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This paper investigates a serverless edge-cloud architecture to support knowledge management 
processes within smart cities, which align with the goals of Society 5.0 to create human-centered, 
data-driven urban environments. The proposed architecture leverages cloud computing for scalability 
and on-demand resource provisioning, and edge computing for cost-efficiency and data processing 
closer to data sources, while also supporting serverless computing for simplified application 
development. Together, these technologies enhance the responsiveness and efficiency of smart city 
applications, such as traffic management, public safety, and infrastructure governance, by minimizing 
latency and improving data handling at scale. Experimental analysis demonstrates the benefits of 
deploying KM processes on this hybrid architecture, particularly in reducing data transmission times 
and alleviating network congestion, while at the same time providing options for cost-efficient 
computations. In addition to that, the study also identifies the characteristics, opportunities and 
limitations of the edge and cloud environment in terms of computation and network communication 
times. This architecture represents a flexible framework for advancing knowledge-driven services in 
smart cities, supporting further development of smart city applications in KM processes.

In an era defined by rapid technological progress and societal change, the integration of Knowledge Management 
(KM) with Society 5.0 offers both vast opportunities and distinct challenges. KM encompasses the processes of 
creating, sharing, utilizing, and managing organizational knowledge and information1. Within organizations, 
KM aims to improve decision-making, drive innovation, and enhance overall performance, providing a 
competitive edge in today’s dynamic market. While KM’s importance is clear, successful implementation requires 
a supportive organizational culture, dedicated leadership, and continuous improvement of both processes and 
technologies2.

As the world transitions into Society 5.0, a paradigm that emphasizes the integration of technology and 
innovation to enhance societal well-being, the role of KM becomes even more pronounced. Society 5.0 envisions 
a human-centric society, where technology facilitates seamless integration between physical and virtual 
realms, fostering creativity, critical thinking, and collaboration3. Key principles of Society 5.0 include social 
responsibility, data democratization, and the convergence of cyber and physical domains. Underpinning this 
vision is the notion of Industry 5.0, which seeks to optimize collaboration between humans and machines, thus 
maximizing productivity and efficiency while ensuring sustainability and environmental concerns4.

The emergence of the Smart City concept has launched a new era in urban management, defined by the 
seamless integration of technology, people, and institutions. In this framework, KM is essential, enabling more 
efficient governance, resource allocation, and citizen engagement. This convergence of technology, society, 
and infrastructure creates a cyber-physical social system, transforming the traditional boundaries of urban 
management5. Knowledge management in the context of the smart city encompasses the efficient utilization 
of technology-mediated services, data analytics, and citizen participation to optimize urban infrastructure and 
governance. Through the aggregation and analysis of vast amounts of data generated by various stakeholders, 
smart cities can derive actionable insights to enhance public services and decision-making processes6.

At the core of the smart city ecosystem lie technologies such as cloud computing, which provide the necessary 
computational resources to process and analyse data at scale. Cloud computing offers unparalleled scalability, 
cost-effectiveness, and accessibility, enabling organizations to harness the power of data without significant 
upfront investments in hardware infrastructure. By leveraging cloud resources, organizations can focus on 
innovation and service delivery, rather than infrastructure management7–9.
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The rapid urbanization and digital transformation of modern cities necessitate innovative approaches to 
managing knowledge efficiently. The evolution of smart city applications has led to an increasing reliance on cloud 
computing edge computing, and serverless paradigms to enhance service delivery, infrastructure governance, 
and public engagement6,10. Traditional cloud-based architectures, while providing scalability, often struggle 
with high latency, network congestion, and cost inefficiencies. At the same time, edge computing solutions, 
though reducing data transmission times, face constraints in computational power.11. While previous research 
has explored these architectures in various contexts, there is a critical need to examine their integration within 
KM applications to enhance decision-making and data-driven governance in smart cities.

This research is motivated by the need to develop a hybrid edge-cloud architecture that balances these trade-
offs, enabling efficient, scalable, and cost-effective KM services. Using serverless computing, this work aims to 
simplify application deployment, optimize resource utilization, and enhance responsiveness for AI-driven smart 
city applications. This approach aligns with the goals of Society 5.0, fostering a human-centric, data-driven 
urban ecosystem that supports innovation, sustainability, and efficient governance.

This study introduces a novel serverless edge-cloud architecture specifically designed to support knowledge 
management processes within smart cities. Unlike traditional cloud-centric approaches, the proposed hybrid 
model takes into account the characteristics of knowledge processes to optimally distribute computational 
resources across the edge and cloud layers, significantly reducing data transmission times, network congestion, 
and operational costs. Using edge computing’s proximity to data sources and serverless computing’s scalability, 
this architecture enhances real-time analytics, intelligent decision-making, and adaptive service provisioning.

There are two main key contributions in this work. First, it explores the intersection of Knowledge 
Management (KM), cloud computing, edge computing, and serverless computing within the context of smart 
cities. By examining the technological foundations, applications, and implications of these paradigms, it 
highlights their transformative role in urban management and governance. Through a comprehensive analysis of 
existing literature and emerging trends, this study identifies critical challenges, opportunities, and advancements 
in KM-driven smart city services, particularly in AI-enabled applications. The second contribution is the 
conceptualization and empirical evaluation of a serverless edge-cloud architecture specifically designed to 
support KM processes in AI-driven smart city applications. This novel approach integrates low-power edge 
servers, cloud resources, and Content Delivery Network (CDN) edge infrastructure to optimize data processing, 
reduce latency, and enhance scalability. The study provides experimental validation demonstrating the benefits 
of architecture in terms of cost efficiency, network congestion reduction, and computational trade-offs between 
edge and cloud environments. By offering a flexible and adaptive framework, this work contributes to the 
development of scalable, cost-effective, AI-driven knowledge management solutions that align with the goals of 
Society 5.0 and smart urban governance.

This paper is organized as follows: After the introduction, we review the concepts of Knowledge Management 
(KM) and Society 5.0, exploring their interconnections. Next, we examine the role and importance of cloud and 
AI technologies as enablers of KM within the smart city paradigm. This section covers various cloud models, 
from core cloud computing to serverless edge computing, and discusses their implications for KM. Following 
this, we present our findings. Subsequently, we propose an architecture for AI-driven serverless edge applications 
in smart cities and perform experiments to analyse the opportunities, challenges, and unique aspects of KM 
services in this context. The paper concludes with a summary and final remarks.

Background
Knowledge management
Interest in the concept of Knowledge Management sparked in the 1990 where scholars started trying to define 
the concept. An accepted definition of Knowledge Management is that it is the process of creating, sharing, 
using and managing the knowledge and information of an organization1. From an organization perspective, it is 
aimed to optimize its ability to create, share, and use knowledge for improved decision-making, innovation, and 
performance, which can grant them a competitive edge over competitors. It is crucial for firms to understand the 
fundamental ideas behind knowledge and how to successfully manage their knowledge assets, as they are of vital 
importance to businesses and organizations due to its power to increase profits12,13.

Knowledge management cannot be “bought”, but instead it is a process that has to be implemented over 
a period of time. Successful knowledge management requires a supportive organizational culture, leadership 
commitment, and continuous efforts to refine processes and technologies to meet evolving needs. Managing 
knowledge involves knowledge gathering, organization and structuring, refinement and distribution2. There is a 
set of resources that facilitate the implementation of knowledge processes. Knowledge enablers are mechanisms 
that act as structural organizational means to foster knowledge processes14. They are categorized from people, 
organization, process, and system perspectives. Although they are essential in the capability of firms to manage 
knowledge effectively, they need to be used in knowledge management strategies for effective use, as they 
determine how to utilize knowledge resources and capabilities12.

Knowledge creation and acquisition rely on technologies such as data and text mining, machine learning, 
and the IoT. For storing knowledge, tools like databases, knowledge bases, blockchain, and repositories are 
used. Sharing knowledge involves visualization tools, simulations, webinars, videoconferences, and social 
media. To apply knowledge, organizations implement knowledge-based systems, enterprise resource planning 
(ERP) systems, management information systems (MIS), and cognitive computing systems. Together, these 
technologies interconnect various processes, and the system’s effectiveness depends on their seamless operation 
to ensure an uninterrupted flow of knowledge throughout the organization14.
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Society 5.0
Society 5.0 is a concept that emphasizes social responsibility and improving the quality of life through innovation 
and technology. It involves the integration of physical and virtual spaces, and the development of skills such as 
creativity, critical thinking, communication, and collaboration. In fact, it aims for a human-centered society. 
Society 5.0 envisions human beings interacting with social robots and artificial intelligence in their daily lives3. 
It also involves the tokenization process, creating tokenized digital twins of assets and access rights, which plays 
a central role in the future Web3 and its underlying token economy. Additionally, Society 5.0 promotes ethics, 
decentralization of power, data democratization, connected cyber/physical society, and resiliency by design. It 
aims to create personalized and purpose-led services, involving ecosystem participants from multiple industries, 
and decreasing customer acquisition costs4,15.

Emerging technologies have played a pivotal role in shaping the foundation of Society 5.0. Today, many 
processes operate by collecting data from the environment, processing it to extract knowledge, and using these 
insights to drive changes or responses. A defining feature of a Smart Society is the interconnection of these 
processes, allowing them to work together seamlessly16. This concept extends to specific areas, including Smart 
Agriculture, Smart Industry, Smart Cities, and Smart Businesses, with ongoing research advancing these fields 
through smart applications.

KM in Society 5.0
Knowledge management is vital in Society 5.0, a knowledge-driven society that merges cyber and physical spaces, 
addressing challenges from the Fourth Industrial Revolution and Industry 5.014. This integration enhances 
knowledge sharing and processes using Industry 4.0 technologies like IoT, cloud computing, and blockchain17, 
and continues with Industry 5.0 innovations such as Big Data and AI10,18. These technologies reduce manpower 
and time for data analysis, transforming organizations and society by providing high-quality products and 
services efficiently. Knowledge management supports human-centric goals of sustainability and resilience, 
recognizing the centrality of knowledge assets in sustainable development by facilitating the acquisition, use, 
and communication of sustainable practices and coordinated community input5,14.

KM facilitates the efficient sharing, creation, and utilization of knowledge for the betterment of society. Its 
integration in the Society 5.0 paradigm can be highlighted in the following key points:

•	 Digital transformation: Society 5.0 emphasizes the integration of digital technologies such as artificial intel-
ligence, big data, IoT, and robotics into various aspects of society. Knowledge management helps in effectively 
harnessing these technologies by organizing and managing the vast amount of data generated, extracting 
valuable insights, and facilitating informed decision-making19.

•	 Collaborative innovation: Knowledge management promotes collaboration and knowledge sharing among 
individuals, organizations, and communities. In Society 5.0, this collaborative approach is essential for fos-
tering innovation and addressing complex societal issues. Platforms and tools for knowledge sharing and 
collaboration enable collective intelligence to be leveraged for problem-solving and innovation20.

•	 Lifelong learning: Society 5.0 emphasizes the importance of lifelong learning to adapt to rapidly changing 
technological advancements and societal needs. Knowledge management systems support continuous learn-
ing by providing access to relevant knowledge resources, personalized learning experiences, and opportuni-
ties for skill development21.

•	 Human-centric design: In Society 5.0, technology is designed to enhance human capabilities and improve 
quality of life. Knowledge management helps in understanding human needs, preferences, and behaviours, 
which is essential for designing and implementing human-centric solutions. By incorporating user feedback 
and insights into the knowledge management process, technology can be tailored to better serve society22.

At the same time, the integration of Society 5.0 in Knowledge Management represents a paradigm shift towards 
decentralized, AI-driven, and human-centric knowledge systems. The use of IoT, AI, blockchain, and cloud-
edge computing enables real-time knowledge acquisition, improved decision-making, and seamless information 
exchange in smart cities, industries, and public governance23,24. Table 1 summarizes the techniques used and the 
limitations and challenges of different aspects of the integration of society 5.0 in KM.

Examples of the symbiosis of the concepts of knowledge management and Society 5.0 can be seen in smart 
agriculture, where collection of information on the farm, field and culture, data analysis and decision-making 
and implementation of decisions are needed for precision farming25. In the smart city, intelligent transport 
monitoring systems (ITMS) use IoT to gather data, and the cloud to compute AI algorithms to helps authorities 
to gain knowledge that results in better planing that reduces accidents and traffic26. Advanced technologies such 

Integration aspect Techniques used Limitations and challenges

AI-powered knowledge discovery Machine Learning, NLP, Decision Support Systems Algorithmic bias, lack of transparency in AI decision-making

IoT and smart knowledge sharing Smart sensors, real-time data analytics, predictive insights Interoperability issues, high data transmission and storage costs

Cloud & edge computing Cloud-based KM systems, serverless edge computing Privacy concerns, high infrastructure costs

Blockchain for knowledge governance Decentralized knowledge storage, tokenized intellectual property Scalability issues, complex regulatory compliance

Human-centered decision systems Augmented intelligence, AI-driven personalization Ethical concerns, risk of AI over-reliance

Digital twin for knowledge simulation Real-time system modelling, data-driven decision-making High computational requirements, need for extensive IoT integration

Table 1.  Techniques and Limitations of Society 5.0 in Knowledge Management.
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as 5G, virtual reality, machine learning, augmented reality, and data analytics are being used in smart factories 
to improve manufacturing and production processes. These technologies help gain valuable information that 
optimizes production lines and pushes manufacturing plants towards smart manufacturing27,28.

Service provisioning models for KM in the smart city
Smart cities enhance the quality of life of its residents, and promote transparent management of public resources, 
including financial assets, natural resources, and infrastructure. Successful smart city initiatives rely on three core 
components in knowledge management: technology, people, and institutions. Together, these elements support 
urban infrastructure and governance, improving public services and citizen engagement. Technology-driven 
services leverage data to gain insights, crowdsource ideas, and deliver enhanced public services. Additionally, 
smart applications empower citizens to participate in shaping public policy, enriching both decision-making 
processes and the value of business operations.

KM in a smart city forms a cyber-physical social system that encourages collaboration among organizations 
and stakeholders, creating a sophisticated technological network within the urban ecosystem. Key components 
of this network are AI, IoT and Big Data, which play critical roles in knowledge co-creation, restructuring 
KM processes, and facilitating the exchange of human and organizational knowledge. Stakeholders contribute 
essential data, and trust is a crucial factor in fostering agreements between them and the municipality to 
effectively deploy smart technologies and successfully implement smart initiatives6,29.

For transformative innovations that reshape how organizations and companies deliver benefits within the 
ecosystem, a supportive framework must emerge. This includes investments in new systems and skill development 
by firms, as well as an adaptation to the new approach by the customers, learning to use it to generate value. 
Over time, customers and citizens themselves become more adept at using information to manage their lives as 
workers, consumers, and travellers.

Modern platforms depend on the ability of businesses and individuals to create, access, and analyse vast 
amounts of data across various devices. Digital technologies such as social networks and mobile applications 
are driving the expansion of platforms into smart applications. These platforms utilize Big Data to collect, store, 
and manage extensive data sets30. A major challenge for the integration of smart applications into knowledge 
management processes is the workforce skill gap. To avoid the cost of acquiring new talents with the right 
expertise, Kolding et al.31 conclude that organizations should plan ahead training programs to update the skills 
of the employee base in order to meet long-term development goals and other enterprise-wide priorities.

Figure  1 shows examples of smart city applications that involve knowledge management processes. The 
following sections will explore the technologies that establish platforms for knowledge management in smart 
cities.

Cloud computing
Cloud computing is a computing paradigm where the resources, be it applications and software, data, frameworks, 
servers or hardware, are stored on remote servers and accessed over the internet. This makes those resources 
available from anywhere with an internet connection. “Weak” computing devices send their computations to 
cloud servers, a practice known as Computing Offloading32.

Fig. 1.  Examples of smart city applications and technologies where knowledge management is involved.
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The cloud brings numerous key benefits. It enables ubiquitous, convenient, on-demand network access to a 
shared pool of configurable computing resources (e.g., networks, servers, storage, applications and services) that 
can be rapidly provisioned and released with minimal management effort or service provider interaction33. It is 
a rapidly evolving field that has gained significant traction in recent years. It encompasses a range of technologies 
and market players, and is expected to continue growing in the future34.

Organizations gain a set of advantages by using the cloud, including cost saving, scalability, reliability and 
flexibility7. It also allows organizations to focus on their core competencies instead of managing IT infrastructure. 
Additionally, cloud computing can help organizations improve their agility, since they no longer need to wait 
for hardware to be provisioned and deployed. Furthermore, cloud computing enables organizations to access 
powerful applications and services that they may not have been able to afford on their own8.

Cloud resources range from data and software to concrete hardware resources. The following list provides an 
overview of the typical applications of cloud computing.

•	 Web-based applications: Cloud computing provides a platform for hosting web applications, allowing busi-
nesses to deploy and scale their applications without the need for significant upfront investment in hardware 
infrastructure.

•	 Data storage and backup: Cloud storage services offer scalable and reliable data storage solutions, allowing 
businesses to store and back up their data securely in the cloud.

•	 Software as a service (SaaS): Cloud-based SaaS applications enable users to access software applications over 
the internet, eliminating the need for local installation and maintenance.

•	 Infrastructure as a Service (IaaS): IaaS providers offer virtualized computing resources, enabling businesses 
to build and manage their IT infrastructure in the cloud.

•	 Platform as a service (PaaS): PaaS offerings provide a platform for developers to build, deploy, and manage 
applications without the complexity of managing underlying infrastructure.

•	 Big data analytics: Cloud computing platforms provide the scalability and computing power required for 
processing and analyzing large volumes of data, making it easier for organizations to derive insights from 
their data.

•	 Internet of things: Cloud platforms offer services for managing and processing data generated by IoT devic-
es, enabling real-time analytics and decision-making.

•	 Artificial intelligence: and Machine Learning: Cloud-based AI and machine learning services provide access 
to powerful algorithms and computing resources for training and deploying machine learning models.

•	 Content delivery networks (CDNs): Cloud-based CDNs distribute content such as web pages, images, and 
videos to users worldwide, reducing latency and improving performance, which in term translates to better 
user experience.

•	 Development and testing environments: Cloud platforms offer on-demand access to development and test-
ing environments, allowing developers to quickly provision resources and collaborate on projects.

•	 Disaster recovery and business continuity: Cloud-based disaster recovery services provide organizations 
with the ability to replicate and recover their IT infrastructure and data in the event of a disaster.

To smart city applications, offloading allows them to deploy complex applications on low power mobile devices. 
An intrinsic problem for an offloading application is resource allocation. Smart City applications need to allocate 
remote computing and networking resources to satisfy35–37. One of the main challenges of the offloading model 
is complying with the Service Level Agreement (SLA) between the cloud provider and the client. Generally, 
cloud platforms optimize resource scheduling and latency. These techniques strive to maintain deadlines during 
task execution due to urgency and resource budged limits. These extra resources needed during peak demand, 
known as marginal resources, are a challenge due to the variability of demand38,39. There are several strategies 
to this problem, such as decision support models using top-k nearest neighbour algorithm38 or minority game 
theory40. Other authors incorporate deep learning into their resource allocation schemes35,41.

Cloud computing helps knowledge management processes. It reduces the barrier to entry, as it eliminates 
the need to invest in IT infrastructure to implement knowledge management systems. Instead of investing in 
expensive infrastructure and hardware, organizations can leverage cloud resources on a pay-as-you-go basis, 
reducing upfront costs and operational expenses. It provides an alternative to the classical approach, as it provides 
the mechanisms to control, virtualize and externalize the infrastructure42. It is specially important SMEs, 
where the lack of adequate technical capabilities can hinder their implementations of knowledge management 
strategies43 A framework for Knowledge Management as a Service (KMaaS) allows the users to access services 
from anytime, anywhere, and from any devices based on the user subscription for a specific domain. The 
knowledge management processes are impacted by this technology, specially knowledge sharing, knowledge 
creation, and knowledge transfer44. The implementation of cloud computing technologies impact in the overall 
organizational agility. Cloud computing gives them the capacity to deploy mass computing technology quickly, 
responding quickly to changes in the market. As a result, the performance of an organization is positively affected 
by cloud computing43. Practical applications of Cloud Computing in Knowledge Management include45:

•	 Knowledge storage and sharing: Cloud platforms facilitate centralized storage, allowing SMEs to store, re-
trieve, and share knowledge in real time.

•	 Collaboration and communication: Cloud-based tools (e.g., Google Drive, Microsoft Teams) enhance team-
work, remote work, and knowledge exchange.

•	 Data security and backup: Cloud computing provides secure environments with automated backups, mini-
mizing data loss risks.
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•	 Scalability and cost-efficiency: SMEs can scale their KM systems without significant infrastructure invest-
ments.

•	 AI and analytics integration: Cloud computing enables AI-driven knowledge discovery, pattern recognition, 
and decision-making.

•	 Knowledge process automation: Automating workflows and document management improves efficiency in 
KM processes.

Edge computing
Edge computing has emerged as a transformative paradigm in distributed computing, bringing computational 
and storage resources closer to the point of origin or consumption of data. This paradigm shift addresses the 
critical limitations of traditional cloud computing by reducing latency, saving bandwidth, and enabling real-time 
data processing46. Unlike centralized cloud architectures, edge computing strategically places resources at the 
network edge, facilitating ultra-responsive systems and location-aware applications47.

The importance of edge computing is further underscored by its potential to support latency-sensitive 
applications in areas such as IoT, intelligent manufacturing, and autonomous systems. By processing data locally, 
edge nodes alleviate network congestion and enhance system reliability48. Moreover, edge computing is uniquely 
positioned to complement existing cloud infrastructure by acting as a bridge, ensuring seamless data transfer 
and computational efficiency49.

This paradigm also introduces new opportunities and challenges in distributed system design, including 
efficient resource allocation, robust system architectures, and scalable management solutions. Edge computing’s 
adaptability to evolving computational demands and its proximity to users make it a cornerstone of next-
generation digital ecosystems50. By leveraging its unique capabilities, edge computing enhances existing 
technologies but also to paves the way for innovative applications across diverse domains.

Edge computing plays a pivotal role in enhancing knowledge management processes by addressing the 
critical challenges of data accessibility, processing efficiency, and timely decision-making. Its ability to integrate 
seamlessly with existing technologies and facilitate localized data processing has made it invaluable for 
knowledge-intensive operations.

One notable application of edge computing in knowledge management is in fostering collaboration 
across industrial systems. For instance, multi-access edge computing (MEC) frameworks enable the creation 
of knowledge-sharing environments within smart manufacturing contexts, such as intelligent machine tool 
swarms in Industry 4.0. This integration supports real-time data exchange and decision-making, critical for 
efficient knowledge dissemination51.

Furthermore, edge computing contributes significantly to green supply chain management by facilitating the 
sharing of critical knowledge across enterprises. It enhances transparency and reduces resource consumption 
by integrating blockchain technologies to secure data transactions52. In open manufacturing ecosystems, edge 
computing has been employed to establish cross-enterprise knowledge exchange frameworks. By integrating 
blockchain and edge technologies, these frameworks ensure secure and efficient management of trade secrets 
and regional constraints53. From an enterprise innovation perspective, edge computing-based knowledge bases 
allow for enhanced data processing and storage at the edge, aligning with organizational goals of speed and 
reliability54. Edge computing also demonstrates its versatility in master data management by processing data at 
the source. This capability minimizes latency and ensures real-time updates for critical knowledge databases, 
particularly in dynamic business environments55. Finally, edge computing’s integration into virtualized 
communication systems has paved the way for knowledge-centric architectures. Such systems optimize data 
collection and sharing, ensuring that actionable knowledge reaches stakeholders effectively56.

There are several examples of the adoption of edge computing in KM processes. For example, Coppino57 
studied Italian SMEs for Industry 4.0 adoption for knowledge management. The research highlights that edge 
computing, when integrated with knowledge management enables SMEs to scale knowledge-sharing processes 
while improving real-time decision-making. However, SMEs struggle with insufficient IT infrastructure and 
lack of expertise, which limits overall adoption. For that reason, the author recommends developing frameworks 
to reduce technological investments. Stadnika et al.58 perform a survey of representatives of companies from 
mainly European countries. Their results show that enterprises use edge data processing to increase data security 
and reduce latency.

Serverless computing
Serverless computing is a paradigm within the realm of cloud computing where developers can focus solely 
on writing and deploying applications without concerning themselves with the underlying infrastructure. In 
a serverless architecture, the cloud provider dynamically manages the allocation and provisioning of servers, 
allowing developers to create event based applications without having to explicitly manage servers or scaling 
concerns59,60.

Instead of traditional server-based models where developers need to provision, scale, and manage servers to 
run applications, serverless computing abstracts away the infrastructure layer entirely. Developers simply upload 
their application, define the events that trigger its execution (such as HTTP requests, database changes, file 
uploads, etc.), and the cloud provider handles the rest, automatically scaling resources up or down as needed61,62.

This model offers several advantages:

•	 Scalability: Serverless platforms automatically scale resources based on demand. Applications can handle 
sudden spikes in demand without manual intervention.
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•	 Cost-effectiveness: With serverless computing, you only pay for the actual compute resources consumed 
during the execution. There are no charges for idle time, which can lead to cost savings, especially for appli-
cations with sporadic or unpredictable workloads.

•	 Simplified operations: Since there’s no need to manage servers, infrastructure provisioning, or scaling, de-
velopers can focus more on developing applications and less on system configuration. This can accelerate 
development cycles and reduce operational overhead.

•	 High availability: Serverless platforms typically offer built-in high availability and fault tolerance features. 
Cloud providers manage the underlying infrastructure redundancies and ensure that applications remain 
available even in the event of failures.

•	 Faster time to market: By abstracting away infrastructure concerns and simplifying operations, serverless 
computing allows developers to deploy applications more quickly, enabling faster iteration and innovation.

Serverless computing is being explored as a solution for smart society applications, due to its ability to 
automatically execute lightweight functions in response to events. It offers benefits such as lower development 
and management barriers for service integration and roll-out. Typically, IoT applications use a computing 
outsourcing architecture with three major components for the processing of knowledge: Sensor Nodes, 
Networked Devices and Actuators. In the data gathering point, sensors gather data from specific locations or 
sites and submit it to the cloud service. Later, the analysis of the sensor data is carried out at cloud servers, where 
the data is processed to get useful knowledge from it. Applications have connection points for the clients to get 
access to the knowledge in the form of web applications63,64.

Using the traditional cloud approach, the services should always be active to listen to service requests from 
clients or cloud users. The implementation of microservices is not a viable solution when considering the green 
aspect of systems. Holding servers for a longer period consequently increases the cost of the cloud services, as 
cloud computing is a pay-as-you-go computing model. With the serverless model, when an event is triggered 
by a request of the application, the needed computing resources to execute the function are provisioned, and 
released after they are not needed (scale to zero). With this model, applications, processes and platforms benefit 
from reduced cost of operation, as only useful computing time is paid for65. In fact, case studies show that entities 
that adopt the serverless paradigm achieve a lower cost of operation and faster response times66.

Serverless edge computing
With the increasing number of IoT devices, the load on cloud servers continues to grow, making it essential to 
minimize data transfers and computations sent to the cloud11. Edge computing addresses this need by relocating 
computations closer to where data is gathered, utilizing IoT devices or local edge servers to perform processing 
tasks67. This proximity enhances latency, bandwidth efficiency, trust, and system survivability.

Serverless edge computing enables running code at edge locations without managing servers. It introduces a 
pay-per-use, event-driven model with “scale-to-zero” capability and automatic scaling at the edge. Applications 
in this model are structured as independent, stateless functions that can run in parallel67. Edge networks 
typically consist of a diverse range of devices, and a serverless framework allows applications to be developed 
independently of the specific infrastructure68. With the infrastructure fully managed by the provider, serverless 
edge applications are simpler to develop than traditional ones, making them ideal for latency-sensitive use cases.

Numerous studies have examined the challenges and opportunities within this model, proposing various 
approaches to leverage its strengths. Reduced latency and cost-effective computation are especially valuable in 
real-time data analytics69. Organizations benefit from the scalability of the serverless paradigm, which supports 
a flexible, expansive data product portfolio70. In this context, serverless edge computing enables more affordable 
data processing and improves user experience by reducing latency in data access and knowledge delivery 
interfaces.

Today, there are several serverless edge providers offering their services71. We studied ten different providers 
(Akamai Edge, Cloudflare Workers, IBM Edge Functions, AWS, EDJX, Fastly, Azure IoT Edge, Google Distributed 
Cloud, Stackpath and Vercel Serverless Functions) to understand how they offer their services. These providers 
can be divided into two main categories. The first category improves traditional CDN functionality by leveraging 
serverless functions to modify HTTP requests before they are sent to the user. The second group offers serverless 
edge computing frameworks that integrate edge infrastructure with their cloud platforms, enabling clients to 
build and incorporate their own private edge infrastructure into the public cloud. Additionally, we identified one 
provider, EDJX, that employs a unique Peer-to-Peer (P2P) technology to execute its serverless edge functions.

The technologies used by these providers are similar to their traditional serverless cloud counterparts. To 
implement the applications, high-level programming languages are typically used, like JavaScript, Python, Java. 
Usually, development is streamlined through the provider framework, which provides all the tools needed.

AI in KM processes
Knowledge management processes benefit significantly from AI through enhanced data processing, analysis, 
automation, and decision-making capabilities. AI brings sophisticated tools to KM that help organizations 
capture, organize, share, and apply knowledge more effectively. The following key points were extracted from 
the literature review:

•	 Knowledge discovery and extraction. AI tools, particularly natural language processing (NLP) and machine 
learning, can extract insights from vast amounts of unstructured data (e.g., documents, emails, reports, and 
social media). NLP enables AI to parse and understand text, identifying valuable patterns, relationships, and 
topics within data sources. For instance, AI can automatically categorize and tag documents, identify key 
insights, and detect trends that are relevant to the organization. In scientific research or industry, AI-driven 
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tools can mine research papers, patents, and technical documents to highlight emerging technologies and 
innovations72,73.

•	 Organizing and structuring knowledge. AI-driven categorization, clustering, and tagging help organize 
knowledge into structured formats for easier retrieval. Using machine learning algorithms, AI can automat-
ically classify information based on its content and relevance, enabling employees to find information more 
quickly. Semantic analysis, powered by AI, also groups related documents and concepts, creating a connected 
network of information that mirrors human knowledge organization74.

•	 Knowledge sharing and recommendation systems. AI-powered recommendation systems suggest relevant 
knowledge resources to users based on their roles, recent activities, or queries. It is most common used to 
recommend content in digital platforms such as YouTube, Netflix, or Amazon. By analysing usage patterns 
and preferences, AI-driven KM systems can suggest documents, experts, or solutions that match immediate 
needs. This tailored approach to knowledge sharing ensures that clients and users receive the most relevant 
information without needing to sift through large repositories75.

•	 Automating knowledge capture. AI technologies, such as robotic process automation (RPA) and machine 
learning, facilitate automatic knowledge capture by monitoring and recording daily activities and processes 
within an organization. For example, AI-powered chatbots can log interactions with customers or employees, 
storing valuable insights from these interactions in a knowledge base. AI also captures information from 
emails, meetings, or customer support calls, automatically adding relevant details to knowledge repositories76.

•	 Enhancing knowledge retrieval with search and NLP. AI improves knowledge retrieval by enabling more 
sophisticated search mechanisms. With NLP, AI systems understand user queries in natural language, refining 
search results based on the intent behind queries rather than just matching keywords. Advanced AI-driven 
search engines in KM systems also employ semantic search to understand contextual relationships between 
terms, improving the accuracy and relevance of results77,78.

•	 Contextualizing and personalizing knowledge. AI can personalize the KM experience by tailoring knowl-
edge delivery based on an employee’s role, department, or project involvement. Using machine learning, KM 
platforms analyse patterns in user behaviour to predict and deliver information that aligns with individual 
needs. This contextualization makes knowledge sharing more effective, ensuring that the right knowledge 
reaches the right person at the right time79.

•	 Augmenting decision-making and expertise. AI supports decision-making by providing analytical insights 
drawn from historical data, documents, and external sources. In KM, AI-driven predictive analytics and ma-
chine learning models assess past data to offer insights, identify risks, and make informed predictions. Expert 
systems can also use AI to simulate the decision-making processes of human experts, providing guidance on 
complex tasks80.

•	 Developing virtual assistants for knowledge management. AI-based virtual assistants, like chatbots, fa-
cilitate KM by answering employee questions, providing document links, or assisting with common tasks. 
NLP-powered chatbots in KM systems help employees access the knowledge they need by interacting through 
natural language queries. These assistants can handle frequently asked questions, provide guided instructions, 
and retrieve information, making KM accessible and interactive, which ends up increasing overall produc-
tivity81.

•	 Supporting knowledge creation through insights and innovation. AI-driven analytics can highlight trends, 
patterns, and gaps in an organization’s knowledge, encouraging innovation and knowledge creation. By iden-
tifying emerging trends, AI helps organizations remain competitive and proactive in knowledge development. 
AI tools can also support research and development by generating insights from internal and external data, 
suggesting new ideas or directions for innovation82.

Applications and platforms for knowledge management in the smart city
Research on service provisioning models for KM in smart cities reveals a variety of approaches, emphasizing the 
integration of technological and organizational strategies to optimize services.

Several studies highlight the critical role of structured frameworks and platforms to facilitate efficient service 
delivery. For instance, Prasetyo et al.83 propose a service platform that aligns with smart city architecture, 
promoting digital service introduction in dynamic urban environments. Similarly, Yoon et al.84 describe 
HERMES, a platform that uses GS1 standards to streamline service sharing and discovery, enabling citizens to 
efficiently engage with services in a geographically and linguistically optimized manner.

Smart city service models also emphasize interoperability and tailored service offerings for diverse urban 
needs. The study by Kim et al.85 discusses adapting service provisioning models according to urban types, 
underscoring the need for knowledge services tailored to the unique characteristics of each city. Additionally, 
Weber & Zarko86 argue for regulatory frameworks to support interoperability, ensuring that services can be 
consistently deployed across various smart city contexts.

Technological advancements, including AI, IoT and big data are also foundational to KM service 
provisioning in smart cities. Sadhukhan87 develops a framework that integrates IoT for data collection and 
processing, addressing the challenges posed by heterogeneous technologies in smart city infrastructures. In the 
same vein, 5G technology is viewed as a transformative tool for enhancing service efficiency, especially in traffic 
management, healthcare, and public safety domains88.

The convergence of these platforms and frameworks signals a broader move towards knowledge-driven, 
citizen-centric service models. Efforts like Caputo et al.89 model illustrate the importance of stakeholder 
engagement in building sustainable, effective service chains within smart cities. Ultimately, these models aim 
to transform urban living by making smart city services accessible, efficient, and responsive to the needs of the 
citizens.
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Findings
Knowledge management has driven organizations and companies into investing heavily to harness, store and 
share information in knowledge networks. Through the smart city context, it has meant the sprawl of innovative 
platforms and applications. They are based on technologies such as AI, big data and IoT. To process the vast 
amount of data, they need a supporting computing architecture. In this regard, cloud computing comes as a great 
way to provide the necessary resources, due to its flexibility and pay per use model.

Serverless edge computing has gained significant attention recently for its potential to reduce costs and simplify 
development. Numerous technologies have emerged to enhance performance and minimize latency, reflecting 
strong industry interest. This trend is evident in the growing number of providers now offering serverless edge 
services. For knowledge management, it enables faster data processing, reduced latency, improved scalability, 
and enhanced reliability. The serverless edge paradigm also reduces the costs of developing and maintaining new 
knowledge management systems, which is specially for SMEs.

KM in smart cities requires structured frameworks and platforms to enable efficient service delivery. 
Frameworks aligned with smart city architecture support the smooth integration of digital services, while 
platforms that prioritize interoperability and adaptability ensure that services meet diverse urban needs. 
Foundational technologies such as AI, IoT, and big data play a critical role in facilitating KM, as they streamline 
data collection, processing, and sharing. These technologies, combined with 5G connectivity, support essential 
services like traffic management, healthcare, and public safety. The convergence of these tools indicates a 
shift toward knowledge-driven, citizen-centric models that prioritize accessibility and responsiveness, with 
stakeholder engagement emerging as a vital component for building effective, sustainable smart city services.

Particularly, AI significantly enhances KM by improving data processing, analysis, automation, and decision-
making. Key aspects include knowledge discovery, where AI tools extract insights from unstructured data, and 
organization, where AI-driven categorization and clustering make knowledge more accessible. AI also aids in 
knowledge sharing by recommending relevant resources to users based on their roles and activities. Automation 
supports the capture of knowledge from daily activities, while enhanced retrieval techniques allow AI systems 
to understand and respond accurately to user queries. Personalization and contextualization further tailor the 
KM experience, ensuring that knowledge reaches the right individuals. Additionally, AI augments decision-
making by providing predictive insights and supports innovation by identifying trends, gaps, and opportunities 
for knowledge creation.

Providers have leveraged existing infrastructure to deliver their services, with most vendors basing their 
offerings on established CDNs. These CDNs provide a global network of strategically located computing nodes, 
enabling reduced latency compared to traditional cloud servers. Many vendors also offer frameworks that 
facilitate easy integration of clients’ own edge infrastructure. However, despite their improved latency, CDN 
servers remain centralized in specific geographic locations90.

Related work
The integration of artificial intelligence and edge cloud computing has made advances in various applications. 
Duan et al.91 provide a comprehensive survey on distributed AI that uses edge cloud computing, highlighting 
its use in various AIoT applications and enabling technologies. Similarly, Walia et al.92 focus on resource 
management challenges and opportunities in Distributed IoT (DIoT) applications.

The synergy of cloud and edge computing to optimize service provisioning is well-documented. Wu et al.93 
discuss cloud-edge orchestration for IoT applications, emphasizing real-time AI-powered data processing. 
Hossain et al.94 highlight the integration of AI with edge computing for real-time decision-making in smart 
cities, focusing on intelligent traffic systems and other data-driven applications. Kumar et al.95 presents a 
deadline-aware, cost-effective and energy-efficient resource allocation approach for mobile edge computing, 
which outperforms existing methods in reducing processing time, cost, and energy consumption.

The taxonomy and systematic reviews by Gill et al.96 provide a detailed overview of AI on the edge, emphasizing 
applications, challenges, and future directions. Their research underscores the potential of AI-driven edge-cloud 
frameworks for improved scalability and resource management.

The synergy between edge and cloud computing has been applied to improve predictive maintenance 
systems. For example, Sathupadi et al.97 highlight how real-time analysis of sensor networks can enhance 
outcomes through AI integration. Additionally, Campolo et al.98 explore how distributing AI across edge nodes 
can effectively support intelligent IoT applications.

Iftikhar et al.99 contribute to the discussion on AI-based systems in fog and edge computing, presenting 
a taxonomy for task offloading, resource provisioning, and application placement. Gu et al.100 propose a 
collaborative computing architecture for smart grids, blending cloud-edge-terminal layers for enhanced network 
efficiency. Jazayeri et al.101 propose a latency-aware and energy-efficient computation offloading approach for 
mobile fog computing using a Hidden Markov Model-based Auto-scaling Offloading (HMAO) method, which 
optimally distributes computation tasks between mobile devices, fog nodes, and the cloud to balance execution 
time and energy consumption.

Lastly, Ji et al.102 delve into AI-powered mobile edge computing for vehicle systems, emphasizing distributed 
architecture and IT-cloud provisions. These studies collectively underscore the transformative impact of 
AI-integrated edge-cloud frameworks across domains, particularly in knowledge management and smart 
applications. The novelty of our work lies in the conceptualization of a general model architecture for these use 
cases, where resources can be more efficiently used across applications.

Table 2 provides a summary of studies on AI-based edge-cloud architectures. While this topic has already 
been discussed extensively, the aim of this paper is to integrate this architecture with knowledge management 
based AI applications.
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Serverless model for efficient AI knowledge processing in the smart city
This section presents a serverless Edge-Cloud model for KM processes in a smart city context. While edge 
infrastructure is currently limited in cities, major urban areas would greatly benefit from such infrastructure 
to unify and enhance various smart services. The model leverages low-power edge servers distributed across 
the city to handle data from connected IoT devices and stakeholders. Through wireless connectivity, including 
Wi-Fi, 5G, and other radio methods, edge devices form a network capable of local data processing. This 
distributed setup minimizes latency for critical applications, with computation tasks dynamically offloaded to 
cloud servers during peak demand, supported by Content Delivery Network (CDN) edge services to optimize 
response times. The infrastructure enables seamless knowledge capture, processing, and distribution, creating 
an adaptive framework for smart city applications. The experiments evaluate the performance characteristics of 
the proposed model in the context of typical AI function applications.

Figure  2 shows the Edge-Cloud model for KM processes in the smart city. Low power edge servers are 
distributed around the city, with wireless network connection to these servers. This connection can be achieved 
via traditional Wi-Fi network, 5G, or other radio transmission method forming a Wireless Sensor Network, 
where the sensors and actuators can be connected directly, and their data managed directly by the application 
running on the edge infrastructure provisioned by the provider. The edge nodes also service stakeholders in 
the knowledge processes. However, the edge environment is resource-constrained. Offloading computations to 
the cloud is an option to use in the case of a spike in demand. Also, CDN edge services can also be used in this 
case to have better latency than cloud servers. The Smart City applications that use the infrastructure generate 
knowledge that is stored, processed and distributed. In that sense, knowledge travels up into the architecture, 
where it is stored in cloud data centres. There, it is processed and sent down the architecture to be distributed 
to the stakeholders. A major benefit of it being a serverless architecture is that processing can be seamlessly 
transferred up and down the architecture.

The ecosystem is composed of a set of edge platforms E, distributed across the city.

	 E = {e1, e2, ..., em}� (1)

Let D be all the IoT and stakeholder devices distributed across the city.

	 D = {d1, d2, ..., dn}� (2)

Let F be all the serverless AI functions in the platform.

Study Evaluation Tools Performance Metrics Datasets Advantages Disadvantages

Duan et al. 
(2023)91 Survey & literature review

Accuracy, latency, power consumption, 
communication cost, memory 
footprint, privacy

N/A Comprehensive coverage of DAIoT 
applications

Focused on Distributed 
Artificial Intelligence

Walia et al. 
(2024)92

Survey & literature review, 
Theoretical analysis

Processing time, offloading latency, 
power consumption N/A Highlights resource management 

challenges
Limited Discussion on 
Energy Efficiency, Complexity 
in Practical Implementation

Wu et al. 
(2020)93

Survey & literature review, 
Cloud-edge orchestration 
framework

Accuracy, communication cost, 
power consumption, latency, resource 
utilization

N/A Insight into research challenges and 
open issues

lack of cost-effectiveness 
analysis

Hossain et al. 
(2023)94 Experimental evaluation Latency, accuracy, power consumption, 

network bandwidth
Multimodal AI 
optimization 
techniques

Detailed exploration of integrating 
multimodal AI with edge computing

Focused on multimodal AI 
with edge computing

Kumar et al. 
(2024)95 Experimental evaluation Computation cost, energy 

consumption, processing time Synthetic Cost-effective, energy-efficient and 
scalable offloading strategies Lack of analysis on security

Gill et al. 
(2025)96 Survey & literature review Latency, energy consumption, 

accuracy, scalabiliy, resource utilization N/A Extensive literature review Edge only approach, lack of 
scalability analysis

Sathupadi et al. 
(2024)97

Cloud-edge predictive 
maintenance framework, 
experimental evaluation

Latency, power consumption, network 
bandwidth, accuracy

Sensor 
network data

Hybrid edge-cloud architecture for AI 
models for managing sensor networks 
in industrial settings

The workload distribution 
algorithm is constrained by 
the limited edge resources

Campolo et al. 
(2021)98

Proof of concept, 
experimental evaluation Latency, accuracy, data transferred N/A Scalable AI distribution using a 

virtualized deep edge
Requires robust network 
infrastructure and its 
complexity of implementation

Iftikhar et al. 
(2023)99 Survey & literature review Resource utilization, throughtput, 

latency, power consumption N/A Comprehensive review of fog and edge 
platforms managed by AI

Focused on fog and edge 
platforms managed by AI

Gu et al. 
(2023)100

Survey & literature review, 
theoretical analysis

Latency, power consumption, cache hit 
rate, computation cost N/A comprehensive review on collaborative 

computing architecture for smart grids
Complex decision-making, 
edge computing limitations 
and device heterogeneity

Jazayeri et al. 
(2021)101

HMAO (Hidden Markov 
Model-based Auto-scaling 
Offloading), experimental 
evaluation, iFogSim toolkit

Execution time, power consumption Synthetic Optimized computation offloading for 
time and energy efficiency

High model complexity, 
autoscaling overhead

Ji et al. 
(2020)102 Experimental evaluation Accuracy, execution time, memory 

usage, power consumption
Deepfashion2 
dataset

Comprehensive experimental 
evaluation on a real-world application Limited scope

Table 2.  Evaluation of AI-based Edge Cloud Computing Studies.
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	 F = {f1, f2, ..., fn}� (3)

	 Where Fei (t) ⊆ F � (4)

Therefore, ||F || = n is the total amount of AI functions that exist in the platform to provide service to all 
the applications. These are distributed between the different edge platforms around the city to provide the 
functionality where it is needed. As a consequence, the functions deployed at any time (t) change. The most 
optimal approach is the execution of these functions in the edge. However, in cases of peak demand, the 
execution of the function fi may be allocated in a cloud server. Lastly, the cloud stores all AI functions, and 
distributes them to edge servers where needed.

The infrastructure is distributed in four layers.

•	 IoT and stakeholder devices: This layer corresponds to the sensoring devices and actuators. These are the 
devices that interact with the users and gather data to be processed. In a smart city environment, they are 
expected to be dispersed through the city in multiple smart applications that stakeholders interact with.

•	 City edge servers: As data is gathered by the sensoring devices, it needs to be offloaded to be processed. 
Here, local computing edge servers spread through the city offer the necessary computing resources to run 
the applications with local network connectivity latency. These computations harness useful knowledge from 
the data gathered by the IoT devices. Where necessary, computations and information can be sent to the next 
layers.

•	 CDN edge servers: Where computations are offloaded to the cloud, there is still the opportunity to use the 
existing CDN edge infrastructure. It presents itself as an intermediate computing layer between the local city 
edge servers and the remote cloud servers, located geographically closer than the cloud.

•	 Cloud layer: Traditional cloud infrastructure where the systems and applications default if a more nearby 
option is not available. Here, computing resources are plentiful. This layer is also used for data and knowledge 
storage. In this layer, knowledge is processed and distributed back to the stakeholders.

In this context, process time (PT) is defined as the total delay since the action is triggered until the action 
is completed. For example, a user would make a request for traffic status information. In this case, the delay 
perceived by the user is the time since it opens the service until the information is displayed. Therefore, PT can 
be expressed as a sum of different delays, as shown by Eq. 5.

	 P T = Comm.(data) + Setup(fi) + Comp.(fi(data)) + Comm.(fi(data))� (5)

Fig. 2.  Proposed service provider infrastructure for knowledge processing. Created with Powerpoint version 
2502 (​h​t​t​p​s​:​​​/​​/​w​w​​w​.​m​i​c​r​o​s​o​f​​t​.​c​​​o​m​/​​e​​n​​-​u​s​/​m​​i​c​r​o​s​​​o​f​t​​-​3​​6​5​/​p​o​w​e​r​p​o​i​n​t). The city map was generated with Copilot 
AI version 18.2503.1061.0 (https://copilot.microsoft.com/).
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Where comp.(fi(data)) is the time it takes the function to compute with the associated data. Setup(fi) is the 
time it takes for the edge or cloud environment to be ready to execute the function. The first time a service is 
invoked, or after a long time, the corresponding function might not be present in the Edge environment. In that 
case, the function has to be retrieved from the cloud server, and the execution environment has to be created. 
This is a costly operation, but it is only performed the first time. Further invocations of the same function would 
find the execution environment ready. Lastly, there is the communication time. It is expressed as Comm.(data) 
and Comm.(fi(data)). The first one is the time it takes for the data that wants to be processed to be transmitted 
to the edge or cloud environment. The second term is the time it takes for the result or response to reach its 
destination.

Figure 3 shows a sequence diagram of the interaction between the different components of the model. When 
a processing request is made on an IoT device, it first reaches the local edge layer. If processing cannot be 
completed there, it is offloaded to the CDN edge layer. If it is still necessary, further processing can be done in 
the cloud. This multilayered structure makes the architecture scalable. Techniques such as auto-scaling, load 
balancing, resource pooling, edge-cloud orchestration or predictive scaling can be employed to do the offloading 
decission from the lower layers to the upper layers62. After the request is completed, further processing is 
performed in the cloud to infer knowledge from the gathered data. Then, this knowledge is stored in knowledge 
databases, and IoT devices can make requests to retrieve it. Although a multi-layered architecture is able to 
allocate and distribute the execution of the task, it also introduces an overhead for the scheduling decision. In 
this case, each layer makes the decision whether to execute the request locally, or to offload the task to the upper 
layer. Therefore, in the worst case scenario, the time complexity is defined by Eq. 6, where the overhead time 
(O) of the scheduling decision in all the layers is aggregated. The overhead time in each layer is composed of the 
initial scheduling decision time (S), and the final response time (R) where the response from the upper layer is 
aggregated and sent to a lower layer of the architecture.

	 O = OEdge + OCDN + OCloud = (SEdge + REdge) + (SCDN + RCDN ) + (SCloud + RCloud)� (6)

The proposed framework integrates in every step of KM processes:

•	 Knowledge creation: IoT devices capture relevant data that is processed at edge nodes. The AI functions 
aggregate and analyse data in real time to produce actionable insights. On the other hand, cloud services are 
used to train and improve ML models that contribute to knowledge discovery, while also serve as support to 
process data in events of peak demand.

•	 Knowledge storage: The cloud offers many services related to data storage. Services such as Amazon S3 or 
Azure Blob Storage store information such as documents, logs, and other raw data that can be stored. Cloud 
databases store structured knowledge for efficient access.

•	 Knowledge sharing: Cloud APIs expose data through RESTful or GraphQL interfaces. Users receive re-
al-time updates via WebSocket services.

•	 Knowledge application: The AI functions deliver personalized recommendations or insights based on user 
queries. Also, contextual data is used to refine outputs dynamically.

•	 Knowledge feedback: Users can rate or comment on knowledge outputs. That information is sent back to 
logging and analytics applications that capture it for further refinement.

Security is a major concern in all steps of knowledge management. Therefore, the proposed model must 
implement measures to secure the data at every step. One of the main concerns is to secure the communications. 
For that, data encryption techniques such as end-to-end encryption algorithms (e.g., TLS) can be employed. 
Authentication of users and services is also crucial. Role-Based Access Control (RBAC) and Attribute-Based 

IoT devices Local Edge CDN Edge Cloud

Knowledge processing

Processing request

Computing offloading

Computing offloading

Response

Response

Response

Knowledge
database

Knowledge storage

Knowledge request

Knowledge retrieval

Fig. 3.  Sequence diagram showing the interaction between the different components of the model.
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Access Control (ABAC) should be used to authenticate APIs and databases. Additionally, decentralized identity 
mechanisms can be integrated to enhance user privacy and control over personal data. This approach leverages 
blockchain technology to create self-sovereign identities, reducing the risk of identity theft and unauthorized 
access103.

To ensure data integrity and confidentiality, homomorphic encryption can be employed. This advanced 
encryption technique allows computations to be performed on encrypted data without decrypting it, thus 
maintaining data privacy throughout the processing lifecycle. Homomorphic encryption is particularly useful in 
scenarios where sensitive data needs to be processed in untrusted environments, such as edge devices or third-
party cloud services104.

Lastly, there is the need to comply with privacy regulations such as GDPR or CCPA, to which special 
attention should be given to protect sensitive data with secure and regulation-compliant storage. Implementing 
these security measures will provide comprehensive protection of sensitive data across the architecture layers, 
ensuring that the system is resilient against various security threats.

Another crucial aspect of the proposed model is the concern for interoperability, and avoiding the vendor lock-
in problem. Ensuring seamless integration is essential for the efficiency and scalability of smart applications. It is 
also essential to share resources from a pool of cloud-service providers in a seamless fashion. To this end, multi-
cloud deployments or federated cloud models could be used. Multi-cloud environments allow organizations to 
distribute workloads across multiple cloud providers, reducing dependency on any single vendor. This approach 
enhances flexibility, resilience, and cost optimization105. At the same time, Federated cloud models promote 
interoperability between different cloud providers through standardized APIs and governance frameworks. This 
enables seamless workload migration and data sharing while maintaining autonomy106.

However, components from different cloud providers lack standardization, making it difficult to manage 
resources from different providers and legacy applications. To mitigate this problem, there are several strategies 
that may be used, such as unified resource management, security integration, transparent data governance 
policies, and cost optimization107.

Finally, there are the environmental concerns of the architecture. Performing computations in such scale 
makes use of significant power resources and its corresponding carbon footprint. The proposed architecture 
improves over an all-cloud scenario. Traditional cloud computing infrastructures rely heavily on centralized 
datacenters, which consume significant amounts of electricity and often depend on non-renewable energy 
sources, contributing to substantial carbon emissions. The use of edge computing limits the demand for massive 
data centers by handling computations locally in energy-efficient devices108,109.

Several experiments have been conducted to test characteristics of the architecture. The aim of the experiments 
is to demonstrate the benefits of the edge layer for smart applications. The experiments aim to model the PT of the 
cloud and edge platforms, measuring data transfer time and computation time. The experimental environment 
has been selected to be representative of the cloud and edge environments, with a cloud server and an edge 
device . The edge server is composed of a Raspberry Pi 4, with a Cortex-A72 64-bit 1.5GHz processor (Quad 
core), with 4GB of RAM. The Raspberry Pi is a low-cost, single-board computer widely used in applications 
such as robotics, IoT, scientific data acquisition. It is also commonly used as an edge device23,110. The cloud 
server is hosted on Amazon Web Services (AWS), one of the more popular cloud providers. The server model is 
m5.large, and it has 2vCPUs with 8GB of RAM. The experiment simulates a smart city application that captures 
images from a street camera, and processes them using an AI, deep learning algorithm to infer knowledge. As 
an example of a smart city application, car crash detection is performed over the images, using a Convolutional 
Neural Network (CNN) Deep Learning (DL) AI model. The model was developed by Escontrela et al., and it 
is available on a GitHub repository [https://github.com/Giffy/AI_CarCrashDetector]. The decision was made 
to use this model, as it is a model made for car crash detection, a typical smart city application. Different data 
sizes were used, using common image resolution sizes used to store pictures, while also covering a wide range of 
data sizes, from 99KB to 41.2MB. These are 99KB (224x224), 2MB (1920x1080), 6.6MB (3840x2160), 16.7MB 
(7680x4320) and 41.2MB (15360x8640)  . Base latency measures the communication time when the smallest 
amount of data possible is sent. The network environment of the edge platform is composed of a household 
Wi-Fi communication network. In the cloud environment, standard internet network options were used. The 
experiments were performed in an “ideal” scenario for the edge and cloud servers, where the workload is low, 
and no other applications are being executed at the same time. For all the measurements taken, the experiment 
was repeated 5 times, and the times are averaged. Table 3 shows the 95% confidence interval ranges for upper 
and lower bound of the experiments. These values are within acceptable ranges for the following experiments to 
show meaningful results.

The first thing to be discussed is going to be Comm.(data). Figure 4 shows the transmission times obtained 
in the experiments. They are shown in blue for the cloud server, and in red for the edge server. As expected, the 
transmission time of the cloud server is higher than the transmission time of the edge server, as it takes less time 
to transmit data over a local Wi-Fi network than over the internet. Moreover, the variability of the transmission 
time is slightly higher for the cloud server, and it presents more outlier values. Factors that contribute to this are 
bigger geographic distances and internet bandwidth limitations.

Figure 5 includes all the values that contribute to the PT. Total computation times are shown with circle 
marks in the blue for the cloud server, and in red for the edge server. The results show the difference in computing 
capabilities for both platforms. The cloud server has a significant advantage over the edge server as it has more 
computing resources.

The last thing to be discussed is the total PT for both cloud and edge servers. Here, Setup(fi) is assumed to 
be 0, as the execution environment is presumed to have been set up in advance. Additionally, Comm.(fi(data)) 
is 0, as this application only stores the knowledge gained from processing the image and does not send a response 
back to the camera. The diamond marked line shows the total PT for the cloud server, while the triangles shows 
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the total PT for the edge server. In a scenario with low workloads on both the edge and cloud servers, the 
cloud server exhibits lower PT than the edge server. Deep learning AI functions are tasks that need a significant 
amount of resources. The result is that the computations take long enough to make the transmission time 
advantage irrelevant in the edge server. However, this is an ideal scenario. In real environments, the workloads 
for the edge and cloud platforms change with time. The computation time is susceptible to change with the 
amount of workload of the platform. To quantify various workload scenarios, the experiments also display the 
critical computation times. The circle-marked dotted blue line shows the minimum critical computation time for 
the cloud. It is the minimum amount of computation time that would make the PT of the cloud bigger than the 
edge. On the other hand, the square-marked dotted red line shows the maximum non-critical computation time 
for the edge. It is the maximum amount of computation time possible that does not make the edge server have 
a bigger PT than the cloud server. For this application, the computation time in the edge in the ideal scenario 
is greater than this threshold. Other lighter applications may have an ideal computation time lower than the 

Fig. 4.  Comparison of transmission times for different data sizes across Cloud and Edge platforms.

 

Experiment Total Time (Range) Processing Time (Range) Comm. Time (Range)

Base latency 0B CLOUD 0.108–0.182s 0–0 0.108–0.183s

Base latency 0B EDGE 0.037–0.38s 0–0 0.037–0.113s

224x224 99.8KB CLOUD 0.69–1.086s 0.373–0.38s 0.31–0.706s

224x224 99.8KB EDGE 2.667–2.935s 2.521–2.539s 0.146–0.396s

1920x1080 (HD) 2.1MB CLOUD 1.199–1.812s 0.438–0.451s 0.76–1.374s

1920x1080 (HD) 2.1MB EDGE 3.224–3.37s 2.692–2.729s 0.525–0.641s

3840x2160 (4K) 6.6MB CLOUD 2.467–2.83s 0.62–0.871s 1.847–1.959s

3840x2160 (4K) 6.6MB EDGE 4.579–4.909s 3.219–3.248s 1.360–1.662s

7680x4320 (8K) 16.7MB CLOUD 5.077–5.523s 1.306–1.55s 3.772–3.972s

7680x4320 (8K) 16.7MB EDGE 8.502–8.871s 5.045–5.126s 3.387–3.789s

15360x8640 (16K) 41.2MB CLOUD 12.163–13.025s 3.772–3.803s 8.389–9.253s

15360x8640 (16K) 41.2MB EDGE 20.079–20.487s 12.042–12.093s 8.008–8.394s

Table 3.  95% confidence interval ranges for the experiments.
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threshold. The thresholds can be used as a way to balance work to the cloud when the workload increases in the 
edge.

Although the cloud platform exhibited lower PT than the edge in the ideal scenario, the proposed Edge-
Cloud architecture offers several other key advantages of edge computing. Price of computations in the edge 
depends on the power consumption, and the fixed price of the device. The base price of a Raspberry Pi 4 starts 
at $35. We got that value from the official website. The power consumption of the Raspberry depends on the 
CPU load and peripheral device usage. Experiments from Ali Süzen et al.111 show that the average power 
consumption of a Raspberry Pi 4 during CNN work is 3.9W. Using the average electricity price of $0.31/kWh in 
the European Union in 2024, the price per hour of computation in the Raspberry edge server is of $0.001198. 
The m5.large server average price is of $0.1162 per hour. Using that data, Fig. 6 shows the price to compute the 
crash detection service with different image sizes for the cloud and edge servers. This experiment shows where 
the edge really shines. The results show that the edge server has a cost of computation up to 59.72 times less than 
the cloud server. By performing computation tasks to edge servers, the architecture reduces network congestion 
and optimizes resource allocation, contributing to overall cost savings. This shows the cost-effectiveness of the 
architecture.

On top of that, edge servers play a crucial role in reducing network congestion and providing more scalable 
and efficient data processing closer to the source. In this architecture, by offloading computations to local 
edge nodes, the system can handle real-time applications more effectively, even during peak demand periods. 
Furthermore, the distributed nature of edge servers allows for better resilience and fault tolerance, ensuring 
that critical services remain operational despite potential cloud service disruptions or network latency spikes. 
Therefore, while the cloud may offer advantages in total process time under specific conditions, the role of 
the edge server in optimizing resource allocation and ensuring continuous operation of smart city applications 
makes it an essential component of the proposed model. Furthermore, the integration of the cloud and edge 
layers improves the long term scalability of the applications.

Discussion on limitations and future work
There are some aspects of this work that could be improved in future research. First,

While this article provides a comprehensive analysis of the serverless edge computing model for KM processes 
in the smart city, several limitations must be considered:

First, the experiments were made on a limited set of devices, a single raspberry pi and cloud server, 
representing only two scenarios, the edge and the cloud. It may leave out other configurations used in real-world 

Fig. 5.  Comparison of transmission time, computation and total processing times for different data sizes 
across Cloud and Edge platforms.
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scenarios. Second, the proposed architecture is a general model for KM AI applications, but does not account 
for the specifics of different applications. Some applications may require specialized computing devices, such 
as GPUs, which may require adaptations to the architecture. Also, the performance analysis conducted in the 
experiments is based on ideal conditions, where edge and cloud servers operate under minimal workloads. 
In real-world scenarios, dynamic workloads, network conditions, and environmental factors could lead to 
significantly different outcomes. Although the study addresses this by calculating critical computation time 
thresholds, it does not account for real-time workload analysis or adaptive measures to dynamically balance 
tasks. Furthermore, although this architecture is designed to be general, future iterations of the study could 
explore how the architecture can be tailored to meet the specialized requirements of varied applications, 
providing guidelines for implementing such adaptations in practice.

The long-term scalability and cost-effectiveness of the proposed architecture remain unexplored, which 
are critical factors for large-scale deployments. Similarly, regional differences in server locations, which could 
influence network latency and service quality, are not addressed, potentially impacting implementation in 
geographically diverse areas.

The paper also identifies security and privacy challenges in managing and storing sensitive data across 
multiple layers of the architecture. Each layer (edge, CDN, and cloud) has distinct security requirements, 
including encryption, authentication, and regulatory compliance (e.g., GDPR or CCPA). However, further 
discussion and a more focused approach of these security challenges and the implementation of measure would 
be beneficial.

The dependence of the architecture on skilled human resources for deployment and management introduces 
workforce challenges, as cities may lack personnel with expertise in serverless computing, edge infrastructure, 
and AI technologies. Furthermore, the distributed nature of edge nodes increases complexity in maintenance 
and reliability, requiring effective strategies to address hardware failures, software updates, and security patches.

In less-dense or underdeveloped regions, the economic and technical feasibility of expanding edge 
infrastructure is a concern. While urban areas might readily adopt such systems, sparsely populated areas could 
face significant barriers due to limited connectivity and sparse edge deployments. Even in well-connected areas, 
shared resource contention on edge networks during peak demand could cause latency variations, potentially 
impacting real-time responsiveness for critical applications.

Legal and regulatory hurdles, particularly those involving cross-border data storage and processing, are 
also overlooked. Multi-jurisdictional compliance beyond GDPR and CCPA could affect implementation and 
operational flexibility. Additionally, the reliance of the architecture on proprietary serverless frameworks 
and edge solutions raises the risk of vendor lock-in, making future transitions between providers costly and 
complicated.

Lastly, while edge nodes reduce latency, their limited processing power constrains their scalability for 
complex or resource-intensive AI applications. As applications grow in sophistication, the architecture may 
require significant upgrades to meet demands, further increasing operational costs. The dependency on stable 
network connectivity also poses challenges, particularly in environments with unreliable networks.

Future research should address these limitations by exploring dynamic workload balancing strategies, 
adaptive security protocols for distributed systems, and strategies for maintaining interoperability and scalability. 
The security aspect of the architecture could be expanded with advanced methods such as decentralized identity 
and authentication, homomorphic encryption, or zero trust architecture. Then this work only studies the 
use of the cloud layer as a single entity. However, there are multiple cloud providers, each with its own cloud 

Fig. 6.  Price of service computation in the edge and cloud servers.
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ecosystem. Further work could study how to avoid vendor lock-in using alternative architectures based on more 
heterogeneous cloud models such as the federated cloud. In addition, this architecture could be integrated with 
emerging technologies such as 5G or blockchain. These advancements will be essential for fully realizing the 
potential of serverless edge-cloud architectures in smart cities.

Conclusions
Society 5.0 involves interconnection networks to share knowledge between different stakeholders. In the smart 
city, it has kickstarted collaborative platforms and applications where information is shared between citizens, 
government, and organizations and companies. Smart applications gather data, process it, and exploit it and 
share it through data interconnection networks. Knowledge management plays a crucial role in enhancing public 
services, citizen engagement, and infrastructure governance. Technologies such as AI, big data and IoT form the 
backbone of knowledge management systems, enabling organizations to harness, store, and share information 
effectively.

However, smart applications require infrastructure to work. To this aim, there are several service provisioning 
models. Cloud computing serves as a foundational technology for KM in smart cities by providing cost savings, 
scalability, and flexibility, especially beneficial for SMEs by reducing the need for significant IT investments. 
Serverless computing builds on cloud computing by simplifying application development, allowing developers 
to focus on functionality rather than infrastructure. Edge computing, with servers located closer to data sources, 
offers faster and more cost-effective processing, despite higher maintenance costs. Together, serverless and edge 
computing enhance KM in smart cities by reducing latency, improving data processing, and lowering entry 
barriers for organizations. Various service providers are emerging to offer serverless edge computing solutions, 
leveraging existing CDN infrastructures and providing frameworks for easy integration with client infrastructure.

This study presents a comprehensive model of a serverless edge-cloud architecture to optimize KM processes 
in smart cities, with the aim of enhancing urban management and delivering intelligent, data-driven applications. 
The technologies that compose the architecture contribute in all steps of knowledge processes. The proposed 
model, which leverages the scalability and processing power of cloud computing alongside the low-latency and 
cost-efficient benefits of edge servers, provides a flexible framework to support a wide range of applications, from 
traffic management to public safety monitoring. This hybrid approach is especially well-suited to the latency-
sensitive nature of many smart city applications, ensuring that critical data processing tasks can be handled 
locally whenever possible, reducing transmission time, and preserving bandwidth for other essential services.

The experimental results demonstrate that edge computing, while more resource-limited compared to 
centralized cloud servers, significantly reduces data transmission time by processing information closer to the 
data source. This approach reduces network congestion and improves the responsiveness of smart city services. 
However, it is notable that, for more computationally intense AI functions, cloud servers are better suited, where 
processing power outweighs network latency concerns. These findings suggest that optimal performance in 
smart city applications may require dynamic load balancing strategies that can shift workloads between edge 
and cloud resources based on real-time demand and resource availability. This flexibility underscores the need 
for a nuanced approach to resource allocation in urban data architectures, balancing computational efficiency, 
energy consumption, and speed.

Ultimately, this study underscores the significant potential of an edge-cloud architecture for supporting 
advanced KM processes in smart cities, offering a flexible, scalable and cost-effective framework capable of 
addressing the unique demands of urban data environments. By integrating AI, edge computing, and serverless 
infrastructure, this approach not only enhances data processing and sharing capabilities but also aligns with 
the goals of Society 5.0 in fostering efficient, inclusive, and responsive urban ecosystems. This work has the 
potential to impact several fields in the smart city environment, such as smart city management, environmental 
monitoring, industrial and manufacturing applications, retail and customer experience, education and research, 
and financial and business services. As smart cities continue to evolve, this model could serve as a foundational 
architecture for deploying adaptive, citizen-centered applications that can sustainably manage and leverage the 
vast data resources of the future.

Data availability
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