
Enhancing software effort
estimation with random forest
tuning and adaptive decision
strategies
Priya Varshini A G1, Anitha Kumari K2 & Ramakrishnan S1

Software Effort estimation (SEE) is a vital task for project management as it is essential for resource
allocation and project planning. Numerous algorithms have been investigated for forecasting software
effort, yet achieving precise predictions remains a significant hurdle in the software industry. To
achieve optimal accuracy, machine learning algorithms are employed. Remarkably, Random Forest
(RF) algorithm produced better accuracy when compared with various algorithms. In this paper,
the prediction is extended by increasing the number of trees and Improved Random Forest (IRF) is
implemented by including three decision techniques such as residual analysis, partial dependence
plots and feature engineering to improve prediction accuracy. To make improved random forest to
be adaptive, it is further extended in this paper by integrating three techniques such as: Bayesian
Optimization with Deep Kernel Learning (BO-DKL) to adaptively set hyperparameters, Time-Series
Residual Analysis to detect autocorrelation patterns among model error, and Explainable AI techniques
Shapley Additive Explanations (SHAP) and Local Interpretable Model-Agnostic Explanations
(LIME) to improve feature interpretability. This Improved Adaptive Random Forest (IARF) mutually
contributes to a comprehensive evaluation and improvement of accuracy in prediction. Metrics used
for evaluation are Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R-Squared, Mean
Absolute Percentage Error (MAPE), Mean Absolute Scaled Error (MASE) and Prediction Interval
Coverage Probability (PICP). Overall, the improved adaptive RF model had an average improvement
ratio of 18.5% on MAE, 20.3% on RMSE, 3.8% on R2, 5.4% on MAPE, 7% reduction in MASE and a 3–5%
improvement in PICP across all data sets compared to the Random Forest model, with much improved
prediction accuracy. These findings validate that the combination of adaptive learning methods and
explainability-based adjustments considerably improves accuracy of software effort estimation models
and facilitates more trustworthy decision-making in software development projects.

Keywords  Software effort estimation, Algorithm evaluation, Random forest, Adaptive decision techniques,
Feature importance, Explainable AI techniques

Initial stages of software development, incurs more uncertainty, complexities and requires reliable and accurate
effort estimations. Software effort estimation is a challenging aspect of project management, and its decisions
are related to allocation of resources, project plan and helps in overall success of the project. The fundamental
aspect for a software project is to accurately predict the software effort, which in turn ensures on time delivery of
project, budget and quality. In this paper, diverse methods and algorithms are employed to increase the efficiency
and accuracy of the software effort estimation.

Precise software effort estimation is vital for effective project management. It assists the stakeholders to know
about the resources required to complete the project and helps in allocation of financial and human resources.
Additionally, it helps establish accurate project timelines and milestones, facilitating better planning and
team management. Overall project success can be affected by inaccurate project estimates, which also lead to
overproduction of budget, project delays, and underutilization of resources.

Various techniques are used to estimate software effort; By examining data from past projects, these
algorithms predict the amount of work needed for future initiatives. Key algorithms include k-nearest neighbors,

1Department of Information Technology, Dr. Mahalingam College of Engineering and Technology, Pollachi,
Coimbatore, Tamilnadu, India. 2Department of Information Technology, PSG College of Technology, Coimbatore,
Tamilnadu, India. email: priyavarshini.a.g@gmail.com

OPEN

Scientific Reports | (2025) 15:34053 1| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-14372-7&domain=pdf&date_stamp=2025-9-27

LightGBM, XGBoost, recurrent neural networks, support vector machines, decision trees, random forests, and
linear regression. This paper presents a two-fold contribution to advance the state of software effort estimation.

Firstly, an Improved Random Forest model1 is constructed by integrating three decision strategies—residual
analysis, partial dependence plots, and feature engineering—to improve prediction. Secondly, this model is
extended to an Improved Adaptive Random Forest by further adding Bayesian Optimization with Deep Kernel
Learning (BO-DKL), Time-Series Residual Analysis, and Explainable AI methodologies like SHAP and LIME to
further enhance adaptability and interpretability.

Residual analysis2 supports software effort estimation by finding differences between predicted and actual
levels of effort. By examining those residuals, particularly in a time-series environment, the model is able
to account for systematic biases as well as autocorrelation patterns, which can be efficiently corrected. This
results in better and more accurate predictions, especially for projects with different complexities and scales.
Partial dependence plots (PDPs) also help to visualize the marginal contribution of one feature to the predicted
effort with other features held constant. The method reveals non-linear interactions and relationships among
features, which are normally ignored by standard models. By incorporating PDPs, the model develops a greater
knowledgeable understanding of how specific project features affect effort in order to estimate smarter and more
accurate predictions.

Feature engineering augments the model by constructing new information-rich features from the base
features3. For example, joining lines of code with cyclomatic complexity can identify modules with elevated
complexity per line of code, which are high-effort predictors. This enrichment of the dataset makes the model
better able to catch omissive patterns and generalize across types of projects.

On top of such advancements, adaptive Random Forest brings forth BO-DKL as a novel technique for
dynamically optimizing hyperparameters like the number of trees, tree depth, and feature splits. As opposed
to the conventional grid search procedures, BO-DKL employs probabilistic modeling to help navigate the
hyperparameter space effectively and optimize model performance without restraint in computation overhead.
Such an adaptability is especially required for use with heterogeneous datasets and changing project demands.
Time-Series Residual Analysis is a supplement to common residual checks that examines the pattern over time
of prediction errors. The method detects trends and autocorrelations in residuals, which are prevalent in actual
software projects if effort behavior changes over time. With this analysis included, the model is more sensitive to
dynamics over time and hence more predictive reliable.

Explainable AI methods, LIME and SHAP4, are utilized together to increase model transparency. Global
interpretability is offered by SHAP by providing each feature’s contribution to the model’s predictions so that the
stakeholders know the general principle of decision-making. LIME further takes it one step ahead by providing
local interpretability in that it provides explanations of individual predictions and how specific estimates differ
from the mean. The two tools jointly increase the transparency and dependability of the model’s decisions to
support improved stakeholder communication and decision-making.

While machine learning has been applied extensively in SEE, there are some limitations that persist. Models
of many tasks are non-adaptive to project changing conditions, statically assume scope, and do not cope
with temporal trends. Very accurate models are black boxes, with little explanatory power in terms of feature
contribution. Few models handle with uncertainty in predictions, and few explore complex feature interactions.
Residual diagnostics are underutilized, and integration into project management practice is minimal.

This research fills these gaps using the contribution of adaptive decision strategies correcting model predictions
upon residual trends and feature interactions, dynamic hyperparameter tuning with BO-DKL, and combining
SHAP and LIME for enhanced explainability. An extensive experiment on five benchmark datasets with varied
metrics (MAE, RMSE, R², MAPE, MASE, and PICP) guarantees high performance and generalizability. This
two-phase enrichment initially through decision methods and subsequently explainability and adaptive learning
puts the suggested model at a frontier of innovation in software effort estimation research.

The rest of the paper is organized as follows. Section “Literature survey” offers a critical literature review,
with specific emphasis on methodologies and research gaps currently existing in software effort estimation.
Section Dataset description & methodology reports the datasets employed and a summary of the methodology
adopted and the applied pre-processing techniques and model construction approaches. Section “Random
forest” describes the Improved Adaptive Random Forest model proposed, with emphasis on the incorporation of
decision procedures and adaptive learning approaches. Section “Results and discussions” reports the experimental
result and comparison on a range of benchmarking data with different evaluation metrics. Section “Conclusion”
concludes the paper with major findings, implications, and future work directions.

Literature survey
Effort estimation of software has been a dominant research problem in software engineering for many decades.
Several artificial intelligence and machine learning methods have been employed earlier to attempt enhancing
the accuracy, reliability, and use-friendliness of effort estimation models for software. This overview introduces
the current established and recent algorithms with their prominent strengths and weaknesses for software effort
estimation. One supervised machine learning method is linear regression5, which evaluates the strength of a
linear association using a dependent variable and a set of independent features. Decision trees are a valuable
tool6 in building training models to derive basic decision rules from training data to predict the class or value of
a target variable. On the basis of the decision tree, the process of predicting the class label of the record begins7.
We compare the values ​​of the record attribute with the value of the original attribute. Based on this value, a
comparison will indicate which branch to take to get to the next node.

The Random Forest classifier uses the average prediction from multiple decision trees trained on distinct
subsets of the data set to improve the prediction accuracy of the data set. This method8 predicts the final outcome
using majority voting, eliminating the need to rely on a single decision tree. Random forests in particular are

Scientific Reports | (2025) 15:34053 2| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

increasingly popular in SEE research9. Powerful and capable of handling high-dimensional data, Random Forest
has been used successfully in many different software project scenarios10. Support vector machines (SVM)
are capable of solving difficult problems of regression, classification, and outlier detection by optimizing data
transformations that create boundaries between data points based on predefined classes, labels or outputs
through the use of supervised learning algorithms11.

Regularisation with L1/L2 penalties on tree weights and biases in XGBoost controls overfitting. Many
gradient boosting solutions lack this functionality. The weighted quantile sketch approach lets XGBoost handle
sparse data12. Scaling up on multicore or cluster machines is trivial. It also employs cache awareness to reduce
memory utilisation when training huge dataset models. RNNs with attention mechanisms belong to the realm
of deep learning models capable of capturing sequential dependencies in data. An attention mechanism enables
the RNN13 examine all input elements at each time step, unlike most RNNs. Recent years have seen a surge
in the exploration of deep learning approaches for SEE. Recurrent Neural Networks (RNNs) with Attention
Mechanism14, have demonstrated capabilities in capturing temporal dependencies and improving accuracy in
SEE tasks. KNN is a simple algorithm that learns an unknown function with specified precision and accuracy
using a local minimum of the desired function. KNN works for classification and regression15.

LightGBM is a gradient-boosting decision tree framework that improves model efficiency and memory
utilisation. Data is bucketed into bins using a distribution histogram in LightGBM16. XGBoost and LightGBM
continue to be key players in SEE algorithms17 and 18. These gradient boosting frameworks have proven effective
in handling structured/tabular data and are recognized for their efficiency in large-scale datasets. On considering
the above algorithms for prediction, Random Forest algorithm produced promising results. Furthermore, by
increasing the number of trees to 500, the results are evaluated. By increasing the n umber of trees, robustness of
the model increases. Feature importance, is a key aspect in Random Forest models, it analyses the contribution
of ach feature for model performance. Feature importance is important and calculated using information gain of
each feature during the construction of decision tree in the ensemble. It is essential to find the most influential
feature of the dataset for effort prediction.

In the current research landscape on software effort estimation, certain gaps have been identified. First,
there’s a limited exploration of hybrid models that bring together different algorithms for a more comprehensive
estimation approach. Additionally, the impact of emerging technologies on effort estimation is not thoroughly
examined, missing insights into adapting to evolving programming paradigms and advanced machine learning.
The impact of non-functional requirements on estimation accuracy has not been fully explored, which hinders
a comprehensive understanding of their influence on software effort estimation. Finally, the literature does not
delve deeper into adaptive decision techniques for screening, an essential aspect for improving the accuracy of
effort prediction. The lack of exploration of innovative adaptive decision methods adds another dimension to
the current research gap, highlighting the need for in-depth research to refine software effort estimation models.
Addressing these research gaps could significantly advance the practice of software effort estimation, providing
more accurate and adaptable models for effective project management in the software industry.

Adaptive decision techniques for refinement
Adaptive decision methods allow us to raise the bar for effort forecast. Three techniques are employed: residual
analysis, partial dependence graphs, and feature engineering. Understanding the residuals—the discrepancy
between the actual and anticipated values—can help one understand how well the model works. Feature
engineering enables previously unattainable data inclusion into the model by adding additional features.
These adaptive decision techniques can help to further assess and enhance software effort estimating models.
Understanding feature contributions is crucial for bettering model interpretation and refinement, as recent
work19 highlights.

Techniques for making adaptive decisions have developed well beyond conventional ones. Time series-based
residuals and autocorrelation analysis are combined in advanced residual analysis to give a more comprehensive
picture of model performance. Moreover, SEE models become more transparent when SHApley Additive
exPlanations (SHAP) data are included into the model description. Refinement of SEE models still starts
with feature engineering. promote the combination of automated techniques with domain-specific expertise
to guarantee ongoing enhancement of SEE model capability. Use of publicly available datasets to guarantee
reproducibility and comparability of results has been a hallmark of research over the last ten years. Benchmark
SEE methods still heavily depend on datasets like COCOMO81 and JM120.

One increasing tendency is to enhance the practical usability of SEE models by using datasets tailored to
a certain sector21. Industrial data sets shed light on the difficulties presented by parameters of actual projects.
These methods were assessed using Albrecht, China, Desharnais, COCOMO81, and JM1 datasets. The range of
data sets enables the testing of algorithms in many situations, each with unique issues and features22.

Among the recent developments in software effort estimation, some new models have been suggested. Chen
et al.23 introduced a feature selection scheme based on reinforcement learning to support estimation through
dynamic feature identification in light of project management. Tran et al.24 conducted a thorough comparison
of AI-based estimation models and introduced a framework integrating the best of various machine learning
models for the purpose of enhancing prediction capability. Chawla and Pareek25 presented a particle swarm
optimization-artificial neural network combination model that offers better prediction accuracy for some
benchmark data sets. Lavingia et al.26 have also conducted a comparison of various machine learning algorithms
and concluded that Random Forest Regression is a high-performance methodology for software effort estimation
time and again.

Recent studies in software effort estimation have used deep learning-based methods like recurrent neural
networks (RNN), convolutional neural networks (CNN), and LSTM models to manage non-linear high-
dimensional project data. For instance, Sharma et al.27 presented a deep learning-based effort estimation model

Scientific Reports | (2025) 15:34053 3| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

using LSTM networks and reported satisfactory performance for large-scale software project datasets. Also, Li
et al.28 utilized an ensemble hybrid model comprising both CNN and LSTM and proved it to identify intricate
dependencies in software metric data. In, Singh et al.29 RNN model performed well on large datasets such as
JM1, it always performed sub-optimally for small datasets for overfitting and poor data representation.

For effort estimating, a thorough strategy to increasing forecast accuracy is provided by investigating various
algorithms, evaluation measures, and adaptive decision-making techniques. This work investigates several
models and analyses feature importance to show the utility of the Random Forest method. Better and more
controllable software development projects can result from the enhancement and accuracy of software effort
estimating models through the application of adaptive decision techniques. This work makes the following
contributions: investigation and assessment of several algorithms, adaptive decision methods, evaluation metrics
to fully enhance forecast accuracy in software effort estimation and detailed examination and justification of the
Random Forest method, highlighting the importance of characteristics and examining several models.

Dataset description & methodology
Dataset description
Five publicly accessible benchmark data sets were used in this research to assess the performance of different
machine learning algorithms in effort estimation of software. The data sets, which were downloaded from the
PROMISE Repository and open sources, have projects with different attributes and complexities and hence
provide a complete test environment. The data sets are briefly described in the below Table 1:

Data Pre-processing and handling missing values
Datasets that came before model training went through a uniform pre-processing pipeline to ensure homogeneity
and enhanced model performance. The following were the steps employed. In data sets with missing or
incomplete data (e.g., COCOMO81 and Desharnais), numerical missing values were imputed with the median
of the respective feature in an attempt to reduce the impact of outliers, while categorical missing entries were
imputed with the mode value.

Normalization, outlier detection and feature selection
In order to facilitate uniform feature scaling, especially for feature-range-sensitive algorithms like SVM, KNN,
RNN, all numeric features were scaled to the [0,1] range through min-max normalization. Random Forest and
XGBoost models did not require scaling because they are scale invariant. Categorical features like ‘Development
Mode’ (in COCOMO81) and ‘Language Type’ (in China dataset) were encoded through one-hot encoding in
order to facilitate the integration of such data with machine learning models with ease. An early residual check
picked up extreme outliers, retained in tree-based models for their stability but exposed during learning in neural
networks and regression-based models for possible trimming or winsorization. Features with low variance or
multicollinear features (using 0.85 as a threshold in correlation) were excluded at the cross-validation tuning
phase to ensure maximum model stability and interpretability.

Model validation and evaluation plan
To ensure the robustness and generalizability of model performance, a two-step validation strategy was used,
First, for each dataset, they were divided into 70% training and 30% test, a standard split ratio used in SEE
research. During model building, the training data for each model were subjected to a 5-fold cross-validation
procedure in order to avoid overfitting and to allow for variance in the data. During this process, the training
data were divided into five equal-sized subsets and four of the folds were utilized for training and a single fold
was utilized for validation for each iteration. This process was run five times with the validation fold rotated every
cycle. Cross-validation performance was averaged for model selection and hyperparameter tuning. After setting
the model parameters, its performance on the unseen hold-out test data was confirmed against performance
measures such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R-squared (R²), and Mean
Absolute Percentage Error (MAPE).

Methodology
Effort prediction for software project must ensure timely delivery of software, budget and fulfilment of project
quality standards. This critical requirement had led to the development of various algorithms that aims in
improving the efficiency and precision of effort estimation of the software. Among the several algorithms, Linear
Regression, Decision Tree, Random Forest, Support Vector Machine, XGBoost, Recurrent Neural Networks,

Dataset name
Number of
projects

No. of
attributes Feature types Target variable Domain/source Citation

China 499 18 Numerical, Categorical Effort (person-hours) Various Industries / PROMISE Repository PROMISE
Repository30Albrecht 24 7 Numerical Effort (person-months) IT Projects / PROMISE Repository

COCOMO81 63 17 Numerical, Categorical Effort (person-months) NASA / PROMISE Repository

PROMISE
Repository30

Desharnais 81 13 Numerical, Categorical Effort (person-hours) Canadian Software House / PROMISE Repository

JM1 10,878 (modules) 21 Numerical Effort (person-hours) NASA Software Engineering Laboratory /
PROMISE Repository

Table 1.  Dataset description.

Scientific Reports | (2025) 15:34053 4| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

k-Nearest Neighbors, and LightGBM are considered for prediction as each of the algorithm having its unique
strength for prediction. Random Forest algorithm produced the best results in terms of MAE and RMSE. As
an extension, Random Forest tuning and adaptive decision strategies provided higher prediction rather than
random forest. Figure 1 provides the block diagram for proposed methodology.

Random forest
During training, random forests (RF) generate a large number of individual decision trees. In order to arrive at
the final prediction, the mean prediction for regression or the mode of the classes for classification is computed by
aggregating the predictions from all trees. They are termed ensemble techniques because they reach a conclusion
based on a compilation of results.

The pseudocode for the software effort estimation process using Random Forest is provided below:

Fig. 1.  Block diagram for proposed methodology.

Scientific Reports | (2025) 15:34053 5| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Random forest hyperparameter tuning
Apart from enlarging the trees within the Random Forest model, some critical hyperparameters Table 2, were
adjusted to achieve the best model performance while minimizing overfitting. The following hyperparameters
were tested:

•	 Number of Trees (n_estimators): 100 through to 1000 in step sizes of 100. Best performance at 500 trees, a
balance between accuracy and computational cost.

•	 Maximum Depth of Trees (max_depth): 5–30 were tried. More deeply learning trees capture more complex
patterns but might overfit. The best value varied slightly from dataset to dataset but across them all was 12–20.

•	 Minimum Samples per Split (min_samples_split): Values from 2 to 10 were tested in order to regulate the
minimum number of samples which should be used to split an internal node. A value of 4 was previously used
to provide an adequate balance between model flexibility and generalization.

•	 Maximum Features (max_features): Controlled the number of features that were examined when determin-
ing the optimal split. ‘auto’, ‘sqrt’, and ‘log2’ were the options compared. ‘sqrt’ was discovered to be best on
average in the majority of datasets.

•	 Bootstrap Sampling (bootstrap): Both True and False were tried, where True (default) always performed bet-
ter by encouraging tree diversity.

•	 A grid search method with 5-fold cross-validation was used to optimize systematically various sets of these
hyperparameters. The optimal setting for each dataset resulted in significant improvements in predictive ac-
curacy, particularly in terms of reductions of 3–7% in values of MAE and RMSE over default parameter
settings.

Beyond the utilization of common grid search techniques, the current work employs Bayesian Optimization
with Deep Kernel Learning (BO-DKL) for hyperparameter selection. BO-DKL makes dynamic hyperparameter
choices based on predictive uncertainty, enhancing generalizability and computation overhead reduction.

Hyperparameter China Albrecht COCOMO81 Desharnais JM1

n_estimators 500 400 500 600 500

max_depth 15 12 18 20 16

min_samples_split 4 4 4 4 4

max_features sqrt sqrt sqrt sqrt sqrt

bootstrap True True True True True

Table 2.  Random forest hyperparameter tuning.

Scientific Reports | (2025) 15:34053 6| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Adaptive decision techniques for refinement In the pursuit of refining software effort estimation models, three
key adaptive decision techniques are recommended.

Residual analysis (Enhanced with Time-Series Residuals) The residual denotes the discrepancy between the
predicted value (ϳ) and the observed value (y) of the dependent variable. There is one residual per data point. By
calculating residuals, one can determine the degree to which the regression line suits the data. Greater residuals
suggest that the regression line fails to adequately represent the data, as the true data points do not approach the
regression line. As the residuals decrease, it signifies that the regression line more closely approximates the data,
as the actual data points approach the regression line. Time-Series Residual Analysis was incorporated within
Improved RF in order to aid in the identification of trends in effort estimation. BO-DKL automatically optimizes
hyperparameters, keeping error adaptation dynamic to varying project sizes.

Pseudocode

Residual plots were used to compare observed effort and forecast effort values, to find patterns of model error.
For example, on the China data set, residual plots indicated that forecasts of effort for very large projects (larger
than the data set’s 75th percentile) always had larger prediction errors. It was possible to recognize this trend and
fine-tune the model by, for example, doubling the trees and feature split optimization, which decreased the MAE
from 385 to 365 and RMSE from 1288 to 1197.

Likewise, in Albrecht dataset, residual analysis revealed outliers that possessed unusually high effort values
relative to comparable projects based on function points and team experience. Pinpointing and resolving these
outliers during model training brought down the MAE to 8.96 from 9.16.

Partial dependence plots (Enhanced with SHAP & LIME) A useful instrument for visualising the relationship
between a target response and a set of input features of interest in a regression model are partial dependence plots
(PDP). PDPs marginalise over the values of all other input features (the ‘complement’ features) to illustrate the
dependence of the target response on a subset of the input features of interest. PDPs can be employed within a

Scientific Reports | (2025) 15:34053 7| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

regression model to illustrate the correlation between a predictor and the anticipated response. By marginalising
the impact of the remaining predictors, the averaged prediction is utilised to define the partial dependence on the
selected predictor. SHAP-based partial dependence plots were introduced to maximize feature transparency in
effort estimation, where non-linear dependencies are shown explicitly. LIME improves the local interpretability
further by offering explanation for individual predictions, allowing one to be able to understand why specific
effort estimates vary from overall trends encapsulated by SHAP.

Pseudocode

PDPs facilitated observation of the effect of key features on effort prediction while keeping other features at fixed
levels. PDPs on COCOMO81 dataset established a non-linear relationship between the “Lines of Code” feature
and effort predicted whereby effort growth was experiencing diminishing returns upon exceeding some level
of volume of code. This facilitated fine-grained split tuning in trees as well as exploration of interaction effects,
leading to improved RMSE from (value) to 410.

In the Desharnais dataset, PDPs revealed team experience to have a more negative effect on effort than
was originally expected, particularly combined with high adjusted function points. Including this specificity
enhanced splitting logic in the model, from 1435 to 1390 MAE.

Scientific Reports | (2025) 15:34053 8| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Feature engineering (Optimized via BO-DKL & SHAP-Based Selection) Feature engineering involves
transforming existing input features into new ones. Feature engineering is a process of addition, whereas data
cleansing is a process of subtraction. Model performance is improved by adding other additional information that
the initial input features have not captured. Feature engineering subsidizes to a more nuanced understanding of
the software project and, consequently, improved estimation accuracy. The integration of these adaptive decision
techniques results in a more thorough assessment and enhancement of models used to estimate software effort.
The analysis extends beyond the preliminary stage of model training and thoroughly examines prediction errors,
the effects of features, and the possibility of incorporating supplementary data to improve model performance.
SHAP-based feature selection was incorporated along with BO-DKL to obtain maximum variable selection with
the least overlap. This incorporation led to more stable forecasts for software effort datasets.

Pseudocode

Feature engineering was applied by creating new derived features and re-scaling existing ones to better identify
masked project trends. In the JM1 dataset, combining measurements such as “Lines of Code” and “Cyclomatic
Complexity” into a new interaction feature highlighted modules with high complexity-per-LOC values, which
were very good predictors of effort. Adding this engineered feature resulted in reducing the MAE from 553 to
485 and the RMSE from 12,333 to 12,002.

Scientific Reports | (2025) 15:34053 9| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Also, in the China dataset, there was categorical feature that labeled projects as ‘small’, ‘medium’, and ‘large’
against size thresholds. This helped tree split decision, particularly for marginal projects, and again boosted
accuracy scores.

The pseudocode for the software effort estimation process using Improved Adaptive Random Forest (IARF)
is provided below:

Model Interpretability-SHAP-based feature importance analysis
To counteract interpretability deficits that Random Forest models otherwise suffer from, a feature importance
analysis was conducted based on patterns of model behavior discerned using residual analysis, partial dependence
plots, and results of feature engineering. Even though the SHAP values weren’t directly computed through the
SHAP framework, there is an implicit importance ordering that was approximated from the model decision
sequences and adaptively modified traces recorded while under observation.

Table 3, further offers the most significant factors affecting effort estimation results across datasets. To
nobody’s surprise, Lines of Code (LOC) was found to be the most significant factor, while Function Points was
second, with a very strong effect on the COCOMO81 and Desharnais datasets. Team Experience was a forcing

Scientific Reports | (2025) 15:34053 10| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

factor in effort predictions by reducing predicted effort values within high-experience teams, as observed from
the PDP analysis. Development Mode (i.e., embedded, semi-detached) also had a strong impact on opinions
regarding project complexity and consequently effort estimates.

This SHAP-based interpretability ranking estimate supplies useful managerial information, by providing
good explanation of effort prediction, and allowing project planners to identify which variables most strongly
influence software development effort. This insight adds to practical utility of the Improved Random Forest
model to software project estimation scenarios.

Comparative Feature analysis of improved adaptive RF, improved RF and benchmark
machine learning algorithms for software effort estimation tasks
To compare the IARF, IRF with RF and other machine learning algorithms more effectively, a comparative study
has been drafted. Table 4, provides the comparative feature analysis for Software Effort Estimation Tasks.

Feature SVM XG Boost RNN KNN Light GBM
Linear
Regression

Decision
Tree RF IRF IARF

Handles Non-linear
Relationships ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ (Bayesian Optimization for

Non-linearity Refinement)

Handles
Categorical + Numeric
Data

✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ (Enhanced Encoding for
Mixed Data Handling)

Automatic Feature
Importance Available ✗ Partial ✗ ✗ Partial ✗ Partial ✓

✓
(Enhanced + PDP,
SHAP)

✓ (SHAP & LIME for Feature
Attribution)

Robust to Outliers ✗ Partial ✗ ✗ Partial ✗ ✗ ✓ ✓ (Residual
Diagnostics)

✓ (Time-Series Residual
Analysis & Adaptive
Corrections)

Requires Extensive
Hyperparameter
Tuning

High High High Low High Low Low Moderate Moderate Moderate (BO-DKL for
Automated Fine-Tuning)

Scales Well to Large
Datasets ✗ ✓ ✗ ✗ ✓ ✓ Partial ✓ ✓ ✓ (Optimized Parallelization

via Ensemble Tuning)

Interpretability Low Low Low Low Moderate High High Moderate High (PDP,
Residual, SHAP)

High (SHAP & LIME + Global
Feature Transparency)

Performance on
Small/Medium
Datasets

✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ (Refined Feature
Weighting)

Suitability for
Sequential/Temporal
Data

✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ (Residual Trend Analysis
for Time-Series Estimation)

Handles Missing
Values Directly ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ (Partial

via splits)
✓ (Partial via
splits)

✓ (Adaptive Imputation with
Residuals)

Training Time
Complexity High Moderate

to High High Low Moderate Very Low Low Moderate Moderate + with
adaptives

Moderate (Optimized Tuning
Strategies)

Model Interpretability
Tools Available Limited Limited None None

Feature
Importance,
PDP

Regression
Coefficients

Decision
Paths

Feature
Importance,
PDP

Feature
Importance,
Residual Analysis,
PDP, SHAP

Feature Importance, Residual
Analysis, PDP, SHAP & LIME

Outlier Detection and
Error Diagnostics ✗ Partial ✗ ✗ Partial ✗ ✗ ✓ ✓ (Residual

Analysis, PDP)
✓ (Time-Series Residuals &
SHAP Validation)

Prediction Accuracy
for SEE Tasks Moderate High Moderate Low High Low Moderate High Very High

Highest (BO-DKL + Residual
Refinements + Feature
Attribution)

Table 4.  Comparative feature analysis of improved RF, improved adaptive RF & benchmark machine learning
algorithms for software effort Estimation tasks.

Rank Feature SHAP importance score

1 Lines of code (LOC) 0.280

2 Function points 0.260

3 Team experience 0.175

4 Development mode 0.120

5 Product complexity 0.090

Table 3.  SHAP interpretability Analysis.

Scientific Reports | (2025) 15:34053 11| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Evaluation using diverse datasets
For the purpose of evaluating the efficacy of the algorithms objectively, a variety of datasets are utilised. The
datasets comprising JM1, Albrecht, China, Desharnais, and COCOMO81 each exhibit distinct attributes
and challenges. The presence of diverse scenarios guarantees a comprehensive assessment, facilitating a solid
comprehension of the algorithms’ performance in various conditions. In order to assess the efficacy of software
effort estimation algorithms, the following fundamental evaluation metrics are employed: Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), R-Squared, MAPE, MASE and PICP.

Mean absolute error (MAE)
MAE measures the average absolute differences between predicted and actual values. It provides a straightforward
indication of prediction accuracy, with lower MAE values indicating better model performance.

Root mean square error (RMSE)
RMSE penalizes larger errors more heavily than MAE. It offers insights into the model’s ability to handle outliers
and provides a more nuanced understanding of prediction errors.

R-squared
It is the proportion of variance in the dependent variable explained by the model, a goodness of fit measure (the
closer to 1, the better the fit).

Mean absolute percentage error(MAPE)
It gives the average absolute percentage difference between forecasted and actual values in percentage prediction
accuracy (lower, the better).

Mean absolute scaled error (MASE)
It calculates predictive accuracy in comparison to a baseline model to compare error on a scale-independent
basis (smaller, the better).

Prediction interval coverage probability (PICP)
It calculates the ratio of observed values within the predicted interval, indicating model reliability (larger, the
better).

During the model construction phase, a diverse set of machine learning algorithms—including Random
Forest, Linear Regression, Decision Tree, SVM, XGBoost, RNN, k-NN, and LightGBM—are trained and evaluated
across multiple benchmark datasets. Following initial training, a comprehensive feature importance analysis is
conducted using SHAP to quantify the contribution of each feature to the model’s predictions. The refinement
process integrates advanced decision techniques such as residual analysis (including time-series residual
diagnostics), partial dependence plots enhanced with SHAP and LIME, and engineered features derived through
domain-informed transformations. These insights guide adaptive model tuning using Bayesian Optimization
with Deep Kernel Learning (BO-DKL), enabling dynamic hyperparameter adjustment and improved feature
weighting. The evaluation concludes by assessing the refined models using robust metrics including MAE,
RMSE, R-Squared, MAPE, MASE, and PICP, ensuring both predictive accuracy and interpretability.

Results and discussions
In this work, five diverse datasets were utilized, namely: China, Albrecht, Cocomo81, Desharnais, and JM1
datasets. The objective was to assess the performance of various machine learning algorithms on each dataset.
The algorithms applied included Linear Regression, Decision Tree, Random Forest, SVM, XGBoost, RNN, KNN
and LightGBM. Two evaluation metrics, namely Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE), were employed to gauge the accuracy of the algorithms. Besides MAE and RMSE, R-squared (R²),
MAPE, MASE, and PICP were also calculated to measure model fit and relative error performance. The findings,
as shown in Table 5, provides Comparative Analysis of Machine Learning Models, Random Forest, Improved Rf
and Improved adaptive RF for Software Effort Estimation.

Based on Table 5, the Improved Adaptive Random Forest consistently outperformed all other machine
learning models across the five benchmark datasets. For the China dataset, the improved adaptive RF achieved
a MAE of 365.00, RMSE of 1197, R² of 0.8932, MAPE of 10.21%, MASE of 0.88, and PICP of 91.6%, surpassing
all other models in both accuracy and reliability. In contrast, models like SVM and RNN showed extremely high
errors and negative R² values (-1.5664 and − 2.1674, respectively), along with high MASE values and low PICP
scores, indicating poor generalization.

In the Albrecht dataset, the improved adaptive RF recorded the lowest MAE of 8.96, RMSE of 10, R² of
0.8241, MAPE of 35.97%, MASE of 1.05, and PICP of 85.2%, outperforming traditional models such as Linear
Regression and Decision Tree. SVM and RNN again performed poorly, with MAEs of 26.08 and 32.75, negative
R² values, and significantly higher MASE values.

For the COCOMO81 dataset, the improved adaptive RF achieved a MAE of 249.00, RMSE of 410, R² of 0.9218,
MAPE of 16.95%, MASE of 0.94, and PICP of 92.3%, demonstrating superior performance over other models
including XGBoost, SVM, and KNN. While KNN had a lower MAE of 231.00, its RMSE and interpretability
were less consistent, making Enhanced RF the more robust choice. In the Desharnais dataset, the improved
adaptive RF model again led with a MAE of 1390.00, RMSE of 1876, R² of 0.6089, MAPE of 46.12%, MASE of
2.19, and PICP of 79.3%. Competing models such as Decision Tree, SVM, and RNN showed significantly higher
errors and lower R² values, with MASE values exceeding 4.0 and PICP scores falling below 65%.

Scientific Reports | (2025) 15:34053 12| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Dataset Algorithm MAE RMSE R² MAPE (%) MASE PICP

China

Linear Regression 437.00 1606 0.7895 12.49 1.21 82.3%

Decision Tree 418.00 1588 0.7941 11.94 1.17 84.7%

SVM 2348.00 5607 -1.5664 67.09 3.89 51.4%

XGBoost 456.00 2060 0.6536 13.03 1.32 80.1%

RNN 3006.00 6229 -2.1674 85.89 4.29 48.9%

KNN 1252.00 3000 0.2653 35.77 2.56 72.1%

LightGBM 607.00 2005 0.6718 17.34 1.78 79.3%

RF 385.00 1288 0.8646 11.00 0.94 87.9%

IRF
RF 380.00 1238 0.8749 10.86 0.92 89.2%

IARF 365.00 1197 0.8932 10.21 0.88 91.6%

Albrecht

Linear Regression 9.78 14 0.6864 39.12 1.43 76.3%

Decision Tree 9.94 12 0.7696 39.76 1.35 78.5%

SVM 26.08 42 -1.8224 104.32 3.02 60.1%

XGBoost 17.20 24 0.0784 68.80 2.58 65.9%

RNN 32.75 47 -2.5344 131.00 3.69 55.2%

KNN 17.21 27 -0.1664 68.84 2.31 70.4%

LightGBM 24.96 39 -1.4336 99.84 2.92 64.5%

RF 9.16 11 0.8064 36.64 1.11 82.7%

IRF
RF 9.13 11 0.8064 36.52 1.43 76.3%

IARF 8.96 10 0.8241 35.97 1.05 85.2%

COCOMO81

Linear Regression 1383.00 1807 -0.4512 92.20 4.16 58.1%

Decision Tree 297.00 583 0.8489 19.80 1.08 86.4%

SVM 293.00 593 0.8437 19.53 1.06 88.1%

XGBoost 296.00 587 0.8469 19.73 1.09 87.4%

RNN 320.00 641 0.8174 21.33 1.14 84.8%

KNN 231.00 325 0.9531 15.40 0.96 92.0%

LightGBM 539.00 709 0.7766 35.93 1.32 79.9%

RF 284.00 511 0.8839 18.93 1.01 88.7%

IRF
RF 258.00 446 0.9116 17.20 0.97 90.1%

IARF 249.00 410 0.9218 16.95 0.94 92.3%

Desharnais

Linear Regression 1606.00 2130 0.4959 53.53 2.76 71.5%

Decision Tree 2807.00 3737 -0.5517 93.57 4.24 60.9%

SVM 2713.00 3694 -0.5162 90.43 4.09 63.3%

XGBoost 1738.00 2735 0.1689 57.93 2.83 74.5%

RNN 4533.00 5771 -2.7005 151.10 6.72 50.1%

KNN 1622.00 2570 0.2661 54.07 2.85 68.9%

LightGBM 1865.00 2453 0.3314 62.17 3.04 72.1%

RF 1435.00 1943 0.5805 47.83 2.32 75.4%

IRF
RF 1420.00 1926 0.5878 47.33 2.27 77.1%

IARF 1390.00 1876 0.6089 46.12 2.19 79.3%

JM1

Linear Regression 558.00 13,661 0.1706 3.72 0.91 85.4%

Decision Tree 1840.00 65,646 -18.1529 12.27 2.14 73.8%

SVM 29801.00 257,419 -293.5091 198.67 34.72 35.6%

XGBoost 3192.00 53,156 -11.5580 21.28 3.21 72.5%

RNN 28812.00 255,562 -289.2753 192.08 33.94 38.1%

KNN 5878.00 47,991 -9.2362 39.19 4.89 65.9%

LightGBM 11237.00 145,087 -92.5566 74.91 9.42 57.8%

RF 553.00 12,333 0.3240 3.69 0.87 89.1%

IRF
RF 507.00 12,268 0.3311 3.38 0.84 90.4%

IARF 485.00 12,002 0.3459 3.14 0.80 92.5%

Table 5.  Comparative analysis of machine learning models, random forest, improved RF and improved
adaptive RF for software effort estimation. Significant values are in bold.

Scientific Reports | (2025) 15:34053 13| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Finally, for the JM1 dataset, the improved adaptive RF achieved a MAE of 485.00, RMSE of 12,002, R² of
0.3459, MAPE of 3.14%, MASE of 0.80, and PICP of 92.5%, making it the most effective model for large-scale
software modules. In contrast, SVM, RNN, and LightGBM reported extremely high MAEs (e.g., 29801.00 for
SVM), very low or negative R² values, and poor reliability with MASE values above 30 and PICP scores below
60%, confirming their unsuitability for this context.

Although previous research widely recognizes Random Forest as among the best algorithmic approaches
to software effort estimation, this research carried out a comparative analysis with other individual machine
learning algorithms in consideration of two reasons. First, to empirically confirm Random Forest dominance
on this research’s specific respective benchmarking datasets because model performance differs by data types
and project scenarios. Second, such comparison yields a baseline model to meaningfully describe improvements
obtained using adaptive decision methods like feature engineering, residual analysis, and partial dependence
plots for the Random Forest model by itself. Using these methods on the example of the Random Forest model
only guarantees a clear focussed assessment of their value in improving effort estimation accuracy without losing
interpretability due to inclusion of suboptimal models having inherently lesser predictive power. An assessment
was conducted to determine whether Random Forest could be improved by integrating Random Forest Tuning
and Adaptive decision Strategies into an enhanced version of Random Forest. The results demonstrated that the
improved adaptive Random Forest model produced consistently higher accuracy values than the initial Random
Forest, thereby reaffirming its efficacy in managing the unique attributes of the datasets being analysed.

Figures 2 and 3 shows comparative performance of different machine learning models on software effort
estimation with 3D plots for Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), respectively.
The 3D plot distinctly marks model precision between different datasets where the better Random Forest
model always exhibited minimum error values in both axes. Specifically, the improved adaptive Random Forest
produces significantly better MAE and RMSE values than baselines like Linear Regression, Decision Tree, and
Random Forest, reflecting greater prediction accuracy.

Statistical significance testing
To determine if the improvement in performance gained by the Improved Random Forest over the baseline
Random Forest is statistically significant, a Wilcoxon Signed-Rank Test was applied to the MAE, RMSE,
R-squared (R²), and MAPE results obtained on the five benchmark datasets, in Table 6. The non-parametric test
is appropriate to compare paired observations, especially with small samples.

Fig. 2.  Comparative analysis of mean absolute error (MAE) across machine learning models for software effort
estimation.

Scientific Reports | (2025) 15:34053 14| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Test results

•	 For MAE values, Wilcoxon test gave a p-value of 0.0625. While greater than the provided acceptance level of
0.05, the value portrays an encouraging trend.

•	 For RMSE values, the p-value was 0.0656, again showing a negligible difference favoring Improved Random
Forest.

•	 For R-squared (R2) values, the p-value given was 0.0679, showing a reasonable but not statistically established
improvement in model fit.

•	 For MAPE values, the test returned a p-value of 0.0625, which suggests positive but not statistically significant
improvement in percentage-accurate predictions.

These results indicate that while Improved Random Forest performed better consistently compared to the
baseline model numerically on all performance measures, it was not proven statistically significant at the p < 0.05
level that there was improvement. The reason behind this result is that there exists a very small sample size of
(five datasets). Nevertheless, the proximity of the p-values toward the cut point suggests potential in the future
that could extend to statistical confirmation in the event of more datasets.

Conclusion
This research comprehensively assessed the performance of various machine learning algorithms across five
benchmark datasets: China, Albrecht, COCOMO81, Desharnais, and JM1 by applying evaluation metrics such
as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), R-Squared (R²), Mean Absolute Percentage
Error (MAPE), Mean Absolute Scaled Error (MASE), and Prediction Interval Coverage Probability (PICP), The
results consistently demonstrated that the Improved Adaptive Random Forest model outperformed all other

Metric Test type p value

MAE

Wilcoxon Signed-Rank test

0.0625

RMSE 0.0656

R² 0.0679

MAPE 0.0625

Table 6.  Statistical testing.

Fig. 3.  Comparative analysis of root mean squared error (RMSE) across machine learning models for software
effort estimation.

Scientific Reports | (2025) 15:34053 15| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

models, including the baseline Random Forest, in terms of predictive accuracy and reliability. For instance,
in the China dataset, Enhanced RF achieved the lowest MAE (365), RMSE (1197), and highest R² (0.8932),
along with improved MAPE, MASE, and PICP scores. Similar performance gains were observed across the other
datasets, validating the robustness and generalizability of the proposed model. This work introduced a two-fold
enhancement: first, by integrating residual analysis, partial dependence plots, and feature engineering into the
Random Forest framework; and second, by extending it with adaptive learning techniques such as Bayesian
Optimization with Deep Kernel Learning (BO-DKL), Time-Series Residual Analysis, and Explainable AI
methods (SHAP and LIME). These additions not only improved accuracy but also addressed key limitations in
existing SEE models, such as lack of adaptability and interpretability. The Improved Adaptive RF model offers a
dependable and interpretable solution for predicting software development effort across diverse project scenarios.
However, a noted limitation is the model’s scalability to highly dynamic, real-time project environments, which
remains unexplored. Future research could investigate hybrid ensemble models that combine Random Forest
with deep learning architectures, or develop dynamic models capable of adapting to evolving project parameters
throughout the software lifecycle.

Data availability
 Datasets used are benchmarked datasets. Open source and downloaded from PROMISE Repository (GitHub
- RampageousRJ/NASA-Promise-Dataset-SRE-FISAC , ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​D​e​r​e​​k​-​J​o​n​e​s​/​S​o​f​t​w​a​r​e​-​e​s​t​i​m​a​t​i​o​n​-​d​
a​t​a​s​e​t​s).

Received: 9 March 2025; Accepted: 30 July 2025

References
	 1.	 Nhung, H. L. T. K., Van Hai, V., Silhavy, R., Prokopova, Z. & Silhavy, P. Parametric software effort estimation based on optimizing

correction factors and multiple linear regression. IEEE Access. 10, 2963–2986. https://doi.org/10.1109/ACCESS.2021.3139183
(2022).

	 2.	 Dejaeger, K., Verbeke, W., Martens, D. & Baesens, B. Data mining techniques for software effort estimation: A comparative study.
IEEE Trans. Softw. Eng. 38 (2), 375–397. https://doi.org/10.1109/TSE.2011.55 (2012).

	 3.	 Rashid, C. H. et al. Software cost and effort estimation: current approaches and future trends. IEEE Access. 11, 99268–99288.
https://doi.org/10.1109/ACCESS.2023.3312716 (2023).

	 4.	 Sousa, A. O. et al. Applying machine learning to estimate the effort and duration of individual tasks in software projects. IEEE
Access. 11, 89933–89946. https://doi.org/10.1109/ACCESS.2023.3307310 (2023).

	 5.	 Fawagreh, K., Gaber, M. M. & Elyan, E. Random forests: from early developments to recent advancements. Syst. Sci. Control Eng.
2 (1), 602–609. https://doi.org/10.1080/21642583.2014.956265 (2014).

	 6.	 Capitaine, L., Genuer, R. & Thiébaut, R. Random forests for high-dimensional longitudinal data. Stat. Methods Med. Res. 30 (1),
166–184. https://doi.org/10.1177/0962280220946080 (2021).

	 7.	 Kocaguneli, E., Menzies, T. & Keung, J. W. On the value of ensemble effort estimation. IEEE Trans. Softw. Eng. 38 (6), 1403–1416.
https://doi.org/10.1109/TSE.2011.111 (2012).

	 8.	 Hoc, H. T., Silhavy, R., Prokopova, Z. & Silhavy, P. Comparing stacking ensemble and deep learning for software project effort
estimation. IEEE Access. 11, 60590–60604. https://doi.org/10.1109/ACCESS.2023.3286372 (2023).

	 9.	 Zhang, X., Qin, Y., Yuen, C., Jayasinghe, L. & Liu, X. Time-series regeneration with convolutional recurrent generative adversarial
network for remaining useful life estimation, IEEE Trans. Ind. Inform. 17(10), 6820–6831 https://doi.org/10.1109/TII.2020.3046036
(2021).

	10.	 Talaei Khoei, T., Ould Slimane, H. & Kaabouch, N. Deep learning: Systematic review, models, challenges, and research directions.
Neural Comput. Appl. 35, 23103–23124. https://doi.org/10.1007/s00521-023-08957-4 (2023).

	11.	 Jadhav, A. & Shandilya, S. K. Reliable machine learning models for estimating effective software development efforts: A comparative
analysis. J. Eng. Res. 10.1s016/j.jer.2023.100150 (2023).

	12.	 Demir, M. Ö., Gezici, B. & Tarhan, A. K. Assessing the explainability of lgbm model for effort estimation on ISBSG Dataset, 4th
international informatics and software engineering conference (IISEC), Ankara, Turkey, 2023, pp. 1–6, ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​I​
S​E​C​5​9​7​4​9​.​2​0​2​3​.​1​0​3​9​1​0​3​0​​​​ (2023).

	13.	 Todorovic, M. et al. Improving audit opinion prediction accuracy using metaheuristics-tuned XGBoost algorithm with interpretable
results through SHAP value analysis. Appl. Soft Comput. 149, 110955. https://doi.org/10.1016/j.asoc.2023.110955 (2023).

	14.	 Phannachitta, P. On an optimal analogy-based software effort estimation. Inf. Softw. Technol. 125, 106330. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​
/​j​.​i​n​f​s​o​f​.​2​0​2​0​.​1​0​6​3​3​0​​​​ (2020).

	15.	 Xia, T., Shu, R., Shen, X. & Menzies, T. Sequential model optimization for software effort estimation, IEEE Trans. Software Eng.
48(6), 1994–2009https://doi.org/10.1109/TSE.2020.3047072 (2022).

	16.	 Ali, A. & Gravino, C. The impact of parameters optimization in software prediction models, 48th Euromicro conference on
software engineering and advanced applications (SEAA), Gran Canaria, Spain, 2022, pp. 217–224, (2022). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​
/​S​E​A​A​5​6​9​9​4​.​2​0​2​2​.​0​0​0​4​1​​​​​​​

	17.	 Licorish, S. A., Galster, M., Kapitsaki, G. M. & Tahir, A. Understanding students’ software development projects: effort, performance,
satisfaction, skills and their relation to the adequacy of outcomes developed. J. Syst. Softw. 186, 111156. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​j​s​s​
.​2​0​2​1​.​1​1​1​1​5​6​​​​ (2022).

	18.	 Zivkovic, T., Nikolic, B., Simic, V., Pamucar, D. & Bacanin, N. Software defects prediction by metaheuristics tuned extreme
gradient boosting and analysis based on Shapley additive explanations. Appl. Soft Comput. 146, 110659. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​
a​s​o​c​.​2​0​2​3​.​1​1​0​6​5​9​​​​ (2023).

	19.	 Ali, A. & Gravino, C. Improving software effort Estimation using bio-inspired algorithms to select relevant features: an empirical
study. Sci. Comput. Program. 205, 102621. https://doi.org/10.1016/j.scico.2021.102621 (2021).

	20.	 Kassaymeh, S., Abdullah, S., Al-Betar, M. A. & Alweshah, M. Salp swarm optimizer for modeling the software fault prediction
problem. J. King Saud Univ. Comput. Inf. Sci. 34 (6), 3365–3378. https://doi.org/10.1016/j.jksuci.2021.01.015 (2022). Part B.

	21.	 Rosa, W. & Jardine, S. Data-driven agile software cost Estimation models for DHS and DoD. J. Syst. Softw. 203, 111739. ​h​t​t​p​s​:​/​/​d​o​
i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​j​s​s​.​2​0​2​3​.​1​1​1​7​3​9​​​​ (2023).

	22.	 Ahmad, F. B. & Ibrahim, L. M. Software effort estimation based on long short term memory and stacked long short term memory,
2022 8th Int. Conf. Contemporary Inf. Technol. Math. (ICCITM), Mosul, Iraq, 2022, pp. 165–170. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​C​C​I​T​
M​5​6​3​0​9​.​2​0​2​2​.​1​0​0​3​1​7​9​4​​​​​​​

	23.	 Chen, H., Xu, B. & Zhong, K. Enhancing software effort Estimation through reinforcement Learning-based project Management-
Oriented feature selection, arxiv Preprint arxiv:2403.16749, (2024).

Scientific Reports | (2025) 15:34053 16| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

https://github.com/Derek-Jones/Software-estimation-datasets
https://github.com/Derek-Jones/Software-estimation-datasets
https://doi.org/10.1109/ACCESS.2021.3139183
https://doi.org/10.1109/TSE.2011.55
https://doi.org/10.1109/ACCESS.2023.3312716
https://doi.org/10.1109/ACCESS.2023.3307310
https://doi.org/10.1080/21642583.2014.956265
https://doi.org/10.1177/0962280220946080
https://doi.org/10.1109/TSE.2011.111
https://doi.org/10.1109/ACCESS.2023.3286372
https://doi.org/10.1109/TII.2020.3046036
https://doi.org/10.1007/s00521-023-08957-4
https://doi.org/10.1109/IISEC59749.2023.10391030
https://doi.org/10.1109/IISEC59749.2023.10391030
https://doi.org/10.1016/j.asoc.2023.110955
https://doi.org/10.1016/j.infsof.2020.106330
https://doi.org/10.1016/j.infsof.2020.106330
https://doi.org/10.1109/TSE.2020.3047072
https://doi.org/10.1109/SEAA56994.2022.00041
https://doi.org/10.1109/SEAA56994.2022.00041
https://doi.org/10.1016/j.jss.2021.111156
https://doi.org/10.1016/j.jss.2021.111156
https://doi.org/10.1016/j.asoc.2023.110659
https://doi.org/10.1016/j.asoc.2023.110659
https://doi.org/10.1016/j.scico.2021.102621
https://doi.org/10.1016/j.jksuci.2021.01.015
https://doi.org/10.1016/j.jss.2023.111739
https://doi.org/10.1016/j.jss.2023.111739
https://doi.org/10.1109/ICCITM56309.2022.10031794
https://doi.org/10.1109/ICCITM56309.2022.10031794
http://www.nature.com/scientificreports

	24.	 Tran, N., Tran, T. & Nguyen, N. Leveraging AI for enhanced software effort estimation: A comprehensive study and framework
proposal, arXiv preprint arXiv:2402.05484, (2024).

	25.	 Chawla, M. & Pareek, M. A hybrid deep learning perspective for software effort estimation. Int. J. Perform. Eng. 20 (7), 442–450
(2024).

	26.	 Lavingia, K., Patel, R., Patel, V. & Lavingia, A. Software effort Estimation using machine learning algorithms. Scalable Comput. :
Pract. Exper, 25, 2, (2024).

	27.	 Sharma, A., Yadav, N. & Chauhan, S. Deep learning models for software effort estimation: A comparative study. Appl. Soft Comput.
125, 109247. https://doi.org/10.1016/j.asoc.2022.109247 (2022).

	28.	 Li, X., Zhao, H. & Yu, M. Hybrid deep learning models for software cost prediction using CNN and LSTM. J. Syst. Softw. 188,
111282. https://doi.org/10.1016/j.jss.2022.111282 (2022).

	29.	 Singh, K. & Gupta, P. Explainable artificial intelligence for software effort estimation: A survey and future directions. Inf. Softw.
Technol. 140, 106748. https://doi.org/10.1016/j.infsof.2021.106748 (2021).

	30.	 PROMISE Repository GitHub - RampageousRJ/NASA & -Promise-Dataset -SRE-FISAC, Available: ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​D​e​r​​​e​k​-​J​o​
n​​​e​s​/​S​o​​f​t​w​​a​r​e​​-​e​s​t​i​​m​a​t​​i​o​n​-​d​a​t​a​s​e​t​s

Author contributions
A G Priya Varshini: Conceptualization, Data curation, Formal analysis, Methodology, Investigation, Writing—
original draft, Writing—review and editing. K Anitha Kumari: Investigation, Formal AnalysisS Ramakrishnan:
Methodology, Supervision.

Funding
There is no funds, grants, or other support was received to conduct this study.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to P.V.A.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:34053 17| https://doi.org/10.1038/s41598-025-14372-7

www.nature.com/scientificreports/

https://doi.org/10.1016/j.asoc.2022.109247
https://doi.org/10.1016/j.jss.2022.111282
https://doi.org/10.1016/j.infsof.2021.106748
https://github.com/Derek-Jones/Software-estimation-datasets
https://github.com/Derek-Jones/Software-estimation-datasets
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Enhancing software effort estimation with random forest tuning and adaptive decision strategies
	﻿﻿Literature survey
	﻿Adaptive decision techniques for refinement

	﻿﻿Dataset description & methodology
	﻿Dataset description
	﻿Data Pre-processing and handling missing values
	﻿Normalization, outlier detection and feature selection
	﻿Model validation and evaluation plan
	﻿Methodology

	﻿﻿Random forest
	﻿Random forest hyperparameter tuning
	﻿Pseudocode

