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This study examines the association of aortic geometric traits with flow characteristics and disease 
outcomes in 3204 patients from the Penn Medicine Biobank (PMBB). Using an nnU-Net, the thoracic 
aorta was segmented from CT scans to measure traits such as diameter and length. A one-dimensional 
reduced-order Navier–Stokes model (ROM) simulated aortic pulse pressure under various physiological 
conditions. Phenome-wide association studies (PheWAS) were conducted to link aortic traits to 
diseases using electronic health records (EHR). Significant associations were identified between 
aortic pulse pressure and conditions like aortic aneurysms, heart valve disorders, hypertension, and 
obesity. Notably, pulse pressure—but not aortic diameter—was also linked to diseases such as diabetes 
mellitus, wheezing, and chronic airway obstruction. The ROM-simulated pulse pressure showed not 
only previously recognized associations with diseases such as aortic aneurysm and hypertension, but 
also associations with conditions affecting organs outside the aorta. ROM hemodynamic simulations 
can be applied to thoracic images at the scale of thousands of patients. The ROM-simulated pulse 
pressure showed not only previously recognized associations with diseases including aortic aneurysm 
and hypertension, but also other diseases outside the aorta.
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Aortic hemodynamics, defined by blood flow characteristics such as velocity, wall shear stress, and pressure 
gradients, drive progression of aortic diseases, including aneurysms, dissections, and atherosclerosis1–3. Altered 
hemodynamics leads to abnormal aortic wall mechanical stress, contributing to structural weakness and disease 
progression1. In addition to aortic disease, aortic hemodynamics are increasingly implicated in diseases of other 
vascular regions and organs. For instance, disrupted aortic flow has been linked to cerebrovascular diseases, 
chronic kidney disease (CKD), and systemic inflammatory conditions, suggesting a broader impact of aortic 
hemodynamics on overall cardiovascular health and disease4–6. Identifying these links can reveal underlying 
mechanisms that span multiple organ systems. Such insights could lead to more holistic treatment strategies and 
early interventions.
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While studies have highlighted associations between altered flow patterns and multiorgan disease, many 
rely on selective cohorts with limited sample size and do not contain detailed multiorgan disease data5,7,8. The 
increasing availability of detailed electronic health record data and medical biobanks can enable the discovery 
of hemodynamically associated multiorgan traits at scale. To address this limitation and uncover hidden links 
with other pathologies, approaches such as Phenome-Wide Association Studies (PheWAS) can be used, which 
scan broadly across health phenotypes in a bias-free manner9. This method enables the systematic evaluation 
of the influence of aortic hemodynamics on a wide spectrum of diseases, potentially illuminating novel risk 
factors and therapeutic targets. PheWAS can be used to identify novel associations between different risk factors 
and pathologies, most commonly utilizing genetic data. The bias-free technique was originally developed to 
determine associations between the phenotype and single nucleotide polymorphisms by assigning different 
phenotypes values, hereby called phecodes9. The PheWAS tool has been previously applied in the UK Biobank 
in order to determine associations between COVID-19 outcomes and relevant comorbidities10.

Past epidemiologic studies have primarily focused on the association between geometric traits of the aorta 
and disease but have not comprehensively described the hemodynamic changes in aortic diseases using 3D 
computational fluid dynamics (CFD). The application of CFD to large-scale studies has been limited due to 
its significant computation and time costs, making it sub-optimal for epidemiologic studies of thousands of 
patients11,12. Alternative approaches such as reduced-order models (ROMs) have been developed to overcome 
challenges with 3D CFD simulations which approximate the full CFD solution by projecting the governing 
equations onto a lower-dimensional subspace13. This approach trades some accuracy for the efficiency of 
simulating a less complex hemodynamic problem. ROMs for pulse wave propagation typically use either zero- or 
one-dimensional simulations, applying a set of simplifying assumptions to reduce the complex 3D geometry of 
the vessel to a zero- or one-dimensional spatial domain14–17. Zero-dimensional simulations (also called lumped 
parameter models) reduce the vascular simulation to the mathematical equivalent of solving a simple electrical 
circuit problem and do not have an explicit spatial dependence14,15. Alternatively, a one-dimensional ROM 
applies a set of assumptions that the pressure and flow parameters are obtained over the cross-sectional area of 
the vessel, reducing the complexity of the problem from 3D to a 1D spatial dependence16–18. When evaluated on 
a public set of 72 cardiovascular models, both zero- and one-dimensional ROMs were comparable to 3D CFD 
simulations, showing only a small tradeoff in accuracy with a modest improvement in efficiency19. The accuracy 
of these models have also been examined closely in tubes and branched arterial models and have been validated 
both in-vitro and in-vivo20–22.

In this work, one-dimensional ROMs were used to perform hemodynamic simulations of the thoracic aorta 
from computed tomography (CT) scans obtained in thousands of patient participants of the Penn Medicine 
Biobank (PMBB), which is an Institutional Review Board (IRB)-approved research protocol in which consenting 
patients provide electronic health record and non-invasive imaging data to be made available for research14. 
A convolutional neural network (nnU-Net) was used to obtain thoracic aorta anatomy for the CT scans23,24. 
ROM simulations were performed over a wide range of non–patient-specific conditions by systematically 
varying boundary conditions, volumetric flow rates, and vascular resistance to explore physiologically relevant 
scenarios. For each simulation, the pulse pressure was determined, which was defined as the difference between 
aortic systolic and diastolic pressure25. The PMBB patient electronic health record (EHR) data includes detailed 
information about the patients and the presence of disease in this population. Past work has been done in 
which a PheWAS has been conducted to associate diseases with image-derived geometric traits of the aorta26–28. 
However, with pulse pressures simulated using ROMs that incorporated image-derived geometric traits as key 
input parameters, we were able to discover connections between aortic pulse pressure and diseases in other 
organ systems that were not previously known.

Objective
The goal of this paper is to apply a PheWAS to hemodynamic values calculated from a ROM utilizing patient 
data from the PMBB on a large scale. We hypothesized that the ROM-simulated pulse pressures were associated 
with electronic health record (EHR)-documented diseases in this same cohort. An overview of the experimental 
design appears in Fig. 1.

In summary, the main contributions of this paper are thus:

	1.	 We obtained 3D aortic geometries from more than 3,000 patients in a large-scale cohort of patients from 
the Penn Medicine Biobank using a convolutional neural network segmentation algorithm. In each patient, 
the 3D aortic geometry is reduced to a one-dimensional geometric model and aortic hemodynamics are 
simulated from the one-dimensional ROM. We showed that the ROM can efficiently obtain hemodynamic 
parameters from thousands of patients and over a wide range of physiological and pathological conditions, 
even when the aortic pressure is not known. We were then able to associate these simulated hemodynamic 
traits with cardiovascular diseases through a PheWAS.

	2.	 The pulse pressure obtained using ROM simulations was found to be associated not only with aortic disease, 
but also with a spectrum of diseases throughout the body.

Methods
Penn Medicine Biobank (PMBB)
Medical biobanks are repositories of multimodal patient data collected by hospitals and affiliated research 
institutions29. PMBB is an institutional initiative medical biobank under which any registered patient of Penn 
Medicine aged 18 or older is eligible, with no exclusions except an inability to provide informed consent. The 
PMBB recruits patients in the Penn Medicine Health System (Philadelphia, PA) by enrolling them at the time 
of outpatient visits. Patients complete a questionnaire, donate a blood sample, and agree to future recontact. It 
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is an ethnically diverse cohort with Black patients comprising nearly 25% of participants. Though the PMBB 
has recruited over 264,000 patients as of May 31, 2024, this study investigated a cohort of more than 3,000 
patients with thoracic CT scans. This study was approved by the Institutional Review Board of the University 
of Pennsylvania and all patients have given informed consent to participate. All methods were performed in 
accordance with the relevant guidelines and regulations.

Scan acquisition and segmentation
Thoracic CT scans were performed on PMBB patients as part of routine clinical care using a range of different 
imaging systems and manufacturers (Siemens, Erlangen, Germany; GE Healthcare, Chicago, IL Systems) 
and with varying acquisition parameters (e.g. slice thickness = 0.5–1.5  mm). Images were segmented using 
the TotalSegmentator model to obtain 3D aortic geometries and vertebral bodies24. It uses nnU-Net, a self-
configuring deep learning framework used for biomedical image segmentation that packages pre-processing, 
network architecture selection, training and post processing. nnU-Net uses the U-Net architecture which 
features a symmetric encode-decoder structure with skip connections. The TotalSegmentator model is publicly 
available and comes pre-trained using expert-obtained labels from more than 1200 patients. It is robust and 
has demonstrated high accuracy with a Dice score of 0.943 on a diverse test set of 65 patients with varying 
pathologies23. A recent study reported a Dice similarity coefficient of 0.934 between thoracic aortas in PMBB 
chest CT scans in TotalSegmentator’s segmentations and segmentations drawn by two trained medical doctors30. 
Using this model, the ascending and descending thoracic aorta were labeled. The proximal ascending aorta was 
labeled at the aortic valve. The distal descending aorta was labeled at the middle axial plane of the T12 thoracic 
vertebra (T12). The model took approximately 100 h on an Intel® Core™ i5-8500 CPU at 3.00 GHz with 8 GB of 
RAM to segment the whole cohort in this study.

Aortic model generation
Models were generated from the thoracic aortic segmentations in open-source software (VMTK 1.4.0)31. VMTK 
was then used to generate the centerline for each model, which was used to calculate the length, diameter, 
curvature, and torsion. VMTK calculates the centerline of the vessel by determining the shortest path between 
two external points. The program ensures that the center point lies in the vessel by consulting a Voronoi diagram. 
If the point runs along the Voronoi diagram for the vessel, it is valid. The aortic diameter D(x) was resampled 
using a nearest neighbor interpolator (Python 3.11). The tapering angle of the thoracic aorta was defined as

	
θ = arctan

(
Dmax − Dmin

2L

)
,� (1)

where Dmax, min are the maximum and minimum diameters of the aorta and L is its length32.

Reduced Order Model (ROM) of the Aorta
The ROM is based on a 3-element Windkessel model, in conjunction with the fluid–structure interactions that 
occur from the distensibility of the aortic vessel wall. The blood flow through the aorta can be modeled using a 
1D system defined by three equations: mass conservation, momentum conservation and a relationship between 
pressure, area and distensibility of the vessel18,33. These can be seen in Eqs. (2), (3) and (4), respectively,

	
∂A (x, t)

∂t
+ ∂Q (l, t)

∂x
= ∂A (x, t)

∂t
+ ∂uA (x, t)

∂x
= 0,� (2)

Fig. 1.  Overview of the study design. Thoracic segmentations of the aorta were performed on > 3,000 CT scans 
using a nnU-Net. Meshes (visualized as “Ao Model”) were constructed from the segmentations using The 
Vascular Modeling Toolkit (VMTK) 1.4.0 (http://www.vmtk.org/). After segmentation and meshing, aortic 
anatomic parameters were calculated including the cross-sectional area of the vessel A(x) and the length L of 
the centerline from the aortic valve to the inferior thoracic vertebrae. Simulations were performed using A(x) 
and L as an input to the ROM, while resistance and flow conditions were permitted to vary over a physiologic 
range defined by the literature. Hemodynamic and anatomic traits were associated with diseases codes in the 
Penn Medicine Biobank (PMBB) obtained from the electronic health record (EHR), adjusting for the age and 
sex of the patient.
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ρ
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p = pext + β

(√
A (x) −

√
Ao

)
.� (4)

In these equations, A(x,t) is the cross-sectional area of the vessel, Q is the volumetric flow rate, α is a momentum 
flux correction factor set to 1.1 for parabolic flow, u is the flow velocity, ρ is the density of the fluid and f represents 
the force of friction. The friction term f accounts for viscous dissipation and is defined as:

	
f = −2πµ

Q (l, t)
A (x, t) ,� (5)

with µ being the dynamic viscosity of blood.
In Eq. (4) which describes the relationship between pressure and area, p is the pressure inside the vessel, pext 

is the external pressure and Ao is the area of the vessel at equilibrium. This relationship assumes that the vessel 
wall behaves as an elastic tube, where the nonlinear relationship between pressure and cross-sectional area is 
derived from Laplace’s law and elasticity theory. This square-root dependency ensures physiologically consistent 
vessel expansion under pressure and has been used widely in prior literature to describe hemodynamics33,34. β is 
a term that is a property of the vessel and is calculated from Eq. 6.

	
β (x) =

(
k1 exp

(
k2 ∗ x

√
Aoπ
π

)
+ k3

) √
Ao

Ao (1 − v)2 .� (6)

This β term is described by k1, k2, and k3, which are constants that experimentally fit for calculating the ratio 
between the Young’s modulus and the dimensions of the vessel. The definition of β(x) in Eq.  (6) follows the 
formulation introduced by Olufsen et al. in their study of pressure-wave propagation in large arteries, where the 
exponential dependence reflects empirically derived relationships between vessel stiffness and geometry21. In the 
same study, the constants k1 = 2.00 × 107 g s−2 cm−1, k2 = 22.53 cm−1, k3 = 8.65 × 105 g s−2 cm−1 were obtained by 
fitting experimental data21. These values were used in the simulations for our study as well. v is the Poisson ratio 
which was set to 0.5 in this study. A Poisson ratio of 0.5 represents perfect incompressibility; however, arterial 
walls are often modeled this way due to their nearly incompressible behavior. This simplifying assumption has 
been employed in prior vascular modeling studies as well33. Altogether, this system of equations describes the 
pulse wave propagation down the vessel.

To obtain a physiologically accurate outflow waveform, the input flow waveform is passed through a 
3-element Windkessel model (as outlined in Eq. 7), which is applied at the outlet boundary of the 1D domain35.

	
p + RC

dp

dt
− (R + Z) Q − pinf − RCZ

dQ

dt
= 0� (7)

R is the peripheral resistance of the vessels, C is the vessel compliance and Z is the characteristic impedance 
of the vessel, which was calculated as from a Tau ratio, which is the ratio of the peripheral resistance to the 
characteristic impedance (τ = R/Z), the Tau ratio was calculated from a previous study36. The 3-element 
Windkessel model describes the relationship between pressure and flow at the outlets of the aorta. It provides 
the boundary conditions at the outlets and is thus coupled with the 1D system to ensure that the flow exiting 
the aorta matches the flow entering the peripheral circulation. The coupled system is then solved numerically to 
simulate the blood flow and pressure wave propagation at the outlet17,33.

Boundary conditions
Since physiologic data was not known at the time of the CT scans, a range of physiologic boundary conditions 
were used, including the peripheral resistance, vessel compliance and the inlet volumetric flow rate. At the inlet 
of the 1D model was a time-varying volumetric flow defined a half sine wave (Eq. 8):

	
Q (t) =

{
Qpeak sin

(
πt

Tsys

)
, 0 ≤ t ≤ Tsys

0, Tsys ≤ t ≤ T
,� (8)

where Q (t) is the volumetric flow at time t, Qpeak  is the peak amplitude,Tsys = 2
5 T  is the systolic duration and 

T  is the cardiac cycle period. The peak amplitude Qpeak  was set to 200 cm3/s during systole and 0 cm3/s during 
diastole. This was varied by increasing and decreasing the peak flow rate by 10%, leading to a range of 180 cm3/s 
to 220 cm3/s.

At the outlet of the 1D model, a three-element Windkessel model was applied which imposes a pressure 
boundary condition, allowing for realistic pressure-flow dynamics. The physiologic range of aortic peripheral 
resistance and vessel compliance have been previously reported and were used as a basis for the applied 
boundary conditions17,36,37. The peripheral resistances were varied between 710 dynes*s/cm5 to 2900 dynes*s/
cm5. The compliance was fixed at 0.8  µm/mmHg. Pressure and flow were measured at the level of the T12 
thoracic vertebrae.

Scientific Reports |        (2025) 15:39203 4| https://doi.org/10.1038/s41598-025-14401-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


By considering these non-informative priors over the ROM while the geometry is fixed for each patient, we 
do not introduce any bias in the correlations between the geometry and the conditions. Thus, the simulations 
are not confounded by the boundary conditions used and we solely consider the contribution of the patient’s 
geometry in our analysis. An overview of how the 1D ROM is coupled with the boundary conditions is visualized 
in Fig. 2.

Phenome-wide association study (PheWAS)
A phenome-wide association study (PheWAS) was performed in 3,204 patients for whom EHR data was 
available to examine the association between deep learning and CT-derived aortic diameter and ROM-simulated 
pulse pressure and diseases reported in the EHR using an open-source statistic package (RStudio 2023.09.01). 
EHR-reported diseases (International Classification of Diseases 9 and 10) were mapped to phecodes9. PheWAS 
was performed only for phecodes with an incidence greater than 100. Maximum aortic diameter was tested 
independently using logistic regression adjusted for age, sex and aortic length. ROM-simulated pulse pressure 
was similarly tested and adjusted for age, sex and maximum aortic diameter. Statistical significance was adjusted 
for multiple comparisons using Bonferroni correction.

Results
Patient demographics
The investigators identified 3,216 thoracic CT scans from the Penn Medicine Biobank (PMBB). After aortic 
segmentation and ROM analysis, 12 thoracic CTs were unable to be processed, resulting in a final data set 
of 3,204 thoracic CTs with imaging traits. Demographic information at the time of the CT scan is in Table 
1. Most patients were 40–59  years old (27.5%) or 60–79  years old (52.7%). There was an equal proportion 
of men and women in the study (50.4% male). The ten most common diseases reported in this cohort were 
hypertension, disorders of lipid metabolism, hyperlipidemia, other symptoms of the respiratory system, diseases 

Fig. 2.  Schematic overview of 1D model coupled with 3-element Windkessel model. The central schematic 
illustrates a one-dimensional (1D) model of the thoracic aorta, governed by the equations of mass 
conservation, momentum conservation, and a pressure-area relationship. Patient-specific vessel diameter (D) 
and length (L) define the cross-sectional area and spatial domain, influencing wave speed, impedance, and 
tapering effects. The inlet boundary condition (left) is defined by a pulsatile velocity waveform representative 
of cardiac output. At the outlet, a three-element Windkessel model (right) is used to capture downstream 
vascular resistance and compliance, incorporating characteristic impedance (Zc), peripheral resistance (Rp), 
and compliance (C). This framework allows for physiologically relevant simulation of pressure and flow wave 
propagation along the vessel.
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of the esophagus, cardiac dysrhythmias, esophagitis, gastroesophageal reflux disease (GERD), disorders of fluid 
balance, and pain in joints.

Thoracic aorta anatomic imaging traits and their association with disease
Figure  3 shows the aortic diameter from the aortic valve to the T12 vertebra among participants by age. 
The maximum thoracic aortic diameter and length were 33.4 ± 4.2  mm and 310 ± 37  mm, respectively, and 
distributions are shown in Supplementary Fig. S1A and S1B. There was an increase in aortic diameter with age 
from 28.5 ± 3.9 mm (20–39 years old) to 35.8 ± 4.7 (> 79 years old). The mean tapering angle for this data set was 
1.03 ± 0.31̊.

Associations between maximum aortic diameter and EHR-reported diseases are shown in Fig.  4. The 
maximum diameter for each significant disease can be found in Table 2. As expected, the strongest disease 
association with maximum aortic diameter was aortic aneurysm (Dmax = 37.7 ± 5.8 mm). Other diseases that 
showed a significant association with maximum aortic diameter were obesity (Dmax = 33.7 ± 4.0 mm) and ventral 
hernia (Dmax = 34.5 ± 4.0 mm).

Fig. 3.  Thoracic aortic diameter (mm) versus the normalized length by age quartile (n = 3204).

 

N = 3204

Age

 < 20–39 213 (6.6%)

 40–59 881 (27.5%)

 60–79 1914 (52.7%)

 > 79 196 (6.1%)

Sex

 Male 1617 (50.4%)

 Female 1587 (49.5%)

Ten Most Common Diseases in the Cohort

 Hypertension 1895 (59.2%)

 Disorders of Lipid Metabolism 1672 (52.2%)

 Hyperlipidemia 1671 (52.2%)

 Other Symptoms of Respiratory System 1559 (48.7%)

 Diseases of Esophagus 1379 (43.1%)

 Cardiac Dysrhythmias 1373 (42.9%)

 Esophagitis 1324 (41.3%)

 GERD 1260 (39.3%)

 Disorders of fluid balance 1136 (35.4%)

 Pain in Joint 1135 (35.4%)

Table 1.  Demographic information regarding the cohort of patients selected from the Penn Medicine Biobank 
with CT scans. The ten most common diseases in this cohort (Phenome Codes or PheCodes) are shown.
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ROM-derived pulse pressure and its association with disease
ROM simulations were performed with 8 different resistances and 5 different inflow waveforms chosen 
equidistantly across the ranges of boundary conditions mentioned previously, resulting in over 125,000 
simulations across 3,204 aortas. Figure  5A shows the time-varying aortic pressure for one cardiac cycle as 

− log10(p) Max Diam (mm)

Aortic aneurysm 36.3 37.7 ± 5.8

Other aneurysm 29.4 36.5 ± 5.8

Nonrheumatic aortic valve disorders 17.3 35.2 ± 5.6

Hypertension 14.8 34.0 ± 4.1

Essential hypertension 14.5 34.0 ± 4.1

Heart valve replaced 11.5 35.3 ± 5.6

Heart valve disorders 10.8 34.2 ± 5.2

Cardiac congenital anomalies 9.5 34.4 ± 6.1

Other disorders of arteries and arterioles 7.8 35.1 ± 5.1

Cardiac and circulatory congenital anomalies 7.3 34.2 ± 5.8

Overweight, obesity and other hyperalimentation 6.7 33.8 ± 4.0

Obesity 6.5 33.7 ± 4.0

Rheumatic disease of the heart valves 4.6 33.9 ± 5.0

Ventral hernia 4.3 34.5 ± 4.0

Table 2.  Diseases that were significantly associated with maximum aortic diameter at the Bonferroni-
corrected level of significance (n = 3204).

 

Fig. 4.  Association between maximum aortic diameter and diseases reported in the EHR (n = 3204) adjusted 
for aortic length, age and patient sex. The strongest disease associations with maximum aortic diameter were 
aneurysms, heart valve disorders, hypertension, obesity and overweight, sensorineural hearing loss, disorders 
of refraction and accommodation, blindness and low vision, and cardiac and circulatory congenital anomalies. 
The blue dashed horizontal line is the Bonferroni-corrected line of statistical significance. Solid, upward 
triangles indicate positive associations and empty, downward triangles indicate negative associations. The 
formula utilized for the PheWAS was pheCode ~ Length + Age + Sex + maxDiameter.
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resistance was varied from 920, 1490, 2050 and 2620 dynes-s/cm5. The peak systolic pressure at the T12 vertebra 
was 201 mmHg at the highest resistance of 2,620 dynes-s/cm5, and the minimum diastolic pressure at the T12 
vertebra was 63.6 mmHg at the lowest resistance of 920 dynes-s/cm5. Figure 5B shows variation in the pulse 
pressure at T12 across the range of resistance and input flow boundary conditions.

Associations between diseases and ROM-simulated pulse pressure and adjusted by age, sex and maximum 
aortic diameter, are shown in Fig. 6. For each patient, the average pulse pressure simulated across all boundary 
condition scenarios was used in the PheWAS analysis. The most significant disease associations with pulse 
pressure were aortic aneurysm, other aneurysm, nonrheumatic aortic valve disorders, heart valve replacement, 
heart valve disorders, heart valve disorders, cardiac congenital anomalies, cardiac and circulatory anomalies, other 
disorders of arteries and arterioles, diabetes mellitus, rheumatic disease of the heart valves, wheezing, chronic 
airway obstruction, diverticulosis and diverticulitis, atrial fibrillation and flutter, disorders of refraction and 

Fig. 6.  PheWAS for pulse pressure calculated from ROM, showing the most significant phecodes (n = 3204). 
The blue dashed horizontal line is the Bonferroni-corrected line of statistical significance. Solid, upward 
triangles indicate positive associations and empty, downward triangles indicate negative associations.

 

Fig. 5.  (A) Pressure versus time curve for resistance 920, 1490, 2050, and 2620 dynes-s/cm5 resistances at a 
peak flow of 200 cm3/s (n = 3204). (B) Simulated ROM pulse pressure (difference between systolic and diastolic 
pressure) as resistance and peak flow rate were varied (n = 3204).
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accommodation (p < 0.001). The diseases that were significantly associated with pulse pressure are summarized 
in Table 3. Several diseases were found to be significantly associated with pulse pressure, but not with aortic 
diameter, including diabetes mellitus, wheezing, chronic airway obstruction, diverticulosis/diverticulitis, atrial 
fibrillation/flutter and disorders of refraction and accommodation. There was no significant association between 
tapering angle and pulse pressure (r = 0.02, p = 0.22).

Discussion
This work used one-dimensional ROM simulations to calculate aortic pulse pressure from more than 3,000 
patients in a large-scale medical biobank. Aorta segmentations were automatically obtained using deep learning 
and provided anatomies for simulation. Since aortic pressure and flow were not measured in these patients at the 
time of their imaging scan, many 1D simulations were performed to determine aortic pulse pressure spanning 
a range of physiologic boundary conditions. One-dimensional ROMs enabled simulations in this large cohort 
of patients with a low computational cost compared to three-dimensional simulations, which would have been 
prohibitively expensive. The ROM-simulated pulse pressures were associated with EHR-documented diseases. 
This analysis revealed relationships with diseases typically associated with pathologic hemodynamics such as 
aortic aneurysm and hypertension. However, it also revealed other diseases such as obesity that are not typically 
examined in CFD studies.

This study has taken a different approach to simulation of aortic hemodynamics from that of previous 
studies. One approach in aortic CFD modeling is to select healthy subjects or patients with aortic disease 
such as aortic aneurysm or coarctation and then simulate the aortic hemodynamics using anatomy and flow 
information obtained from a non-invasive imaging scan such as phase contrast (PC) magnetic resonance imaging 
(MRI)26,38–41. Alternatively, invasive or non-invasive aortic blood pressure measurements can be obtained using 
catheters or arterial tonometry and together combined with non-invasive imaging studies42,43. In this medical 
biobank research study, simulations were performed in all patients that had thoracic CT scans without first 
selecting them based on the presence of aortic disease. This agnostic approach has been used recently in other 
large-scale PheWAS of gene-disease and imaging-trait-disease associations, but it has not been yet applied 
to CFD simulations44,45. This approach is hypothesis-generating in that it can reveal important, previously 
unknown associations between aortic hemodynamics and disease. It is an important first step in identifying 
unknown processes that may be connected to the trait or in defining traits that may have underlying genetic or 
environmental contributions.

The computational efficiency of one-dimensional ROMs compared to three-dimensional CFD simulations 
enabled many simulations using CT-derived aortic anatomy. CT is a recommended three-dimensional non-
invasive imaging procedure for corrective procedures of the aorta and is more commonly used than thoracic 
MRI due to the former’s more widespread availability and faster scan times46,47. Moreover, CT opportunistic 
screening of the thoracic aorta is important for prognosis and risk stratification48. However, unlike PC-MRI or 
Doppler ultrasound, CT does not encode flow information and alternative approaches to obtain hemodynamic 
information must be sought. While other previous studies have developed patient-specific ROMs, these studies 
have not been applied in a large-scale cohort43,49. This study is the first to show ROM-derived pulse pressure-
disease associations in a large-scale population.

The PheWAS showed associations between maximum aortic diameter or pulse pressure and diseases 
recorded in the patients’ EHRs. Significant associations were observed between aortic diameter and EHR-
reported conditions, including aneurysms, heart valve disorders, hypertension, obesity and overweight, and 
congenital anomalies of the cardiac and circulatory system. Regarding aortic diameter and EHR-reported 
aneurysm, normative reference values for CT-derived mean ascending aorta diameter are 29.0–37.2 mm for 

− log10(p) Pulse Pressure (mmHg)

Aortic aneurysm 30.7 24.2 ± 7.2

Other aneurysm 24.8 25.3 ± 7.2

Nonrheumatic aortic valve disorders 13.3 26.5 ± 7.4

Heart valve replaced 11.0 27.1 ± 8.8

Heart valve disorders 10.9 27.6 ± 8.3

Cardiac congenital anomalies 10.6 29.0 ± 9.6

Cardiac and circulatory congenital anomalies 8.4 28.7 ± 9.1

Other disorders of arteries and arterioles 8.2 26.2 ± 7.0

Diabetes mellitus 6.4 27.3 ± 5.5

Rheumatic disease of the heart valves 5.1 28.1 ± 9.2

Wheezing 5.0 28.3 ± 5.6

Chronic airway obstruction 4.9 26.5 ± 5.3

Diverticulosis and diverticulitis 4.6 25.8 ± 4.6

Atrial fibrillation and flutter 4.4 26.6 ± 8.8

Disorders of refraction and accommodation 4.1 28.1 ± 5.8

Table 3.  Diseases that were significantly associated with pulse pressure at the Bonferroni-corrected level of 
significance (n = 3204) and adjusted by age, sex and maximum aortic diameter.
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women and 30.8–39.1 for men50. While a maximum aortic diameter > 40  mm is considered pathologic, the 
lack of comprehensive population nomograms with different imaging modalities make it difficult to determine 
precise reference ranges by age, sex and other traits51. Importantly, this medical biobank study found strong 
associations between aortic diameter and EHR-reported aneurysm adjusted for age, sex and length of the aorta. 
As a medical biobank from a large urban US-based health center, the PMBB population consists of an ethnically 
diverse (30% non-European ancestry) group of patients52. These patients undergo CT as part of their clinical 
care, hence aortic diameter and pulse pressure were anticipated and found to be greater than healthy subjects 
overall.

Limitations of this study should be considered. In this study, we assumed a constant tapering angle to describe 
the axial change in aortic diameter, consistent with prior reduced-order models of arterial flow. This linear 
tapering assumption provides a physiologically reasonable approximation while maintaining numerical stability 
and tractability, particularly in large-scale simulations. Previous work demonstrated that linear tapering captures 
key features of wave propagation and reflection, and that more complex, higher-order geometric representations 
do not significantly alter global hemodynamic predictions21. While this approach does not account for local 
geometric variations or asymmetric tapering, especially relevant in patients with aortic pathologies, fitting 
nonlinear or patient-specific tapering profiles would require high-resolution data and per-patient optimization, 
which is computationally infeasible at the cohort scale. As such, our modeling choice reflects a deliberate trade-
off between anatomical precision and computational scalability, enabling the efficient simulation of thousands 
of patient-specific geometries.

Pressure and flow measurements were not known in this cohort at the time of the CT scan due to the 
logistical challenges of obtaining this information during a non-invasive imaging procedure performed in 
routine clinical care. We addressed this limitation by simulating pulse pressure across a range of physiologic and 
pathophysiologic resistances and inflows. The strong associations between ROM-simulated aortic pulse pressure 
and aortic diseases supports that hemodynamic measurements made through purely non-invasive imaging 
have clinical relevance. Our modeling framework relies on simplifying assumptions for boundary conditions, 
including a fixed compliance value of 0.8 µm/mmHg and a half-sine inflow waveform. While these assumptions 
facilitate scalability and standardization across a large cohort, they do not fully capture patient-specific variations 
in vascular compliance or the triphasic nature of physiological aortic inflow. These simplifications may influence 
absolute pressure predictions by affecting pulse wave propagation and reflection. However, because the same 
boundary conditions were applied uniformly across all patients, relative comparisons and population-level 
associations remain interpretable. Future work incorporating patient-specific inflow profiles and vascular 
properties may enhance physiological fidelity and predictive accuracy.

Additionally, since we did not have access to ground truth pressure readings, we were unable to validate our 
results. However, as previously mentioned, the phenotypes most significantly associated with our ROM-derived 
pressures were aorta-related. As the PheWAS was conducted independently without the injection of any priors, 
this garners confidence in our results.

Conclusion
This work provided a methodology for gathering ROM hemodynamic information at a large scale and provided 
a basis for analyzing these results together with clinical information. This was done by first taking CT scan data 
from the PMBB, converting it to geometries that can be utilized by a ROM, and then simulating through a 
range of parameters. In the future work can be done to examine different outputs of the ROM, such as reflected 
waveforms and perform analysis on the clinical significance of them in the PMBB.

Data availability
Clinical data from a biobank was used for this study and thus, it is not possible to make the data available public-
ly. However, deidentified data could be shared with a qualified researcher upon request, pursuant to the rules and 
regulations of the biobank and the existing IRB. Please contact Walter Witschey to request data from the study.
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