GHz, x64-based processor, 64-bit operating system, along with 16 
GB of RAM with the Windows 11 operating system. In this subsection, the effectiveness of the proposed GPC 
algorithm in relation to the benchmark challenges of CEC 2019, and real-world challenge (Parameter Extraction 
of PEMFC models) is evaluated. The present study tests the effectiveness of the proposed GPC algorithm 
compared to several MH algorithms such as BWOA65, CDO58, COA59, FPA66, HHO60, YDSE55, and ZOA51 on 
benchmark challenges (CEC 2019). For real-world challenges (parameter extraction of PEMFC models), the 
GPC algorithm is tested and compared with several MH algorithms, including ZOA51, SCHO52, PSA53, SABO54, 
YDSE55, EDO56, RIME57, CDO58, COA59, HHO60, and GWO61. The parameter settings for all algorithms were 
obtained from their respective papers and are displayed in Table 2.

S.No. MH Algorithms Parameters

1 BWOA65 procreate rate (pr) = 0.6; mutation rate (mr) = 0.4;
cannibalism rate (cr) = 0.44

2 CDO58 speed of beta = Rand (1, 270,000) km/s; speed of gamma= Rand (1, 300,000) km/s;
radius of radiations propagation = Rand (0, 1); speed of alpha = Rand (1, 16,000) km/s;

3 COA59 random real number (r) =[0,1]; Integer (I) =[1,2]

4 FPA66 λ = 1.5; ε = [0,1], p = 0.5

5 HHO60 r1, r2, r3, andq = [0,1]; escaping energy (E) = Linearly decreased from 2 to 0

6 YDSE55 Distance between two slits (d) = 5 × 10−3  m; Wavelength (λ) = 5 × 10−6  m
I = 0.01 m; Constant value (δ) = 0.38

7 ZOA51 constant number (R) = 0.01; probability (PS ) = [0,1]; random number(r) = [0,1]

8 SCHO52 rand, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12  = [0,1];
sensitive coefficient u = 0.388; sensitive coefficient m=0.45; ε = 0.003

9 PSA53 rand, r1, r2, r3  = [0,1]

10 SABO54 rand, ri,d  = [0,1]

11 EDO56 ϕ, rand,= [0,1]; random number (f) = [– 1,1]

12 RIME57 r1  = [– 1,1];degree of adhesion(h)= [0,1]; r2  = [0,1]

13 GWO61 α = Linearly decreased from 2 to 0; rand, r1, r2  = [0,1]

14 GPC sp, I, and F are self-adaptive

Table 2.  Parametric details of different algorithms.
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The CEC 2019 benchmark challenges
The effectiveness and efficiency of the proposed GPC optimization algorithm are tested on CEC 2019 benchmark 
challenges by statistically measuring the mean values, as well as standard deviation (Std), and comparing them 
with those obtained with other MH algorithms. Seven MH optimization algorithms such as CDO58, COA59, 
BWOA65, FPA66, HHO60, YDSE55 and ZOA51 were utilized to evaluate and compare the outcomes achieved by 
the proposed GPC optimization algorithm. To ensure a fair comparison between GPC and other algorithms, all 
are subjected to population size of 50 as well as the maximum number of iterations = 500 with 51 runs.

The results presented in Table 3 show that, for challenge GP C1, the FROBLGJO algorithm exhibits 
outstanding results compared to other MH algorithms. The results for challenges GP C2, GP C3, GP C4, GP C5, 
GP C7, and GP C9, the outcomes obtained from the GPC algorithm demonstrate superior results compared to 
other MH techniques in terms of mean as well as Std values. The outcomes obtained for challenges GP C6, 
GP C8, and GP C10, the ZOA algorithm shows outstanding performance compared to the other MH methods. 
Therefore, based on the results obtained from the experimentation, it can be observed that of the 10 numerical 
test challenges, the GPC algorithm shows effectiveness in solving 6 challenges. The ZOA algorithm has shown 
competence in addressing three challenges, but the FROBLGJO method has been successful in addressing 
only one challenge. The analysis indicates that the GPC algorithm has superior performance in addressing 
the numerical challenges of CEC 2019. Therefore, it can be concluded that the GPC optimization algorithm is 
generally the most effective algorithm to address these challenges.

Statistical testing:
Furthermore, two statistical tests, the Friedman rank test and the Wilcoxon rank sum test, have been 

employed in statistical analysis. The statistical results for each test challenge are presented as loss(l), win(w), or 
tie(t). Here, “win” (w) is used to represent a scenario in which the test algorithm outperforms the GPC algorithm 
and is denoted by the symbol “+”. On the other hand,, the term “loss” (l) refers to a scenario in which the test 
algorithm performs worse than the GPC algorithm and is denoted by the symbol “-”. The symbol “=” is used to 
indicate a tie (t), indicating that both algorithms are statistically similar in relation to each other. The ranking 
of all algorithms is shown in the third row of Table 3 for every challenge, denoted by w/l/t. Furthermore, the 
f-rank is determined for every function, and subsequently, the mean of all rankings is given. Every algorithm has 
received a distinct ranking according to its performance. The mean rank of each algorithm is shown in the 2nd 
last row of Table 3. In addition, an overall f-rank has been computed based on the outcomes of all challenges, 
displayed in Table 3. The table indicates that the GPC technique has been the most effective, achieving the 
highest rank (1st) among all tested MH algorithms.

Convergence profile, Boxplot and Radar profile Analysis: This subsection displays the convergence, 
boxplot, and radar profiles of eight MH optimization algorithms such as ZOA, CDO, COA, FPA, BWOA, HHO, 
YDSE, and GPC. Figures 5, 6, and 7 demonstrate graphic representations. The GPC algorithm exhibits faster 
convergence for challenges, GP C2, GP C3, GP C4, GP C5, GP C7, and GP C9, and are shown in Fig. 5a–i, as 
well as 5j, respectively. Figure 6 shows the box plot that represents the fitness values of the COA, YDSE, CDO, 
HHO, ZOA, FPA, BWOA, and GPC optimization algorithms. The findings indicate that the proposed GPC 
algorithm is economically efficient regarding fitness values, shown by its significantly low median fitness value. 
This can be observed from the box plots presented in Fig. 6a–j, respectively. Furthermore, the radar plot in Fig. 
7 shows the ranking of the 12 MH optimization algorithms on the CEC2019 test function. The GPC exhibits a 
smaller darkening area in comparison to the other MH optimization algorithms. This is visible from the radar 
charts Fig.  7a–k, respectively. The above outcomes demonstrate the performance of the GPC algorithm.

Quantative analysis of GPC algorithm
In this section, we perform a qualitative and quantitative analysis of the GPC algorithm. We are using a set of 
seven classical benchmark problems62, as given in Table 4.

The evaluation of the proposed algorithm uses a set of informative visualization graphs that collectively 
provide a comprehensive understanding of its search behavior and performance. The exploration–exploitation 
balance plot tracks how the algorithm transitions from global exploration to local exploitation over the course 
of iterations. The convergence graph (on a logarithmic fitness scale) illustrates how quickly and effectively 
the algorithm minimizes the objective function, offering insight into its optimization speed and stability. The 
fitness distribution plot captures the spread and concentration of fitness values throughout the population, 
revealing how diversity evolves during the search. Principal Component Analysis (PCA) trajectories visualize 
the movement of the population in the reduced-dimensional solution space, highlighting patterns in search 
directionality and convergence. Lastly, the agent-wise fitness plot shows the performance of the individual agents 
in iterations, indicating how the population collectively approaches optimal solutions.

From the results in Fig. 8, the proposed GPC algorithm shows robust and adaptive performance. The 
exploration–exploitation plots confirm that GPC maintains diversity early on and shifts to focused search 
later, preventing premature convergence. The convergence curves show a consistent reduction in fitness values, 
suggesting effective optimization over time. The fitness distribution plots reveal that GPC encourages both 
competition and refinement within the population, with the spread narrowing as better solutions dominate. The 
PCA trajectories exhibit structured movement toward specific regions in the search space, reflecting guided and 
non-random exploration. Finally, agent-wise fitness trends indicate population-level improvement and strong 
convergence toward high-quality solutions. Together, these observations affirm that GPC is well-equipped to 
handle complex, high-dimensional optimization problems with both efficiency and stability.

Results on parameter extraction of PEMFC models
In this section, we address the parameter extraction challenges of four distinct PEMFC models utilizing 
the GPC algorithm to perform a comprehensive performance analysis of the proposed GPC algorithm. The 
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decision to integrate these three algorithms was driven by their complementary strengths in addressing the 
two-fold challenge inherent in PEMFC parameter estimation: (1) Navigating a complex, high-dimensional 
and multimodal error surface and (2) achieving precise convergence to the true parameters while avoiding 
premature stagnation. The parameters that require extraction in the model mentioned above have been listed in 
Table 5 74li2020accurate84,85. In addition, this table clearly represents the upper as well as lower limits for each 
parameter. The traditional Ballard Mark V, NedStack PS6 PEMFC model, Temasek, and the BCS 500 W PEMFC 
model, with their datasheets shown in Table 625,83–85. The other Statistical error tests such as SSE (Minimum , 
mean, and standard deviation (Std)), IAE, MBE, MAE, MSE, and RMSE values for all four PEMFC stacks are 
presented in Table 7.

To evaluate the performance of the GPC algorithm, several well-recognized MHA are compared, including 
ZOA51, SCHO52, PSA53, SABO54, YDSE55, EDO56, RIME57, CDO58, COA59, HHO60, and GWO61. To ensure a 
fair comparison between GPC and other algorithms, all are subjected to the population size (P= 50) and the 
maximum number of iterations (T = 400) with 30 runs.

Fig. 5.  Convergence profiles for the CEC 2019 numerical challenges of FPA, ZOA, COA, BWOA, YDSE, HHO, 
CDO, and GPC MH algorithms.
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NedStack PS6 PEMFC model
The effectiveness of the GPC algorithm is demonstrated using a commonly highlighted PEMFC (NedSstack 
PS6) in existing literature, with a rated power of 6kW. The data specifications and upper and lower limits are 
presented in Tables 6 and 5. The experimental Power (Pexper), experimental voltage (Vexper), estimated voltage 
(Vestimat), model-estimated power (Pestimat), and IAE values obtained by the GPC algorithm for NedStack 
PS6 PEMFC 8. The optimal parameter outcomes determined by different algorithms for the NedSstack PS6 stack 
are presented in Table 9. Table 9 show that when considering the same function evaluations, certain methods, 
such as ZOA51, SCHO52, PSA53, SABO54, YDSE55, EDO56, RIME57, CDO58, COA59, HHO60, and GWO61, achieve 
a range of optimal SSE values. However, the GPC algorithm obtains the lowest SSE value (2.26768E + 00) for 
the NedSstack PS6 PEMFC stacks. This gives further confirmation that the parameter values obtained by the 
proposed GPC algorithm are very precise and reliable. Figure 9a clearly shows that the model curves (IV) closely 
align with the experimental data for NedStack PS6, and there is little variation between them.

Fig. 6.  Boxplot profiles for the CEC 2019 numerical challenges for FPA, ZOA, COA, BWOA, YDSE, HHO, 
CDO, and GPC MH algorithms.

 

Scientific Reports |         (2026) 16:1116 19| https://doi.org/10.1038/s41598-025-14297-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Furthermore, the curves of the PEMFC model (PI) are shown in Fig. 9b, which provides additional evidence 
that the GPC algorithm is accurate in analyzing the parameters of the NedStack PS6 PEMFC. Temperature 
variations are simulated at four different temperatures: 303, 323, 343, and 353K are presented in Fig. 10a and 
b for the I-P and I-V curves, respectively. These simulations are carried out under constant partial pressures 
(that is, PH2 / PO2 = 1.000 / 1.000 (bar)). It has been observed that as the temperature rises, there is an increase 
in the output voltage of the stack. Figure 11a and b illustrate the model curves stated in terms of the I-P and 

Fig. 7.  Radar plot for the CEC 2019 numerical challenges of FPA, ZOA, COA, BWOA, YDSE, HHO, CDO, 
and GPC MH optimization algorithms.
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Func. Mathematical formulation Range Dim.

F1 f(x) =
∑n

i=1
x2

i [−100, 100]n 30

F2 f(x) =
∑n

i=1
|xi| +

∏n

i=1
|xi| [−10, 10]n 30

F3 f(x) = maxi |xi| [−100, 100]n 30

F4 f(x) =
∑n

i=1
⌊xi + 0.5⌋2 [−10, 10]n 30

F5 f(x) =
∑n

i=1
i · x4

i + rand[0, 1) [−1.28, 1.28]n 30

F6 f(x) = 1
4000

∑
x2

i −
∏

cos
(

xi√
i

)
+ 1 [−600, 600]n 30

F7 f(x1, x2) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)] [−2, 2]2 2

×[30 + (2x1 − 3x2)2(18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

Table 4.  Classical benchmark functions (F1–F14).

 

Fig. 8.  Quantitative analysis of GPC.
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I-V curves. Initially, the I-P and I-V curves are graphed at pressures (PH2/ PO2) of 1.000/1.000, 2.000/1.500, 
3.000/2.000 and 4.000/2.500 bar, respectively. These measurements were taken at a constant stack temperature 
of 343 K and are shown in Figure 11a and b respectively. When the supply pressures of the (PH2/ PO2) increase, 
there is an observed enhancement in the output voltage of the stack. Using a similar simulation environment, 
Figure 12, illustrates the average convergence curves of 400 iterations of the proposed GPC, ZOA, SCHO, PSA, 
SABO, YDSE, EDO, RIME, CDO, COA, HHO, and GWO for the NedStack PS6 PEMFCs stack. Figure 13 shows 
the ranges of the final objective function values after 30 runs of the GPC, ZOA, SCHO, PSA, SABO, YDSE, 
EDO, RIME, CDO, COA, HHO, and GWO algorithms for the extraction of parameters from the NedStack 
PS6 PEMFCs stack. Based on the size of the box and the number of outliers, it is evident from Fig. 13 that 
the proposed GPC algorithm outperforms the other 11 algorithms. The results of the Friedman ranking test 
are given in Table 10. The Friedman test assesses algorithms based on their overall performance, with GPC 
achieving the highest average rank of 2.103926. Table 10, clearly indicates that the GPC algorithm has achieved 
the highest ranking (Ist rank). The Wilcoxon ranking test results indicate that GPC significantly outperforms 
the others, evidenced by 465 winner, no losses, and minimal p-values ranging from 2.03E–07 to 3.02E–11. 
The Friedman and Wilcoxon ranking test clearly demonstrates that the GPC algorithm is superior in terms of 
precision as well as accuracy compared to the MH algorithms.

Ballard Mark V
The Ballard mark V PEMFC stack comprises 35 individual cells that are connected in series with a membrane 
thickness of 178 µm. The upper and lower limits and data specifications and are presented in Tables 5 and 6. The 
experimental Power (Pexper), experimental voltage (Vexper), estimated voltage (Vestimat), model-estimated 
power (Pestimat), and IAE values obtained by the GPC algorithm for Ballard Mark V PEMFC 11. The GPC, 
ZOA, SCHO, PSA, SABO, YDSE, EDO, RIME, CDO, COA, HHO, and GWO, MH optimization algorithms have 
been utilized in order to achieve optimal parameter extraction for this model. The resulting values, which have 
been found to be the best according to the SSE objective, have been organized and presented in Table 15. From 
this table, the GPC shows superior performance along with the lowest objective function (SSE) value of 0.813912 
compared to other MH algorithms. Figure 14a and b clearly demonstrate that the model curves (I-V as well 
as I-P curves) closely align with the experimental data for the Ballard Mark V PEMFC stack and there is little 
variation between them. This gives further confirmation that the parameter values obtained by the proposed 
GPC algorithm are very precise and reliable.

Furthermore, the temperature variations are simulated at four different temperatures: 303, 323, 343, and 
353K with constant partial pressures (that is, PH2 / PO2 = 1.000 / 1.000 (bar)) are shown in Fig. 15a and b for the 
I-P and I-V curves, respectively Table 12. It has been observed that as the temperature rises, there is an increase 
in the output voltage of the stack. The pressure variations are then simulated at four different temperatures: (PH2
/ PO2) of 1.000/1.000, 2.000/1.500, 3.000/2.000 and 4.000/2.500 bar with constant temperature (ie 343K) are 
shown in Fig. 16 (16a and b) for I-P and I-V curves, respectively. When the supply pressures of the (PH2/ PO2) 
increase, an enhancement is observed in the output voltage of the stack. Using the same simulation environment, 
Fig. 17, shows the convergence curves obtained from 400 iterations and 30 runs of 12 algorithms (GPC, ZOA, 
SCHO, PSA, SABO, YDSE, EDO, RIME, CDO, COA, HHO and GWO) used to extract the parameters of the 
Ballard Mark V PEMFC stack. Figure 18 illustrates the box plot curves obtained from 30 runs of the GPC, 
ZOA, SCHO, PSA, SABO, YDSE, EDO, RIME, CDO, COA, HHO and GWO algorithms utilized to extract the 
parameters from the Ballard Mark V PEMFC stack. Based on the size of the box and the number of outliers, it is 
evident from Fig. 18 that the proposed GPC algorithm outperforms the other 11 algorithms. Table 13 presents the 
Friedman and Wilcoxon rank test of various MH algorithms for the Ballard Mark V PEMFC stack. The Friedman 
test assesses algorithms based on their overall performance, with GPC achieving the highest average rank of 

Bound ξa ξb ξc ξd
Rcon (Ω) β λ

LB – 1.19969E+00  1.0000E–3  3.6000E–05  – 2.6000E–04  1.0000E–04  1.3600E–02  1.0000E+01

UB  – 8532E–01  5.0000E–03  9.8000E–05  – 9.5400E–05  8.0000E–04  5.0000E–01  2.4000E+01

Table 5.  Practical upper and lower limits for the parameters’ estimation.

 

Ballard_Mark-V BCS500-W NedStack PS6 Temasek

N 35 32 65 20

Jmax 1.5 0.469 5 1.5

PH2(bar) 1 1 1 0.5

l (µm) 178 178 178 51

A (cm2) 50.6 64 240 150

T (K) 343 333 343.15 323

PO2(bar) 1 0.2075 1 0.5

Table 6.  Specifications of, Temasek, Ballard_Mark-V, BCS500-W as well as NedStack PS6.
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S.no Algorithm

Objective function

IAE MBE MAE MSE RMSEMinimum Mean Std

CASE I : NedStack PS6

 1 GPC 2.267687 2.281716 0.012378 6.411737 0.00577 0.213725 0.07559 0.274936

 2 ZOA 2.268365 2.370253 0.092782 6.393405 – 0.00013 0.213114 0.075612 0.274977

 3 SCHO 2.447831 3.366872 0.588855 6.713101 – 0.00712 0.22377 0.081594 0.285647

 4 PSA 2.349586 4.20473 3.007886 6.781009 0.039266 0.226034 0.07832 0.279856

 5 SABO 2.95804 3.696988 0.410863 7.380344 0.011761 0.246011 0.098601 0.314008

 6 YDSE 2.403032 2.550963 0.112013 6.499391 – 0.01088 0.216646 0.080101 0.283021

 7 EDO 2.50108 2.90447 0.235885 6.848847 0.000606 0.228295 0.083369 0.288737

 8 RIME 2.285971 2.503289 0.264613 6.416289 – 0.00027 0.213876 0.076199 0.276042

 9 CDO 2.496433 3.197543 0.394407 7.10536 0.067296 0.236845 0.083214 0.288469

 10 COA 2.482398 16.329 17.96253 6.626224 0.012427 0.220874 0.082747 0.287657

 11 HHO 2.330158 4.1509 1.431906 6.485056 – 8.3E–05 0.216169 0.077672 0.278697

 12 GWO 2.301123 3.048242 0.594742 6.474575 0.004843 0.215819 0.076704 0.276955

CASE II :Ballard Mark V

 1 GPC 0.813912 0.813919 1.19E–05 2.509658 3.3E–05 0.193051 0.062609 0.250217

 2 ZOA 0.823312 0.862624 0.023348 2.52628 8.01E–06 0.194329 0.063332 0.251658

 3 SCHO 0.819595 0.890729 0.073262 2.548133 – 0.01071 0.19601 0.063046 0.251089

 4 PSA 0.836537 1.305572 0.346251 2.494412 – 0.00838 0.191878 0.064349 0.253671

 5 SABO 0.953818 2.202805 1.673595 2.708742 0.01243 0.208365 0.073371 0.27087

 6 YDSE 0.813939 0.814728 0.000554 2.506742 0.000483 0.192826 0.062611 0.250221

 7 EDO 0.81439 0.827771 0.007198 2.508804 – 0.00159 0.192985 0.062645 0.250291

 8 RIME 0.813979 0.875387 0.076183 2.506412 0.001574 0.192801 0.062614 0.250227

 9 CDO 1.781255 1.917044 0.13879 3.707171 – 0.03599 0.285167 0.137267 0.370495

 10 COA 0.838759 7.469678 12.59914 2.484699 – 0.00669 0.191131 0.06452 0.254008

 11 HHO 0.909931 2.171336 1.100664 2.652076 – 0.00022 0.204006 0.069995 0.264565

 12 GWO 0.814886 0.85447 0.032931 2.505479 0.002686 0.192729 0.062649 0.250298

CASE III :BCS 500 W

 1 GPC 0.011699 0.011702 2.8E–06 0.234845 – 0.00018 0.013047 0.00065 0.025494

 2 ZOA 0.012497 0.023294 0.006145 0.273599 0.000181 0.0152 0.000694 0.026349

 3 SCHO 0.012752 0.025285 0.009964 0.306834 – 0.00524 0.017046 0.000708 0.026616

 4 PSA 0.027469 0.286863 0.51951 0.507265 0.000444 0.028181 0.001526 0.039064

 5 SABO 0.044445 0.349763 0.29687 0.696977 0.028717 0.038721 0.002469 0.049691

 6 YDSE 0.011704 0.011786 5.1E–05 0.234856 – 6.5E–05 0.013048 0.00065 0.025499

 7 EDO 0.011908 0.013582 0.001319 0.212715 1.46E–05 0.011818 0.000662 0.025721

 8 RIME 0.012326 0.019906 0.006801 0.219671 – 0.0003 0.012204 0.000685 0.026168

 9 CDO 1.594396 4.382463 0.534277 4.303728 0.239096 0.239096 0.088578 0.29762

 10 COA 0.027964 2.199596 1.802482 0.495684 0.005031 0.027538 0.001554 0.039415

 11 HHO 0.028383 2.546672 1.998167 0.533353 0.000457 0.029631 0.001577 0.039709

 12 GWO 0.01197 0.015778 0.003935 0.21046 0.001616 0.011692 0.000665 0.025788

CASE IV :Temasek Stack

 1 GPC 0.123277 0.123338 8.08E–05 1.123446 – 1.1E–06 0.080246 0.008805 0.093838

 2 ZOA 0.123282 0.129403 0.005534 1.124669 4.49E–05 0.080333 0.008806 0.09384

 3 SCHO 0.124343 0.147219 0.017405 1.13627 0.002734 0.081162 0.008882 0.094242

 4 PSA 0.123313 0.208102 0.123007 1.124563 – 0.00093 0.080326 0.008808 0.093851

 5 SABO 0.127516 0.140673 0.017099 1.164312 0.011565 0.083165 0.009108 0.095437

 6 YDSE 0.123291 0.124988 0.002193 1.120813 – 0.00047 0.080058 0.008807 0.093843

 7 EDO 0.123691 0.126943 0.002715 1.139366 0.004234 0.081383 0.008835 0.093995

 8 RIME 0.123277 0.12823 0.007493 1.123072 – 0.00015 0.080219 0.008806 0.093838

 9 CDO 0.124345 0.13533 0.006247 1.148625 0.004698 0.082045 0.008882 0.094243

 10 COA 0.123311 0.155337 0.043357 1.121898 – 0.00147 0.080136 0.008808 0.093851

 11 HHO 0.127156 0.163503 0.062332 1.139663 8.05E–05 0.081404 0.009083 0.095303

 12 GWO 0.124193 0.134406 0.009724 1.130645 – 0.00013 0.08076 0.008871 0.094186

Table 7.  Statistical error tests for all four PEMFC stack.
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1.856791. From Table 13, it is clearly observed that the GPC algorithm has achieved the highest rank (Ist). The 
Wilcoxon ranking test results indicate that GPC significantly outperforms the others, evidenced by 465 winner, 
no losses, and minimal p-values 3.02E–11. The Friedman and Wilcoxon ranking test clearly demonstrates that 
the GPC algorithm is superior in terms of precision and accuracy compared to the MH algorithms.

BCS 500 W
The BCS 500-W PEMFC stack operates at a power output of 500 watts as well as current of 30 amperes. The 
specifications of the BCS 500-W PEMFC stack are presented in Table 6 and can be found in90,91. The experimental 
Power (Pexper), experimental voltage (Vexper), the estimated voltage (Vestimat), model-estimated power 
(Pestimat), and IAE values obtained by the GPC algorithm for the BCS500-W PEMFC 14. In addition, Table ?? 
presents the optimal values of the unknown parameters of the BCS 500-W PEMFC stack obtained by the GPC 
algorithm and compared to the other MH optimization algorithm. Also, the GPC algorithm obtained the lowest 
objective function (SSE) value (0.011699). This clearly shows its significant superiority compared to the other 
MH optimization algorithms reported in the literature. This illustrates that an accurate representation of the BCS 
500-W PEMFC stack has been achieved. Figure 19a and b clearly illustrate that the model curves (I-V and I-P 
curves) closely align with the experimental data for the BCS500-W PEMFC stack, and there is little variation 
between them. The convergence curves have been obtained from 400 iterations and 30 runs of 12 algorithms 
utilized to extract parameter values from the BCS500-W PEMFC stack. Figure 22 illustrates the convergence 
curve of the objective function. Here, it is clear that the convergence curve is continuous and rapidly reaches its 
final value.

Furthermore, the simulation results of the GPC algorithm-based PEMFC model have been obtained in 
varying temperature and pressure scenarios. Figure 20a and b display the I-P and I-V characteristics of this 
PEMFC model at different temperatures (303, 323, 333, and 353 K). The pressures PH2/ PO2 have been kept 
constant (1.000/0.2075 (bar)). It is clear that the voltage as well as the power of the PEMFC increase as the 

S.no Vexper Vestimat Iexper

Vexper-
Vestimat

∣∣Vexper−

Vestimat

∣∣
Pexper Pestimat

Pexper-
Pestimat

∣∣Pexper−

Pestimat

∣∣
1 61.64 62.3281 2.25 – 0.6881 0.688102 138.69 140.2382 – 1.54823 1.548229

2 59.57 59.75513 6.75 – 0.18513 0.185129 402.0975 403.3471 – 1.24962 1.24962

3 58.94 59.02428 9 – 0.08428 0.084285 530.46 531.2186 – 0.75856 0.758561

4 57.54 57.47379 15.75 0.066206 0.066206 906.255 905.2123 1.042741 1.042741

5 56.8 56.69627 20.25 0.103726 0.103726 1150.2 1148.1 2.100447 2.100447

6 56.13 56.02413 24.75 0.105865 0.105865 1389.218 1386.597 2.620163 2.620163

7 55.23 55.13871 31.5 0.091295 0.091295 1739.745 1736.869 2.875788 2.875788

8 54.66 54.60327 36 0.056729 0.056729 1967.76 1965.718 2.042253 2.042253

9 53.61 53.6181 45 – 0.0081 0.008097 2412.45 2412.814 – 0.36437 0.364373

10 52.86 52.93088 51.75 – 0.07088 0.070881 2735.505 2739.173 – 3.66807 3.66807

11 51.91 51.43086 67.5 0.479142 0.479142 3503.925 3471.583 32.34209 32.34209

12 51.22 51.01968 72 0.200325 0.200325 3687.84 3673.417 14.42337 14.42337

13 49.66 49.4166 90 0.243396 0.243396 4469.4 4447.494 21.90564 21.90564

14 49 48.62858 99 0.371421 0.371421 4851 4814.229 36.77069 36.77069

15 48.15 48.03503 105.8 0.114974 0.114974 5094.27 5082.106 12.16425 12.16425

16 47.52 47.64218 110.3 – 0.12218 0.122181 5241.456 5254.933 – 13.4766 13.4766

17 47.1 47.05614 117 0.043856 0.043856 5510.7 5505.569 5.131208 5.131208

18 46.48 46.26479 126 0.215209 0.215209 5856.48 5829.364 27.11634 27.11634

19 45.66 45.46616 135 0.193838 0.193838 6164.1 6137.932 26.16817 26.16817

20 44.85 44.85639 141.8 – 0.00639 0.006386 6359.73 6360.635 – 0.9055 0.905498

21 44.24 44.03901 150.8 0.20099 0.20099 6671.392 6641.083 30.30932 30.30932

22 42.45 43.00232 162 – 0.55232 0.552319 6876.9 6966.376 – 89.4758 89.47576

23 41.66 42.151 171 – 0.491 0.491001 7123.86 7207.821 – 83.9611 83.96112

24 40.68 41.05565 182.3 – 0.37565 0.375646 7415.964 7484.444 – 68.4803 68.48027

25 40.09 40.39074 189 – 0.30074 0.300735 7577.01 7633.849 – 56.8389 56.83895

26 39.51 39.70306 195.8 – 0.19306 0.193063 7736.058 7773.86 – 37.8018 37.80178

27 38.73 38.7715 204.8 – 0.0415 0.041498 7931.904 7940.403 – 8.49872 8.49872

28 38.15 38.06101 211.5 0.088986 0.088986 8068.725 8049.904 18.82062 18.82062

29 37.38 37.08209 220.5 0.297911 0.297911 8242.29 8176.601 65.68927 65.68927

30 37 36.58145 225 0.418546 0.418546 8325 8230.827 94.17276 94.17276

IAE (V) 6.411737 IAE (P) 762.7227

Table 8.  The Vestimat, Pestimat, and IAE values obtained by the GPC algorithm for NedStackPS6 PEMFC.
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temperature of the PEMFC increases. Furthermore, Fig. 21a and b show the PI and PI characteristics of this 
PEMFC model at different pressures (1.000 / 0.21075, 1.5 / 1, and 2.5 / 1.000 bar) and maintained constant 
temperature (333K). It is significant to note that an increase in the PH2 / PO2, results in an increase in the voltage 
and power output of the PEMFC. As a result, these pressures can be precisely adjusted to achieve the desired 
output power from the PEMFC according to particular environmental conditions. Friedman and Wilcoxon rank 
tests of various MH algorithms for BCS500-W PEMFC are given in Table 16. From Table 16 and box plots in 
Fig. 23, it is clearly seen that the GPC algorithm obtained the lowest Friedman rank (1.970593), and based on 
the Friedman rank, the GPC algorithm achieved Ist rank. The Wilcoxon ranking test results indicate that GPC 
significantly outperforms the others, evidenced by 465 winner, no losses, and minimal p-values ranging from 
3.02E–11 to 4.50E–11. The Friedman and Wilcoxon ranking test clearly demonstrates that the GPC algorithm is 
superior in terms of precision and accuracy compared to the MH algorithms.

Temasek Stack
The Temasek Stack PEMFC stack comprises 20 individual cells that are connected in series with a membrane 
thickness of 51 µm85. The upper and lower limits and data specifications and are given in Tables 5 and 6. The 
experimental Power (Pexper), experimental voltage (Vexper), estimated voltage (Vestimat), model-estimated 
power (Pestimat), and IAE values obtained by the GPC algorithm for Temasek PEMFC are displayed in Table 
17. The GPC, ZOA, SCHO, PSA, SABO, YDSE, EDO, RIME, CDO, COA, HHO, and GWO, MH optimization 

Fig. 9.  Model curves of NedStack PS6 PEMFC stack.

 

S.no Algorithms
Objective 
function ξa ξb ξc ξd Rcon (Ω) β λ

1 GPC 2.267687 – 0.98488 0.003634 9.7E–05 – 9.5E–05 0.0001 0.0136 12.63762

2 ZOA 2.268365 – 0.85372 0.002416 3.72E–05 – 9.5E–05 0.000101 0.014562 12.65956

3 SCHO 2.447831 – 1.1748 0.004054 8.73E–05 – 9.6E–05 0.000104 0.043096 13.08828

4 PSA 2.349586 – 0.97677 0.002754 0.000036 – 9.5E–05 0.0001 0.0136 12.71295

5 SABO 2.95804 – 0.8532 0.002551 4.65E–05 – 9.5E–05 0.00021 0.113416 15.18183

6 YDSE 2.403032 – 0.88439 0.003159 8.36E–05 – 9.5E–05 0.000153 0.030912 13.3186

7 EDO 2.50108 – 1.18621 0.003575 5.07E–05 – 9.6E–05 0.000154 0.0136 13.31647

8 RIME 2.285971 – 0.99467 0.003116 5.78E–05 – 9.5E–05 0.000116 0.0136 12.79751

9 CDO 2.496433 – 0.8532 0.002396 0.000036 – 9.5E–05 0.000104 0.077835 13.31888

10 COA 2.482398 – 0.8532 0.003002 7.88E–05 – 9.5E–05 0.0001 0.066014 12.96025

11 HHO 2.330158 – 0.8532 0.002555 4.71E–05 – 9.5E–05 0.000134 0.021973 13.05329

12 GWO 2.301123 – 0.95114 0.002844 4.74E–05 – 9.5E–05 0.00011 0.034966 12.93686

13 GSA86 2.58 – 0.874 0.0033487 8.93E–05 – 9.54E–05 0.0002388 0.0565881 18.8

14 MRFO25,87 2.88702 – 1.05602 0.00313 4.61E–05 – 9.58E–05 0.000166 0.0547 20.188

15 SSA43 2.5711 −0.989 0.00333 7.41E–05 – 9.54E–05 0.000256 0.0426 20.5

16 VSA27 2.34 – 0.895 0.00335 9.75E–05 – 9.54E–05 0.000103 0.0429 13.0

17 GA88 2.41 – 1.1997 0.003417 3.6E–05 – 9.54E–05 0.0001376 0.0359 13.00

18 PSO33 4.050 – 0.8532 0.002604 4.9E–05 – 9.54E–05 0.0001396 0.5 23.00

Table 9.  Parameter estimation and statistical measures comparison of various MH algorithms for 
NedStackPS6 PEMFC.
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algorithms have been used in order to achieve optimal parameter extraction for this model. The resulting values, 
which have been found to be the best according to the SSE objective, have been organized and displayed in Table 
18. From this table, the GPC shows superior performance along with the lowest objective function (SSE) value of 
0.12327677 compared to other MH algorithms. Figure 24a and b clearly illustrate that the model curves (I-V as 
well as I-P curves) closely align with the experimental data for the Temasek Stack PEMFC stack and there is little 
variation between them. This gives further confirmation that the parameter values obtained by the proposed 
GPC algorithm are very precise and reliable.

Furthermore, temperature variations are simulated at four different temperatures: 303, 323, 333, and 353K 
are shown in Fig. 25a and b for I-P and I-V curves, respectively. These simulations are carried out under constant 
partial pressures (that is, PH2 / PO2 = 0.5 / 0.5 (bar)). It has been observed that as the temperature rises, there 
is an increase in the output voltage of the stack. Initially, the I-P and I-V curves are graphed at pressures (PH2/ 
PO2) of 1.000/0.2075, 1.5/1.000, and 2.500/1.500 bar, respectively. These measurements were taken at a constant 
stack temperature of 323 K and are presented in Fig. 26a and b respectively. When the supply pressures of the 
(PH2/ PO2) increase, there is an observed increase in the output voltage of the stack. Using the same simulation 
environment, Fig. 27, shows the convergence curves obtained from 400 iterations and 30 runs of 12 algorithms 
(GPC, ZOA, SCHO, PSA, SABO, YDSE, EDO, RIME, CDO, COA, HHO and GWO) used to extract the 
parameters of the Temasek PEMFC stack.

Figure 28 shows the box plot curves obtained from 30 runs of the GPC, ZOA, SCHO, PSA, SABO, YDSE, 
EDO, RIME, CDO, COA, HHO and GWO algorithms used to extract the parameters from the Temasek PEMFC 
stack. Based on the size of the box and the number of outliers, it is clear from Fig. 28 that the proposed GPC 
algorithm outperforms the other 11 algorithms. Table 19 presents the Friedman and Wilcoxon rank test of 

Fig. 11.  NedStack PS6 stack performance plots based on GPC algorithm parameters extraction under different 
operating conditions.

 

Fig. 10.  NedStack PS6 stack performance plots based on GPC algorithm parameters extraction under different 
operating conditions.
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various MH algorithms for the Temasek PEMFC stack. From Table 16 it is clearly seen that the GPC algorithm 
obtained the lowest Friedman rank (2.503926), and based on the Friedman rank, the GPC algorithm achieved 
Ist rank. The Wilcoxon ranking test results indicate that GPC significantly outperforms the others, evidenced 
by 465 winner, no losses, and minimal p-values < 0.05 in all cases. The Friedman and Wilcoxon ranking test 

S.No Algorithm Friedman’s rank, Rank Winner Loser Wilcoxon’s p value

1 GPC 2.103926 1

2 ZOA 2.911832 2 465.00 0 2.0300E–07

3 SCHO 8.513548 7 465.00 0 3.0200E–11

4 PSA 8.857507 9 465.00 0 3.02E–11

5 SABO 10.23156 11 465.00 0 3.0200E–11

6 YDSE 5.114724 4 465.00 0 3.0200E–11

7 EDO 7.539125 6 465 0 3.02E–11

8 RIME 3.593653 3 465.00 0 3.4700E–10

9 CDO 8.546709 8 465.00 0 3.0200E–11

10 COA 11.83236 12 465.00 0 3.0200E–11

11 HHO 9.230874 9 465.00 0 3.0200E–11

12 GWO 6.890946 5 465.00 0 4.9800E–11

Table 10.  Friedman and Wilcoxon rank test of various MH algorithms for NedStackPS6 PEMFC.

 

Fig. 13.  The boxplot curves obtained 30 runs of 12 algorithms utilized to NedStackPS6 PEMFC stack 
parameter extraction.

 

Fig. 12.  The convergence curves obtained from 400 iterations and 30 runs of 12 algorithms utilized to 
NedStackPS6 PEMFC stack parameter extraction.
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Fig. 15.  Ballard Mark V stack performance plots based on GPC algorithm parameters extraction under 
different operating conditions.

 

Fig. 14.  Model curves of Ballard Mark V PEMFC stack.

 

S No. Vexper Vestimat Iexper

Vexper-
Vestimat

∣∣Vexper−

Vestimat

∣∣
Pexper Pestimat

Pexper-
Pestimat

∣∣Pexper−

Pestimat

∣∣
1 33.25 32.96755 5.06 0.28245 0.28245 168.245 166.8158 1.429197 1.429197

2 30.8 31.06831 10.626 – 0.26831 0.268313 327.2808 330.1319 – 2.85109 2.851089

3 29.75 29.79399 16.192 – 0.04399 0.043986 481.712 482.4242 – 0.71222 0.71222

4 28.7 29.02021 20.24 – 0.32021 0.320209 580.888 587.369 – 6.48102 6.481024

5 28 27.73154 27.83 0.268463 0.268463 779.24 771.7687 7.471328 7.471328

6 26.6 26.69303 34.408 – 0.09303 0.093029 915.2528 918.4537 – 3.20095 3.200947

7 26.25 26.2217 37.444 0.028304 0.028304 982.905 981.8452 1.059801 1.059801

8 25.2 25.35378 43.01 – 0.15378 0.153775 1083.852 1090.466 – 6.61387 6.613871

9 24.5 24.54563 48.07 – 0.04563 0.045634 1177.715 1179.909 – 2.19362 2.193617

10 23.8 23.17304 56.166 0.62696 0.62696 1336.751 1301.537 35.21383 35.21383

11 22.05 22.23229 61.226 – 0.18229 0.182285 1350.033 1361.194 – 11.1606 11.1606

12 21 20.95113 67.298 0.048867 0.048867 1413.258 1409.969 3.288636 3.288636

13 19.6 19.74738 71.852 – 0.14738 0.147384 1408.299 1418.889 – 10.5898 10.58983

IAE (V) 2.509658 IAE (P) 92.26599

Table 11.  The Vestimat, Pestimat, and IAE values obtained by the GPC algorithm for Ballard Mark V PEMFC.
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clearly demonstrates that the GPC algorithm is superior in terms of precision and accuracy compared to the 
MH algorithms.

Conclusions
This paper presents a novel multi-hybrid optimization algorithm, known as the hybrid Gray Particle Cuckoo 
(GPC) algorithm, to identify unknown parameters of the PEMFC stack. Determining the values of the unknown 
model parameters (ξa, ξb, ξc, ξd, Rcon, λ, and β) is a crucial subject in the discipline of PEMFC research. 
However, the complex nature of the PEMFC system makes it a very difficult challenge. Four different commercial 
PEMFCs (BCS500-W, Ballard Mark V, NedStack PS6, and Temasek Stack) were examined to determine their 
unknown parameters utilizing the GPC algorithm. The precision of the GPC algorithm was validated by the 
precise correlation between the results derived from the estimated and experimentally observed results. Statistical 
analysis, such as SSE (minimum, mean, and std.), IAE, MBE, MAE, MSE, and RMSE has been performed to 
demonstrate the superiority of the GPC algorithm compared to the other 11 MH optimization algorithms 
(ZOA, SCHO, PSA, SABO, YDSE, EDO, RIME, CDO, COA, HHO, and GWO). The objective function has been 
implemented as the SSE between the estimated and experimental voltage values, and the fitness values for the four 

Fig. 16.  Ballard Mark V stack performance plots based on GPC algorithm parameters extraction under 
different operating conditions.

 

S.no Algorithms
Objective 
function ξa ξb ξc ξd Rcon (Ω) β λ

1 GPC 0.813912 – 1.01123 0.003341 5.85E–05 – 0.00017 0.0001 0.015885 24.000

2 ZOA 0.823312 – 0.86073 0.002658 4.12E–05 – 0.00017 0.000128 0.015728 23.99993

3 SCHO 0.819595 – 1.19969 0.003604 3.81E–05 – 0.00017 0.0001 0.015343 23.9519

4 PSA 0.836537 – 1.19969 0.004007 6.56E–05 – 0.00017 0.0001 0.0136 24.000

5 SABO 0.953818 – 1.17202 0.003601 4.69E–05 – 0.00015 0.000272 0.017743 24.000

6 YDSE 0.813939 – 1.00656 0.00367 8.29E–05 – 0.00017 0.0001 0.015812 24.000

7 EDO 0.81439 – 1.05739 0.00391 8.93E–05 – 0.00017 0.0001 0.015828 24

8 RIME 0.813979 – 1.19227 0.003697 4.62E–05 – 0.00017 0.0001 0.015978 24.000

9 CDO 1.781255 – 0.8532 0.002408 0.000036 – 9.5E–05 0.0008 0.0136 22.96162

10 COA 0.838759 – 1.19785 0.003592 3.6E–05 – 0.00017 0.000101 0.0138 23.94841

11 HHO 0.909931 – 1.19965 0.003674 4.47E–05 – 0.00015 0.000351 0.013687 23.99544

12 GWO 0.814886 – 1.18875 0.003572 3.81E–05 – 0.00017 0.000102 0.016036 24.000

13 NNO89 0.85361 – 0.97997 0.003694 9.08710E–05 – 1.62820E–04 0.0001 0.0136 23.000

14 STSA32 0.85361 – 0.8532 0.00255805 3.60438E–05 – 1.62828 0.0001 0.0136 23.000

15 ABC– DE38 0.853607 – 1.19561 0.00421 8.34036E–05 – 1.62830E–04 0.0001 0.0136 23.0000

16 LSA21 0.8140 −1.0624 3.597E–03 6.653E–05 – 16.492E–05 0.0001 0.0188 23.000

17 MRFO25 0.8533 – 1.19561 4.2188E–03 8.340E–05 – 1.6280E–04 0.0001 0.0136 23.000

18 DO34 0.8292 – 0.8532 2.869E–03 5.933E–05 – 14.75E–05 0.0001 0.0343 23.00

Table 12.  Parameter estimation and statistical measures comparison of various MH algorithms for Ballard 
Mark V PEMFC.
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PEMFC stacks (BCS500-W, Ballard Mark V, NedStack PS6 and Temasek) are 0.011699, 0.813912, 2.267687, and 
0.123276775, respectively, using the GPC algorithm. In addition, all test cases undergo a thorough evaluation of 
the effects of altering the input operating parameters of the PEMFCs, such as temperature and supply pressures. 

S.No Algo Friedman’s rank Rank Winner Loser Wilcoxon’s p value

1 GPC 1.856791 1

2 ZOA 6.406046 7 465.00 0 3.0200E–11

3 SCHO 5.9985 6 465.00 0 3.0200E–11

4 PSA 8.34359 8 465.00 0 3.0200E–11

5 SABO 10.04617 9 465.00 0 3.0200E–11

6 YDSE 2.878735 2 465.00 0 3.6900E–11

7 EDO 4.524407 3 465.00 0 3.0200E–11

8 RIME 5.743132 5 465.00 0 3.0200E–11

9 CDO 10.89223 12 465.00 0 3.0200E–11

10 COA 11.05548 10 465.00 0 3.0200E–11

11 HHO 10.60452 11 465.00 0 3.0200E–11

12 GWO 5.030465 4 465.00 0 3.0200E–11

Table 13.  Friedman and Wilcoxon rank test of various MH algorithms for Ballard Mark V PEMFC.

 

Fig. 18.  The boxplot curves obtained from 30 runs of 12 algorithms utilized to Ballard Mark V PEMFC stack 
parameter extraction.

 

Fig. 17.  The convergence curves obtained from 400 iterations and 30 runs of 12 algorithms utilized to Ballard 
Mark V PEMFC stack parameter extraction.
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In addition to the PEMFC extraction challenges, the performance of the proposed algorithm has been tested 
using the CEC 2019 challenges, and the results achieved by the GPC algorithm have been compared with other 
MH optimization algorithms (FPA, BWOA, FROBLGJO, CDO, COA, HHO, ZOA, ARNMRA, YDSE, as well 
as jDE100) to demonstrate its superiority. Additionally, a nonparametric test analysis (Friedman and Wilcoxon 

S.no Algorithms
Objective 
function ξa ξb ξc ξd Rcon (Ω) β λ

1 GPC 0.011699 – 0.86884 0.002854 7.64E–05 – 0.00019 0.0001 0.016136 20.88789

2 ZOA 0.012497 – 0.87852 0.002506 5.22E–05 – 0.00019 0.000251 0.015992 21.74465

3 SCHO 0.012752 – 1.11427 0.003124 4.63E–05 – 0.00019 0.000316 0.015802 22.46367

4 PSA 0.027469 – 0.8532 0.002895 8.21E–05 – 0.00019 0.0008 0.0136 24

5 SABO 0.044445 – 1.19969 0.004177 0.000098 – 0.00019 0.000171 0.016426 24

6 YDSE 0.011704 – 1.0637 0.003122 5.6E–05 – 0.00019 0.000104 0.016102 20.86594

7 EDO 0.011908 – 1.1366 0.003719 8.03E–05 – 0.00019 0.000188 0.015965 21.61097

8 RIME 0.012326 – 0.98938 0.003546 9.76E–05 – 0.00019 0.000168 0.015823 21.36505

9 CDO 1.594396 – 0.93087 0.002753 6.21E–05 – 0.00016 0.000659 0.015624 20.01874

10 COA 0.027964 – 1.19969 0.004181 0.000098 – 0.00019 0.0008 0.0136 24

11 HHO 0.028383 – 0.97184 0.003249 8.23E–05 – 0.00019 0.000372 0.015149 20.19897

12 GWO 0.01197 – 1.02867 0.002867 4.63E–05 – 0.00019 0.000112 0.016284 21.38155

13 HBA28 0.0118 – 0.952 0.0032 7.40E–05 – 0.000072 0.000543 0.016 20.1

14 ICA30 0.011856 – 0.9086 0.0024798 4.4583E–05 – 0.000193 0.000246 0.016238 22.662

15 VSDE27 0.01214 – 1.1970 0.0042330 9.7990E–05 – 0.000192 0.0001108 0.0157 20.194

16 SSO90 0.01219 – 0.8532 0.0048115 9.433E–05 – 0.000192 0.0003499 0.01589 23.000

17 AHA22 0.011831 – 1.0497 0.0029 3.84E–05 – 0.00019 0.00018 0.01636 22.0516

18 ShSO24 7.1889 – 1.018 0.0023151 5.24E–05 – 0.00012 0.000750 0.0136 18.8547

19 CS92 5.5625 – 1.045 0.0027788 4.59E–05 – 0.000139 0.0008 0.0136 18.4944

Table 15.  Parameter estimation and statistical measures comparison of various MH algorithms for BCS 500 W 
PEMFC.

 

SNo. Vexper Vestimat Iexper

Vexper-
Vestimat

∣∣Vexper−

Vestimat

∣∣
Pexper Pestimat

Pexper-
Pestimat

∣∣Pexper−

Pestimat

∣∣
1 29 28.99747 0.6 0.00253 0.00253 17.4 17.39848 0.001518 0.001518

2 26.31 26.30615 2.1 0.00385 0.00385 55.251 55.24291 0.008086 0.008086

3 25.09 25.09376 3.58 – 0.00376 0.003763 89.8222 89.83567 – 0.01347 0.013472

4 24.25 24.25483 5.08 – 0.00483 0.004831 123.19 123.2145 – 0.02454 0.024542

5 23.37 23.37564 7.17 – 0.00564 0.005636 167.5629 167.6033 – 0.04041 0.040408

6 22.57 22.58485 9.55 – 0.01485 0.014847 215.5435 215.6853 – 0.14179 0.141793

7 22.06 22.07157 11.35 – 0.01157 0.01157 250.381 250.5123 – 0.13132 0.131317

8 21.75 21.75871 12.54 – 0.00871 0.008712 272.745 272.8542 – 0.10925 0.109248

9 21.45 21.46152 13.73 – 0.01152 0.011516 294.5085 294.6666 – 0.15812 0.158121

10 21.09 20.988 15.73 0.101998 0.101998 331.7457 330.1413 1.604423 1.604423

11 20.68 20.69477 17.02 – 0.01477 0.014773 351.9736 352.225 – 0.25143 0.251429

12 20.22 20.23125 19.11 – 0.01125 0.011248 386.4042 386.6191 – 0.21494 0.214941

13 19.76 19.77119 21.2 – 0.01119 0.011193 418.912 419.1493 – 0.2373 0.237296

14 19.36 19.36625 23 – 0.00625 0.006252 445.28 445.4238 – 0.14379 0.143786

15 18.86 18.86664 25.08 – 0.00664 0.00664 473.0088 473.1753 – 0.16652 0.166523

16 18.27 18.27478 27.17 – 0.00478 0.004777 496.3959 496.5257 – 0.1298 0.129803

17 17.95 17.95327 28.06 – 0.00327 0.003272 503.677 503.7688 – 0.09182 0.091822

18 17.3 17.29256 29.26 0.007436 0.007436 506.198 505.9804 0.217583 0.217583

IAE (V) 0.234845 IAE (P) 3.686110144

Table 14.  The Vestimat, Pestimat, and IAE values obtained by the GPC algorithm for BCS500-W PEMFC.
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Fig. 21.  BCS 500 W stack performance plots based on GPC algorithm parameters extraction under different 
operating conditions.

 

Fig. 20.  BCS 500 W stack performance plots based on GPC algorithm parameters extraction under different 
operating conditions.

 

Fig. 19.  Model curves of BCS500-W PEMFC stack.
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Fig. 23.  The boxplot curves obtained from 30 runs of 12 algorithms utilized to BCS500-W PEMFC stack 
parameter extraction.

 

S.No Algorithm Friedman’s rank RANK Winner Loser Wilcoxon’s p value

1 GPC 1.970593 1

2 ZOA 6.311832 6 465.00 0 4.5000E–11

3 SCHO 6.780215 7 465.00 0 3.0200E–11

4 PSA 9.39084 8 465.00 0 3.0200E–11

5 SABO 9.898222 9 465.00 0 3.0200E–11

6 YDSE 2.814724 2 465.00 0 3.0200E–11

7 EDO 4.472459 4 465.00 0 3.0200E–11

8 RIME 5.26032 5 465.00 0 3.0200E–11

9 CDO 12.58004 12 465.00 0 3.0200E–11

10 COA 11.03236 11 465.00 0 3.0200E–11

11 HHO 10.49754 10 465.00 0 3.0200E–11

12 GWO 4.357613 3 465.00 0 3.0200E–11

Table 16.  Friedman and Wilcoxon rank test of various MH algorithms for BCS500-W PEMFC.

 

Fig. 22.  The convergence curves corresponding to BCS500-W PEMFC stack parameter extraction.
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signed rank test), as well as the box plot, has been performed to verify the precision and reliability of the GPC 
algorithm compared to existing algorithms, and it is clear that the GPC algorithm is superior.

The performance variability of GPC in different benchmarks and PEMFC datasets can be attributed to the 
interaction between the internal dynamics of the algorithm and the inherent characteristics of the datasets 
themselves. In cases where the landscape of the underlying parameters is highly multimodal, with numerous 
local optima, GPC tends to outperform standalone algorithms due to its phase-wise integration of exploration 
and exploitation strategies. Early stage Lévy flights from CS help escape deceptive basins, while the guided 
search of GWO and the convergence strength of PSO allow for effective refinement. This layered adaptability 
is particularly effective in data sets with non-linear interdependencies and irregular error surfaces. However, in 
scenarios where the optimization landscape is relatively smooth or low-dimensional, simpler algorithms with 
fewer control parameters, such as standard PSO or GWO, may yield comparable or better results due to their 
lower overhead and faster convergence. Thus, the advantage of GPC becomes more pronounced in complex, 
noisy, or ill-conditioned datasets, while its performance may converge to baseline methods in well-behaved or 
low-complexity data sets. This suggests a potential avenue for future work, adapting the degree of hybridization 
dynamically based on landscape analysis or preliminary fitness landscape sampling.

Future studies should prioritize the validation of the proposed GPC algorithm for different fuel cell 
technologies, solar photovoltaic parameter extraction, smart grids, and other real-world applications. The 

S.no Algorithms
Objective 
function ξa ξb ξc ξd Rcon (Ω) β λ

1 GPC 0.123276775 – 0.9927 0.003072 5.81E–05 – 9.54E–05 0.0001 0.101876 10

2 ZOA 0.12328198 – 0.86374 0.002357 3.65E–05 – 9.54E–05 0.0001 0.102076 10.00082

3 SCHO 0.124342719 – 1.01632 0.003146 5.82E–05 – 9.55E–05 0.000109 0.100392 10

4 PSA 0.123312657 – 0.8532 0.002317 3.60E–05 – 9.54E–05 0.0001 0.10238 10

5 SABO 0.127516141 – 0.8532 0.002316 3.60E–05 – 9.54E–05 0.000143 0.095196 10

6 YDSE 0.123291279 – 1.03225 0.003767 9.74E–05 – 9.54E–05 0.0001 0.101588 10

7 EDO 0.123691394 – 1.0783 0.003787 8.90E–05 – 9.54E–05 0.0001 0.103136 10

8 RIME 0.123276797 – 1.09176 0.003055 3.60E–05 – 9.54E–05 0.0001 0.101864 10

9 CDO 0.124344819 – 0.8532 0.002337 3.73E–05 – 9.54E–05 0.0001 0.104545 10

10 COA 0.123310904 – 0.8532 0.002317 3.60E–05 – 9.54E–05 0.0001 0.102109 10

11 HHO 0.127156269 – 0.8532 0.002383 4.05E–05 – 9.54E–05 0.000113 0.115089 11.25314

12 GWO 0.124192754 – 0.91252 0.002968 6.80E–05 – 9.54E–05 0.000117 0.099262 10

13 SSO24 1.6481 – 1.0299 0.0024105 4.00E–05 – 9.54E–05 0.0001087 0.1274 10.0005

14 FPA31 0.1881 – 0.4838 0.001 2.7739E–05 – 7.57E–05 0.0001109 0.1287 11.3223

Table 18.  Parameter estimation and statistical measures comparison of various MH algorithms for Temasek 
Stack PEMFC.

 

SNo. Vexper Vestimat Iexper

Vexper-
Vestimat

∣∣Vexper−

Vestimat

∣∣
Pexper Pestimat

Pexper-
Pestimat

∣∣Pexper−

Pestimat

∣∣
1 17.8316 17.93615 1.91584 – 0.104545056 0.104545 34.16249 34.36278 – 0.20029 0.200292

2 17.0572 17.10754 6.30236 – 0.050340604 0.050341 107.5006 107.8179 – 0.31726 0.317265

3 16.6501 16.67785 10.7842 – 0.027747647 0.027748 179.558 179.8572 – 0.29924 0.299236

4 16.2495 16.23595 17.364 0.01355424 0.013554 282.1563 281.921 0.235356 0.235356

5 15.9291 15.88514 23.9438 0.043958036 0.043958 381.4032 380.3507 1.052522 1.052522

6 15.5553 15.4775 32.8122 0.077798612 0.077799 510.4036 507.8509 2.552744 2.552744

7 15.3016 15.20048 39.392 0.101116044 0.101116 602.7606 598.7775 3.983163 3.983163

8 15.048 15.17284 40.0672 – 0.124835175 0.124835 602.9312 607.933 – 5.0018 5.001796

9 14.801 14.67338 52.6469 0.127616904 0.127617 779.2268 772.5081 6.718634 6.718634

10 14.5273 14.41849 59.2267 0.108814114 0.108814 860.404 853.9593 6.444701 6.444701

11 14.2336 14.16067 65.9019 0.072925389 0.072925 938.0213 933.2154 4.805922 4.805922

12 14.0066 13.99067 70.2884 0.015931862 0.015932 984.5015 983.3817 1.119825 1.119825

13 13.7597 13.81959 74.6749 – 0.059888779 0.059889 1027.504 1031.976 – 4.47219 4.472189

14 13.4526 13.64697 79.0614 – 0.194373056 0.194373 1063.581 1078.949 – 15.3674 15.36741

IAE (V) 1.123446 IAE (P) 52.57105

Table 17.  The Vestimat, Pestimat, and IAE values obtained by the GPC algorithm for Temasek Stack PEMFC.
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GPC algorithm can also be improved for better solution quality by using new equations for exploration and 
exploitation operations. Other important factors can be the introduction of population size reduction, a memory 
bank to store previous solutions, and the reduction of computational time for better performance of the proposed 
GPC algorithm.

Fig. 25.  Temasek PEMFC stack performance plots based on GPC algorithm parameters extraction under 
different operating conditions.

 

Fig. 24.  Model curves of Temasek PEMFC stack.
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Fig. 27.  The convergence curves obtained from 400 iterations and 30 runs of 12 algorithms utilized to Temasek 
PEMFC stack parameter extraction.

 

Fig. 26.  Temasek PEMFC stack performance plots based on GPC algorithm parameters extraction under 
different operating conditions.
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