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The identification of unknown parameters for proton exchange memberane fuel cells (PEMFCs)

using nature-inspired optimization algorithms has emerged as a significant field of research in recent
years. In the present study, a novel approach is presented, namely the hybrid Gray Particle Cuckoo
(GPC) algorithm based on the hybrid properties of the grey wolf optimizer (GWO), particle swarm
optimization (PSO), and cuckoo search (CS) to address the identification problem associated with
PEMFCs. The effectiveness of the proposed GPC algorithm is evaluated on four commercially available
PEMFCs (BCS500-W, Ballard Mark V, Temasek, as well as NedStack PS6). The fitness function has been
expressed as the sum of the squared errors (SSE) that occurred between the estimated voltage and the
data that corresponded to it. To further validate the model of the PEMFC, it is contrasted with other
complex algorithms. The GPC algorithm showed the lowest SSE across all cases, resulting in SSE values
of 0.011699, 0.813912, 2.267687, and 0.123276775 for the BCS500-W, Ballard Mark V, NedStack PS6
and Temasek PEMFC stack, respectively. Also, the PEMFC stacks are evaluated using different partial
temperature and pressure conditions. In addition to real-world challenges, the GPC algorithm has been
assessed on 100-digit CEC 2019 benchmarks and contrasted to other MH algorithms. Furthermore,
both the parametric and non-parametric statistical tests are conducted to evaluate the efficacy of

the GPC algorithm. The results in terms of mean square error (MSE), individual absolute error (IAE),
mean bias error (MBE), mean absolute error (MAE), and root-mean-square error (RMSE) demonstrate
that the GPC algorithm is the optimal choice contrasted to other algorithms due to its better solution
quality and faster convergence time.
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FC Fuel Cell

PEMFC Proton Exchange Memberane Fuel Cells
GWO Grey wolf optimizer

PSO Particle Swarm Optimization

CS Cuckoo Search

SABO Subtraction Average based Optimizer
YDSE Young Double Slit Experiment

EDO Exponential Distribution Optimizer
BWOA Black Widow Optimization Algorithm
FROBLGJO  Fast Random Opposition-based Learning Golden jackal optimization
jDE100 Self-adaptive DE

ARNMRA Attraction and Repulsion-based Naked Mole Rat Algorithm
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IHBO Improved Heap-based Optimizer

LSA Lightning Search Algorithm

STLBO Simplified Teaching Learning Based Optimization
AHA Artificial Hummingbird Algorithm

RGWO Repairable Grey Wolf Optimization

ShSO Shark Smell Optimize

MRFO Manta Rays Foraging Optimizer

VSDE Hybrid Vortex Search Differential Evolution
HBOA Honey Badger Optimization Algorithm
IABC Improved Artificial Bee Colony

ICA Imperialist Competitive Algorithm

FPA Flower Pollination Algorithm

TSA Transient Search Optimization

DO Dandelion Optimize

IFMO Improved Fish Migration Optimizer
ABC-DE Artificial Bee Colony Differential Evolution
CBO Chaotically based bonobo optimize

FOA Firefly Optimization Algorithm

SMBOA Slime Mould based Optimization Algorithm
ESSA Enhanced Salp Swarm Algorithm

HBO Honey Badger Optimizer

AGPSO Autonomous Groups Particle Swarm Optimization
GTO Gorilla Troops Optimizer

EWO Enhanced Walrus Optimization

SSO Salp Swarm Optimizer

IAEO Improved Artificial Ecosystem Optimizer
OO0OA Osprey Optimization Algorithm

NNO Neural Network Optimizer

WSO War Strategy Optimization

IFMO Improved Fish Migration Optimizer

ZOA Zebra Optimization Algorithm

PSA Propagation Search Algorithm

CDO Chernobyl Disaster Optimizer

COA Coati Optimization Algorithm

NELT No Free-Lunch Theorem

MH Meta-heuristic

CEC Congress on Evolutionary Computation
MAE Mean Absolute Error

IAE Individual Absolute Error

MBE Mean Bias Error

MSE Mean Square Error

RMSE Root-Mean Square Error

TSEs Total Squared Errors

SQEs Sum of Quadratic Errors

SSE Sum of Square Error

The depletion of fossil fuels, caused by the increasing consumption of energy, as well as increased awareness
of environmental conservation, has led individuals and governments to focus on alternative energy sources.
As a result, researchers have presented significant interest in exploring other energy sources that are more
environmentally friendly, such as wind, solar and wave energy'. These sources have gained considerable
attention because of their potential to mitigate the negative impacts of traditional energy production methods
on the environment. Therefore, various studies and investigations have been conducted to assess the feasibility
and efficiency of these greener energy sources. The main obstacles associated with the sources mentioned are
their unpredictable characteristics and dependence on climatic factors. However, these constraints have clearly
highlighted the crucial need for energy storage. Hydrogen, a topic of current interest, has the potential to serve
as an energy storage medium to effectively store renewable energy until it can be converted to electricity by
an energy conversion device®. A fuel cell (FC) is a very important technology for converting energy, usually
generating electricity, by employing a chemical reaction between hydrogen as well as oxygen. The PEMFC has
become popular in many fields, including automotive, on-site generation, as well as portable electronic devices,
because of its advantages, which include high power density, low operating temperature, and solid electrolyte®.
Enhancing the efficiency as well as performance of PEMFCs has become an important area of study. The
mechanical model incorporates the internal dynamics of cells through mass and heat conservation laws,
alongside chemical reaction equations, whereas the empirical model represents the external properties of cells
using empirical formulas derived from experimentation, which are less complex than those of the mechanical
model. The precise identification of the model’s parameters remains to be a considerable challenge>®. This paper
utilises a semi-empirical model that integrates a mechanism model with empirical components, presenting a
voltage model that thoroughly addresses active polarisation loss, ohmic polarisation loss, and concentration
polarisation loss”3. A precise mathematical model is essential to accurately represent the actual behavior of
the system under various operating scenarios”!’. Identifying the optimal values of the unknown parameters
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results in a mathematical model that exhibits a high level of precision'!. As a result of the related non-linearity
of the FC, the modeling procedure becomes complex due to the presence of certain unknown parameters in the
manufacturer’s datasheet'2.

In recent decades, extensive research has been done on estimating unknown parameters in the literature,
categorising studies into two primary areas, such as MH as well as deterministic optimization techniques.
Deterministic optimization methods, including derivative-based optimization as well as linear programming,
depend on precise mathematical principles. MH and deterministic methods offer unique advantages that depend
on the specific characteristics of the problem at hand!*!*. Deterministic techniques provide efficient and accurate
solutions for small-scale and linear problems, ensuring optimal results. These methods may be insufficient
for complex problems characterised by multiple variables and non-linear relationships, as they are prone to
convergence on suboptimal solutions. The MH optimization algorithms have gained significant popularity for
addressing various optimisation problems due to their flexibility, derivation-free approach, and simplicity'>-'”. The
complicated nature of the PEMFC parameter identification challenge has resulted in the inadequate performance
of conventional search strategies in accurately determining the best possible solutions!®!°. In addition, various
other MHA have been implemented to improve both the accuracy and the effectiveness of the model, including
Dimension Learning-based Modified Grey Wolf Optimizer (DLHMGWO)?, Improved Heap-based optimizer
(IHBO)®, Lightning Search Algorithm (LSA)?!, Artificial Hummingbird Algorithm (AHA)?, Repairable Grey
Wolf Optimization (RGWO)%, Shark Smell Optimizer (ShSO)?*!, Manta Rays Foraging Optimizer (MRFO)?*,
Flower Grey INFO Naked (FGIN)?, Hybrid Vortex Search Differential Evolution (VSDE)¥, Honey Badger
Optimization Algorithm (HBA)?8, Improved Artificial Bee Colony (IABC)?, Imperialist Competitive Algorithm
(ICA)®, Flower Pollination Algorithm (FPA)?!, Pathfinder Algorithm (PFA), Transient Search Optimization
(TSO)*, Dandelion Optimize (DO)**, Hunger Games Search Marine Predator Algorithm (HGS-MPA)?®,
Aquila Optimizer Arithmetic Algorithm Optimization (AOAAQ)3®, Parrot Optimizer (PO)*, Hybrid Artificial
Bee Colony Differential Evolution Optimizer (ABC-DE)*, Chaotically based-bonobo optimizer (CBO)*,
Enhanced Salp Swarm Algorithm (ESSA)*’, Honey Badger Optimizer (HBO)®, Autonomous Groups Particle
Swarm Optimization (AGPSO)?, Gorilla Troops Optimizer (GTO)*!, Enhanced Walrus Optimization (EWO)*2,
Improved Artificial Ecosystem Optimizer (IAEO)*, Combined Owl Search Algorithm (COSA)*, War Strategy
Optimization (WSO)**, Improved Fish Migration Optimizer (IFMO)*, Ali Baba and forty thieves (ABFT)%,
Puma Optimizer (PuO)*, Kepler Red Meerkat Grey (KRMG)* and so on. Also, a comparative literature table
has been included in order to clarify existing research on PEMFC parameter estimation, summarizing essential
elements such as optimization algorithm, PEMFC stack utilization, objective functions, and the use of statistical
analysis is given in Table 1.

Now, there is the shortage of a dependable and efficient method for getting an accurate estimating procedure
that can serve as a unique reference for research objectives. In addition, the no-free lunch (NLF) theorem
motivates researchers to create novel optimization techniques or enhance/hybrid existing ones to address the
real-world challenges across several domains®’. Thus, a research gap needs to be addressed by determining
the most appropriate algorithm for PEMFC and exploring other algorithms that have not been utilized in the
PEMEFC area. These MHAs provide several approaches to optimize the parameters of PEMFC systems and
enhance their performance. However, it is possible for them to get trapped in local minima while performing
the search, resulting in a gradual decline in their efficiency with every repetition. This paper presents a novel
hybrid optimization (GPC) algorithm to optimally estimate the unknown parameters of PEMFC. Furthermore,
Eleven MH optimization algorithms consisting of the Zebra Optimization Algorithm (ZOA)>!, sinh cosh
optimizer (SCHO)?, Propagation Search Algorithm (PSA)>3, SABO®, Young’s Double-Slit Experiment
(YDSE)™, exponential distribution optimizer (EDO)*, RIME%’, Chernobyl Disaster Optimizer (CDO)>®, Coati
Optimization Algorithm (COA)*°, Harris Hawks Optimizer (HHO)®’, and GWO®!%2, and the results obtained
through these eleven algorithms are also compared with GPC algorithm. To further validate the GPC algorithm,
it has been tested on CEC 2019 benchmark challenges®** and compared to some of the well-known and recently
presented algorithms including, BWOA®, CDO%, COA®, flower pollination algorithm (FPA)®, HHO®,
YDSE®, ZOA®!, ARNMRA®, FROBLGJO®%, as well as jDE100%.

This paper’s main contributions can be summarized as follows.

« To precisely estimate the parameters of the PEMFC, a hybridized algorithm known as the Grey Particle Cuck-
00 (GPC) algorithm has been presented and validated.

« The GPC algorithm has been tested with CEC 2019 challenges and compared to BWOA®>, CDO%¢, COA®,
FPA®, HHO®, YDSE®, ZOA>!, ARNMRA®’, FROBLGJO®%, and jDE100%. Also, non-parametric test (Fried-
man and Wilcoxon signed rank test) analysis, as well as the box plot, have been conducted to verify the preci-
sion as well as reliability of the GPC algorithm in comparison to existing MH algorithms.

« Four different commercial FC stacks (NedStack PS6, Ballard Mark V, Temasek, as well as the BCS 500 W
PEMFC model) have been evaluated to assess the accuracy as well as reliability of the GPC algorithm.

o Comparing the PEMFC results obtained from the proposed GPC algorithm with other MH algorithms
(ZOA>!, SCHO, PSA%3, SABO*, YDSE®, EDO%¢, RIME*’, CDO%, COA%, HHO®, and GWO®), it was
evident that the GPC algorithm performed significantly.

« Inaddition, the GPC algorithm is applied for an optimal analysis of the PEMFC stacks with changing pressure
(P2 / Poz2) and temperature levels.

o Statistical studies such as SSE, IAE, MBE, MAE, MSE and RMSE, as well as nonparametric test (Friedman
and Wilcoxon signed rank test) have been performed to demonstrate the superiority of the GPC algorithm
compared to the other eleven MH optimization algorithms.
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PEMFC Objective | Other
S.No | Optimization | Year | stack functions | analysis Reference
Heliocentris FC50, BCS-
500 W 250 W, RMSE, boxplots, 5
1 DLHMGWO | 2025 AVISTA SR-12 500 W, SSE convergence curve
Temasek 1 kW
50-W stack,
2 HGS-MPA 2025 | NedStack PS6, SSE Convergence curve 35
BCS 500-W
50-W stack,
3 HGS-MPA 2025 | NedStack PS6, SSE Convergence curve 35
BCS 500-W
Horizon 500 W, BCS
4 |A0AAO 2025 | 500 W, Nedstack PS6, SSE MBE, Box-Plot, %
H-12,500 W SR-12 onvergence tLurve
STD 250 W, BCS 500 W,
SR-12 W, Horizon H-12, Box-Plot, Convergence 37
5 PO 2025 Ballard Mark V, Nedstack SSE Curve
600 W PS6,
Ballard Mark V,
NedStack PS6, Friedman’s, Wilcoxon rank test, | 47
6 ABFT 2025 250 W Stack, SSE convergence, box plot
BCS 500 W
NedStack PS6,
Avista SR-12,
7 PuO 2025 | Horizon H-12, SSE Convergence, box plot 48
BCS 500 W, 250 W,
Ballard Mark V
Stack 250 W, Ballard IAE, MAE, MAPE, MBE,
8 FGIN 2024 | Mark V, Horizon H-12, SSE MSE, RMSE, Convergence 26
NedStack PS6, BCS 500-W curve
9 ESSA 2024 | 250 W, BCS500 SSE RMSE, MAE, 40
RE, convergence
10 | AGPSO 2024 | 250Wstack and BCS-500W | TSEs RMSE, MAE, RE, s
convergence, box plot
AVISTA SR-12 500 W,
11 EWO 2024 | TEMASEK 1 kW, Nedstack SSE Convergence 42
PS, 250 W
Horizon 500 W, NedStackPS6, 5
12 WSO 2024 BCS500W, 250 W SSE Convergence
. RMSE, MAE, IAE, MBE,
13 | KRMG 2024 | Horizon H 12, Ballard Mark-V, | oo MSE, MAPE, Friedmar’s, 1
Stack 250 W :
Wilcoxon rank test
250 W, BCS 500 W, NedStack Convergence curve, 2
14 | AHA 2023 | b6, H-12, Mark V5, SR-12 | SSE Boxplot
15 RGWO 2023 | 250 W SSE - 2
NedStack PS6 stack, 250W Convergence curve, 29
16 |1aBC 2023 | k¢, BCs 500W SSE ANOVA
17 | CBO 2023 | 250 W, 500 W stacks SSE Friedman rank, mean 3
convergence
18 DO 2023 gacllsa;%é\f[ \?\;k Vand SSE Convergence curve 3
BCS 500-W, Nedstack 41
19 GTO 2023 PS6, 250-W SSE Convergence
BCS 500 W, Nedstack
20 LSA 2022 | PS6 6 kW, Ballard Mark SSE Convergence curve 21
V5 kW
250-W stack, NedStack
21 HBA 2022 | “pog BCS 500-W SSE Convergence curve 28
Ballard, Mark V, Nedstack
22 TSA 2022 | PS6, Horizon H-12 SSE Convergence curve 3
stacks
NedStack PS6, Modular
235 | ABC-DE 2022 | SR-12, Ballard Mark V, SSE MAE, RMSE, »
Horizon H.12 convergence
Ballard Mark, SR-12, 9
24 HBO 2022 250 W stacks SQEs Convergence
25 PFA 2021 | Mark V, H-12 SSE Convergence curve 2
Continued
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PEMFC Objective | Other

S.No | Optimization | Year | stack functions | analysis Reference
500 W BCS, AVISTA

26 IHBO 2021 | SR-12 500 W, NetStack, SSE MAE, MAPE, 20
H-12 stack convergence curve
BCS 500-W, NedStack Wilcoxon test, 13

27 IAEO 2021 PS6, 250 W stack SSE convergence, box plot
250 W stack, BCS 500-W, 27

28 VSDE 2020 SR-12 500 W, NedStack PS6 SSE Convergence curve

Table 1. Overview of existing works on PEMFC parameter estimation.
Mathematical Modelling | Lo . I The Proposed
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Convergence, Boxplot I]
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I]I Effect of Changing pressure

Friedman and Wilcoxon I Convergence profiles,
and temperature :"] rank tests jﬂ and Boxplot profiles

Fig. 1. Graphical outline of the article.

The structure of the paper is as follows. Section II outlines the mathematical concept of a PEMFC and the
optimization challenge of identifying the unknown parameters of a PEMFC. The details of the proposed
approach are presented in Section III. Section IV presents the experimental results as well as a related discussion.
The conclusion and future scope of the presented work are given in Section V. The graphical outline of the article
is given in Fig. 1.

Mathematical modeling of PEMFC

A PEMEFC is made up of two electrodes, an anode as well as a cathode, with a thin solid membrane that conducts
protons placed between them’%”], as illustrated in Fig. 2. In addition, Fig. 2 illustrates the reactions that take
place at two electrodes. In the catalyst layer of the cathode, the oxygen reacts with the electrons and protons,
resulting in the production of water and electricity. The overall reaction is given below:

Hy + %Oz 28 H,0 + electricity + heat @

The electrochemical model is utilized to mathematically show the behaviour of the electrolyzer. Also, the
PEMEFC equivalent circuit diagram is presented in Fig. 3. The mathematical representation for the output voltage
(Vsrac) of the stack, as shown in Equation 2, consists of many cells connected in series (Npum )">".

Vsrac = Npum [Eners — Vacrr — Voum — VeconcENT] (2)

Where, reversible open circuit voltage (En prs), activation voltage loss (Vacrr) due to the activation of both
the anode and cathode, concentration over-potential (VconcenT), and ohmic voltage loss (Vomar). The
EnNErs is determined using the Nernst equation, as shown in Eq. (3)%.

Ener = 1.229 — 8.5 % 107" [T,y — 298.15] + 4.3085 % 10~ * Tuy [In (P2 + V/Po2) | (3)
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Fig. 3. PEMFC equivalent circuit.

where the cell operating temperature (7o), partial pressure (atm) of hydrogen and oxygen (P2 as well as Po2),
can be calculated using Eq. (4), as well as (5)747°.

-1
1.635 (Lo RH, x P,
<e$p< Totlgﬁ )> ‘ pa e -1 )

—1
4.192 (Loe
POQZRHCXPHzo l(e:{:p( T 1<333)> XRHG;CPHZO> _;| _1 (5)
ot

Where, the inlet pressure of the cathode as well as the anode (P and P®), saturation pressure of water vapor
(PH,0), operating current (/oc), and PEM area (A).
The Vacrr, which is the 2¢ term on the right side of Eq. (2), can be computed utilizing the Eq. (6)".

Pryo=05x RH, X PH2O

VACTI = — [ga + Sb * Tot + ‘Ec * Tot *l n (COQ) + gd * Tot *l n ([c)] (6)
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Where, semi-empirical coeficients (€4, £b, &, and £4), the concentration of oxygen (Co2) and is defined as Eq.
(7)4076,
Poo

"~ 5.08 x 100 X cap(Z) @)

Co2

The Vo rrar, which is the term 37¢ on the right side of Eq. (2), can be mathematically represented in Eq. (8)777%,

Vounm = Ioe [Rmemb + Rcon] (8)

Where, the resistance of the connections (Rcon), as well as the membrane resistance (Remb), that can be
obtained by utilizing Eq. (9).

l ic
Rmemb = Pmemb ( tj:l ) (9)

where, the thickness of the membrane (I;1.), as well as the specific resistivity of the membrane (pmems), can be
calculated using Eq. (10).

(181.6000 [1 +0.0620 (ZLat)? 5 7350 4 0.0300 J2D

Pmemb = ([ (10)

A —3.0000 % J — 0.6340)] exp (4.1800 (L4202 ))

Tot

Where, actual current density (J), and parameter A are adjustable and are associated with the water content of
the membrane.

The drop in concentration voltage (VconcenT) is caused by changes in the concentration of reactants on
the electrode surface and can be mathematically expressed in Eq. (11):

VeconcenT = =B *In [1 - ( J )} (11

mazx

Where, the symbol 3 serves to represent the semi-empirical coeflicient.

The main objective of our investigation is to determine the most optimal values for the parameters (£q, &b,
&e, &5 Reon, A and ) through the application of the GPC algorithm. This helps ensure that the output voltage
of the model aligns with the experimental data.

Objective Function

The Egs. (2-11), present a set of equations where the operation parameters To:, RHc, P, RHq, Pr2, P,
as well as Po2 are measurable and their values depend on the specific operating conditions. Additionally, the
physical parameters (€a, &b, Ec, Eds Reons A, and ) are unknown. Due to the significant impact of the unknown
parameter on the model outcomes, it is essential to extract them with the greatest accuracy to be precisely
matched with the actual voltage-current (V-I) characteristic of the PEMFC.

Before determining the unknown parameter (£a, &, &c> €45 Reon» A, and (), it is imperative to determine an
objective function. In order to compare with previous literature, the objective of optimization in this study is to
determine a set of parameter values that will reduce the SSE between the experimental voltage (Vezper) as well
as the model-estimated voltage (Vestimat) as determined by Eq. (12).

Nyort
Mznzmzze(OF) : Fob](SSE) = Z [‘/ezper - estimat]2 (12)
k=1

Where, the number of voltage data samples (/Vyoi¢), and the proposed constraints are presented as.

§i,min S §Z S gi,maxvi S {CL, b, C, d}
Amin S A S Amax
S.t ﬁmin S B S ﬁmax (13)

Rcon,min S Rcon S Rcon,max

In the next section, we present the basics of nature-inspired algorithms and proposed methodology used to
optimize the objective function discussed above.

Basics of nature-inspired algorithms

This section presents the fundamental principles underlying the algorithms utilized to develop a novel GPC
optimization algorithm. This is an outline of the recently employed algorithms, including GWO, PSO, and CS
optimization algorithms:

Grey Wolf Optimizer
In 2014, Mirjalili et al. proposed the GWO algorithm, inspired by the social behaviour as well as hunting strategies
of wild grey wolves, scientifically known as Canis lupus®!. These wolves reveal social behaviour and maintain a
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rigid social hierarchy, categorised into four distinct ranks: alpha (), beta (), delta (), as well as omega (w). The
mathematical framework of GWO depends on the social structure and hunting techniques of grey wolves. The
fundamental aspects of hunting involve tracking, encircling, and subsequently attacking the prey”®.

Social hierarchy

In the development of the GWO, the social hlerarchy of wolves is mathematically expressed by identifying the
optimal solution as the «. Therefore, the 2" and 3" most efficient solutions are designated as 3 as well as §
accordingly. The remaining candidate solutions have been assumed to be w. The optimization process of the
GWO algorithm is governed by «, 3, and d. The w wolves follow the group of 3 wolves («, 3, and 9).

Encircling prey
Grey wolves encircle their prey while hunting, as mentioned earlier. In order to represent encirclement behaviour
numerically, the following equations are given.

R =|BT,0) -7 (14)
T+ =T, - Q.R (15)

— —
where variables 7" (t 4+ 1), t, and T ,(t) denote the position of the i grey wolf, the current iteration, and the

— —
location of the prey, respectively. The vectors () and E acting as control parameters are computed using Eqgs.
(16) and (17).

o (16)

s

G

= 2.7 (17)

=

>
where components b are linearly decreased from 2 to 0 throughout the iterations, while 71 and 7 are random
vectors within the interval [0, 1].

Hunting

Grey wolves identify the location of prey and encircle it, with direction from the a.. The 3 and ¢ may also engage
in the hunt. The optimum location (prey) remains unknown. To model wolf hunting behaviour, it is assumed that
the o, B, and § possess superior knowledge regarding potential prey locations. Retain the three best solutions
and adjust the positions of other search agents based on the positions of the top-performing agents.

—

Ra—El ‘Rg—Engf ’R(;—Eng T’ (18)
— ~> — ~> ~> — - =
Ti = To — Qu(Ra);To =Ty — Qa(R3);Ts =Ts — Qs.(Rs) (19)
— — —
R # 0
Attacking the prey

Grey wolves finalise the hunt by focussing on the prey once it becomes stationary, To build a mathematical mode]
of the hunter advancing towards its prey, decrease the value of . The range of @ decreases by the effect of 5. Q

N
is a randomly chosen value within the interval of -2b to 2b, where b is progressively decreased from 2 to 0 during
the repetitions. When random values of ) range from [-1,1], the subsequent location of a search agent may lie

anywhere between its current location and the location of the prey. The coefficient T additionally regulates the
exploratory phase of the algorithm. This component allocates arbitrary weights to prey to avoid stagnation at
local optima, enabling the algorithm to incorporate randomization during the optimization process. In doing
50, grey wolves engage in a hunting process characterized by repetitive behaviors of encircling and pursuing, as
mentioned above.

Particle Swarm Optimization
The PSO is a stochastic optimization method based on population dynamics. It was I** proposed by Kennedy and
Eberhart in 1995, drawing inspiration from the social behaviours exhibited in bird flocking and fish schooling®.

Mathematical formulation
In PSO, a particle is characterised by its location as well as velocity within a d-dimensional search space. Let

T:(t) = (Ti1, Tigeveennne. T;q) bethelocation of particleiatiteration (¢),and velocity U; (t) = (wi1, tiz.......... Uid)-
The individual optimal location of the particle is k;(t) = (ki1, kiz..ovvoe... kiaq), while the global best location
identified by the entire swarm is kq () = (kg1, kg2-eee-e... kgq). The Egs. (21), and (22) determine the updates

for velocity as well as location:
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uf’Hl = uit + L1 x rand * (kf,t - tﬁt) + L2 x rand * (kg’t - t;{t) (21)
t?,t+l = t?,t + U;'i,tJrl (22)

The formulation of a new velocity update equation follows from the addition of inertia weight (S) to the velocity
update formula.

U?,tﬂ =5x U?,t + L1 x rand * (kit — tit) + L2 x rand * (k‘g,t — tf?t) (23)
S(t) = Smaac - TL (Smax - szn) (24)

where, t and T}.q. are the current iteration as well as maximum iteration. The Sy, and Sy.in indicate the
maximum as well as lower limits of the range of inertia weight (S(¢)) parameter.

Cuckoo search algorithm
The CS algorithm has been motivated by the obligatory brood behavior of cuckoos as well as relies on three
fundamental principles such as.

o Each cuckoo lays one egg at a time, depositing it in a randomly selected nest.

« The nests with the best quality eggs (i.e., best fitness solutions) are carried over to the next generation.

o There are a fixed number of host nests, and there is a probability that the worst nests will be replaced by new
ones, representing the discovery of alien eggs by host birds.

The CS algorithm primarily focuses on exploration as well as exploitation of cuckoo species, as outlined by these
three principles. The process is divided into two main stages: a local search stage that addresses exploitation
and a global search stage that deals withexploration. Another parameter functions as the governing element
of the CS algorithm. The parameter selected randomly from a uniform distribution is referred to as the switch
probability, denoted as p. The subsequent subsections provide an expanded discussion of each of the previously
covered stages.

Global search phase
The cuckoo search has been executed in accordance with the three rules. A Lévy flight is executed to provide a
new solution Y for the ith cuckoo. This process is referred to as a global random walk and is outlined in Eq. (25)

TP = TP + a® L) (Thest — T7) (25)

where as T denotes the previous solution, while 7" is current soloution. This step follows the newly generated
solutions using Lévy flights (L(\)). The main reason for using such this mechanism is the longer tail and better
flight trajectory of the Lévy flight mechanism, which helps to provide better search capabilities to the algorithm.
Apart from that, the Lévy flight mechanism is given in Eq. (26).

N AL(N\) sin(mwA/2) 1

L)) - ESy (s> s0>0) (26)
where s = \V\Ll/k U~ N(0,0%), V~N(0,1)ando? = AFI[‘((llJ:r)f\))/ﬂ .ziffff{/Qg.Also,F(A) isagamma

function and the value of X is equal to 1.5. During this exploration phase, the parameter N is sampled from a
standard Gaussian distribution with a mean of 0 and a variance of 0. This process is designed to explore the
solution space effectively. To generate a new solution, the current best solution (Tp.:) is utilised in conjunction
with the sample parameter.

Local search phase

The 2™? phase of CS algorithm is the local random-walk mechanism, which aligns with the exploitation process.
This phase involves the generation of a new solution (77 *") through a local search using two randomly selected
solutions from the search pool.The local random walk is presented in Eq. (27).

TP =T +a@ () ® (17 - TF) 27)
where 7'} and T, correspond to two random solutions, € € [0, 1] is a uniformly distributed random number.

The proposed approach
This section deals with the proposal of the GPC algorithm, starting with the motivation behind the proposal, the
details of the proposal and finally the computational complexity of the proposed approach.

Motivation behind the proposal
In optimization, the trade-off between searching for new, potentially better solutions (exploration) and refining
known good solutions (exploitation) is a critical determinant of algorithmic success. Exploration enables
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coverage of diverse and unexplored regions in the search space, increasing the likelihood of escaping local
optima, while exploitation ensures refinement of promising solutions for accelerated convergence®!. Striking an
effective balance between these two processes is essential, as overemphasis on either may lead to an inefficient
search or premature convergence. Addressing this, the proposed GPC algorithm adopts a modular, phase-wise
hybridization strategy to enforce a temporal and spatial balance between exploration and exploitation.

The algorithm utilizes CS-based Levy flight updates in the early stages to ensure a wide exploratory radius,
leveraging the heavy-tailed distribution to traverse far-reaching regions of the search space. As the algorithm
progresses, the leadership-driven model of GWO is introduced to promote guided, yet diverse, exploitation
through hierarchical decision-making. To further intensify convergence in later iterations, PSO-based velocity
updates are incorporated with adaptively tuned inertia weights. This phase-wise hybridization is not a simple
combination, but a role-specific assignment, where each component algorithm governs a particular aspect of the
search. Unlike traditional hybrids that apply all components uniformly or in a static blend, GPC dynamically
partitions the population and allocates algorithms temporally, allowing each strategy to dominate in its optimal
phase. This role-based hybridization not only enhances search efficiency, but also reduces algorithmic bias. The
adaptability of the framework ensures resilience in diverse problem landscapes, in accordance with the No Free
Lunch Theorem®. Thus, the novelty of GPC lies in the structured orchestration and transition of exploration-
exploitation roles, rather than merely the selection of constituent algorithms.

The Grey Particle Cuckoo Algorithm

Although individual metaheuristic algorithms such as PSO%, GWO®! and CS® have demonstrated merit in
solving complex optimization problems, each suffers from specific limitations. PSO is prone to premature
convergence due to loss of diversity and stagnation in local optima. GWO lacks exploratory capabilities in the
early stages and tends to focus narrowly on leader-driven search. CS, despite its exploratory strength through
Lévy flights, exhibits instability in convergence and often fails to fine-tune solutions effectively. An inherent
limitation of these basic algorithms lies in their suboptimal exploration capability, given their tendency to follow
smaller step sizes. This behavior leads to the clustering of new solutions, impeding the exploration process.
Consequently, the algorithm tends to confine its search to specific regions within the search space, resulting
in an inefficient approach to exploration and an overall sub-par operational performance. Although there are
problems with basic algorithms, the organizational structure of CS has been found to be very efficient and can
be used as a benchmark to propose new algorithms®!.

To counter these deficiencies, GPC proposes a layered hybridization model that restructures both global
and local search dynamics. The global search capability is enhanced by embedding new movement equations
that encourage distant but purposeful solution updates. Gleichzeitig, the local exploitation phase is improved
through mechanisms that capitalize on the proximity of current best solutions, continuously benchmarking
new candidates against elite ones, and accelerating convergence toward global optima. The GPC architecture is
designed to preserve the useful traits of its constituents (GWO, PSO, and CS) while mitigating their drawbacks.
Retain the organizational efficiency of CS, refine the hierarchical strategy of GWO for better guidance, and
incorporate the adaptive velocity control of PSO for convergence tightening. These elements are integrated
without disrupting the structural integrity of the parent algorithms, making GPC an inherently robust and
versatile optimization framework. We now formally define the algorithmic steps, population management, and
GPC control parameters.

The algorithm begins by setting N within a constrained search space, as defined by (29)

for the i*" member of the search space, j is the D dimensional problem, a € [0, 1] Ymin and Ymaz are the lower
bound and upper bounds of the D" problem. After initialization, we divide the population into two iterative
halves.

Stagel:p = 1 : Pmazimum

In the first step, we follow the basic search equations of CS algorithm. This step follows the newly generated
solutions using Lévy flights. The main reason for utilizing this mechanism is the longer tail and better flight
trajectory of the Lévy flight mechanism, which helps to provide better search capabilities to the algorithm. The
general equation for this stage is given by

= 2+ 0 ® L) (zbest — ) 29)

where
Apart from that, the Lévy flight mechanism is given by

N AL(N\) sin(7wA/2) 1

T 81+>\

L()) (s> s0>0) (30)

The local search phase is the local random-walk mechanism, which aligns with the exploitation process. This
phase involves the generation of a new solution (z") through a local search using two randomly selected

solutions from the search pool. The overarching equation for the local search phase is provided as follows:

A =l +a®(e)® (F —af) (1)
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where 27 and 2}, correspond to two random solutions, € € [0, 1] is a uniformly distributed random number.

The local search phase is activated only for a certain fraction of iterations and depends on the probability
switch parameter (sp). In the current scenario, this parameter is adjusted using an exponential decreasing inertia
weight operator. This phase helps to decide the extent of exploration and exploitation. The general equation is
thus given by

sp(p) = Mmin + (Nmaz — NMmin)exp [—%] (32)
10

where Mmaq as well as 7,,in, are maximum and minimum random values [0,1].

Stage II:p= pmm% +1: Pmazimum

In this phase, the main concern is to have lower exploration and more exploitation. During this phase, the global
search phase is divided into two parts, and here also the first half of the population follows a similar approach
as used in the generalized algorithm. This is done to make the algorithm perform intensive exploration along
with some exploitation operation. For the second half of the population, GWO based equations are used. These
equations are meant for the initialization of new solutions within the search space, are generally generated using
three new solutions, and are formulated as

1 h
fCauchy(O,h)(é) = ;W (33)
1 1 1
— 4= — 34
y=3 + Warctan(h) (34)
1

§ = tan(m(y — 5)) (35)
2P = 2P b o X D(6) (2pest — 27) (36)

21 =z — J1(Hi.-zZnew — 27);
2o = zi — Jo(H2.Znew — 27); (37)

Z3 = Zi — JS(H3~Z7Lew - Zio)
L+l Z1t 22+ 23 (38)

* 3

N =2bory —b; N=2.ry (39)

During this phase, the local search equation is further categorized into two distinct population segments. For
the I°" half of the population, again CS based local search is followed, but for the second half of the population,
a more rigorous approach is used. Here we are using a PSO-based equation as given by

2T =20+ F X (2best — 20) + 1 X (Ghest — 21) (40)

where gpest is the personal best solution, zpes: is the current best solution, F' = c;.71 is a random number
initialized using simulated annealing inertia weight and is given by

€1 = Nmin + (nmaz - nmzn) X a<T71) (41)

where, the variables T, 71 Mmaz, and Nmin are uniformly distributed in the range [0,1]. Furthermore, the value
of a is set to 0.95.
I = c2.72 is another random number initialized using the sigmoid inertia weight operation as given by

o Nmin — Nmax
- 14 e—ux(p—hxgen

C2 ) + Nmax (42)

w= lolog(gen)72 (43)
where, imaz = 0.9, Pmin = 0.5, gen = 51,72 and h, k € [0, 1].

Population adaptation

To address a reduction in population size, a strategy outlined in®? is followed. The proposed approach involves
modifying the population size during algorithm iterations, emphasizing greater exploration initially and
transitioning towards adaptive exploitation later. The reduction in population size as iterations progress aims
to optimize the algorithm by efficiently utilizing search agents. In simpler terms, the algorithm employs a larger
population during exploration to thoroughly cover the search space, while exploitation, focused on specific
areas, is achieved with a smaller population. This adaptive population adjustment ensures effective exploration
in the early stages and targeted exploitation in the later stages, striking a balance between resource utilization
and optimization.
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In this study, a proportional population reduction phenomenon is employed, inspired by the ideas presented
in®2. This method involves reducing the population size in proportion to the increase in fitness. The rationale
behind adopting this approach lies in its suitability for addressing multimodal problems, where solutions need
to explore extensive areas. When confronted with a large initial population size, it becomes possible for new
solutions to explore the entire search space. As the iterations progress, these solutions may converge toward the
global best solution, which lies in a specific direction. Consequently, the size of the population can decrease.
This reduction in population size facilitates improved genetic drift, allowing the discovery of new solutions
without compromising the retention of the best solution. Toward the conclusion of the process, each member of
the population is given an equal opportunity to potentially become the best global solution. In a more general
context, the equation governing population reduction is expressed as

b . b b
(L= ofy= iy, if ofy™ <ofyis
Qrir =9 (L—ofpat)ng, if ofp™ >ofnar (44)
ANy, if Qp+1 < ming

best best

. : . estogbest

Where, Qp1 represents the population at generation p, o f5°*" is stated by (=2 I;b“tpl 2 ) indicates the change
p—2

in the best fitness, and o f25% presents the threshold value.

Selection operation

In the last phase, it is important to carefully select the individuals who are the most appropriate from both the
candidates generated in the current iteration and those from previous iterations. The selection technique is
determined by comparing the fitness of the new solution, indicated as f(znew ), with the fitness of the previously
known solution, represented as f (zf ).If the fitness of the new solution, denoted as (f(znew)), is found to be
superior to the fitness of the previous known solution, denoted as (f(z?)), then the new solution replaces the
original solution as the one selected. However, if the previous solution (2;) has a higher level of fitness, it will be
retained as the selected solution for the subsequent stages of the process.

p+1 __ Znew Zf f(Znew) < f(zp)
Fnew = { 2P otherwise ' (45)

This selection mechanism ensures that the most suitable individuals remain in the population, encouraging
improved fitness and ultimately leading to a more optimal and efficient solution for the problems under
consideration. The pseudocode of the GPC algorithm is presented in Algorithm 1. The pseudocode of the
proposed algorithm is shown in Fig. 4.

Begin

Define: population size (N); switch probability (p);
problem dimension (D); stopping criteria;
if i= 1. maximum number of iterations ¢ .

global search usinngqn. 29)
local search using Eqn. (33)
selection using Eqn. (45)
update N using Eqn. (44)
update sp using Eqn. (32)

else
global search using Eqn. (38)
local search using Eqn. (33) & (40)
selection using Eqn. (45)

14: update N using Eqn. (44)

15: update sp using Eqn. (32)

16: close;

17: update final best

18: End

R A o

—_— = =
W N = O

Algorithm 1. Pseudocode of proposed GPC algorithm.

Complexity of the proposed GPC algorithm

The computational complexity of the proposed GPC algorithm is governed by the operations performed during
initialization and across each iteration of the main loop. Let N be the population size, D be the dimensionality of

the optimization problem, and tmax be the maximum number of iterations.
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Fig. 4. Flowchart of GPC algorithm.

« Initialization: Each of the N individuals is initialized in a D-dimensional space. This step requires (N - D)
operations.

o Stage I (t = 1 to tmax/2): Each individual undergoes a global update based on Lévy flights and, with some
probability, a local search using two random solutions. Both operations are &'( D) per individual per iteration,
resulting in (N - D) per iteration.

o Stage Il (t = tmax/2 + 1 t0 tmax): The population is divided into two segments. One-half uses GWO-based
updates (involving three directional updates and averaging), while the other-half uses a PSO-based update
with adaptive inertia weights. Each of these update mechanisms requires ¢( D) operations per individual per
iteration.

Combining all stages, the total computational complexity of the GPC algorithm is as follows.

ﬁ(N-D+tm%-N~D+tm%-N»D):ﬁ(tmax-N~D) (46)

Comparison with baseline algorithms
To contextualize the computational efficiency of the proposed GPC algorithm, we compare its complexity with
those of the canonical CS, PSO and GWO, as

« CS involves Lévy flight-based position updates and optional random walk-based local search, both operating
in D dimensions. The total complexity is:

O(tmax - N - D) (47)

o PSO updates each particle’s velocity and position based on personal and global best positions. Each update
involves D-dimensional operations:
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ﬁ(tmax -N - D) (48)

o GWO updates the position of each individual based on three leading solutions (a, 3, §), requiring three vec-
tor operations per update:

ﬁ(tmax -N - D) (49)

Although all four algorithms share the same asymptotic complexity of O(tmax - N - D), the proposed
GPC algorithm incurs higher constant factors due to its dual-phase architecture and hybridization strategy.
Specifically, GPC integrates the Lévy flight exploration of CS, the leader-based exploitation of GWO, and the
adaptive velocity-driven convergence of PSO. This structured combination leads to increased per-iteration
operations, but significantly improves the algorithm’s ability to balance exploration and exploitation. Therefore,
despite similar theoretical complexity, GPC achieves superior performance in diverse and complex optimization
scenarios leveraging richer update dynamics.

Results and discussion

This section demonstrates the experimental results to show the effectiveness of the hybrid algorithm (GPC)
proposed in this paper. This section is divided into three subsections. In the I°* subsection, details of the test suite
and parameter settings of all MH algorithms used for comparative analysis are discussed. In the next subsection,
the performance of the GPC algorithm is determined by performing experiments on the numerical optimization
challenges of CEC 2019. The results of the GPC optimization algorithm are compared with the other MH
optimization such as BWOA®, CDO%, COA%, FPA®, HHO®, YDSE®>>, ZOA%!, ARNMRA®’, FROBLGJO®%,
and jDE100%. In the third subsection, GPC is applied for parameter extraction of PEMFC models (Temasek,
NedStack PS6, Ballard MarkV, and BCS 500W PEMFC model). The effectiveness of the GPC algorithm is
compared with various well-recognized MH algorithms, including ZOA>!, SCHO??, PSA>, SABO>*, YDSE®,
EDO%, RIME”, CDO, COA*’, HHO®, and GWO®!.,

Test suite and parameter settings

The implemented Algorithm (GPC) has been executed using the MATLAB R2023b software environment. The
computational experiments have been conducted on a laptop equipped with an Intel® Core (TM) i5-12500H
operating system at a clock speed of 2.50 GHz, x64-based processor, 64-bit operating system, along with 16
GB of RAM with the Windows 11 operating system. In this subsection, the effectiveness of the proposed GPC
algorithm in relation to the benchmark challenges of CEC 2019, and real-world challenge (Parameter Extraction
of PEMFC models) is evaluated. The present study tests the effectiveness of the proposed GPC algorithm
compared to several MH algorithms such as BWOA®, CDO%, COA, FPA%, HHO®, YDSE®, and ZOA>! on
benchmark challenges (CEC 2019). For real-world challenges (parameter extraction of PEMFC models), the
GPC algorithm is tested and compared with several MH algorithms, including ZOA%!, SCHO%, PSA%3, SABO™,
YDSE®*, EDO, RIME®*’, CDO%, COA®’, HHO®, and GWO®!. The parameter settings for all algorithms were
obtained from their respective papers and are displayed in Table 2.

S.No. | MH Algorithms | Parameters

1 BWOAS cp;ﬁ;riiztﬁsﬁti a(g;r();)Of(;) E}utation rate (mr) = 0.4;

5 CDO% speled ofbetal :‘Rand (1, 270,900) km/s; speed of gamma= Rand (1, 300,000) km/s;
radius of radiations propagation = Rand (0, 1); speed of alpha = Rand (1, 16,000) km/s;

3 COA™» random real number (r) =[0,1]; Integer (I) =[1,2]

4 FPAS%® A=15¢e=[01],p = 0.5

5 HHO® T1, 72,73, andq = [0,1]; escaping energy (E) = Linearly decreased from 2 to 0

6 YDSE® Distance between two slits (d) =5 x 107 m; Wavelength (A) =5 x 107 %m
I=0.01 m; Constant value (&) = 0.38

7 ZOA>! constant number (R) = 0.01; probability (Ps) = [0,1]; random number(r) = [0,1]

3 SCHO rand, T1,72,T3,T4,75, 76,77, T8, T9, 710, 711, 112 = [0,1];
sensitive coefficient u = 0.388; sensitive coefficient m=0.45; € = 0.003

9 PSA% rand, ri,r2,rs =[0,1]

10 SABO** rand, ri q =[0,1]

11 EDO% ¢, rand,=[0,1]; random number (f) = [- 1,1]

12 RIME®” r1 = [~ 1,1];degree of adhesion(h)= [0,1]; 72 = [0,1]

13 GWO°! « = Linearly decreased from 2 to 0; rand, r1, r2 = [0,1]

14 GPC sp, I, and F are self-adaptive

Table 2. Parametric details of different algorithms.
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The CEC 2019 benchmark challenges

The effectiveness and efficiency of the proposed GPC optimization algorithm are tested on CEC 2019 benchmark
challenges by statistically measuring the mean values, as well as standard deviation (Std), and comparing them
with those obtained with other MH algorithms. Seven MH optimization algorithms such as CDO%, COA¥,
BWOA®, FPA®, HHO®, YDSE®® and ZOA>! were utilized to evaluate and compare the outcomes achieved by
the proposed GPC optimization algorithm. To ensure a fair comparison between GPC and other algorithms, all
are subjected to population size of 50 as well as the maximum number of iterations = 500 with 51 runs.

The results presented in Table 3 show that, for challenge GPC1, the FROBLGJO algorithm exhibits
outstanding results compared to other MH algorithms. The results for challenges GPC5, GPCs, GPCy4, GPCs,
GPC'%, and GPCy, the outcomes obtained from the GPC algorithm demonstrate superior results compared to
other MH techniques in terms of mean as well as Std values. The outcomes obtained for challenges G PCs,
GPCs, and GPC\o, the ZOA algorithm shows outstanding performance compared to the other MH methods.
Therefore, based on the results obtained from the experimentation, it can be observed that of the 10 numerical
test challenges, the GPC algorithm shows effectiveness in solving 6 challenges. The ZOA algorithm has shown
competence in addressing three challenges, but the FROBLGJO method has been successful in addressing
only one challenge. The analysis indicates that the GPC algorithm has superior performance in addressing
the numerical challenges of CEC 2019. Therefore, it can be concluded that the GPC optimization algorithm is
generally the most effective algorithm to address these challenges.

Statistical testing:

Furthermore, two statistical tests, the Friedman rank test and the Wilcoxon rank sum test, have been
employed in statistical analysis. The statistical results for each test challenge are presented as loss(l), win(w), or
tie(t). Here, “win” (w) is used to represent a scenario in which the test algorithm outperforms the GPC algorithm
and is denoted by the symbol “+”. On the other hand,, the term “loss” (1) refers to a scenario in which the test
algorithm performs worse than the GPC algorithm and is denoted by the symbol “-”. The symbol “=” is used to
indicate a tie (t), indicating that both algorithms are statistically similar in relation to each other. The ranking
of all algorithms is shown in the third row of Table 3 for every challenge, denoted by w/l/t. Furthermore, the
f-rank is determined for every function, and subsequently, the mean of all rankings is given. Every algorithm has
received a distinct ranking according to its performance. The mean rank of each algorithm is shown in the 2"¢
last row of Table 3. In addition, an overall f-rank has been computed based on the outcomes of all challenges,
displayed in Table 3. The table indicates that the GPC technique has been the most effective, achieving the
highest rank (1°*) among all tested MH algorithms.

Convergence profile, Boxplot and Radar profile Analysis: This subsection displays the convergence,
boxplot, and radar profiles of eight MH optimization algorithms such as ZOA, CDO, COA, FPA, BWOA, HHO,
YDSE, and GPC. Figures 5, 6, and 7 demonstrate graphic representations. The GPC algorithm exhibits faster
convergence for challenges, GPC2, GPC3, GPCy, GPCs, GPC7, and GPCy, and are shown in Fig. 5a-i, as
well as 5j, respectively. Figure 6 shows the box plot that represents the fitness values of the COA, YDSE, CDO,
HHO, ZOA, FPA, BWOA, and GPC optimization algorithms. The findings indicate that the proposed GPC
algorithm is economically efficient regarding fitness values, shown by its significantly low median fitness value.
This can be observed from the box plots presented in Fig. 6a-j, respectively. Furthermore, the radar plot in Fig.
7 shows the ranking of the 12 MH optimization algorithms on the CEC2019 test function. The GPC exhibits a
smaller darkening area in comparison to the other MH optimization algorithms. This is visible from the radar
charts Fig. 7a-k, respectively. The above outcomes demonstrate the performance of the GPC algorithm.

Quantative analysis of GPC algorithm
In this section, we perform a qualitative and quantitative analysis of the GPC algorithm. We are using a set of
seven classical benchmark problems®, as given in Table 4.

The evaluation of the proposed algorithm uses a set of informative visualization graphs that collectively
provide a comprehensive understanding of its search behavior and performance. The exploration-exploitation
balance plot tracks how the algorithm transitions from global exploration to local exploitation over the course
of iterations. The convergence graph (on a logarithmic fitness scale) illustrates how quickly and effectively
the algorithm minimizes the objective function, offering insight into its optimization speed and stability. The
fitness distribution plot captures the spread and concentration of fitness values throughout the population,
revealing how diversity evolves during the search. Principal Component Analysis (PCA) trajectories visualize
the movement of the population in the reduced-dimensional solution space, highlighting patterns in search
directionality and convergence. Lastly, the agent-wise fitness plot shows the performance of the individual agents
in iterations, indicating how the population collectively approaches optimal solutions.

From the results in Fig. 8, the proposed GPC algorithm shows robust and adaptive performance. The
exploration-exploitation plots confirm that GPC maintains diversity early on and shifts to focused search
later, preventing premature convergence. The convergence curves show a consistent reduction in fitness values,
suggesting effective optimization over time. The fitness distribution plots reveal that GPC encourages both
competition and refinement within the population, with the spread narrowing as better solutions dominate. The
PCA trajectories exhibit structured movement toward specific regions in the search space, reflecting guided and
non-random exploration. Finally, agent-wise fitness trends indicate population-level improvement and strong
convergence toward high-quality solutions. Together, these observations affirm that GPC is well-equipped to
handle complex, high-dimensional optimization problems with both efficiency and stability.

Results on parameter extraction of PEMFC models
In this section, we address the parameter extraction challenges of four distinct PEMFC models utilizing
the GPC algorithm to perform a comprehensive performance analysis of the proposed GPC algorithm. The

Scientific Reports |

(2026) 16:1116 | https://doi.org/10.1038/s41598-025-14297-1 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

panunuo)

VN 00/60/10 00/60/10 00/60/10 00/90/%0 00/60/10 00/80/20 00/60/10 00/60/10 00/60/10 00/60/10 WM
4 I 13 L I 6 ¥ 8 9 01 S| Yuery
- - - + - - - - - - | yues-d

ot odH
00+dCST10°€ SO+d9%°L 00+d¥Cv'C C0~-H049°L | 00+H98C0°€ | T0-d¥€969 | T10-d¥190°'T 20-8S16'8 T10-d%€0T'T | CO0—-HL8%8°6 | 10-HSSSEC PIS
10+48496°T | 90+d1¥S'T 10+9€66°1 10+34€0°C | TO+HIS68'T | 10+H20%0°C | T0+HEYIOT | TO0+HILEOT | T0+HI9€0°C | T0+H1S¥0°C | 10+408C0°C | UBIN
I 11 L 9 S € z ¥ 6 o1 8| Yuery
- - - - - - - - - — | yuer-d

50dD
¢0-dcTL61'8 | 80+HICT'T CO+HEVLT T10+dT€6'T | 00+d1146C | T0-H0SOT'C | T0-HZL6L0°C | 00+HSSO8'T | CO+HT990°S | €0+H6EEH T | CO+ISOITY PIS
00+H9€79°C | 80+HL0T'6 10+4¥%¥5°9 T10+49CT°T | 00+HI¥CT9 | 00+HISET'E | 00+HPSI6°C | 00+HIO8E'S | €0+H98ITT | €0+HP0C0'E | TO+H6L0TO | UBSA
T 11 € 4 T 8 L S 6 ot 9| Yuel-j
- - - + - - - - - — | yuer-d

SOd D
10—-4900¢¥y | 80+d88CY 10-94TT°¢ 10-9€68°L | T0-HI6¥T'S | 10-HOVV6'c | T0-HLZLSTS | 10-d969¥%°¢ 10-99%¥6°¢ | T0-d8€EI9°¢ | 10-dCTE9¢'S PIsS
00+H2€0€'S | 60+H61TT 00+dEVE'S 00+d¥%6S°S | 00+ALESTY | 00+HS6€8'S | 00+HST9L'S | 00+H¥659°S 00+406%0°9 | 00+d9C8T'9 | 00+d¥I9L'S Ues\l
1 11 8 i4 € S L T 9 01 6 | uelj
- - - - - - - - - — | yues-d

L0d D
10+9SS20°L | 90+d8TS¥ C0+a¥Pv0'e CO+HITOT'T | TO+HS9ST'9 | TO+HE0T0'T C0+d8888'1 | TO+HIVES'L CO+H88EE'T | TO+HS8SI'T | TO+H6086'C 12N
T0+H2€90°S | 90+HS0T°6 c0+dTes’s 00+H4098°C- | TO+ATOVL L | CO+HTS8TT | CTO+H0€S9'€ | TO+HLEO0'S | CO+HOSLY'C | CTO+H6100°8 | CO+HBIC6'S | UBIN
€ 11 L 6 1 14 4 8 S 0TI 9| uelj
- - - + - + - - - - | yues-d

9DdD
TO-ATT1LEL | €0+HE90°C 00+dCEL'T 10-9€€S9 | TO-H9LEV'6 | T0-HI6L9F | 00+H888T'T | 10-HEL80°L T10-996S48 | 10-dS€99°S | 00+d6TCE’T 128
00+H9%8€'6 | VO+HIP8’C T10+3€T10°T T10+39€0°T | 00+AT06L°L | 00+HCV68°6 | 00+HSPTE6 | T0+HEEECO'T | 00+HTEC6'6 | T0+HL990°T | 10+HE900°T | UBIN
1 11 S 9 14 4 L € 6 01 8 | uelj
- - - - - - - - - — | yuer-d

9DdD
C0-dIIET'e | $0+99T¥'8 10-49428¥ 10-d42T°¢ | 10-4080CT°€ | CO-d¥LST'8 | T10-d¥€96% | CO-H9C€0'8 | T0-HS961°L | CTO-H0S¥6'8 | 10-dS¥€0°L PIsS
00+H6VST'T | SO+3€L9T 00+4869°1 00+46€6'T | 00+H91€9°T | 00+H00€E'T | 00+HB89€E'C | 00+HE6LS'T | 00+HLOSL'E | 00+H99S8°¢C | 00+HEGIOT | UBSIN
1 1T L S 9 4 14 € 0T 6 8| Yyuelj
- - - - - - - - - — | yuer-d

"OdH
00+H8VEL’L | SO+H6VI'T €O+HVYO'T C0+H80CS'8 | 00+HdC0L6'L | TO+HEITI99 | T10+H06¥9°C | €O+HIPSOE CO+HI9ET | T0+HS0I8'8 | €0+HO6IEE 128
10+d7801°% | SO+HSLY € c0+d9.LL°6 CO+d8CS'C | CO+HHCTSEL | TOHHTLYL'S | CTO+H9089'T | CO+HSH8E'T | ¥O+AFOIOT | €O+HOE8Y'S | €O+H60ES T | UBSIAN
1 11 6 € L 4 9 4 8 S o1 | uel-}
- - - - - - - - - — | yues-d

€0dD
PI-H00S€'T | SO+H61S'8 ¥0-d201°¢ 80-dSFT'E€ | 90-d99¢6'8 | OI-HIEE69 | 90-H8SOV'8 | 80-HOF¥6'6 | FO-HELLY'T | 90-d8T0¢'€ | ¥O-H6LST9 PIS
T0+d20LT'T 90+d1€T T0+H0LT°T T0+H04T°T | TO+ATOLTT | TO+HATOLTT | TO+ACOLT'T | TO+HCOLT'T | TO+HCOLT'T | TO+ATOLTT | TO+HTOLTT | UBIN
1 11 € L 9 14 S o1 8 6 T | uel}
- - - - - - - - - - | yues-d

OdD
S0—HSS6S°6 | VO+H6IL'T 20-dT6¢'8 10-dTev'c | T0-H6CSL'6 | €0-H0906F | €0-HB8666'L | 00+d69TS E 10-d9020°¢ | 00+40000°0 | 10—-H0698°¢ PIS
T0+HEVELT | 90+dS8ET 10+9¥%€L°T T0+IP8LT | T0+H68€LT | TO+HSSEL T | TO+HLSEL'T | TO+H099CT'C | TO+HOI6LT | T0+HLF86'T | T0+HTESLT | UBN
11 L I S € 6 4 01 8 4 9| uelj
+ + + + + + + + + + | yuer-d

odo
00+H0000°0 | SO+HL6S'T €0+d¥0CY Y0+d6€8°L | SO+AESTY'T | 90+HS618'T | €O+HOI8%' ¥ | 80+H999¥%'C | SO+HLOVIT'T | 00+H6L69°C | SO+HIE61'T 128
0T+H0000°'T SO0+H6S°T Y0+407SV SO+H0SE'T | POHHSEYT'L | 90+HTIS8'E | PO+HO6SI0'S | 80+HVIOE'S | SO+HTTSO'T | $0+H6L89°6 | SO+HY6TS'T | UBIN

2dD | 6001-HAf | 5OD-TI0UT | LVINNIV 1sVOZ ccdSAX 0wOHH 9oVdd VOO 3s0dD «VOMA sagua[reyD

nature portfolio

| https://doi.org/10.1038/s41598-025-14297-1

(2026) 16:1116

Scientific Reports |


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

‘[p1oq] ur a1e sanfea jueoyrudig ‘swajqoid [esrowNu (6107 D) 2SUSeYd NSIP-QQT Y3 10 SAUW02INO [edTIsTIeIS € Aqe

11

01

NUeI-J [[eI2AQ

¥0'C

09°01

0¢'s

09'S

0L'e

0L

08°L

0,8

089

Yuel-j aferoay

nature portfolio

| https://doi.org/10.1038/s41598-025-14297-1

(2026) 16:1116

Scientific Reports |


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

12 Ve Vi o
5% 10 Convergence Curve 16000 Convergence Curve
FPA
14000 —2z0A
4 |——COA
—— BWOA
12000 YDSE
HHO
3 10000 _—_cpo
o = —crc
-1 £ s000
2| 6000
4000 |+
1k
2000 |
0 - ol
0 100 200 300 400 500 0 100 200 300 400 500

Iteration Iteration

(a) Convergence profile GPCy

(b) Convergence profile GPC;

Convergence Curve

3 10* Convergence Curve

0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration

(d) Convergence profile GPCy (e) Convergence profile GPCs

Convergence Curve

Convergence Curve
2500 85 L

2000

1500

Best

1000

500

0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration

(g) Convergence profile GPCy

Convergence Curve

(h) Convergence profile GPCg

0 100 200 300 400 500
iteration

(j) Convergence profile GPCyy

Convergence Curve
12707

12.706

12705

Best

12.704 f{

12.703

12702 L L L -
0 100 200 300 400 500
Iteration

(c) Convergence profile GPC3

Convergence Curve

FPA
15 [——ZO0A
—CoA
14 —— BWOA|
YDSE
13 HHO
—Cpo
—t1

Best

0 100 200 300 400 500
Iteration

(f) Convergence profile GPCq

Convergence Curve

6000

5000

4000 |

Best

3000 |-

2000

0
0 100 200 300 400 500
Iteration

(i) Convergence profile GPCy

Fig. 5. Convergence profiles for the CEC 2019 numerical challenges of FPA, ZOA, COA, BWOA, YDSE, HHO,
CDO, and GPC MH algorithms.

decision to integrate these three algorithms was driven by their complementary strengths in addressing the
two-fold challenge inherent in PEMFC parameter estimation: (1) Navigating a complex, high-dimensional
and multimodal error surface and (2) achieving precise convergence to the true parameters while avoiding
premature stagnation. The parameters that require extraction in the model mentioned above have been listed in
Table 5 741i2020accurate®®%. In addition, this table clearly represents the upper as well as lower limits for each
parameter. The traditional Ballard Mark V, NedStack PS6 PEMFC model, Temasek, and the BCS 500 W PEMFC
model, with their datasheets shown in Table 6>>%3-8° The other Statistical error tests such as SSE (Minimum ,
mean, and standard deviation (Std)), IAE, MBE, MAE, MSE, and RMSE values for all four PEMFC stacks are
presented in Table 7.

To evaluate the performance of the GPC algorithm, several well-recognized MHA are compared, including
ZOA®!, SCHO®?, PSA%3, SABO>, YDSE®®, EDO%¢, RIME®, CDO%, COA*, HHO®, and GWQ®!. To ensure a
fair comparison between GPC and other algorithms, all are subjected to the population size (P= 50) and the
maximum number of iterations (T = 400) with 30 runs.
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Fig. 6. Boxplot profiles for the CEC 2019 numerical challenges for FPA, ZOA, COA, BWOA, YDSE, HHO,
CDO, and GPC MH algorithms.

NedStack PS6 PEMFC model
The effectiveness of the GPC algorithm is demonstrated using a commonly highlighted PEMFC (NedSstack
PS6) in existing literature, with a rated power of 6kW. The data specifications and upper and lower limits are
presented in Tables 6 and 5. The experimental Power (Pezper), experimental voltage (Vezper), estimated voltage
(Vestimat), model-estimated power (Pestimat), and IAE values obtained by the GPC algorithm for NedStack
PS6 PEMFC 8. The optimal parameter outcomes determined by different algorithms for the NedSstack PS6 stack
are presented in Table 9. Table 9 show that when considering the same function evaluations, certain methods,
such as ZOA>!, SCHO?, PSA®, SABO>, YDSE®?, EDO, RIME*, CDO%#, COA*, HHO®, and GWO®!, achieve
a range of optimal SSE values. However, the GPC algorithm obtains the lowest SSE value (2.26768E + 00) for
the NedSstack PS6 PEMFC stacks. This gives further confirmation that the parameter values obtained by the
proposed GPC algorithm are very precise and reliable. Figure 9a clearly shows that the model curves (IV) closely
align with the experimental data for NedStack PS6, and there is little variation between them.
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Fig. 7. Radar plot for the CEC 2019 numerical challenges of FPA, ZOA, COA, BWOA, YDSE, HHO, CDO,
and GPC MH optimization algorithms.

Furthermore, the curves of the PEMFC model (PI) are shown in Fig. 9b, which provides additional evidence
that the GPC algorithm is accurate in analyzing the parameters of the NedStack PS6 PEMFC. Temperature
variations are simulated at four different temperatures: 303, 323, 343, and 353K are presented in Fig. 10a and
b for the I-P and I-V curves, respectively. These simulations are carried out under constant partial pressures
(thatis, Pr2 / Po2 = 1.000 / 1.000 (bar)). It has been observed that as the temperature rises, there is an increase
in the output voltage of the stack. Figure 11a and b illustrate the model curves stated in terms of the I-P and
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Func.

Mathematical formulation

Range

Dim.

F1 f(x)

n 2
xZ;
2w

[—100, 100]™

30

F2

2l + 1T

[-10,10]"

30

F3

max; |z;|

[—100, 100]™

30

F4

YL, e+ 0317

[-10,10]"

30

F5

s

1

z} + rand[0, 1)

[-1.

28,1.28]" |30

F6

_ 1 2 3
= 71000 E i HCOS(

')+1

[—600, 600]™

30

F7

f(z1,@2) = [1+ (1 + x2 + 1)%(19 — 142y + 327 — 1das + 62122 + 323)]

-2,

2]? 2

X[30 4+ (221 — 3x2)2(18 — 32z1 + 1222 + 48z5 — 36z 22 + 27x3)]

Table 4. Classical benchmark functions (F1-F14).
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Fig. 8. Quantitative analysis of GPC.
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Bound | éa & ée &a Reon () | g A
LB - 1.19969E+00 | 1.0000E-3 3.6000E-05 | - 2.6000E-04 | 1.0000E-04 | 1.3600E-02 | 1.0000E+01
UB - 8532E-01 5.0000E-03 | 9.8000E-05 | -9.5400E-05 | 8.0000E-04 | 5.0000E-01 | 2.4000E+01

Table 5. Practical upper and lower limits for the parameters’ estimation.

Ballard_Mark-V | BCS500-W | NedStack PS6 | Temasek

N 35 32 65 20

Jmaz 15 0.469 5 1.5
Pya(bar) |1 1 1 0.5
1 (um) 178 178 178 51

A(em?) | 506 64 240 150
T (K) 343 333 343.15 323
Poa(bar) |1 0.2075 1 0.5

Table 6. Specifications of, Temasek, Ballard_Mark-V, BCS500-W as well as NedStack PSé6.

I-V curves. Initially, the I-P and I-V curves are graphed at pressures (Pr2/ Po2) of 1.000/1.000, 2.000/1.500,
3.000/2.000 and 4.000/2.500 bar, respectively. These measurements were taken at a constant stack temperature
of 343 K and are shown in Figure 11a and b respectively. When the supply pressures of the (Pr2/ Po2) increase,
there is an observed enhancement in the output voltage of the stack. Using a similar simulation environment,
Figure 12, illustrates the average convergence curves of 400 iterations of the proposed GPC, ZOA, SCHO, PSA,
SABO, YDSE, EDO, RIME, CDO, COA, HHO, and GWO for the NedStack PS6 PEMFCs stack. Figure 13 shows
the ranges of the final objective function values after 30 runs of the GPC, ZOA, SCHO, PSA, SABO, YDSE,
EDO, RIME, CDO, COA, HHO, and GWO algorithms for the extraction of parameters from the NedStack
PS6 PEMECs stack. Based on the size of the box and the number of outliers, it is evident from Fig. 13 that
the proposed GPC algorithm outperforms the other 11 algorithms. The results of the Friedman ranking test
are given in Table 10. The Friedman test assesses algorithms based on their overall performance, with GPC
achieving the highest average rank of 2.103926. Table 10, clearly indicates that the GPC algorithm has achieved
the highest ranking (7°* rank). The Wilcoxon ranking test results indicate that GPC significantly outperforms
the others, evidenced by 465 winner, no losses, and minimal p-values ranging from 2.03E-07 to 3.02E-11.
The Friedman and Wilcoxon ranking test clearly demonstrates that the GPC algorithm is superior in terms of
precision as well as accuracy compared to the MH algorithms.

Ballard Mark V

The Ballard mark V PEMFC stack comprises 35 individual cells that are connected in series with a membrane
thickness of 178 pum. The upper and lower limits and data specifications and are presented in Tables 5 and 6. The
experimental Power (Peeper), experimental voltage (Vezper), estimated voltage (Vestimat), model-estimated
power (Pestimat), and IAE values obtained by the GPC algorithm for Ballard Mark V PEMFC 11. The GPC,
ZOA, SCHO, PSA, SABO, YDSE, EDO, RIME, CDO, COA, HHO, and GWO, MH optimization algorithms have
been utilized in order to achieve optimal parameter extraction for this model. The resulting values, which have
been found to be the best according to the SSE objective, have been organized and presented in Table 15. From
this table, the GPC shows superior performance along with the lowest objective function (SSE) value of 0.813912
compared to other MH algorithms. Figure 14a and b clearly demonstrate that the model curves (I-V as well
as I-P curves) closely align with the experimental data for the Ballard Mark V PEMFC stack and there is little
variation between them. This gives further confirmation that the parameter values obtained by the proposed
GPC algorithm are very precise and reliable.

Furthermore, the temperature variations are simulated at four different temperatures: 303, 323, 343, and
353K with constant partial pressures (that is, Pr2 / Po2 = 1.000 / 1.000 (bar)) are shown in Fig. 15a and b for the
I-P and I-V curves, respectively Table 12. It has been observed that as the temperature rises, there is an increase
in the output voltage of the stack. The pressure variations are then simulated at four different temperatures: (Pr2
/ Po2) of 1.000/1.000, 2.000/1.500, 3.000/2.000 and 4.000/2.500 bar with constant temperature (ie 343K) are
shown in Fig. 16 (16a and b) for I-P and I-V curves, respectively. When the supply pressures of the (Pr2/ Poz2)
increase, an enhancement is observed in the output voltage of the stack. Using the same simulation environment,
Fig. 17, shows the convergence curves obtained from 400 iterations and 30 runs of 12 algorithms (GPC, ZOA,
SCHO, PSA, SABO, YDSE, EDO, RIME, CDO, COA, HHO and GWO) used to extract the parameters of the
Ballard Mark V PEMFC stack. Figure 18 illustrates the box plot curves obtained from 30 runs of the GPC,
ZOA, SCHO, PSA, SABO, YDSE, EDO, RIME, CDO, COA, HHO and GWO algorithms utilized to extract the
parameters from the Ballard Mark V PEMEC stack. Based on the size of the box and the number of outliers, it is
evident from Fig. 18 that the proposed GPC algorithm outperforms the other 11 algorithms. Table 13 presents the
Friedman and Wilcoxon rank test of various MH algorithms for the Ballard Mark V PEMFC stack. The Friedman
test assesses algorithms based on their overall performance, with GPC achieving the highest average rank of
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Objective function
S.no | Algorithm | Minimum \ Mean \ Std IAE MBE MAE | MSE RMSE
CASE I : NedStack PS6
1 |GPC 2267687 | 2.281716 | 0.012378 |6.411737 | 0.00577 | 0.213725 | 0.07559 | 0.274936
2 [zoA 2.268365 | 2.370253 | 0.092782 | 6.393405 | - 0.00013 | 0.213114 |0.075612 | 0.274977
3 | SCHO 2.447831 | 3.366872 | 0.588855 | 6.713101 | -0.00712 | 0.22377 |0.081594 | 0.285647
4 |PSA 2.349586 | 4.20473 | 3.007886 |6.781009 | 0.039266 | 0.226034 | 0.07832 | 0.279856
5 | SABO 295804 | 3.696988 | 0.410863 | 7.380344 |0.011761 |0.246011 |0.098601 | 0.314008
6 | YDSE 2.403032 | 2.550963 | 0.112013 | 6.499391 | —0.01088 | 0.216646 | 0.080101 | 0.283021
7 | EDO 2.50108 | 2.90447 |0.235885 |6.848847 | 0.000606 |0.228295 | 0.083369 | 0.288737
8 | RIME 2285971 | 2.503289 | 0.264613 |6.416289 | - 0.00027 |0.213876 | 0.076199 | 0.276042
9 |CDO 2496433 | 3.197543 | 0.394407 |7.10536 |0.067296 |0.236845 |0.083214 | 0.288469
10 | COA 2482398 [16.329 | 17.96253 | 6.626224 |0.012427 | 0.220874 |0.082747 | 0.287657
11 | HHO 2330158 | 4.1509 | 1.431906 | 6.485056 | — 8.3E-05 |0.216169 | 0.077672 | 0.278697
12 | GWO 2301123 | 3.048242 | 0.594742 | 6.474575 | 0.004843 | 0.215819 |0.076704 | 0.276955
CASE II :Ballard Mark V
1 |GPC 0.813912 | 0.813919 | 1.19E-05 | 2.509658 |3.3E-05 | 0.193051 |0.062609 | 0.250217
2 | ZOA 0.823312 | 0.862624 | 0.023348 | 2.52628 |8.01E-06 |0.194329 |0.063332 | 0.251658
3 | SCHO 0.819595 | 0.890729 | 0.073262 | 2.548133 | —0.01071 | 0.19601 |0.063046 | 0.251089
4 |PSA 0.836537 | 1.305572 | 0.346251 | 2.494412 | - 0.00838 | 0.191878 | 0.064349 | 0.253671
5 | SABO 0953818 | 2.202805 | 1.673595 | 2.708742 | 0.01243 | 0.208365 |0.073371 | 0.27087
6 | YDSE 0.813939 | 0.814728 | 0.000554 | 2.506742 | 0.000483 | 0.192826 | 0.062611 | 0.250221
7 |EDO 0.81439 | 0.827771 | 0.007198 | 2.508804 | - 0.00159 | 0.192985 | 0.062645 | 0.250291
8 | RIME 0.813979 | 0.875387 | 0.076183 | 2.506412 | 0.001574 |0.192801 | 0.062614 | 0.250227
9 |CDO 1781255 | 1.917044 | 0.13879 | 3.707171 | - 0.03599 | 0.285167 | 0.137267 | 0.370495
10 | COA 0.838759 | 7.469678 | 12.59914 | 2.484699 | - 0.00669 | 0.191131 |0.06452 | 0.254008
11 | HHO 0.909931 | 2.171336 | 1.100664 | 2.652076 | - 0.00022 | 0.204006 | 0.069995 | 0.264565
12 | GWO 0.814886 | 0.85447 | 0.032931 |2.505479 |0.002686 |0.192729 |0.062649 | 0.250298
CASE III :BCS 500 W
1 |GPC 0.011699 | 0.011702 | 2.8E-06 | 0.234845 | - 0.00018 | 0.013047 |0.00065 | 0.025494
2 |[zoA 0.012497 | 0.023294 | 0.006145 | 0.273599 |0.000181 |0.0152 | 0.000694 | 0.026349
3 | SCHO 0.012752 | 0.025285 | 0.009964 | 0.306834 | —0.00524 | 0.017046 |0.000708 | 0.026616
4 |PSA 0.027469 | 0.286863 | 0.51951 | 0.507265 | 0.000444 | 0.028181 |0.001526 | 0.039064
5 | SABO 0.044445 | 0.349763 | 0.29687 | 0.696977 | 0.028717 | 0.038721 | 0.002469 | 0.049691
6 | YDSE 0.011704 | 0.011786 | 5.1E-05 | 0.234856 | - 6.5E-05 | 0.013048 | 0.00065 | 0.025499
7 | EDO 0.011908 | 0.013582 | 0.001319 | 0.212715 | 1.46E-05 | 0.011818 | 0.000662 | 0.025721
8 | RIME 0.012326 | 0.019906 | 0.006801 | 0.219671 | —0.0003 | 0.012204 |0.000685 | 0.026168
9 |CDO 1.594396 | 4.382463 | 0.534277 | 4.303728 | 0.239096 | 0.239096 | 0.088578 | 0.29762
10 | COA 0.027964 | 2.199596 | 1.802482 | 0.495684 |0.005031 |0.027538 |0.001554 | 0.039415
11 | HHO 0.028383 | 2.546672 | 1.998167 | 0.533353 |0.000457 |0.029631 |0.001577 | 0.039709
12 | GWO 0.01197  |0.015778 | 0.003935 | 0.21046 |0.001616 | 0.011692 | 0.000665 | 0.025788
CASE IV :Temasek Stack
1 |GPC 0.123277 | 0.123338 | 8.08E-05 | 1.123446 | - 1.1E-06 | 0.080246 | 0.008805 | 0.093838
2 | ZOA 0.123282 [ 0.129403 | 0.005534 | 1.124669 | 4.49E-05 | 0.080333 |0.008806 | 0.09384
3 | SCHO 0.124343 | 0.147219 | 0.017405 | 1.13627 |0.002734 |0.081162 |0.008882 | 0.094242
4 |PSA 0.123313 | 0.208102 | 0.123007 | 1.124563 | - 0.00093 | 0.080326 | 0.008808 | 0.093851
5 | SABO 0.127516 | 0.140673 | 0.017099 | 1.164312 | 0.011565 |0.083165 |0.009108 | 0.095437
6 | YDSE 0.123291 | 0.124988 | 0.002193 | 1.120813 | —0.00047 | 0.080058 |0.008807 | 0.093843
7 |EDO 0.123691 | 0.126943 | 0.002715 | 1.139366 | 0.004234 | 0.081383 |0.008835 | 0.093995
8 | RIME 0123277 [0.12823 |0.007493 | 1.123072 | -0.00015 | 0.080219 |0.008806 | 0.093838
9 |CDO 0.124345 [ 0.13533 | 0.006247 | 1.148625 | 0.004698 | 0.082045 |0.008882 | 0.094243
10 | COA 0.123311 | 0.155337 | 0.043357 | 1.121898 | - 0.00147 | 0.080136 | 0.008808 | 0.093851
11 | HHO 0.127156 | 0.163503 | 0.062332 | 1.139663 | 8.05E-05 | 0.081404 |0.009083 | 0.095303
12 |GWO 0.124193 | 0.134406 | 0.009724 | 1.130645 | - 0.00013 | 0.08076 | 0.008871 | 0.094186
Table 7. Statistical error tests for all four PEMFC stack.
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Ve P

Vemp,er- Vestimat | Pemp,e"‘- Pestimat |
S0 | Vezper | Vaostimat | lexper | Vestimat Pegper | Postimat | Pestimat
1 61.64 62.3281 2.25 - 0.6881 0.688102 138.69 140.2382 —-1.54823 1.548229
2 59.57 59.75513 6.75 -0.18513 0.185129 402.0975 | 403.3471 - 1.24962 1.24962
3 58.94 59.02428 9 -0.08428 0.084285 530.46 531.2186 -0.75856 0.758561
4 57.54 57.47379 15.75 0.066206 0.066206 906.255 905.2123 1.042741 1.042741
5 56.8 56.69627 20.25 0.103726 0.103726 1150.2 1148.1 2.100447 2.100447
6 56.13 56.02413 24.75 0.105865 0.105865 1389.218 | 1386.597 2.620163 2.620163
7 55.23 55.13871 31.5 0.091295 0.091295 1739.745 | 1736.869 2.875788 2.875788
8 54.66 54.60327 36 0.056729 0.056729 1967.76 1965.718 2.042253 2.042253
9 53.61 53.6181 45 -0.0081 0.008097 241245 2412.814 —-0.36437 0.364373
10 52.86 52.93088 51.75 -0.07088 0.070881 2735.505 | 2739.173 - 3.66807 3.66807
11 5191 51.43086 67.5 0.479142 0.479142 3503.925 | 3471.583 32.34209 32.34209
12 51.22 51.01968 72 0.200325 0.200325 3687.84 3673.417 14.42337 14.42337
13 49.66 49.4166 90 0.243396 0.243396 4469.4 4447.494 21.90564 21.90564
14 49 48.62858 99 0.371421 0.371421 4851 4814.229 36.77069 36.77069
15 48.15 48.03503 105.8 0.114974 0.114974 5094.27 5082.106 12.16425 12.16425
16 47.52 47.64218 110.3 -0.12218 0.122181 5241.456 | 5254.933 - 13.4766 13.4766
17 47.1 47.05614 117 0.043856 0.043856 5510.7 5505.569 5.131208 5.131208
18 46.48 46.26479 126 0.215209 0.215209 5856.48 5829.364 27.11634 27.11634
19 45.66 45.46616 135 0.193838 0.193838 6164.1 6137.932 26.16817 26.16817
20 44.85 44.85639 141.8 -0.00639 0.006386 6359.73 6360.635 -0.9055 0.905498
21 44.24 44.03901 150.8 0.20099 0.20099 6671.392 | 6641.083 30.30932 30.30932
22 42.45 43.00232 162 -0.55232 0.552319 6876.9 6966.376 - 89.4758 89.47576
23 41.66 42.151 171 -0.491 0.491001 7123.86 7207.821 -83.9611 83.96112
24 40.68 41.05565 182.3 -0.37565 0.375646 7415.964 | 7484.444 - 68.4803 68.48027
25 40.09 40.39074 189 -0.30074 0.300735 7577.01 7633.849 -56.8389 56.83895
26 39.51 39.70306 195.8 -0.19306 0.193063 7736.058 | 7773.86 -37.8018 37.80178
27 38.73 38.7715 204.8 -0.0415 0.041498 7931.904 | 7940.403 - 8.49872 8.49872
28 38.15 38.06101 211.5 0.088986 0.088986 8068.725 | 8049.904 18.82062 18.82062
29 37.38 37.08209 220.5 0.297911 0.297911 8242.29 8176.601 65.68927 65.68927
30 37 36.58145 225 0.418546 0.418546 8325 8230.827 94.17276 94.17276
IAE (V) 6.411737 1AE (P) 762.7227

Table 8. The Vestimats Pestimat, and IAE values obtained by the GPC algorithm for NedStackPS6 PEMFC.

1.856791. From Table 13, it is clearly observed that the GPC algorithm has achieved the highest rank (7°*). The
Wilcoxon ranking test results indicate that GPC significantly outperforms the others, evidenced by 465 winner,
no losses, and minimal p-values 3.02E-11. The Friedman and Wilcoxon ranking test clearly demonstrates that
the GPC algorithm is superior in terms of precision and accuracy compared to the MH algorithms.

BCS 500 W

The BCS 500-W PEMFC stack operates at a power output of 500 watts as well as current of 30 amperes. The
specifications of the BCS 500-W PEMFC stack are presented in Table 6 and can be found in®*°!. The experimental
Power (Pezper), experimental voltage (Vewzper), the estimated voltage (Vestimat), model-estimated power
(Pestimat), and IAE values obtained by the GPC algorithm for the BCS500-W PEMFC 14. In addition, Table ??
presents the optimal values of the unknown parameters of the BCS 500-W PEMEFC stack obtained by the GPC
algorithm and compared to the other MH optimization algorithm. Also, the GPC algorithm obtained the lowest
objective function (SSE) value (0.011699). This clearly shows its significant superiority compared to the other
MH optimization algorithms reported in the literature. This illustrates that an accurate representation of the BCS
500-W PEMEFC stack has been achieved. Figure 19a and b clearly illustrate that the model curves (I-V and I-P
curves) closely align with the experimental data for the BCS500-W PEMFC stack, and there is little variation
between them. The convergence curves have been obtained from 400 iterations and 30 runs of 12 algorithms
utilized to extract parameter values from the BCS500-W PEMFC stack. Figure 22 illustrates the convergence
curve of the objective function. Here, it is clear that the convergence curve is continuous and rapidly reaches its
final value.

Furthermore, the simulation results of the GPC algorithm-based PEMFC model have been obtained in
varying temperature and pressure scenarios. Figure 20a and b display the I-P and I-V characteristics of this
PEMFC model at different temperatures (303, 323, 333, and 353 K). The pressures Pr2/ Po2 have been kept
constant (1.000/0.2075 (bar)). It is clear that the voltage as well as the power of the PEMFC increase as the
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Objective
S.no | Algorithms | function | ¢, &b &c Ea Reon () | B A
1 GPC 2.267687 | -0.98488 | 0.003634 | 9.7E-05 |-9.5E-05 | 0.0001 0.0136 12.63762
2 ZOA 2.268365 | -0.85372 | 0.002416 | 3.72E-05 | - 9.5E-05 | 0.000101 0.014562 | 12.65956
3 SCHO 2.447831 —-1.1748 | 0.004054 | 8.73E-05 | - 9.6E-05 | 0.000104 0.043096 | 13.08828
4 PSA 2.349586 | -0.97677 | 0.002754 | 0.000036 | -9.5E-05 | 0.0001 0.0136 12.71295
5 SABO 2.95804 -0.8532 | 0.002551 | 4.65E-05 | - 9.5E-05 | 0.00021 0.113416 | 15.18183
6 YDSE 2.403032 | -0.88439 | 0.003159 | 8.36E-05 | - 9.5E-05 | 0.000153 0.030912 | 13.3186
7 EDO 2.50108 -1.18621 | 0.003575 | 5.07E-05 | - 9.6E-05 | 0.000154 0.0136 13.31647
8 RIME 2.285971 -0.99467 | 0.003116 | 5.78E-05 | - 9.5E-05 | 0.000116 0.0136 12.79751
9 CDO 2.496433 -0.8532 | 0.002396 | 0.000036 |-9.5E-05 |0.000104 0.077835 13.31888
10 COA 2.482398 | -0.8532 |0.003002 |7.88E-05 | -9.5E-05 | 0.0001 0.066014 | 12.96025
11 HHO 2.330158 | -0.8532 |0.002555 |4.71E-05 | - 9.5E-05 | 0.000134 0.021973 | 13.05329
12 GWO 2.301123 -0.95114 | 0.002844 | 4.74E-05 | - 9.5E-05 | 0.00011 0.034966 12.93686
13 GSAS® 2.58 -0.874 0.0033487 | 8.93E-05 | — 9.54E-05 | 0.0002388 0.0565881 | 18.8
14 MRFO»% | 2.88702 -1.05602 | 0.00313 4.61E-05 | - 9.58E-05 | 0.000166 0.0547 20.188
15 SSA® 2.5711 —-0.989 0.00333 7.41E-05 | - 9.54E-05 | 0.000256 0.0426 20.5
16 VSA% 2.34 -0.895 0.00335 9.75E-05 | - 9.54E-05 | 0.000103 0.0429 13.0
17 GA® 2.41 -1.1997 |0.003417 | 3.6E-05 | -9.54E-05 | 0.0001376 0.0359 13.00
18 PS03 4.050 -0.8532 | 0.002604 | 4.9E-05 |-9.54E-05 |0.0001396 0.5 23.00

Table 9. Parameter estimation and statistical measures comparison of various MH algorithms for
NedStackPS6 PEMFC.
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Fig. 9. Model curves of NedStack PS6 PEMFC stack.

temperature of the PEMFC increases. Furthermore, Fig. 21a and b show the PI and PI characteristics of this
PEMFC model at different pressures (1.000 / 0.21075, 1.5 / 1, and 2.5 / 1.000 bar) and maintained constant
temperature (333K). It is significant to note that an increase in the Prr2 / Po2, results in an increase in the voltage
and power output of the PEMFC. As a result, these pressures can be precisely adjusted to achieve the desired
output power from the PEMFC according to particular environmental conditions. Friedman and Wilcoxon rank
tests of various MH algorithms for BCS500-W PEMEFC are given in Table 16. From Table 16 and box plots in
Fig. 23, it is clearly seen that the GPC algorithm obtained the lowest Friedman rank (1.970593), and based on
the Friedman rank, the GPC algorithm achieved I rank. The Wilcoxon ranking test results indicate that GPC
significantly outperforms the others, evidenced by 465 winner, no losses, and minimal p-values ranging from
3.02E-11 to 4.50E-11. The Friedman and Wilcoxon ranking test clearly demonstrates that the GPC algorithm is
superior in terms of precision and accuracy compared to the MH algorithms.

Temasek Stack

The Temasek Stack PEMFC stack comprises 20 individual cells that are connected in series with a membrane
thickness of 51 ym®. The upper and lower limits and data specifications and are given in Tables 5 and 6. The
experimental Power (Peeper), experimental voltage (Vezper), estimated voltage (Vestimat), model-estimated
power (Pestimat), and IAE values obtained by the GPC algorithm for Temasek PEMFC are displayed in Table
17. The GPC, ZOA, SCHO, PSA, SABO, YDSE, EDO, RIME, CDO, COA, HHO, and GWO, MH optimization
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Fig. 10. NedStack PS6 stack performance plots based on GPC algorithm parameters extraction under different
operating conditions.
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Fig. 11. NedStack PS6 stack performance plots based on GPC algorithm parameters extraction under different
operating conditions.

algorithms have been used in order to achieve optimal parameter extraction for this model. The resulting values,
which have been found to be the best according to the SSE objective, have been organized and displayed in Table
18. From this table, the GPC shows superior performance along with the lowest objective function (SSE) value of
0.12327677 compared to other MH algorithms. Figure 24a and b clearly illustrate that the model curves (I-V as
well as I-P curves) closely align with the experimental data for the Temasek Stack PEMFC stack and there is little
variation between them. This gives further confirmation that the parameter values obtained by the proposed
GPC algorithm are very precise and reliable.

Furthermore, temperature variations are simulated at four different temperatures: 303, 323, 333, and 353K
are shown in Fig. 25a and b for I-P and I-V curves, respectively. These simulations are carried out under constant
partial pressures (that is, Pr2 / Po2 = 0.5/ 0.5 (bar)). It has been observed that as the temperature rises, there
is an increase in the output voltage of the stack. Initially, the I-P and I-V curves are graphed at pressures (Pr2/
Po2) 0f 1.000/0.2075, 1.5/1.000, and 2.500/1.500 bar, respectively. These measurements were taken at a constant
stack temperature of 323 K and are presented in Fig. 26a and b respectively. When the supply pressures of the
(Pm2/ Po2) increase, there is an observed increase in the output voltage of the stack. Using the same simulation
environment, Fig. 27, shows the convergence curves obtained from 400 iterations and 30 runs of 12 algorithms
(GPC, ZOA, SCHO, PSA, SABO, YDSE, EDO, RIME, CDO, COA, HHO and GWO) used to extract the
parameters of the Temasek PEMFC stack.

Figure 28 shows the box plot curves obtained from 30 runs of the GPC, ZOA, SCHO, PSA, SABO, YDSE,
EDO, RIME, CDO, COA, HHO and GWO algorithms used to extract the parameters from the Temasek PEMFC
stack. Based on the size of the box and the number of outliers, it is clear from Fig. 28 that the proposed GPC
algorithm outperforms the other 11 algorithms. Table 19 presents the Friedman and Wilcoxon rank test of
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parameter extraction.

S.No | Algorithm | Friedman’s rank, | Rank | Winner | Loser | Wilcoxon’s p value
1 GPC 2.103926 1

2 ZOA 2.911832 2 465.00 |0 2.0300E-07
3 SCHO 8.513548 7 465.00 |0 3.0200E-11
4 PSA 8.857507 9 465.00 |0 3.02E-11

5 SABO 10.23156 11 465.00 |0 3.0200E-11
6 YDSE 5.114724 4 465.00 |0 3.0200E-11
7 EDO 7.539125 6 465 0 3.02E-11

8 RIME 3.593653 3 465.00 |0 3.4700E-10
9 CDO 8.546709 8 465.00 |0 3.0200E-11
10 COA 11.83236 12 465.00 |0 3.0200E-11
11 HHO 9.230874 9 465.00 |0 3.0200E-11
12 GWO 6.890946 5 465.00 |0 4.9800E-11

Table 10. Friedman and Wilcoxon rank test of various MH algorithms for NedStackPS6 PEMFC.

various MH algorithms for the Temasek PEMFC stack. From Table 16 it is clearly seen that the GPC algorithm
obtained the lowest Friedman rank (2.503926), and based on the Friedman rank, the GPC algorithm achieved
I°* rank. The Wilcoxon ranking test results indicate that GPC significantly outperforms the others, evidenced
by 465 winner, no losses, and minimal p-values < 0.05 in all cases. The Friedman and Wilcoxon ranking test
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|Vewper— |
Vemp.e'r' Vestimat | Pemp,”_ Pestimat |
SNo. | Vexper | Vestimat | Lexper | Vestimat Pexper | Postimat | Pestimat
1 33.25 32.96755 5.06 0.28245 0.28245 168.245 166.8158 1.429197 1.429197
2 30.8 31.06831 10.626 -0.26831 0.268313 327.2808 | 330.1319 -2.85109 2.851089
3 29.75 29.79399 16.192 - 0.04399 0.043986 481.712 482.4242 -0.71222 0.71222
4 28.7 29.02021 20.24 -0.32021 0.320209 580.888 587.369 - 6.48102 6.481024
5 28 27.73154 27.83 0.268463 0.268463 779.24 771.7687 7.471328 7.471328
6 26.6 26.69303 34.408 -0.09303 0.093029 915.2528 | 918.4537 - 3.20095 3.200947
7 26.25 26.2217 37.444 0.028304 0.028304 982.905 981.8452 1.059801 1.059801
8 252 25.35378 43.01 -0.15378 0.153775 1083.852 | 1090.466 —-6.61387 6.613871
9 24.5 24.54563 48.07 - 0.04563 0.045634 1177.715 | 1179.909 —-2.19362 2.193617
10 23.8 23.17304 56.166 0.62696 0.62696 1336.751 | 1301.537 35.21383 35.21383
11 22.05 22.23229 61.226 -0.18229 0.182285 1350.033 | 1361.194 -11.1606 11.1606
12 21 20.95113 67.298 0.048867 0.048867 1413.258 | 1409.969 3.288636 3.288636
13 19.6 19.74738 71.852 -0.14738 0.147384 1408.299 | 1418.889 -10.5898 10.58983
1AE (V) 2.509658 IAE (P) 92.26599

Table 11. The Vestimat, Pestimat, and IAE values obtained by the GPC algorithm for Ballard Mark V PEMFC.
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Fig. 14. Model curves of Ballard Mark V PEMFC stack.
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Fig. 15. Ballard Mark V stack performance plots based on GPC algorithm parameters extraction under

different operating conditions.
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Objective
S.no | Algorithms | function | &, &b Ee €a Reon (2) | B A
1 GPC 0.813912 | -1.01123 | 0.003341 5.85E-05 -0.00017 0.0001 0.015885 | 24.000
2 ZOA 0.823312 | - 0.86073 | 0.002658 4.12E-05 -0.00017 0.000128 0.015728 | 23.99993
3 SCHO 0.819595 | - 1.19969 | 0.003604 3.81E-05 -0.00017 0.0001 0.015343 | 23.9519
4 PSA 0.836537 | - 1.19969 | 0.004007 6.56E-05 -0.00017 0.0001 0.0136 24.000
5 SABO 0.953818 | -1.17202 | 0.003601 4.69E-05 -0.00015 0.000272 0.017743 | 24.000
6 YDSE 0.813939 | - 1.00656 | 0.00367 8.29E-05 -0.00017 0.0001 0.015812 | 24.000
7 EDO 0.81439 -1.05739 | 0.00391 8.93E-05 -0.00017 0.0001 0.015828 | 24
8 RIME 0.813979 | -1.19227 | 0.003697 4.62E-05 -0.00017 0.0001 0.015978 | 24.000
9 CDO 1.781255 -0.8532 | 0.002408 0.000036 - 9.5E-05 0.0008 0.0136 22.96162
10 COA 0.838759 | - 1.19785 | 0.003592 3.6E-05 -0.00017 0.000101 0.0138 23.94841
11 HHO 0.909931 - 1.19965 | 0.003674 4.47E-05 -0.00015 0.000351 0.013687 | 23.99544
12 GWO 0.814886 - 1.18875 | 0.003572 3.81E-05 -0.00017 0.000102 0.016036 | 24.000
13 NNO¥ 0.85361 -0.97997 | 0.003694 9.08710E-05 | - 1.62820E-04 | 0.0001 0.0136 23.000
14 STSA3? 0.85361 -0.8532 | 0.00255805 | 3.60438E-05 | - 1.62828 0.0001 0.0136 23.000
15 ABC-DE* | 0.853607 |- 1.19561 | 0.00421 8.34036E-05 | — 1.62830E-04 | 0.0001 0.0136 23.0000
16 LSA?! 0.8140 -1.0624 | 3.597E-03 | 6.653E-05 - 16.492E-05 | 0.0001 0.0188 23.000
17 MRFO* 0.8533 - 1.19561 | 4.2188E-03 | 8.340E-05 - 1.6280E-04 | 0.0001 0.0136 23.000
18 DO* 0.8292 -0.8532 | 2.869E-03 | 5.933E-05 - 14.75E-05 0.0001 0.0343 23.00

Table 12. Parameter estimation and statistical measures comparison of various MH algorithms for Ballard
Mark V PEMFC.
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Fig. 16. Ballard Mark V stack performance plots based on GPC algorithm parameters extraction under
different operating conditions.

clearly demonstrates that the GPC algorithm is superior in terms of precision and accuracy compared to the
MH algorithms.

Conclusions

This paper presents a novel multi-hybrid optimization algorithm, known as the hybrid Gray Particle Cuckoo
(GPC) algorithm, to identify unknown parameters of the PEMFC stack. Determining the values of the unknown
model parameters (£a, &b, &c» £d> Reons A, and B) is a crucial subject in the discipline of PEMFC research.
However, the complex nature of the PEMFC system makes it a very difficult challenge. Four different commercial
PEMFCs (BCS500-W, Ballard Mark V, NedStack PS6, and Temasek Stack) were examined to determine their
unknown parameters utilizing the GPC algorithm. The precision of the GPC algorithm was validated by the
precise correlation between the results derived from the estimated and experimentally observed results. Statistical
analysis, such as SSE (minimum, mean, and std.), IAE, MBE, MAE, MSE, and RMSE has been performed to
demonstrate the superiority of the GPC algorithm compared to the other 11 MH optimization algorithms
(ZOA, SCHO, PSA, SABO, YDSE, EDO, RIME, CDO, COA, HHO, and GWO). The objective function has been
implemented as the SSE between the estimated and experimental voltage values, and the fitness values for the four
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Fig. 17. The convergence curves obtained from 400 iterations and 30 runs of 12 algorithms utilized to Ballard
Mark V PEMEFC stack parameter extraction.
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Fig. 18. The boxplot curves obtained from 30 runs of 12 algorithms utilized to Ballard Mark V PEMFC stack
parameter extraction.

S.No | Algo | Friedman’s rank | Rank | Winner | Loser | Wilcoxon’s p value
1 GPC 1.856791 1

2 ZOA | 6.406046 7 465.00 |0 3.0200E-11
3 SCHO | 5.9985 6 465.00 |0 3.0200E-11
4 PSA 8.34359 8 465.00 |0 3.0200E-11
5 SABO | 10.04617 9 465.00 |0 3.0200E-11
6 YDSE | 2.878735 2 465.00 |0 3.6900E-11
7 EDO | 4.524407 3 465.00 |0 3.0200E-11
8 RIME | 5.743132 5 465.00 0 3.0200E-11
9 CDO | 10.89223 12 465.00 |0 3.0200E-11
10 COA | 11.05548 10 465.00 |0 3.0200E-11
11 HHO | 10.60452 11 465.00 |0 3.0200E-11
12 GWO | 5.030465 4 465.00 |0 3.0200E-11

Table 13. Friedman and Wilcoxon rank test of various MH algorithms for Ballard Mark V PEMFC.

PEMEFC stacks (BCS500-W, Ballard Mark V, NedStack PS6 and Temasek) are 0.011699, 0.813912, 2.267687, and
0.123276775, respectively, using the GPC algorithm. In addition, all test cases undergo a thorough evaluation of
the effects of altering the input operating parameters of the PEMFCs, such as temperature and supply pressures.
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|Veaper— | Pesper—
Vemp,e"‘- Vestimat | Pemp."- Pestimat |

SNo. | Vexper | Vestimat | lexper | Vestimat Pegper | Postimat | Pestimat

1 29 28.99747 0.6 0.00253 0.00253 17.4 17.39848 0.001518 0.001518
2 26.31 26.30615 2.1 0.00385 0.00385 55.251 55.24291 0.008086 0.008086
3 25.09 25.09376 3.58 -0.00376 0.003763 89.8222 89.83567 -0.01347 0.013472
4 24.25 24.25483 5.08 —0.00483 0.004831 123.19 123.2145 —0.02454 0.024542
5 23.37 23.37564 7.17 - 0.00564 0.005636 167.5629 | 167.6033 —-0.04041 0.040408
6 22.57 22.58485 9.55 -0.01485 0.014847 215.5435 | 215.6853 -0.14179 0.141793
7 22.06 22.07157 11.35 -0.01157 0.01157 250.381 250.5123 -0.13132 0.131317
8 21.75 21.75871 12.54 -0.00871 0.008712 272.745 272.8542 -0.10925 0.109248
9 21.45 21.46152 13.73 -0.01152 0.011516 294.5085 | 294.6666 -0.15812 0.158121
10 21.09 20.988 15.73 0.101998 0.101998 331.7457 | 330.1413 1.604423 1.604423
11 20.68 20.69477 17.02 -0.01477 0.014773 351.9736 | 352.225 -0.25143 0.251429
12 20.22 20.23125 19.11 -0.01125 0.011248 386.4042 | 386.6191 —-0.21494 0.214941
13 19.76 19.77119 21.2 -0.01119 0.011193 418912 419.1493 -0.2373 0.237296
14 19.36 19.36625 23 - 0.00625 0.006252 445.28 445.4238 —-0.14379 0.143786
15 18.86 18.86664 25.08 - 0.00664 0.00664 473.0088 | 473.1753 —-0.16652 0.166523
16 18.27 18.27478 27.17 —-0.00478 0.004777 496.3959 | 496.5257 -0.1298 0.129803
17 17.95 17.95327 28.06 -0.00327 0.003272 503.677 503.7688 —-0.09182 0.091822
18 17.3 17.29256 29.26 0.007436 0.007436 506.198 505.9804 0.217583 0.217583
IAE (V) 0234845 | IAE (P) 3.686110144

Table 14. The Vestimat, Pestimat, and IAE values obtained by the GPC algorithm for BCS500-W PEMFC.

Objective
S.no | Algorithms | function | &, 133 Ee Eaq Reon (2) | B A
1 GPC 0.011699 | -0.86884 | 0.002854 | 7.64E-05 -0.00019 | 0.0001 0.016136 | 20.88789
2 ZOA 0.012497 | -0.87852 | 0.002506 | 5.22E-05 -0.00019 | 0.000251 0.015992 | 21.74465
3 SCHO 0.012752 | - 1.11427 | 0.003124 | 4.63E-05 -0.00019 | 0.000316 0.015802 | 22.46367
4 PSA 0.027469 -0.8532 | 0.002895 | 8.21E-05 —-0.00019 | 0.0008 0.0136 24
5 SABO 0.044445 | - 1.19969 | 0.004177 | 0.000098 -0.00019 |0.000171 0.016426 | 24
6 YDSE 0.011704 | -1.0637 |0.003122 | 5.6E-05 -0.00019 | 0.000104 0.016102 | 20.86594
7 EDO 0.011908 -1.1366 | 0.003719 | 8.03E-05 —-0.00019 | 0.000188 0.015965 | 21.61097
8 RIME 0.012326 | - 0.98938 | 0.003546 | 9.76E-05 —-0.00019 | 0.000168 0.015823 | 21.36505
9 CDO 1.594396 | - 0.93087 | 0.002753 | 6.21E-05 -0.00016 | 0.000659 0.015624 | 20.01874
10 COA 0.027964 | - 1.19969 | 0.004181 | 0.000098 -0.00019 | 0.0008 0.0136 24
11 HHO 0.028383 | -0.97184 | 0.003249 | 8.23E-05 —-0.00019 | 0.000372 0.015149 | 20.19897
12 GWO 0.01197 -1.02867 | 0.002867 | 4.63E-05 -0.00019 | 0.000112 0.016284 | 21.38155
13 HBAZ 0.0118 -0.952 0.0032 7.40E-05 -0.000072 | 0.000543 0.016 20.1
14 ICA% 0.011856 | -0.9086 | 0.0024798 | 4.4583E-05 | — 0.000193 | 0.000246 0.016238 | 22.662
15 VSDE? 0.01214 - 1.1970 | 0.0042330 | 9.7990E-05 | - 0.000192 | 0.0001108 0.0157 20.194
16 $SO% 0.01219 —-0.8532 | 0.0048115 | 9.433E-05 | -0.000192 | 0.0003499 0.01589 | 23.000
17 AHA? 0.011831 —-1.0497 | 0.0029 3.84E-05 —-0.00019 |0.00018 0.01636 | 22.0516
18 ShSO* 7.1889 -1.018 0.0023151 | 5.24E-05 -0.00012 | 0.000750 0.0136 18.8547
19 Cs%? 5.5625 - 1.045 0.0027788 | 4.59E-05 —-0.000139 | 0.0008 0.0136 18.4944

Table 15. Parameter estimation and statistical measures comparison of various MH algorithms for BCS 500 W
PEMEFC.

In addition to the PEMFC extraction challenges, the performance of the proposed algorithm has been tested
using the CEC 2019 challenges, and the results achieved by the GPC algorithm have been compared with other
MH optimization algorithms (FPA, BWOA, FROBLGJO, CDO, COA, HHO, ZOA, ARNMRA, YDSE, as well
as jDE100) to demonstrate its superiority. Additionally, a nonparametric test analysis (Friedman and Wilcoxon
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Fig. 21. BCS 500 W stack performance plots based on GPC algorithm parameters extraction under different
operating conditions.
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Fig. 22. The convergence curves corresponding to BCS500-W PEMFC stack parameter extraction.

S.No | Algorithm | Friedman’s rank | RANK | Winner | Loser | Wilcoxon’s p value
1 GPC 1.970593 1

2 ZOA 6.311832 6 465.00 |0 4.5000E-11
3 SCHO 6.780215 7 465.00 |0 3.0200E-11
4 PSA 9.39084 8 465.00 |0 3.0200E-11
5 SABO 9.898222 9 465.00 |0 3.0200E-11
6 YDSE 2.814724 2 465.00 |0 3.0200E-11
7 EDO 4.472459 4 465.00 |0 3.0200E-11
8 RIME 5.26032 5 465.00 |0 3.0200E-11
9 CDO 12.58004 12 465.00 |0 3.0200E-11
10 COA 11.03236 11 465.00 |0 3.0200E-11
11 HHO 10.49754 10 465.00 |0 3.0200E-11
12 GWO 4.357613 3 465.00 |0 3.0200E-11

Table 16. Friedman and Wilcoxon rank test of various MH algorithms for BCS500-W PEMFC.
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Fig. 23. The boxplot curves obtained from 30 runs of 12 algorithms utilized to BCS500-W PEMFC stack
parameter extraction.
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[P R
Ve“‘p’”- Westmomi | Pe“”’."- 12ttt |
SNo. | Vexper | Vestimat | lezper | Vestimat Peaper | Pestimat | Pestimat
1 17.8316 17.93615 1.91584 | —0.104545056 | 0.104545 34.16249 | 34.36278 —-0.20029 0.200292
2 17.0572 17.10754 6.30236 | - 0.050340604 | 0.050341 107.5006 | 107.8179 -0.31726 0.317265
3 16.6501 16.67785 10.7842 | - 0.027747647 | 0.027748 179.558 179.8572 -0.29924 0.299236
4 16.2495 16.23595 17.364 0.01355424 0.013554 282.1563 | 281.921 0.235356 0.235356
5 15.9291 15.88514 23.9438 | 0.043958036 0.043958 381.4032 | 380.3507 1.052522 1.052522
6 15.5553 15.4775 32.8122 | 0.077798612 0.077799 510.4036 | 507.8509 2.552744 2.552744
7 15.3016 15.20048 39.392 0.101116044 0.101116 602.7606 | 598.7775 3.983163 3.983163
8 15.048 15.17284 40.0672 | - 0.124835175 | 0.124835 602.9312 | 607.933 -5.0018 5.001796
9 14.801 14.67338 52.6469 | 0.127616904 0.127617 779.2268 | 772.5081 6.718634 6.718634
10 14.5273 14.41849 59.2267 | 0.108814114 0.108814 860.404 853.9593 6.444701 6.444701
11 14.2336 14.16067 65.9019 | 0.072925389 0.072925 938.0213 | 933.2154 4.805922 4.805922
12 14.0066 13.99067 70.2884 | 0.015931862 0.015932 984.5015 | 983.3817 1.119825 1.119825
13 13.7597 13.81959 74.6749 | - 0.059888779 | 0.059889 1027.504 | 1031.976 -4.47219 4.472189
14 13.4526 13.64697 79.0614 | - 0.194373056 | 0.194373 1063.581 | 1078.949 -15.3674 15.36741
IAE (V) 1.123446 IAE (P) 52.57105

Table 17. The Vestimats Pestimat, and IAE values obtained by the GPC algorithm for Temasek Stack PEMFC.

Objective

S.no | Algorithms | function Ea 133 Ee Ea Reon () | B A

1 GPC 0.123276775 | - 0.9927 | 0.003072 | 5.81E-05 - 9.54E-05 | 0.0001 0.101876 | 10

2 ZOA 0.12328198 | - 0.86374 | 0.002357 | 3.65E-05 - 9.54E-05 | 0.0001 0.102076 | 10.00082
3 SCHO 0.124342719 | - 1.01632 | 0.003146 | 5.82E-05 - 9.55E-05 | 0.000109 0.100392 | 10

4 PSA 0.123312657 | - 0.8532 | 0.002317 | 3.60E-05 - 9.54E-05 | 0.0001 0.10238 | 10

5 SABO 0.127516141 | - 0.8532 | 0.002316 | 3.60E-05 - 9.54E-05 | 0.000143 0.095196 | 10

6 YDSE 0.123291279 | - 1.03225 | 0.003767 | 9.74E-05 - 9.54E-05 | 0.0001 0.101588 | 10

7 EDO 0.123691394 | - 1.0783 | 0.003787 | 8.90E-05 —-9.54E-05 | 0.0001 0.103136 | 10

8 RIME 0.123276797 | - 1.09176 | 0.003055 | 3.60E-05 - 9.54E-05 | 0.0001 0.101864 | 10

9 CDO 0.124344819 | - 0.8532 | 0.002337 | 3.73E-05 - 9.54E-05 | 0.0001 0.104545 | 10

10 COA 0.123310904 | - 0.8532 | 0.002317 | 3.60E-05 —-9.54E-05 | 0.0001 0.102109 | 10

11 HHO 0.127156269 | - 0.8532 | 0.002383 | 4.05E-05 - 9.54E-05 | 0.000113 0.115089 | 11.25314
12 GWO 0.124192754 | - 0.91252 | 0.002968 | 6.80E-05 - 9.54E-05 | 0.000117 0.099262 | 10

13 SSO* 1.6481 -1.0299 | 0.0024105 | 4.00E-05 - 9.54E-05 | 0.0001087 0.1274 10.0005
14 FPA3! 0.1881 -0.4838 | 0.001 2.7739E-05 | - 7.57E-05 | 0.0001109 0.1287 11.3223

Table 18. Parameter estimation and statistical measures comparison of various MH algorithms for Temasek
Stack PEMFC.

signed rank test), as well as the box plot, has been performed to verify the precision and reliability of the GPC
algorithm compared to existing algorithms, and it is clear that the GPC algorithm is superior.

The performance variability of GPC in different benchmarks and PEMFC datasets can be attributed to the
interaction between the internal dynamics of the algorithm and the inherent characteristics of the datasets
themselves. In cases where the landscape of the underlying parameters is highly multimodal, with numerous
local optima, GPC tends to outperform standalone algorithms due to its phase-wise integration of exploration
and exploitation strategies. Early stage Lévy flights from CS help escape deceptive basins, while the guided
search of GWO and the convergence strength of PSO allow for effective refinement. This layered adaptability
is particularly effective in data sets with non-linear interdependencies and irregular error surfaces. However, in
scenarios where the optimization landscape is relatively smooth or low-dimensional, simpler algorithms with
fewer control parameters, such as standard PSO or GWO, may yield comparable or better results due to their
lower overhead and faster convergence. Thus, the advantage of GPC becomes more pronounced in complex,
noisy, or ill-conditioned datasets, while its performance may converge to baseline methods in well-behaved or
low-complexity data sets. This suggests a potential avenue for future work, adapting the degree of hybridization
dynamically based on landscape analysis or preliminary fitness landscape sampling.

Future studies should prioritize the validation of the proposed GPC algorithm for different fuel cell
technologies, solar photovoltaic parameter extraction, smart grids, and other real-world applications. The
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Fig. 24. Model curves of Temasek PEMFC stack.
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Fig. 25. Temasek PEMFC stack performance plots based on GPC algorithm parameters extraction under
different operating conditions.

GPC algorithm can also be improved for better solution quality by using new equations for exploration and
exploitation operations. Other important factors can be the introduction of population size reduction, a memory
bank to store previous solutions, and the reduction of computational time for better performance of the proposed
GPC algorithm.
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Fig. 26. Temasek PEMFC stack performance plots based on GPC algorithm parameters extraction under

different operating conditions.
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Fig. 28. The boxplot curves obtained from 30 runs of 12 algorithms utilized to Temasek PEMFC stack
parameter extraction.

Friedman’s

S.No | Algo | rank Rank | Winner | Loser | Wilcoxon’s p value
1 GPC 2.503926 1 - - —

2 GPC 5.611832 4 465 0 6.01E-08
3 SCHO | 9.846882 11 465 0 3.02E-11
4 PSA 10.22417 12 465 0 2.87E-10
5 SABO | 9.231555 10 465 0 3.02E-11
6 YDSE | 4.18139 2 465 0 1.01E-08
7 EDO | 5.772459 5 465 0 3.02E-11
8 RIME | 4.293653 3 465 0 0.000201
9 CDO | 8.213376 7 465 0 3.02E-11
10 COA | 9.032359 8 465 0 1.33E-10
11 HHO | 9.164207 9 465 0 3.02E-11
12 GWO | 7.290946 6 465 0 3.02E-11

Table 19. Friedman and Wilcoxon rank test of various MH algorithms for Temasek PEMFC.
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