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Serum peptide biomarkers by
MALDI-TOF MS coupled with
machine learning for diagnosis and
classification of hepato-pancreato-
biliary cancers
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This study aimed to investigate the potential of peptide mass fingerprints (PMFs) of the serum
peptidome using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF MS), in combination with machine learning algorithms—support vector machine (SVM)
and random forest (RF)—for the diagnosis and classification of hepato-pancreato-biliary (HPB)
cancers. Serum samples collected from healthy individuals and patients with various HPB cancers were
analyzed to generate PMF profiles. The resulting data were randomly split into training and testing
sets. Feature selection on the training set identified 71 informative peptide mass fingerprints, which
were then used to construct predictive models using SVM and RF algorithms. Visualization using
heatmap, PLS-DA, and multiclass RF analysis showed clear separation between healthy individuals
and HPB cancer patients, as well as among different HPB cancer subtypes. Both models achieved high
classification performance, with accuracy, AUROC, and MCC values exceeding 0.90 in both training
and testing datasets. Notably, the models also exhibited strong multiclass discrimination ability.
These findings demonstrate that serum PMF profiling using MALDI-TOF MS, combined with SVM and
RF models, enables high-performance, non-invasive detection and classification of HPB cancers, with
strong potential to support early diagnosis and inform clinical decision-making.

Keywords Hepato-pancreato-biliary cancers, MALDI-TOF MS, Peptide mass fingerprints, Support vector
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Hepato-pancreato-biliary (HPB) cancers, including cholangiocarcinoma (CCA), hepatocellular carcinoma
(HCC), gallbladder cancer (GBC), and pancreatic ductal adenocarcinoma (PDAC), are among the most
aggressive malignancies, often diagnosed at advanced stages with poor prognosis'. Surgery remains the only
curative treatment, but resectability rates vary depending on the tumor type and stage at diagnosis®. Even in
cases where surgical resection is possible, recurrence rates are high, and long-term survival remains limited>-.
Thus, early and accurate diagnosis is critical for improving patient outcomes. Current imaging techniques’such
as computed tomography (CT) and magnetic resonance imaging (MRI), are essential tools for HPB cancer
diagnosis but have limitations, particularly in distinguishing malignant from non-malignant conditions in
early stages. Additionally, these imaging modalities require specialized expertise for accurate interpretation,
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which may not always be readily available. The high costs associated with CT and MRI can also limit their
accessibility, particularly in resource-limited settings, further emphasizing the need for alternative diagnostic
methods. Tissue biopsy, the gold standard for diagnosis, is invasive and may not always be feasible due to
tumor location or patient conditions®. Meanwhile, conventional tumor biomarkers, such as carcinoembryonic
antigen (CEA), carbohydrate antigen 19-9 (CA19-9), and alpha-fetoprotein (AFP), are widely used but suffer
from poor specificity and sensitivity, particularly for early-stage disease. CA19-9, for instance, is commonly
elevated in pancreatic cancer and CCA but lacks sufficient diagnostic accuracy, as it can also be increased in
non-malignant biliary conditions’~'2. Similarly, AFP, a commonly used biomarker for HCC, has limitations of
cut-off values in detecting HCC'?. These challenges highlight the need for novel, minimally invasive, and more
reliable biomarkers to improve early detection and diagnosis.

Peptide biomarkers have emerged as promising candidates for cancer diagnosis, reflecting tumor progression,
microenvironment changes, and metabolic alterations!*!>. Peptides are small protein fragments generated
from proteolytic processes, and they can be detected in biological fluids such as serum, plasma, and urine'“.
Their stability in circulation and potential specificity to particular cancer types make them attractive diagnostic
tools'®*°. In HPB cancers, peptide-based biomarkers could facilitate early detection and differentiation from
non-cancerous conditions, ultimately aiding in clinical decision-making. Recent studies have demonstrated the
potential of peptidome in cancer diagnostics, with mass spectrometry-based approaches identifying unique
peptide signatures in multiple malignancies, including CCA and HCC?*2!. Especially, matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS)-based platforms, enables rapid
peptide profiling and has been successfully applied to distinguish cancerous from non-cancerous conditions??-%.
However, a comprehensive investigation of peptide biomarkers across multiple HPB cancers remains unexplored.

This study aims to identify candidate peptide mass fingerprints (PMFs) capable of distinguishing HPB
cancers from healthy individuals using MALDI-TOF MS. Additionally, machine learning algorithms are applied
to enhance classification accuracy and develop a predictive model for HPB cancer diagnosis. Furthermore, we
evaluated the classification performance on the testing set to assess the robustness and generalizability of the
model across different sample groups. These findings could contribute to the development of novel non-invasive
diagnostic tools, ultimately improving HPB cancer detection and classification.

Results

Preoperative laboratory findings and tumor biomarker levels

In this study, a total of 297 participants were recruited comprising five groups: healthy control (HC; n=>50),
cholangiocarcinoma (CCA; n =138), gallbladder cancer (GBC; n = 16), hepatocellular carcinoma (HCC; n=65),
and pancreatic ductal adenocarcinoma (PDAC; n=28). Prior to clinical and peptidome analyses, the samples
were divided into a training set (n=198) and a testing set (n=99).

The experimental results revealed that liver function parameters (ALT, AST, ALP, bilirubin) and tumor
biomarkers (CEA, CA19-9) were markedly elevated in patients with hepatobiliary and pancreatic (HPB) cancers
compared to healthy individuals. Specifically, in the training set, median levels of AST and ALT in CCA patients
were 32 and 29 U/L, respectively, compared to 21 and 18 U/L in healthy controls. PDAC patients showed the
highest median levels of ALT (72 U/L) and AST (66 U/L), with some values reaching over 300 U/L, indicating
severe hepatic involvement. Similarly, elevated total bilirubin levels were observed particularly in PDAC patients
(median 4.0 mg/dL; range 0.5-31.0 mg/dL), in contrast to healthy individuals (median 0.5 mg/dL; range 0.1-
6.4 mg/dL). Albumin levels tended to be slightly lower in cancer groups, reflecting impaired liver synthetic
function, although the differences were not statistically significant.

In terms of tumor markers, both CEA and CA19-9 showed wide variation and tended to be higher in cancer
groups; however, no statistically significant differences in these markers were found among the various cancer
types. For example, median CA19-9 levels were 31.13 U/mL in CCA, 27.51 U/mL in GBC, 23.56 U/mL in
HCC, and 25.5 U/mL in PDAC within the training cohort. CEA levels showed a similar pattern of elevation,
particularly in CCA and PDAC cases, but again without statistical significance between cancer types.

The testing set exhibited consistent trends with the training set. Elevated liver enzymes and bilirubin levels
persisted among HPB cancer patients, especially in PDAC, which had the highest AST (median 94 U/L) and ALT
(median 93 U/L) levels. However, comparisons among different cancer types again did not reveal statistically
significant differences in these parameters. Collectively, these results suggest that while liver function tests and
tumor biomarkers can distinguish cancer patients from healthy individuals, they are insufficient to differentiate
between specific cancer types in HPB malignancies (Table 1).

Peptide mass fingerprints for hepato-pancreato-biliary cancer diagnosis

A total of 1,100 peptide features were detected in serum of the training set by MALDI-TOF MS that showed
markedly different patterns of peptide mass fingerprints (PMFs) between healthy and HPB cancers (Fig. 1A).
The PMF spectra were transformed into expression z-scores and visualized as a heatmap to represent peptide
mass fingerprint expression in healthy individuals and cancer patients. A total of 1,100 peptides within the m/z
range of 1000-4000 were analyzed. In the heatmap, red indicates upregulated peptide expression, while blue
indicates downregulated expression at each corresponding m/z position. The results revealed a clear distinction
in PMF expression patterns between the healthy group and HPB cancers (Fig. 1B).

Selection of key peptide mass fingerprints for hepato-pancreato-biliary cancer classification

Global PMF analysis was performed to identify peptide features capable of distinguishing healthy individuals
from those with HPB cancers. In the training set, a total of 1,100 peptide peaks derived from MALDI-TOF
MS were analyzed using MetaboAnalyst 6.0. Feature selection was carried out exclusively on the training set
to prevent information leakage and to maintain the integrity of downstream analysis. Peptides with a variable
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Training set Testing set
(n=198) (n=99)
Healthy | CCA GBC HCC PDAC Healthy |CCA GBC HCC PDAC
(n=29) |(n=97) (n=8) (n=45) (n=19) (n=21) (n=41) (n=8) (n=20) (n=9)
Preoperative laboratory
Cholesterol (mg/dL) 173 173 188 165 222 212.5 185 185 165.5 193
g (71-292) | (107-308) | (139-217) | (106-257) | (157-402) | (108-287) | (89-290) | (161-309) | (72-227) | (96-539)
Albumin (¢/dL) 4.25 4.1 47 43 43 435 4.1 44 43 4
& (1.7-47) | (2.6-53) | (41-49) | (33-51) |(32-49) |(3.1-45) |(27-52) |(41-51) |(24-51) |(3.4-4.8)
Globulin (g/dL) 2.9 35 33 32 3 3.1 33 35 3.1 34
8 (23-52) | (2.1-5.1) | (2.3-3.8) | (2.1-57) | (2.4-4) (23-52) | (1.7-43) | (2.6-4.3) | (2-4.6) (2.8-3.8)
. 05 05 04 05 4 0.45 0.5 0.4 0.7 3.8
Total Bilirubin (mg/dL) | (1 .4y | (0.2-62) |(0.3-2.8) (0.2-1.4) (0.5-31) (0.3-0.7) | (0.2-5.2) (0.3-1.1) (0.3-2.6) (0.5-24.3)
) . 0.2 02 0.1 02 35 02 02 0.2 0.3 32
Direct Bilirubin (mg/dL) | (% ¢ 1y | (0.1-5.9) | (0.1-1.4) | (01-12) |(02-258) |(01-03) |(0.1-4.6) |(01-09) | (0.1-17) | (0.3-21.2)
ALT (U/L) 18 29 24 30 72 16 34 24 35 93
(5-30) | (9-522) | (13-60) (10-248) | (12-314) | (8-30) (10-228) | (15-71) (14-264) | (29-246)
AST (U/L) 21 32 24 365 66 20 38 26 405 94
(8-37) | (10-454) | (16-56) (15-173) | (18-419) | (10-33) | (16-195) | (21-33) (23-319) | (31-256)
ALP (U/L) 69 145 114 95 129 66 169 78 91 126
(23-207) | (61-1131) | (66-504) | (52-177) | (110-251) | (40-111) |(66-899) | (69-519) | (51-139) | (107-499)
Tumor biomarker
5.14 2.09 3.86 323 5.88 2.315 3.78 3.46
CEA (U/mL) (1.03-413) | (1.02-2.88) | (0.75-1000) | (1.2-114) |~ (1.1-1000) | (1.42-6.84) | (2.13-8.72) | (1.49-132)
3113 2751 23.56 255 32.08 27.68 24.59 2427
CA19-9 (U/mL) (0.6-1000) | (6.43-1000) | (0.6-1000) | (17.7-1000) |~ (1.27-1000) | (0.97-1000) | (0.69-1000) | (0.6-1000)

Table 1. Preoperative laboratory and tumor biomarker measurements of participants.

importance in projection (VIP) score>1 from partial least squares discriminant analysis (PLS-DA) and
statistical significance (p <0.05) from one-way ANOVA were retained. This resulted in 71 peptides considered as
informative features for distinguishing between groups.

In the training set, principal component analysis (PCA) revealed that the first two components accounted
for 84.9% of the total variance (PC1=72.7%, PC2=12.2%). As illustrated in Fig. 2A, partial separation was
observed between the CCA and HCC groups, whereas the healthy control, GBC, and PDAC groups tended to
cluster together, suggesting shared peptide expression profiles among these latter groups. Similarly, the PLS-DA,
a supervised classification method, demonstrated a comparable clustering pattern. The first two latent variables
explained 84.8% of the variation (Fig. 2B), and the group distribution was consistent with the PCA results.
Although PLS-DA typically improves group separation due to its supervised nature, in this case, the separation
between groups was similar to that observed in PCA, indicating that intrinsic differences among groups were
already evident without model supervision. These findings were further supported by the analysis of the global
PMF dataset containing 1,100 peptides, which exhibited consistent distribution patterns in both the PCA and
PLS-DA score plots (Supplementary Fig. S1A and B). The top 15 peptide features with the highest VIP scores were
identified as key contributors to this separation (Fig. 2C). Cross-validation of the PLS-DA model demonstrated
strong robustness, with increasing R” and Q” values as additional components were included. The optimal model
achieved R* = 0.564 and Q> = 0.502, indicating good explanatory and predictive performance. Furthermore,
permutation testing with 2,000 iterations confirmed the absence of overfitting (p <5 x 107% Fig. 2D).

The heatmap illustrating the expression patterns of 71 peptides across each group, ordered by increasing
mass, based on average peptide expression per group, revealed distinct differential expression profiles (Fig. 2E).
Individual peptide expression profiles for each participant were also presented in Supplementary Fig. S2A,
highlighting consistent variation both within and between groups.

To further evaluate classification performance, a Random Forest (RF) model was constructed using the 71
selected peptides. This model achieved an out-of-bag (OOB) error rate of only 2.2%, substantially lower than the
5.56% error rate observed when using all 1,100 peptides (Supplementary Fig. S1C). Subgroup classification error
rates were similarly low: 0% for healthy controls and PDAC, 1.8% for CCA, and 2.2% for HCC. The only notable
misclassification occurred in the GBC group, with an error rate of 18.8% (Fig. 2F).

To assess the robustness and generalizability of the 71 selected peptide features, the same analytical workflow
was applied to the independent testing set. Both PCA and PLS-DA score plots (Fig. 2G-H) demonstrated
clustering patterns that closely mirrored those observed in the training set. Partial separation was maintained
between the CCA and HCC groups, whereas the healthy control, GBC, and PDAC groups continued to cluster
more closely, suggesting similar expression trends. These observations support the stability of the peptide-
based classification across independent datasets. Among the top 15 features ranked by VIP scores, 13 peptides
overlapped with those identified in the training set, further indicating strong reproducibility of discriminative
markers (Fig. 2I). Cross-validation and permutation testing in the testing set confirmed the reliability of the PLS-
DA model, with no signs of overfitting (Supplementary Fig. S3).

The heatmap of the 71 peptides, based on average expression and ordered by increasing mass, also revealed
group-specific expression profiles (Fig. 2J), which was consistent with those seen in the training set. Individual-
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Fig. 1. Peptide mass fingerprints (PMFs) of healthy controls and hepato-pancreato-biliary (HPB) cancer
patients analyzed by MALDI-TOF MS. (A) Representative MALDI-TOF MS spectra showing markedly
different peptide mass fingerprints between healthy individuals and HPB cancer patients within the m/z range
of 1000-4000. A total of 1,100 peptide features were detected in serum samples from the training set. (B)
Heatmap visualization of PMF expression after transformation into z-scores. Red indicates upregulated peptide
expression, while blue indicates downregulated expression. The heatmap reveals a clear distinction in peptide
expression patterns between the healthy and cancer groups.
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level peptide expression profiles were presented in Supplementary Fig. S2B, highlighting consistent intra- and
intergroup variation.

Furthermore, the RF model demonstrated sustained classification performance in the testing set, achieving
an OOB error rate of 3.5% (Fig. 2K). Collectively, these findings reinforce the discriminative power and
reproducibility of the 71 selected peptides and underscore their potential utility as peptide mass fingerprint-
based biomarkers for distinguishing HPB cancer subtypes from healthy individuals.

Investigation of classification performance in PMFs for hepato-pancreato-biliary cancers
diagnosis using support vector machine and random forest models

To evaluate the diagnostic performance of the 71 candidate PMFs, binary classification models—Support Vector
Machine (SVM) and Random Forest (RF)—were employed to distinguish healthy individuals from patients
with HPB cancers, including CCA, GBC, HCC, and PDAC. These models were constructed using the web-
based MetaboAnalyst platform with default settings. The performance evaluation was based on commonly
calculated from confusing matrix, including accuracy, precision, recall, F1-score, and the area under the receiver
operating characteristic curve (AUC-ROC). In addition, Matthews Correlation Coeflicient (MCC) was also
calculated to provide a more balanced assessment of classification performance. MCC is particularly valuable
in binary classification problems involving imbalanced class distributions, as it considers all four categories of
the confusing matrix (true positives, true negatives, false positives, and false negatives) and provides a more
balanced measure than accuracy alone. An MCC value of +1 indicates perfect prediction, 0 indicates random
prediction, and — 1 indicates total disagreement between prediction and observation.

In the training set (n=198), the SVM model demonstrated excellent classification performance, achieving
98.74% accuracy for distinguishing healthy individuals (n=29) from all cancer cases (n=169), with a precision
of 99.70%, recall of 98.82%, F1-score of 0.99, TNR of 98.28%, MCC of 0.95, and ROC of 0.999. Individual
comparisons with each cancer type revealed perfect classification for CCA, GBC, and HCC (MCC=1.00),
and nearly perfect classification for PDAC (MCC=0.99) (Table 2; Fig. 3A). In the testing set (n=99), SVM
performance remained robust. The model yielded 98.55% accuracy for healthy vs. all cancer cases, with an MCC
of 0.97, and ROC of 0.999. Comparisons between healthy individuals and each cancer type also showed high
MCC values: CCA (0.99), GBC (0.94), HCC (1.00), and PDAC (0.94) (Table 2; Fig. 3A).

The RF model also performed well. In the training set, the healthy vs. all cancer classification achieved
97.10% accuracy, with precision of 99.85%, recall of 96.75%, MCC of 0.90, and ROC of 0.998. Comparisons
with individual cancer types showed perfect classification in all cases (MCC=0.99-.00) (Table 3; Fig. 3A). In the
testing set, RF showed slightly lower performance for the healthy vs. all cancer group (accuracy: 89.14%, MCC:
0.76, ROC: 0.988). MCC values for individual comparisons were as follows: CCA (1.00), GBC (0.81), HCC
(1.00), and PDAC (0.87) (Table 3; Fig. 3A).

In addition, to identify the most important peptides for classification, a mean importance measure was
calculated for both SVM and RF models. In RE, peptide importance was derived from the mean decrease in
accuracy across trees, while SVM used recursive feature elimination (RFE) with cross-validation to rank features
by their contribution. The mean importance score reflects the average impact of each peptide across all model
iterations. The Top 15 peptides with the highest importance scores were consistent across both models, indicating
that despite their different learning methods, both algorithms identified a similar set of key features (Fig. 3B).
This consistency points to a robust, model-independent signature, reinforcing the biological and statistical
relevance of these peptides in distinguishing the sample groups. The convergence of important features across
models strengthens confidence in their predictive value, suggesting that the observed classification performance
is driven by strong, reproducible signals rather than being model-specific.

In addition, we utilized 71 PMFs to develop SVM and RF models for the classification of HPB cancers using
a one-vs-all (OvA) classification strategy. This approach was adopted to support potential clinical application,
as HPB cancers often present with overlapping anatomical locations, making differential diagnosis challenging.
Therefore, the OVA strategy was applied to enhance the discriminative power of the models in this context.

In the training set, the SVM model demonstrated excellent performance in differentiating each HPB cancer
subtype from the remaining cancer types. The classification accuracy was highest for HCC vs. other HPB
cancers (accuracy=94.97%, MCC=0.88, ROC=0.989), followed by PDAC (accuracy=94.67%, MCC=0.80,
ROC=0.993), CCA (accuracy=92.60%, MCC=0.85, ROC=0.989), and GBC (accuracy =90.98%, MCC=0.56,
ROC=0.987) (Table 4; Fig. 3C-F). Notably, precision and specificity (TNR) values reached 100% for GBC and
PDAGC, although recall was relatively lower, particularly for GBC (34.41%).

In the testing set, the SVM model maintained high discriminatory power across all cancer subtypes. The
model achieved near-perfect classification performance for HCC (accuracy =99.68%, MCC=0.99, ROC=1) and
CCA (accuracy=99.04%, MCC=0.98, ROC=1), followed by strong performance for GBC (accuracy =94.87%,
MCC=0.78, ROC=0.997) and PDAC (accuracy =91.67%, MCC=0.73, ROC=0.994) (Table 4; Fig. 3C-F). These
results underscore the model’s robustness and reliability, particularly in distinguishing CCA and HCC from
other HPB cancer types.

Similarly, the RF model also yielded strong classification performance across most comparisons. In the
training set, classification accuracy was highest for PDAC (95.12%, MCC=0.81, ROC=0.985), followed by CCA
(94.38%, MCC=0.89, ROC=0.996), HCC (91.42%, MCC=0.82, ROC=0.989), and GBC (90.24%, MCC=0.54,
ROC=0.981) (Table 5; Fig. 3C-F). Precision remained high across all subtypes (=98.68%), but recall was
markedly lower for GBC (32.65%), similar to the SVM model.

In the testing set, the RF model performed particularly well for CCA (accuracy=97.76%, MCC=0.96,
ROC=0.999) and HCC (accuracy=95.51%, MCC=0.89, ROC=0.997), and to a slightly lesser extent for GBC
(accuracy=91.67%, MCC=0.71, ROC=0.989) and PDAC (accuracy=91.99%, MCC=0.73, ROC=0.979)
(Table 5; Fig. 3C-F). These findings confirm the consistent diagnostic potential of PMFs in differentiating
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between HPB cancer subtypes, with both SVM and RF models demonstrating high reliability, though SVM
generally showed slightly superior performance, particularly in handling class imbalance and recall rates for
certain subtypes.

To reduce model complexity, the top five discriminative peptides from each group were selected and used
to construct classification models using SVM and RF algorithms under an OvA framework. As shown in
Supplementary Fig. S4-S6, reducing the number of peptides to five per class resulted in a noticeable decrease
in classification performance in both the training and testing sets when compared to the full model using 71
peptides. This decline was particularly reflected by the lower MCC values observed across all comparisons, as
detailed in Supplementary Table S1.

In addition, to evaluate the relative diagnostic performance of peptide-based models, we constructed
additional SVM and random forest models using clinical biomarkers included in the STARD checklist (ALT,
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«Fig. 2. Multivariate analysis and classification performance based on 71 selected peptide features in the
training and testing sets. (A) PCA score plot showing partial separation of CCA and HCC groups, with
clustering of healthy control, GBC, and PDAC groups in the training set. (B) PLS-DA score plot demonstrating
a comparable group distribution to PCA, based on the 71 selected peptides. (C) Top 15 peptide features
ranked by VIP scores from the PLS-DA model. (D) PLS-DA cross-validation results showing optimal model
performance (R? = 0.564, Q* = 0.502), with permutation testing (N=2,000) confirming the absence of
overfitting in the training set. (E) Heatmap of average peptide expression levels across groups, with peptides
ordered by increasing mass. (F) Random Forest model classification results, achieving an out-of-bag (OOB)
error rate of 2.2%. (G,H) PCA and PLS-DA score plots in the independent testing set, showing clustering
patterns consistent with the training set. (I) Top 15 VIP-ranked peptides in the testing set, 13 of which
overlapped with those identified in the training set. (J) Heatmap of average peptide expression levels across
groups in the testing set, showing consistent expression trends. (K) RF classification performance in the testing
set, yielding an OOB error rate of 3.5%.

Support vector machine
Group ACC (%) | Precision (%) | Recall (%) | F1-Score \ SPC (%) \ MCC \ ROC
Training set (n=198)
Healthy (n=29) vs. All (n=169) | 98.74 99.70 98.82 0.99 98.28 0.95 |0.999
Healthy vs. CCA (n=97) 100 100 100 1 100 1 1
Healthy vs. GBC (n=8) 100 100 100 1 100 1 0.998
Healthy vs. HCC (n=45) 100 100 100 1 100 1 1
Healthy vs. PDAC (n=19) 99.48 98.70 100 0.99 99.14 0.99 0.999
Testing set (n=99)
Healthy (n=21) vs. All (n=78) | 98.55 99.35 97.76 0.99 99.35 0.97 | 0.999
Healthy vs. CCA (n=41) 99.60 100 99.39 1 100 0.99 1
Healthy vs. GBC (n=8) 97.41 93.94 96.88 0.95 97.62 094 | 0.974
Healthy vs. HCC (n=20) 100 100 100 1 100 1 1
Healthy vs. PDAC (n=9) 97.50 97.14 94.44 0.96 98.81 094 | 0.985

Table 2. Evaluation of the classification performance of PMFs for differentiating healthy individuals from
hepato-pancreato-biliary cancer patients using a support vector machine model.

AST, ALP, total bilirubin, CEA, and CA19-9). Specifically, we developed models based on (1) clinical biomarkers
alone, which served as the baseline, and (2) a combination of clinical biomarkers and the 71 peptide mass
features (PMFs). The baseline models trained using only the clinical biomarkers (Supplementary Table S2-3)
demonstrated inferior performance compared to the models using the 71 PMFs alone, as evidenced by lower
overall metrics. This finding indicates that peptide-based features possess superior discriminatory power in our
dataset. Notably, adding clinical biomarkers to the 71 PMFs (Supplementary Table S4-5) did not significantly
improve model performance, suggesting that the selected peptides alone are sufficient and may already capture
the diagnostic information provided by conventional biomarkers.

These results suggest that PMFs provide high discriminatory power in differentiating healthy individuals
from HPB cancer patients. The high MCC values across most comparisons, particularly in the SVM model,
confirm the reliability and robustness of these models, even in the presence of class imbalance. Both SVM and
RF classification models demonstrated strong diagnostic potential for identifying HPB cancers, with SVM
performing slightly better in most scenarios, including the ability to handle class imbalance more effectively.
These findings emphasize the value of PMFs as promising biomarkers for cancer diagnosis, offering both
high sensitivity and specificity for clinical applications in HPB cancer screening and detection. In addition
to distinguishing between healthy individuals and patients with HPB cancers, PMFs also exhibited strong
classification performance in differentiating among individual HPB cancer subtypes, further supporting their
utility for both general diagnosis and precise cancer subtype classification.

Discussion
Hepato-pancreato-biliary (HPB) cancers—including cholangiocarcinoma (CCA), hepatocellular carcinoma
(HCC), gallbladder cancer (GBC), and pancreatic ductal adenocarcinoma (PDAC)—are associated with poor
prognosis, primarily due to late-stage diagnosis and high recurrence rates, even after potentially curative surgical
resection. The limitations of existing diagnostic modalities, such as computed tomography (CT), magnetic
resonance imaging (MRI), and conventional tumor biomarkers, highlight the urgent need for novel, accurate,
and minimally invasive diagnostic tools—particularly for the early stages of disease, when timely intervention
can significantly improve clinical outcomes.

Peptide biomarkers—short chains of amino acids detectable in biological samples—play a vital role in disease
diagnostics by indicating disease presence, progression, response to therapy, and clinical prognosis. Commonly
used biomarkers include carcinoembryonic antigen (CEA) and cancer antigen 19-9 (CA 19-9)% in cancer
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Fig. 3. Receiver operating characteristic (ROC) curves and feature importance of SVM and Random Forest
models based on 71 candidate peptides. (A) ROC curves comparing healthy controls and HPB cancers. (B)
Top 15 peptides ranked by mean importance scores from SVM and random forest. (C-F) ROC curves for
pairwise comparisons between CCA vs. HPB cancers (C), GBC vs. HPB cancers (D), HCC vs. HPB cancers
(E), and PDAC vs. HPB cancers (F). Blue curves represent SVM models, while red curves indicate Random
Forest models. ROC performance is reported as AUC with 95% confidence intervals. Classification metrics
include TPR (true positive rate), TNR (true negative rate), FPR (false positive rate), and FNR (false negative
rate), calculated from the corresponding confusion matrices.

care, prostate-specific antigen (PSA) for prostate cancer?® and amyloid-beta peptides in Alzheimer’s disease!”.

17

Although some may lack specificity, these markers are essential for assessing treatment response and monitoring
disease recurrence. Their capacity to capture molecular alterations makes them valuable tools for early detection,
improving diagnostic precision, and advancing personalized medicine.

In this study, we evaluated the diagnostic potential of serum peptide mass fingerprints (PMFs) generated
using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for
HPB cancers. Based on the peptide pattern analysis (Fig. 1A-B), our findings demonstrated that this approach
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Random Forest
Group ACC (%) | Precision (%) | Recall (%) ‘ F1-Score ‘ SPC (%) ‘ MCC ‘ ROC
Training set
Healthy vs. All 97.10% 99.85 96.75 0.98 99.14 0.90 |0.998
Healthy vs. CCA | 99.80% 99.74 100 1 99.14 099 |1
Healthy vs. GBC 100% 100 100 1 100 1 1
Healthy vs. HCC | 100% 100 100 1 100 1 1
Healthy vs. PDAC | 100% 100 100 1 100 1 0.999
Testing set
Healthy vs. All 89.14% 100 86.22 0.93 100 0.76 | 0.988
Healthy vs. CCA 100% 100 100 1 100 1 1
Healthy vs. GBC | 91.38% 77.50 96.88 0.86 89.29 0.81 |0.974
Healthy vs. HCC | 100% 100 100 1 100 1 1
Healthy vs. PDAC | 94.17% 87.18 94.44 0.91 94.05 0.87 | 0.964

Table 3. Evaluation of the classification performance of PMFs for differentiating healthy individuals from
hepato-pancreato-biliary cancer patients using a random forest model. CCA, cholangiocarcinoma; GBC,
gallbladder cancer; HCC, hepatocellular carcinoma; PDAC, pancreatic ductal adenocarcinoma; ACC, accuracy
rate; SPC, specificity; MCC, Matthews correlation coeflicient; ROC, receiver operating characteristic.

Support vector machine
Group ACC (%) | Precision (%) | Recall (%) | F1-score ‘ SPC (%) ‘ MCC ‘ ROC
Training set
CCA vs. HPB cancers | 92.60 92.01 94.95 0.93 89.67 0.85 | 0.989
GBC vs. HPB cancers | 90.98 100.00 34.41 0.51 100 0.56 | 0.987
HCC vs. HPB cancers | 94.97 97.22 85.78 0.91 98.94 0.88 | 0.989
PDAC vs. HPB cancers | 94.67 100.00 67.86 0.81 100 0.80 |0.993
Testing set
CCA vs. HPB cancers | 99.04 98.78 99.39 0.99 98.66 098 |1
GBC vs. HPB cancers | 94.87 96.88 67.39 0.79 99.62 0.78 | 0.997
HCC vs. HPB cancers | 99.68 100 98.77 0.99 100 0.99 1
PDAC vs. HPB cancers | 91.67 100 58.06 0.73 100 0.73 ] 0.994

Table 4. Evaluation of the classification performance of PMFs for differentiating hepato-pancreato-biliary
cancer patients using a support vector machine model.

Random forest

Group ACC (%) | Precision (%) | Recall (%) \ Fl-score \ SPC (%) \ MCC \ ROC
Training set

CCA vs. HPB cancers | 94.38 92.01 98.08 0.95 90.06 | 0.89 |0.996
GBC vs. HPB cancers | 90.24 100 32.65 0.49 100 054 |0.981
HCC vs. HPB cancers | 91.42 99.44 75.85 0.86 9977 | 082 |0.989
PDAC vs. HPB cancers | 95.12 98.68 70.09 0.82 99.82 | 0.81 |0.985
Testing set

CCA vs. HPB cancers 97.76 95.73 100 0.98 95.48 0.96 0.999
GBC vs. HPB cancers | 91.67 100 55 0.71 100 071 |0.989
HCC vs. HPB cancers | 95.51 98.75 85 0.92 99.55 | 0.89 |0.997
PDAC vs. HPB cancers | 91.99 100 59.02 0.74 100 073 | 0979

Table 5. Evaluation of the classification performance of PMFs for differentiating hepato-pancreato-biliary
cancer patients using a random forest model. HPB cancers in Tables 4 and 5 was used as the reference
group for comparison with the target group. CCA, cholangiocarcinoma; GBC, gallbladder cancer; HCC,
hepatocellular carcinoma; PDAC, pancreatic ductal adenocarcinoma; ACC, accuracy rate; SPC, specificity;
MCC, Matthews correlation coeflicient; ROC, receiver operating characteristic.
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could reliably distinguish between healthy individuals and patients with various types of HPB malignancies.
Importantly, the integration of advanced statistical and machine learning techniques enabled the identification
of a panel of 71 peptide features with high discriminatory power and reproducibility (Fig. 2A-E). Furthermore,
the 71 peptides selected during the feature selection process were used to train classification models and
subsequently evaluated in an independent testing set. To prevent overfitting and ensure the reliability of the
model, the dataset was randomly split into training and testing subsets prior to analysis. The performance of the
classification model in the testing set (Fig. 2F-I) showed comparable accuracy to that observed in the training
set, highlighting the robustness and generalizability of the candidate PMFs. These results suggest that the
71-peptide signature captures key molecular features associated with HPB malignancies and possesses strong
potential for clinical application in HPB cancers diagnosis and classification. The consistent performance across
both training and testing datasets underscores the stability of the peptide-based model and supports its utility as
a reliable, non-invasive diagnostic tool.

Furthermore, the integration of machine learning models enhances the predictive capability and objectivity
of the diagnostic process, potentially reducing inter-observer variability and ensuring consistent interpretation,
even in resource-limited settings. Given its relatively low cost, rapid throughput, and minimal sample volume
requirements, the MALDI-TOF MS-based serum peptidome presents a feasible diagnostic solution with the
potential for broad clinical implementation. In this study, machine learning algorithms, including support
vector machine (SVM) and Random Forest (RF), were applied via the user-friendly MetaboAnalyst platform
to evaluate the classification performance of 71 selected peptides. The platform enables non-programmers,
such as clinicians, to perform advanced analyses through an intuitive web interface. Subsequently, the model
performance was assessed using confusing metrics, including accuracy (ACQC), precision, recall, F1-score,
true negative rate (TNR), area under the receiver operating characteristic curve (ROC), and the Matthews
correlation coefficient (MCC). Notably, MCC provided a balanced evaluation, especially in datasets prone to
class imbalance?®—a challenge often encountered in clinical research. Both the SVM and RF models, developed
from the 71-peptide panel, exhibited exceptional classification performance, demonstrating a robust ability to
distinguish healthy individuals from patients with HPB malignancies. The models achieved high accuracy in
identifying healthy controls and HPB cancers (Tables 2 and 3; Fig. 3A). These strong results across both training
and testing sets emphasize the biological relevance, robustness, and diagnostic potential of the selected PMFs
biomarkers for reliable disease classification.

Additionally, the study highlights the use of PMFs as input variables for machine learning models in
classifying HPB cancers using the one-vs-all (OvA) strategy. This approach, essential given the overlapping
anatomical locations and similar clinical presentations of HPB cancers’improves diagnostic precision and
supports modular decision-making in clinical practice. The SVM model exhibited strong discriminative power,
with the highest accuracy and MCC for HCC vs. others, followed by PDAC, CCA, and GBC. Precision and
specificity reached 100% for GBC and PDAC, though the recall for GBC was lower, indicating difficulty in
identifying all positive cases. These results were validated in the testing set, where the model performed nearly
perfectly for HCC and CCA, with slightly reduced but still robust metrics for GBC and PDAC, highlighting its
potential for accurate differential diagnosis of HPB cancers (Table 4; Fig. 3C-F). The RF model also performed
well across most subtypes, with similar results to the SVM model, especially for CCA and HCC. The SVM model
had a slight edge in handling class imbalance®® particularly for GBC, but both models showed strong diagnostic
potential, evidenced by high precision and ROC values (Table 5; Fig. 3C-F). The OvA strategy, despite inherent
class imbalances® offers a translational advantage by addressing the primary clinical question of whether a
specific cancer type is present. While the one-vs-one (OvO) strategy may provide better separation in early-stage
analyses, it becomes less feasible as the number of cancer types increases due to computational constraints®'.
Thus, OVA remains a practical, scalable approach for real-world clinical applications. Despite its advantages, the
OvVA strategy introduces class imbalance, especially for underrepresented subtypes like GBC. While stratified
sampling and class weighting mitigated this issue, the imbalance could still reduce sensitivity for certain classes.
Future studies should aim to acquire more balanced datasets and explore advanced sampling techniques like
synthetic minority over-sampling (SMOTE) or ensemble methods to address this challenge®’. Additionally,
integrating clinical variables or multi-omics data could further enhance the classification performance for
challenging subtypes. By refining data balance and model design, future research could develop more accurate,
clinically reliable tools for classifying HPB cancers and other cancer types.

Our findings are consistent with studies across several types of cancers, which demonstrated the broad
application of peptide-based biomarkers in clinical diagnosis?**>-243334 In CCA, PMF analysis has demonstrated
robust performance in distinguishing cancer patients from healthy controls?’. Importantly, this approach can
further stratify CCA recurrence subtypes, offering essential prognostic information®*. Given that these subtypes
frequently correlate with adverse clinical outcomes regardless of disease stage, such discrimination holds
significant clinical value. Similarly, in prostate cancer, MALDI-TOF MS-derived PMFs have demonstrated high
discriminatory power, enabling precise differentiation between healthy individuals and prostate cancer patients
with exceptional sensitivity and specificity?*. In the same way, hepatocellular carcinoma, PMF analysis has
revealed distinct peptide signatures that reliably distinguish cancer patients from healthy controls, underscoring
their clinical utility as robust diagnostic indicators?!. In cervical cancer, PMF analysis using MALDI-TOF MS
has uncovered distinctive peptide signatures that effectively discriminate between healthy individuals, patients
with precancerous lesions, and those at different stages of malignancy. Notably, specific mass-to-charge (m/z)
peaks—1466.91, 1898.01, 3159.09, and 4299.40—were identified as robust discriminators, highlighting their
potential as diagnostic biomarkers for disease stratification?*. In ovarian cancer, peptide-based biomarkers
identified through MALDI-TOF MS have proven highly effective in distinguishing cancer patients from healthy
individuals, reflecting strong diagnostic performance®. Notably, these biomarkers also differentiated non-
malignant cases—such as patients with ovarian cysts—from both healthy subjects and those with ovarian cancer,
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demonstrating remarkable specificity’’. Additionally, they showed outstanding ability to classify different stages
of ovarian cancer, with reported sensitivities between 95% and 97% and a specificity of 97%3. These findings
highlight the remarkable versatility and diagnostic power of peptide-based biomarkers across multiple cancer
types, positioning them as valuable tools for early detection and precise disease classification.

In addition to their role in cancer diagnostics, peptide biomarkers are increasingly being recognized in various
medical fields for their potential in early disease detection and monitoring disease progression. Their non-
invasive characteristics, rapid screening, and cost-effectiveness make them especially valuable for distinguishing
between normal and diseased states, as well as for assessing changes throughout the course of illness.

These findings highlight the pivotal role of peptide-based biomarkers, identified through mass spectrometry
(MS), in improving the diagnosis and classification of HPB cancers. Building upon this, our study employs an
integrated approach that combines high-throughput screening with predictive modeling to improve HPB cancer
detection and stratification. Firstly, we successfully identified candidate 71 PMFs that not only facilitate the
diagnosis of HPB cancers but also differentiate among various HPB cancer types. Secondly, we implemented
machine learning algorithms, including SVM and RF models, constructed from these candidate PMFs. These
models achieved high classification accuracy, effectively distinguishing between disease stages and types, thereby
supporting personalized diagnostics. Thirdly, we validated the performance of the candidate PMFs using testing
sets that were separated prior to PMF identification. The diagnostic efficacy observed in the testing sets closely
mirrored that of the training sets, demonstrating the robustness of our approach. Collectively, the integration of
MALDI-TOF MS and machine learning models forms a synergistic framework that combines rapid screening
and advanced classification. This comprehensive approach holds significant promise for improving the detection
and diagnosis of HPB cancers.

In clinical practice, MALDI-TOF MS enables the rapid generation of patient-specific peptide profiles from
serum samples, facilitating an efficient and personalized diagnostic approach. These profiles are compared against
a comprehensive, established peptide biomarker database, allowing for an immediate and accurate match with
known cancer-associated signatures. This innovative technique not only aids in the detection of HPB cancers
but also supports the differentiation of various HPB cancer types based on their distinct peptide patterns. By
integrating MALDI-TOF MS with advanced machine learning algorithms, we can enhance the diagnostic
capability, enabling early detection and more precise classification of HPB cancers as shown in summary in
supplementary Fig. S7. This method promises to significantly improve clinical outcomes by providing faster,
more reliable diagnostics for better patient management.

While the present study demonstrates promising findings, several limitations should be considered when
interpreting and applying the results. First, this study was conducted using a single-institution cohort primarily
composed of patients from Northeastern Thailand, where cholangiocarcinoma and liver fluke (Opisthorchis
viverrini) infection are highly prevalent. As such, the findings may be more generalizable to populations in
endemic areas of Southeast Asia, but caution is warranted when extrapolating these results to non-endemic
regions or populations with different etiological backgrounds. Second, the number of cases in certain cancer
subtypes, such as gallbladder and pancreatic cancers, was relatively small. This limited sample size may reduce the
robustness of the machine learning models, increase the risk of overfitting, and affect the reliability of biomarker
identification in these groups. Finally, further subgroup analyses, such as comparisons between precancerous
lesions and different cancer stages, are necessary to better understand the stage-specific characteristics and
potential diagnostic applications of the identified features.

Taken together, these limitations underscore the importance of cautious interpretation and clearly indicate
the need for further studies. Specifically, future multicenter investigations involving larger and more diverse
populations, as well as independent external validation cohorts, are essential to confirm and strengthen the
clinical applicability and generalizability of our findings. In parallel, potential PMFs that showed diagnostic
value in this study will be identified using LC-MS/MS. This identification step is a critical bridge toward the
development of a robust biomarker panel, which represents the ultimate goal of MS-based peptidome research
for clinical application.

In summary, our study showed that PMF via MALDI-TOF MS serves as a rapid and effective screening tool
for detecting peptide patterns associated with HPB cancers. By employing machine learning algorithms such as
SVM and RF, we achieved high classification accuracy in distinguishing between healthy individuals and patients
with various HPB malignancies across both training and testing datasets. The combined application of MALDI-
TOF MS and machine learning algorithms not only improves diagnostic accuracy but also holds substantial
potential as an adjunct to traditional diagnostic methods. This integrated approach offers a promising alternative
for enhancing the early detection and classification of HPB cancers, thereby facilitating more informed clinical
decision-making and potentially improving patient outcomes.

Materials and methods

Ethics approval and consent to participate

This study was conducted based on the principles of Good Clinical Practice, the Declaration of Helsinki, and
national laws and regulations about clinical studies. In addition, informed consent was obtained from all
patients. All processes of this study were accepted and approved by the Khon Kaen University Ethics Committee
for Human Research under the reference number HE551404 and HE661318.

Population and sample group

In this study, a total of 297 participants were recruited and split into a training set (n=198) and a testing set
(n=99). Participants were categorized into five groups: healthy controls (n=>50; training set, n=29; testing set,
n=21), cholangiocarcinoma (CCA; n=138; training set, n=97; testing set, n=41), gallbladder cancer (GBC;
n=16; training set, n=3§; testing set, n=8), hepatocellular carcinoma (HCC; n=65; training set, n=45; testing
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set, n=20), and pancreatic ductal adenocarcinoma (PDAC; n=28; training set, n=19; testing set, n=9). To
protect patient privacy and ensure confidentiality, all participants were assigned anonymized identifiers. The list
of these anonymized patient IDs for the training and testing sets is provided in Supplementary Table S6.

Serum samples from the healthy controls were collected from individuals undergoing health screenings at
the Srinagarind Hospital Blood Bank, Faculty of Medicine, Khon Kaen University, with approval granted by the
Director of Srinagarind Hospital. Serum samples from the Hepato-pancreato-biliary (HPB) cancer groups were
sourced from the biobank at the Cholangiocarcinoma Research Institute, Khon Kaen University. Clinical data
for the patients were retrospectively collected from medical records at Srinagarind Hospital, Faculty of Medicine,
Khon Kaen University, covering patient information from January, 2017, to December, 2021. Prognostic factors
were gathered using a retrospective data collection form from the patient medical records, utilizing the ISAN
Cohort database at the Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University. The
data collected included age at diagnosis, gender, histological confirmation, tumor size, cancer grade, surgical
margins, lymph and cancer staging.

Sample collection and serum preservation

Serum samples were collected from healthy individuals and patients with hepatobiliary diseases prior to surgical
treatment. Blood was drawn via venipuncture into a 5-milliliter clot blood tube. It was ensured that clot formation
was complete before centrifugation. The serum was then separated from red blood cells by centrifugation at
3,000-3,500 RPM at 4 °C for 10 min. The serum was carefully aspirated and aliquoted into 1-microliter portions
in Eppendorf tubes to prevent repeated thawing of samples. These aliquots were stored at -80 °C in the biobank of
the Cholangiocarcinoma Research Institute, Khon Kaen University, until further analysis. Protein quantification
was performed using the Lowry assay.

Peptide barcode analysis using MALDI-TOF MS

Each serum sample was analyzed in quadruplicate (i.e., four technical replicates per patient) to ensure
reproducibility and reduce technical variability. For each replicate, the serum was mixed with a matrix solution
consisting of a-cyano-4-hydroxycinnamic acid (CHCA) in 50% acetonitrile and 0.1% trifluoroacetic acid at a
sample-to-matrix ratio of 1:5. The mixture was then spotted onto a MALDI target plate (MTP 384 ground steel,
JEOL, Japan), with each sample applied in 30 replicates. After drying at room temperature, the plate was analyzed
using the JMS-S3000 SpiralTOF-Plus (JEOL, Japan) in a linear positive mode, targeting peptide barcodes
within a mass range of 1,000 to 10,000 Da. Each sample was subjected to 1,500 laser shots. Data acquisition was
performed using JEOL msTornado Control version 1.16 (JEOL, Japan), and subsequent processing was carried
out with JEOL msTornado Analysis version 1.15 (JEOL, Japan). Spectra were processed using default settings
for smoothing, variance stabilization, baseline correction, and peak detection, followed by export in CSV format
for further analysis. Mass binning was applied at 1.0 Da intervals across the 1,000-10,000 Da range. Prior to
analysis, the instrument was externally calibrated in positive-ion mode using a set of reference peptides with
known mass-to-charge ratios (m/z): Angiotensin II (m/z=1046), P14R (m/z=1533), human ACTH fragment
18-39 (m/z=2465), bovine insulin oxidized B chain (m/z=3465), and bovine insulin (m/z=5731). Calibration
was performed manually using JEOL msTornado Control version 1.16, ensuring mass accuracy within +100

Support vector machine model

The Support Vector Machine (SVM) model was used to classify and predict potential biomarkers from the
candidate metabolites identified in serum samples. The candidate metabolites were selected based on feature
selection criteria according to VIP >1 from PLS-DA analysis, ANOVA test: FDR-adjusted p <0.05, which were
considered significant for the discriminatory model. Using the MetaboAnalyst 6.0 platform, 71 PMFs from
the training set were first normalized to ensure uniform scaling. The SVM model was applied using a Radial
Basis Function (RBF) kernel (default kernel in MetaboAnalyst), and cross-validation techniques such as 10-fold
cross-validation were used to assess the model generalizability and to avoid overfitting. The default parameters
for the SVM model included a cost value of 1 and gamma value of 1/n, where n is the number of features
(default settings in MetaboAnalyst). The model performance was evaluated using classification metrics such
as accuracy, precision, recall, F1-score, specificity, Matthews correlation coefficient (MCC), and area under the
curve (AUC) based on the training set*. The SVM model developed from the training set was then validated
using an independent testing set, and model performance was further assessed through the same classification
metrics (accuracy, precision, recall, F1-score, specificity, MCC and AUC) derived from the testing set.

Random forest model

The Random Forest (RF) model was employed to perform binary classification between healthy individuals and
patients with HPB cancers based on the 71 selected PMFs. The analysis was conducted using the MetaboAnalyst
6.0 web-based platform‘“’. Prior to model construction, data from the training set were normalized to ensure
comparability across features. The default settings provided by MetaboAnalyst were used, which include the
use of 500 decision trees (ntree=500) and a default value of mtry (number of variables randomly sampled as
candidates at each split) set to the square root of the total number of features. Model performance was evaluated
using 10-fold cross-validation to prevent overfitting and to assess the generalizability of the model. Classification
metrics reported included accuracy, precision, recall (sensitivity), specificity, F1-score, AUROC, and MCC.
After training, the model was validated using an independent testing set, and the same metrics were calculated
to assess predictive performance on unseen data.
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Model performance estimation

After classification using SVM and RF models, receiver operating characteristic (ROC) curves were generated
to evaluate the overall discriminative ability of each model across various classification thresholds. The AUC
was calculated to provide a threshold-independent performance metric, offering an aggregate measure of model
performance based on the trade-off between the true positive rate (TPR) and the false positive rate (FPR) at
different thresholds. These values were derived from components of the confusion matrix—true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN)—calculated at each threshold.

Following ROC analysis, a classification threshold was selected to construct the confusion matrix for each
model. The confusion matrix enabled a detailed evaluation of model performance at the chosen threshold
by summarizing classification outcomes into TP, FP, TN, and FN categories. Based on these values, several
performance metrics were calculated, including accuracy, sensitivity (recall), specificity, precision, F1-score,
and MCC. Notably, MCC was included as it provides a more informative and balanced measure for evaluating
binary classification performance, particularly when class distributions are imbalanced. MCC considers all
four elements of the confusion matrix and ranges from —1 (completely incorrect classification) to +1 (perfect

classification), with 0 indicating random performance?.

Bioinformatics analysis of peptidome data

Four technical replicates (quadruplicates) were acquired per sample using MALDI-TOF MS, and these spectra
were subsequently subjected to comprehensive bioinformatics analysis, including visualization and statistical
assessment. Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA),
differential analysis (one-way ANOVA), heatmap visualization, and machine learning approaches such as
Support Vector Machine and Random Forest models were conducted using MetaboAnalyst version 6.0 (https:
/[www.metaboanalyst.ca/). A significance threshold of p <0.05 was applied, and p-values below this threshold
were considered statistically significant.

Data availability
Raw MALDI-TOF MS data supporting the findings of this study are available from the corresponding author
upon reasonable request.
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