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Norovirus is a highly contagious virus and the leading cause of acute gastroenteritis worldwide. 
The World Health Organization (WHO) estimates that approximately 685 million cases of norovirus 
infection occur each year, with around 200 million affecting children under the age of five. The impact 
of this virus is substantial, contributing to roughly 200,000 deaths annually—about 50,000 of which 
are among young children—mostly in low-income countries. In addition to the human toll, norovirus 
imposes a significant economic burden, with global costs reaching approximately $60 billion each 
year due to healthcare expenses and lost productivity. In this paper, we present a fractional-order 
mathematical analysis of the norovirus epidemic model, focusing on its transmission dynamics, 
incorporating memory effects. The total population, denoted as N(t), is categorized into four 
compartments: susceptible, exposed, infected, and recovered. We analytically derive the equilibrium 
points and the basic reproduction number of the model. Furthermore, we discuss the properties of 
positivity, boundedness, uniqueness, and existence to ensure the model’s validity. The non-linear 
model is linearized around its equilibrium points, and local stability is analyzed using the eigenvalues of 
the Jacobian matrix. In addition, global stability is examined using the Lyapunov function and LaSalle’s 
invariance principle. To validate the theoretical findings, a numerical scheme based on the GL-Non-
Standard Finite Difference (NSFD) method is developed, which serves to verify the theoretical analysis 
of the norovirus epidemic model.
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Norovirus is a highly contagious virus responsible for acute gastroenteritis, commonly causing outbreaks in 
highly dense areas like schools, hospitals, and other public places. Its impact is global, as it leads to millions of 
cases annually and represents a significant cause of foodborne illness. This makes Norovirus not only a major 
public health concern but also a significant topic for mathematical modeling, especially for those who focus on 
transmission dynamics. Norovirus was first identified in the 1970 s in Norwalk, Ohio, following a gastroenteritis 
outbreak in a school. Since then, it has been recognized as the leading cause of viral gastroenteritis worldwide. It 
spreads rapidly through direct contact, contaminated food or water, and infected surfaces. Norovirus is known for 
its“explosive”outbreak potential, as even a few viral particles are sufficient to infect a large number of susceptible. 
Norovirus can survive on surfaces for weeks, increasing the likelihood of secondary infections, and fractional-
order models can represent the true behavior of the infection. Many infected individuals may be asymptomatic 
but infectious, and immunity after infection is generally short-term. These aspects make Norovirus a challenge 
for the health departments making it an appropriate case for fractional-order models. By studying Norovirus 
through a fractional-order epidemic model, we aim to provide insights into its transmission that can inform 
more effective control measures, as fractional derivatives capture the memory and hereditary properties inherent 
in the dynamics of infectious diseases. This approach offers a more comprehensive understanding of the virus’s 
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spread, potentially leading to strategies that mitigate its impact in high-risk settings. In 1936 the norovirus 
was found in Roskilde (Denmark). The norovirus was termed a“Norwalk agent”This epidemic was found in 
some teenagers at Bronson Elementary School in the U.S.A. Moreover, it has different names like“Norwalk 
agent”, and“Norwalk virus”. In 2018, Gaythorpe et al. explored the stability in the representation of dynamical 
transmission of norovirus and evaluated the strength of parameters. They evaluated the stable variance in the 
basic reproduction number, which means that nowadays work needed to control norovirus may be reduced1. 
In 2019, Yang et al. described a segmented model to estimate the effect of population from different angles of 
observation. They concluded that 6.0 million cases of norovirus are prevented annually under the given scenario 
and 28% more cases might be avoided through 100% observance2. In 2018, Towers et al. analyzed a mathematical 
model of transmission of norovirus, by using this model they checked the comparative effectiveness of control 
strategies to lower the environmental or direct transfer of norovirus. They found that the outbreaks of norovirus 
might be avoided by promotion of good hand-washing practices and by isolating ill passengers3. In 2016, Chen 
et al. reported the interference of two norovirus epidemics, which focused on the significance of modeling based 
on verification and investigated the beginning of infection to prepare useful strategies. They found that only the 
closure of schools could not involve in norovirus outbreaks4. In 2018, Gaythorpe et al. introduced an age-specific 
and self-reporting Markov model to analyze the transmission and vaccination of norovirus with variation by age 
and time in Germany. The results revealed a reduction of norovirus incidence by 70.5% and strategies targeting 
infants and toddlers prevent infections efficiently but in older adults prevent severe infections5.

In 2016, Lopman et al. gathered a group of experts to evaluate the accountability of norovirus in the sense 
of globally and to check the possibility of making a vaccine for norovirus. The group estimated the area of cost 
of illness, hygiene, symptomatic, protection, and natural sensitivity. The group also examines how norovirus 
vaccines developed6. In 2016, Wang et al. introduced an artificial neural network model which is based on novel 
probability, to investigate the dangers of norovirus by using environmental predictors in harvesting areas of 
Mexico and the USA7. In 2016, Assab et al. studied a dynamics of norovirus outbreak between staff and residents8. 
Canales et al. proposed a two-dose–response assessment model for the prevalence of infectious disease and the 
contact path during the outbreak of the disease caused by norovirus9. In 2014, Shieh et al. examined the transfer 
of norovirus from infected to healthy tomatoes through a tomato slices in their eight sets of experiments using an 
11-horizontal blade slicer10. In 2022 Wang et al. work aimed at investigating the stochastic model of noroviruses 
with temporal delay, including specific conditions regarding the persistence and the time of elimination of the 
pathogen11. In 2014, Bartsch et al. used an agent-based model to research the spread of the Norwalk virus 
between different hospitals in California by using contact and without contact precautions. The results revealed 
that reproductive rate of 1.64 and a spreading probability of 6.1% at the lower end and a reproductive rate of 
3.74 and a spreading probability of 4.1–17.5% at the higher end. The results also revealed a reduction in the 
spreading of norovirus within hospitals and countrywide by using contact precautions12. In 2023, Raezah et al. 
selected a mathematical model to study the vaccination effect of norovirus by using the nonsingular operator. 
They also investigate the presence and exceptionality of solutions13. In 2017, Chenar et al. studied the effects of 
environmental factors on transmission of norovirus14. Kim et al. in 2022 investigated the replication of human 
norovirus (HuNoV) and the gene expression in infected zebrafish by performing three dosages of inoculation15.

In 2021, Calduch et al. studied the medical database and indirect modeling for judgment of the occurrence 
of hospitalization for norovirus gastroenteritis (NGE) by using patients discharged from different countries in 
Europe. The results revealed the rate of NGE with 3.9 per 10,000 persons, 24.8 per 10,000 children less than 
5 years old, and 10.7 per 10,000 adults greater than 80 years old discharged from different hospitals in Europe 
per year16. In 2017, Matsuyama et al. studied the shard of norovirus eruption imputable to one living to be to 
other hauling has expanded with intervals, in addition, the scheduling of raised shard has corresponded with 
the rise in the noticed portion of genogroup. The efficacious duplication figure (Ry), for annum y was assessed 
by examining the serial vigil calculation for spreading occurrences from 2000 to 201617. In 2021, O’Reilly et al. 
discussed non-pharmaceutical interventions (NPIs) to lessen the pandemic of coronavirus strain in England as 
well as other states that have ingrained other contagious ailments like norovirus. It is perplexing what forthcoming 
norovirus pandemic occurrences are inclined to be similar in hoisting all above referenced prohibitions18. In 
2014, Lopman et al. studied the toxicity of norovirus is enacted. Nonetheless, norovirus is intermittently found 
in the manure of hearty personals. To attain a perceptive of the obvious prominent occurrence of symptom-free 
contagion, they evaluated a vigorous circulation sample of norovirus contagion ailment and protection. They 
anticipated yearly disease appearance values in infants19. In 2013, Simmons et al. discovered an analytical model 
to solve the problems caused by norovirus. They characterized their model by using previous investigations 
and data obtained from different age groups in two developed states England and Wales. If certain medications 
can boost the natural immunity indicated by our results, their capability to improve health and cost-effective 
benefits could be significant for the betterment of society20. In 2024, Kamal Shah et al. conducted an in-depth 
analysis of Nipah virus infection using piecewise equations in the fractional calculus framework. They proposed 
a SIRD-type model and assessed the solution’s feasibility based on fractional-order derivatives. Additionally, 
they provided numerical simulations for various compartments, employing the Runge–Kutta 4 (RK4) method. 
Their study also examined the transmission dynamics of the Nipah virus, utilizing new approaches in fractional 
calculus to enhance understanding of the disease spread21. The authors studied a finite-time stability analysis 
and control of stochastic SIR epidemic model: A study of COVID-19 in22. Several studies have employed 
fractional calculus to model complex disease dynamics, including dengue with non-linear incidence and pulse 
vaccination, Rift Valley fever with vaccination, water-borne disease with non-local kernels, breast cancer under 
chemotherapy, and chronic myelogenous leukemia—highlighting the effectiveness of fractional models in 
capturing memory effects in biological systems23–28. The authors studied the existence and stability results of 
Caputo fractional derivatives for boundary value problems involving both single and multivariable fractional 
orders in29–31. Raza and collaborators have applied stochastic fractional models to capture the complex dynamics 
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of diseases like leukemia, Campylobacteriosis, and heroin addiction. Their work emphasizes memory effects 
and robust numerical schemes for accurate disease modeling32–34. Fractional calculus generalizes the traditional 
calculus which deals with the derivatives and integrals of non-integer or fractional order. Although it is as old as 
classical calculus, it has gained popularity in the recent past and now it is a significant area of study, especially for 
modelling complex real-world phenomena. It is now widely recognized that traditional integer-order models, 
which predict the behaviour of systems by their current states without considering the previous state capture the 
intricacies of certain dynamical systems, such as the spread of infectious diseases. In particular, the uncertain, 
nature of situations like the COVID-19 pandemic highlights the limitations of classical derivatives, which failed 
to address the non-linear behavior of the infection in these contexts. On the other hand, fractional epidemic 
models of COVID-19 illustrated all the complexities by providing realistic outcomes. Modeling scenarios with 
fractional derivatives have proven to be more accurate and representative of real-world processes than integer-
order derivatives. The development of new fractional operators is made according the real-world problems. The 
fractional-order model captures norovirus’s memory effects, such as prolonged environmental persistence and 
short-term immunity. These features allow for a more realistic representation of reinfection risks and delayed 
transmission pathways.

Models developed through this extended finite difference approach-the GL-NSFD scheme fit closer to the 
qualitative features of the original system, including positivity, boundedness, and asymptotic stability. The GL-
NSFD scheme guarantees an accurate determination of long-term behavior such as asymptotic properties of the 
system.

The framework of our paper is organized as follows: Section"Formulation of fractional norovirus epidemic 
model"introduces the mathematical model and provides its detailed analysis. The sub-sections focus on key 
aspects such as positivity, boundedness, stability analysis, existence, and uniqueness. Section “Numerical 
method” is dedicated to the numerical method, specifically NSFD, with sub-sections addressing the properties 
of the numerical method. This section also contains numerical simulations. Section “Conclusion” presents the 
final concluding remarks.

Now, we will provide some fundamental definitions.

Definition 1  Caputo fractional derivative.

Let g(t) be a function, then the Caputo derivative of g (t) of fractional order ζ is defined as:

	
a

cDζ
t g (t) = 1

Γ(n − ζ)

∫ t

a

g(n)(x)
(t − x)ζ+1−n

dx

Where n − 1 < ζ < n ∈ N,
Also, its Laplace transformation can be defined as:

	
L

{
0

cDζ
t g (t)

}
= sζG (s) −

n−1∑
k=0

sk−n−1g(k) (0) , When n − 1 < ζ < n ∈ N

Definition 2  The mittag–leffler function.

Two parametric Mittag–Leffler function is defined as:

	
Eα,β (z) =

∞∑
k=0

zk

Γ(αk + β) , α, β > 0, α, β ∈ R, z ∈ C

Its Laplace transformation can be defined as:

	
L

{
tβ−1Eα,β (Mtα)

}
= sα−β

sα − M
.

Formulation of fractional norovirus epidemic model
The whole population is represented by N(t) which can be further divided into four compartments. S(t) denotes 
the susceptible individuals, E(t) represents the exposed populations, I(t) contains the infected population and 
R(t) is the recovered population.(See Fig. 1.)

So, the entire population at the time t is like, N (t) = S (t) + E (t) + I (t) + R(t)
The parameter values of the constants are shown as follows in Table 1:

Variables and parameters
S(t): Susceptible class.

E(t): Exposed class.
I(t): Infected class.
R(t) : Recovered class.
Λ:The rate of recruitment of susceptible individuals.
β : Transmission rate.

Scientific Reports |        (2025) 15:29657 3| https://doi.org/10.1038/s41598-025-14688-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


µ: Natural death rate in all the compartments.
θ: Rate of latency loss.
γ: Recovery Rate.

Model equations
For t ≥ 0, the fractional order differential equations of the norovirus epidemic model are as follows:

	

0
cDζ

t S (t) = Λ − βSI − µS(t),
0
cDζ

t E (t) = βSI − θE (t) − µE (t) ,

0
cDζ

t I (t) = θE(t) − γI(t) − µI(t),
0
cDζ

t R (t) = γI (t) − µR (t) .




� (1)

Subject to S(0) ≥ 0, E(0) ≥ 0, I (0) ≥ 0, R (0) ≥ 0fort ≥ 0.

Equilibria of norovirus epidemic model
In this part, we shall discuss two types of equilibria of the model norovirus-free equilibrium (NFE-N0) and 
norovirus existing equilibrium (NEE-N∗).

	
N0 =

(
S0, E0, I0, R0)

=
(

Λ
µ

, 0,0, 0
)

.

and.

	
N∗ = (S∗, E∗, I∗, R∗) =

(
(θ + µ) (γ + µ)

θβ
,

Λ
(θ + µ) − µ(γ + µ)

θβ
,

θΛ
(θ + µ) (γ + µ) − µ

β
,

θγΛ
µ (θ + µ) (γ + µ) − γ

β

)
.

Positivity and boundedness
In this segment, we will study the positivity and boundedness of the norovirus-epidemic model.

	 0
cDζ

t S (t) + 0
cDζ

t E (t) + 0
cDζ

t I (t) + 0
cDζ

t R (t) = Λ − µN, 0
cDζ

t N (t) = Λ − µN .

And hence, N (t) ≤ M, whenever t → ∞. Therefore, the feasible region can be defined 
as:Π = {S (t) , E (t) , I (t) , R (t) ∈ R4

+ : N(t) ≤ M}.

Parameters Descriptions Values (per day)/Source35

Λ The rate of recruitment of susceptible individuals 0.5 (Assumed)

β Transmission rate 5.09091(NFE)
10.09091(NEE)

θ Rate of latency loss 0.06
γ Recovery Rate 0.125
µ Natural death rate 0.5(Assumed)

Table 1.  Physical applicability of the model.

 

Fig. 1.  Flow diagram of norovirus model.
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Theorem 1  For any initial data (S (0) , E (0) , I (0) , R (0)) ∈ R+
4 , then the solution (S (t) , E (t) , I (t) , R (t)) 

for the system (1) is positive invariant in R+
4  where t ≥ 0, with given positive initial conditions.

Proof  We shall define the norm λ∞ = supt∈Dλ
|λ(t)|, where Dλ is the domain of λ, using the above norm, 

we have:

	 0
cDζ

t S (t) = Λ − βSI − µS, 0
cDζ

t S (t) ≥ −βSI − µS,

	 0
cDζ

t S (t) ≥ −
(
βsupt∈Dλ

|I| + µ
)

S, 0
cDζ

t S (t) ≥ − (µ + βI∞) S,

Let = µ + βI∞, then:

	 L{0
cDζ

t S (t)} + mL{S(t)} ≥ 0

	 sζL {S (t)} − sζ−1S (0) + mL {S (t)} ≥ 0

	
L {S (t)} ≥ S(0)sζ−1

sζ + m

Now, by using L−1
{

sα−β

sα−m

}
= tβ−1Eα,β (mtα)

	 S (t) ≥ S (0) Eζ,1
(
−mtζ

)

	 S (t) ≥ 0, ∀t ≥ 0

For the functions E(t), I(t), and R(t), the following inequalities hold for respectively, i.e.
E (t) ≥ 0, I (t) ≥ 0, R (t) ≥ 0, ∀t ≥ 0 as desired.

Theorem 2  The solutions (S, E, I, R) ∈ R4
+ of the system are bounded and remain within the region Π.

Proof  Let us consider a population function as.

	 0
cDζ

t N (t) = 0
cDζ

t S (t) + 0
cDζ

t E (t) + 0
cDζ

t I (t) + 0
cDζ

t R (t) .

	 0
cDζ

t N (t) = Λ − µN 0
cDζ

t N (t) + µN(t) = Λ

	 L
{

0
cDζ

t N (t)
}

+ µL {N(t)} = ΛL {1}

	
sζL {N(t)} − sζ−1N(0) + µL {N(t)} = Λ

s

	
(
sζ + µ

)
L {N(t)} = sζ−1N (0) + Λ

s

	
L {N(t)} = N (0) sζ−1

sζ + µ
+ Λ sζ−(1+ζ)

sζ + µ

By using L
−1

{
sα−β

sα−M

}
= tβ−1Eα,β (Mtα), we get:

	
N (t) = N (0) L−1

{
sζ−1

sζ + µ

}
+ ΛL−1

{
sζ−(1+ζ)

sζ + µ

}

	
N (t) = N (0) Eζ,1

(
−µtζ

)
+ µ.

Λ
µ

tζEζ,ζ+1
(
−µtζ

)

Let M = max
{
N (0) , Λ

µ

}

	 N (t) ≤ M
{
Eζ,1

(
−µtζ

)
+ µtζEζ,ζ+1

(
−µtζ

)}

	 N(t) ≤ M

This shows the boundedness of N (t) .

Existence and uniqueness
The following lemma is used to prove the existence and uniqueness of the solution.
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Lemma 1  Let t0
CDζ

t x (t) = g (t, x) , t0 > 0, with initial condition x (t0) = xt0 , where, 
ζ ∈ (0, 1] , g : [t0, ∞) × Ω → R, Ω ⊆ C1[t0, ∞), if local Lipschitz condition is satisfied by g(t, x), with re-
spect to x, then, there exists a solution on [t0, ∞) × Ω which is unique.

Theorem 3  At any given time t, the solution of system (1) is guaranteed to exist and be unique.

Proof:  Consider the region Σ × [t0,γ], with:

Σ =
{

(S, E, I, R) ∈ R4 : S, E, I, R ∈ C1 [t0, ∞) ∧ |S| , |E| , |I| , |R| ≤ Q
}

 and γ < +∞. Let,
Let,K (S) = Λ − βSI − µS,
Then, for (S, E, I, R) and 

(
S, E, I, R

)
∈ Σ,

	 ∥K (S) − K
(
S

)
∥

	 = ∥Λ − βIS − µS − Λ + βIS + µS∥

	 ≤ β |I| ∥S − S∥ + |µ| ∥S − S∥

	 ≤ βQ∥S − S∥ + µ∥S − S∥

	 = (βQ + µ) ∥S − S∥

Therefore,

	 ∥K (S) − K
(
S

)
∥ ≤ (βQ + µ) ∥S − S∥

Thus, K(S) satisfies the Lipschitz condition. For contraction mapping, βQ + µ < 1,
Also, let

	 L (E) = βSI − θE − µE

Then,

	 ∥L (E) − L
(
E

)
∥ = ∥βSI − θE − µE − βSI + θE + µE∥

	 = ∥θ
(
E − E

)
+ µ

(
E − E

)
∥

	 ≤ |θ| ∥E − E∥ + |µ| ∥E − E∥

	 = (|θ| + |µ|) ∥E − E∥

	 = (θ + µ) ∥E − E∥

Therefore,

	 ∥L (E) − L
(
E

)
∥ ≤ ∥E − E∥

Therefore, L(E) fulfills Lipchitz’s condition.
For contraction, θ + µ < 1.
For the third equation of system (1),
Let,

	 N (I) = θE − γI − µI

Then,

	 ∥N (I) − N
(
I
)

∥ = ∥θE − γI − µI − θE + γI + µI∥

	 = ∥γ
(
I − I

)
+ µ

(
I − I

)
∥

	 ≤ |γ| ∥I − I∥ + |µ| ∥I − I∥

	 = (|γ| + |µ|) ∥I − I∥

	 = (γ + µ) ∥I − I∥

Therefore,

	 ∥N (I) − N
(
I
)

∥ < (γ + µ) ∥I − I∥
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Therefore, N(I) satisfies the Lipchitz condition.
For contraction mapping, γ + µ < 1.
For the fourth equation of the system,
Let,

	 P (R) = γI − µR.

Then,

	 ∥P (R) − P
(
R

)
∥ = ∥γI − µR − γI + µR∥

	 = µ∥R − R∥

	 = µ∥R − R∥

Therefore,

	 ∥P (R) − P
(
R

)
∥ < ∥R − R∥

For contraction mapping, µ < 1.
Therefore, P (R) satisfies the Lipchitz condition.
Let,

	 F1 = βQ + µ

	 F2 = θ + µ

	 F3 = γ + µ

	 F4 = µ.

Also, let,

	 F = max {F1, F2, F3, F4} .

Therefore,

	 ∥K (S) − K
(
S

)
∥ ≤ F ∥S − S∥

	 ∥L (E) − L
(
E

)
∥ ≤ F ∥E − E∥,

	 ∥N (I) − N
(
I
)

∥ ≤ F ∥I − I∥,

	 ∥P (R) − P
(
R

)
∥ ≤ F ∥R − R∥.

Therefore K(S), L(E), N(I), andP (R) are contraction mappings for F < 1. Therefore, 
K(S), L(E), N(I), andP (R) fulfill Lipshitz conditions. Therefore, we conclude that our proposed model 
equations possess a unique solution, as required.

Reproduction number
The main factor of the model is the threshold number, also termed as reproduction number denoted by R0 which 
has a crucial role in the effectiveness of disease. If we change the value of R0, it can also change the dynamics of 
disease. If R0 < 1, then it expresses the disease control in the population and if R0 > 1, then it displays that the 
disease is proliferating in the population. We suppose the infected and recovered compartments:

	

[
0
cDζ

t E
0
cDζ

t I
0
cDζ

t R

]
=

[
0 βS 0
0 0 0
0 0 0

] [
E
I
R

]
−

[
θ + µ 0 0
−θ γ + µ 0
0 −γ µ

] [
E
I
R

]

	
Transmission matrix = X =

[
0 βS 0
0 0 0
0 0 0

]
,

	
Transition matrix = Y =

[
µ + θ 0 0
−θ µ + γ 0
0 −γ µ

]

The value of XY −1 at N0 is denoted by AN0
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AN0 = XY −1 =

[
θβΛ

µ(γ+µ)(θ+µ)
βΛ

µ(γ+µ) 0
0 0 0
0 0 0

]

The maximum Eigenvalue of AN0  is denoted by R0 and is given by

	
R0 = θΛβ

µ (γ + µ) (θ + µ)

Sensitivity analysis
Now, we investigate the sensitivity of the parameters.

	
Nθ = ∂R0

∂θ
.

θ

R0
= ∂

∂θ

(
θΛβ

µ (θ + µ) (γ + µ)

)
.

θ

R0
,

	
=

(
Λβ

µ (µ + γ)

)
∂

∂θ

(
θ

(θ + µ)

)
.

θ

R0
,

	
∂R0

∂θ
.

θ

R0
= µ

θ + µ
> 0,

Similarly for other parameters, we have the following results.

	
Nβ = ∂R0

∂β
.

β

R0
= 1 > 0, Nγ = ∂R0

∂γ
.

γ

R0
= −γ

γ + µ
< 0,

	
Nµ = ∂R0

∂µ
.

µ

R0
= 1 + µ (θ + γ + 2µ)

(θ + µ) (γ + µ) > 0,

From the above calculations, it can be concluded that the parameters θ, β, andµ are more sensitive than γ.

Stability analysis of norovirus epidemic model
We shall prove the following well-known conclusions for local stability in both equilibrium points.

Theorem 4  The norovirus free equilibrium (NFE-N0), N0 =
(
S0, E0, I0, R0)

 = 
(

Λ
µ

, 0,0, 0
)

 is locally asymp-
totical stable (LAS) if R0 < 1, otherwise unstable when R0 > 1.

Proof: 	

J

(
Λ
µ

, 0, 0, 0
)

=




−µ 0 −Λβ
µ

0
0 −(θ + µ) Λβ

µ
0

0 θ −(γ + µ) 0
0 0 γ −µ




Consider |J − λI| = 0 and hence

	 λ1 = −µ < 0, λ2 = −µ < 0,

	
λ3 =

− (θ + γ + 2µ) +
√

(θ + γ + 2µ)2 − 4 (θ + µ) (γ + µ) − θΛβ
µ

2 , λ3 < 0

If λ4 < 0, then 
−(θ+γ+2µ)−

√
(θ+γ+2µ)2−4(θ+µ)(γ+µ)− θΛβ

µ

2 < 0

	 R0 < 1.

This shows that the system is in a locally asymptotical stable state at N0.

Theorem 5  The norovirus existing equilibrium (NEE − N∗), N∗ = (S∗, E∗, I∗, R∗) is locally asymptotical 
stable (LAS) if R0 > 1.

Proof 	

J (S∗, E∗, I∗, R∗) =




−µ − βI∗ 0 −βS∗ 0
βI∗ −(θ + µ) βS∗ 0

0 θ −(γ + µ) 0
0 0 γ −µ




Consider |J − λI| = 0 and hence
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∣∣∣∣∣∣

−µ − βI∗ − λ 0 −βS∗ 0
βI∗ −(θ + µ) − λ βS∗ 0

0 θ −(γ + µ) − λ 0
0 0 γ −µ − λ

∣∣∣∣∣∣
= 0

	 λ1 = −µ < 0.

Now, expanding by R1.

	 (−µ − βI∗ − λ) [(θ + µ + λ) (γ + µ + λ) − θβS∗] − βS∗ (θβI∗) = 0,

Now, put the values of S∗ and I∗, we get

	

(
θβΛ

(θ + µ) (γ + µ) + λ

) [
−λ2 − λ (θ + γ + 2µ)

]
+ θβΛ − µ (θ + µ) (γ + µ) = 0,

The roots of the following equation

	 C1λ3 + C2λ2 + C3λ + C4 = 0

	
λ3 + λ2

[
θβΛ

(θ + µ) (γ + µ) + (θ + γ + 2µ)
]

+ λ

[
θβΛ

(θ + µ) (γ + µ) × (θ + γ + 2µ)
]

+ θβΛ − µ (θ + µ) (γ + µ) = 0,

The coefficients of above polynomial equation of λ are as follows:
C1 = 1 > 0, similarly,C2 > 0, C3 > 0
and C4 = θβΛ − µ (θ + µ) (γ + µ)

	 C4 = µ (θ + µ) (γ + µ) [R0 − 1]

If R0 > 1, then by Routh-Hurwitz Criterion for 3rd degree polynomial, norovirus existing equilibrium 
(NEE − N∗), N∗ = (S∗, E∗, I∗, R∗) is locally asymptotical stable (LAS).

Lemma 2  Let x : [0, ∞) → R+ be a continuous function and let t0 ≥ 0. Then, for any time 
t ≥ t0, α ∈ (0,1) and x∗ ∈ R+, the following inequality holds:

	
0
cDζ

t

[
x (t) − x∗ − x∗ln

x(t)
x∗

]
≤

(
1 − x∗(t)

x

)
0
cDζ

t x(t)

Theorem 6  The system at N0 = (S0, E0, I0, R0) =
(

Λ
µ

, 0,0, 0
)

 is globally asymptotically stable if R0 < 1.

Proof  Let L = (S + (E + I + R)) − S0 − S0log S
S0

.

	
L =

(
S − S0 − S0log

S

S0

)
+ E + I + R,

	
0

cDζ
t L = 0

cDζ
t

(
S − S0 − S0log

S

S0

)
+ 0

cDζ
t E + 0

cDζ
t I + 0

cDζ
t R.

	
0

cDζ
t L ≤

(
1 − S0

S

)
0

cDζ
t S + 0

cDζ
t E + 0

cDζ
t I + 0

cDζ
t R.

	
0

cDζ
t L ≤

(
1 − S0

S

)
(Λ − βSI − µS) + (βSI − θE − µE) + (θE − γI − µI) + (γI − µR) .

	
0

cDζ
t L ≤ − Λ

SS0
(S − S0)2 − (θ + µ)

(
E − βSI

θ + µ

)
+ (γ + µ) (R0 − 1) I − µ

(
R − γI

µ

)
.

Observe that 0cDζ
t L < 0 when R0 < 1.

Therefore, norovirus-free equilibrium is globally asymptotically stable.

Theorem 7  The norovirus existing equilibrium (NEE-N∗), N∗ =(S*, E*, I*, R*) is globally asymptotical stable 
(GAS) if R0 > 1.

Proof  Consider the Lyapunov function Z : Π → R, defined as.

	
Z = (S − S∗ − S∗log( S

S∗ )) + (E − E∗ − E∗log( E

E∗ )) + (I − I∗ − I∗log( I

I∗ )) + (R − R∗ − R∗log( R

R∗ )).

	 0
cDζ

t Z = − Λ
SS∗ (S − S∗)2 − βSI

EE∗ (E − E∗)2 − αE

II∗ (I − I∗)2 − γI

RR∗ (R − R∗)2.
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	 0
cDζ

t Z = − Λ
SS∗ (S − S∗)2 − βSI

EE∗ (E − E∗)2 − αE

II∗ (I − I∗)2 − γI

RR∗ (R − R∗)2.

	 0
cDζ

t Z ≤ 0if R0 > 1.

	 0
cDζ

t Z = 0onlyifS = S∗, E = E∗, I = I∗andR = R∗

Hence, by Lasalle’s invariance principle, norovirus existing equilibrium is globally asymptotical stable (GAS).

Numerical method
We now develop an NSFD, numerical scheme for the projected model.

Let 0cDζ
t y (t) = f (y(t)) , y (T ) = y0(0 < ζ < 1)

Then,

	
yn+1 −

n+1∑
ν=1

Cζ
ν yn+1−ν − rζ

n+1y0 = hζf(yn) or hζf(yn+1)

where,Cζ
ν = −(1)ν−1

(
ζ
ν

)
, rζ

n+1 = hζrζ
0 (Tn+1) = γζ

0,−1(n + 1)−ζ

And the coefficients

	
γζ

0,−1 = Γ(µζ + 1)
Γ(kζ + 1) , µ, k ∈ N0 ∪ {−1}

Lemma 3  Assume that 0 < ζ < 1, then Cζ
ν  are positive and Cζ

ν = O( 1
ν1+ζ ) as ν → ∞. Further, the coeffi-

cients Cζ
ν  and rζ

ν  satisfy for ν > 1 the properties:

0 < Cζ
ν+1 < Cζ

ν < · · · < Cζ
1 = ζ < 1 and 0 < rζ

ν+1 < rζ
ν < · · · < rζ

1 = 1
Γ(1−ζ)

Proof  It is clear that for all ζ ∈ (0,1] ,

	
lim

ν→∞
Cζ

ν = 0, lim
ν→∞

rζ
ν = 0

Moreover, for ζ ∈ (0,1] , is ζ + 1
Γ(1−ζ) > 1

Also, 
∑∞

ν=1 Cζ
ν = 1

Grunwald–Letnikov non-standard finite difference method
Divide the interval [0, L] into M ∈ N subintervals and h = L

M . The approximate solutions S, E, I, andR of will 
be denoted as Sn, En, In, andRn, respectively, for each n = 0,1, . . . , N.

The first equation of the system (1) is

	 0
cDζ

t S (t) = Λ − βSI − µS

Use Grunwald–Letnikov approximation

	
0

cDζ
t y (tn+1) = 1

(Φ (h))ζ

{
yn+1 −

n+1∑
ν=1

Cζ
ν yn+1−ν − rζ

n+1y0

}

	

1
(Φ (h))ζ

{
Sn+1 −

n+1∑
ν=1

Cζ
ν Sn+1−ν − rζ

n+1S0

}
= Λ − βSn+1In − µSn+1

	
Sn+1 −

n+1∑
ν=1

Cζ
ν Sn+1−ν − rζ

n+1S0 = Λ(Φ (h))ζ − β(Φ (h))ζSn+1In − (Φ (h))ζµSn+1

	
Sn+1 + (Φ (h))ζβSn+1In + (Φ (h))ζµSn+1 = Λ(Φ (h))ζ + rζ

n+1S0 +
n+1∑
ν=1

Cζ
ν Sn+1−ν

	
Sn+1

(
1 + (Φ (h))ζβIn + (Φ (h))ζµ

)
= Λ(Φ (h))ζ + rζ

n+1S0 +
n+1∑
ν=1

Cζ
ν Sn+1−ν
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Sn+1 =

Λ(Φ (h))ζ + rζ
n+1S0 +

∑n+1
ν=1 Cζ

ν Sn+1−ν

1 + (Φ (h))ζβIn + (Φ (h))ζµ

Second equation of the system (1)

	 0
cDζ

t E (t) = βSI − θE − µE,

Use Grunwald–Letnikov approximation

	
0

cDζ
t y (tn+1) = 1

(Φ (h))ζ

{
yn+1 −

n+1∑
ν=1

Cζ
ν yn+1−ν − rζ

n+1y0

}

	

1
(Φ (h))ζ

{
En+1 −

n+1∑
ν=1

Cζ
ν En+1−ν − rζ

n+1E0

}
= βSn+1In − θEn+1 − µEn+1,

	
En+1 =

(Φ (h))ζβSn+1In +
∑n+1

ν=1 Cζ
ν En+1−ν + rζ

n+1E0

1 + (Φ (h))ζ (θ + µ)

Third equation of the system (1)

	 0
cDζ

t I (t) = θE(t) − γI(t) − µI(t)

Use Grunwald–Letnikov approximation

	
0

cDζ
t y (tn+1) = 1

(Φ (h))ζ

{
yn+1 −

n+1∑
ν=1

Cζ
ν yn+1−ν − rζ

n+1y0

}

	

1
(Φ (h))ζ

{
In+1 −

n+1∑
ν=1

Cζ
ν In+1−ν − rζ

n+1I0

}
= θEn+1 − γIn+1 − µIn+1

	
In+1 −

n+1∑
ν=1

Cζ
ν In+1−ν − rζ

n+1I0 = (Φ (h))ζθEn+1 − (Φ (h))ζγIn+1 − (Φ (h))ζµIn+1

	
In+1 + (Φ (h))ζγIn+1 + (Φ (h))ζµIn+1 = (Φ (h))ζθEn+1 +

n+1∑
ν=1

Cζ
ν In+1−ν + rζ

n+1I0

	
In+1

(
1 + (Φ (h))ζ (γ + µ)

)
= (Φ (h))ζθEn+1 +

n+1∑
ν=1

Cζ
ν In+1−ν + rζ

n+1I0

	
In+1 =

(Φ (h))ζθEn+1 +
∑n+1

ν=1 Cζ
ν In+1−ν + rζ

n+1I0

1 + (Φ (h))ζ (γ + µ)

Fourth equation of the system (1)

	 0
cDζ

t R (t) = γI − µR

Use Grunwald–Letnikov approximation for the above equation.

	
0

cDζ
t y (tn+1) = 1

(Φ (h))ζ

{
yn+1 −

n+1∑
ν=1

Cζ
ν yn+1−ν − rζ

n+1y0

}

We get

	

1
(Φ (h))ζ

{
Rn+1 −

n+1∑
ν=1

Cζ
ν Rn+1−ν − rζ

n+1R0

}
= γIn+1 − µRn+1

Some straightforward calculations and simplifications will lead to the following expression.
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Rn+1 =

∑n+1
ν=1 Cζ

ν Rn+1−ν + rζ
n+1R0 + γ(Φ (h))ζIn+1

1 + µ(Φ (h))ζ

Similarly,

	
Sn+1 =

Λ(Φ (h))ζ + rζ
n+1S0 +

∑n+1
ν=1 Cζ

ν Sn+1−ν

1 + (Φ (h))ζβIn + (Φ (h))ζµ

	
En+1 =

(Φ (h))ζβSn+1In +
∑n+1

ν=1 Cζ
ν En+1−ν + rζ

n+1E0

1 + (Φ (h))ζ (θ + µ)

	
In+1 =

(Φ (h))ζθEn+1 +
∑n+1

ν=1 Cζ
ν In+1−ν + rζ

n+1I0

1 + (Φ (h))ζ (γ + µ)

	
Rn+1 =

∑n+1
ν=1 Cζ

ν Rn+1−ν + rζ
n+1R0 + γ(Φ (h))ζIn+1

1 + µ(Φ (h))ζ

Properties
Theorem 8  The SEIR model system (1) in its deterministic form ensures that the solution remains non-negative.

Proof  Let.

	 S0 ≥ 0, E0 ≥ 0, I0 ≥ 0, R0 ≥ 0,

For n = 0, we have:

	
S1 = Λ(Φ (h))ζ + rζ

1S0 + Cζ
1S0

1 + (Φ (h))ζβI0 + (Φ (h))ζµ
≥ 0

	
E1 = (Φ (h))ζβS1I0 + Cζ

1E0 + rζ
1E0

1 + (Φ (h))ζ (θ + µ)
≥ 0

	
I1 = (Φ (h))ζθE1 + Cζ

1I0 + rζ
1I0

1 + (Φ (h))ζ (γ + µ)
≥ 0

	
R1 =

Cζ
1R0 + rζ1R0 + γ(Φ (h))ζI1

1 + µ(Φ (h))ζ
≥ 0

Now, suppose that:

	 Sn ≥ 0, En ≥ 0, In ≥ 0, Rn ≥ 0

	
Sn =

Λ(Φ (h))ζ + rζ
nS0 +

∑n

ν=1 Cζ
ν Sn−ν

1 + (Φ (h))ζβIn−1 + (Φ (h))ζµ
≥ 0,

	
En =

(Φ (h))ζβSnIn−1 +
∑n

ν=1 Cζ
ν En−ν + rζ

nE0

1 + (Φ (h))ζ (θ + µ)
≥ 0

	
In =

(Φ (h))ζθEn +
∑n

ν=1 Cζ
ν In−ν + rζ

nI0

1 + (Φ (h))ζ (γ + µ)
≥ 0

	
Rn =

∑n

ν=1 Cζ
ν Rn−ν + rζ

nR0 + γ(Φ (h))ζIn

1 + µ(Φ (h))ζ
≥ 0

Based on the aforementioned findings, for any positive integer n that is, n ∈ Z+, we deduce that,

	
Sn+1 =

Λ(Φ (h))ζ + rζ
n+1S0 +

∑n+1
ν=1 Cζ

ν Sn+1−ν

1 + (Φ (h))ζβIn + (Φ (h))ζµ
≥ 0

	
En+1 =

(Φ (h))ζβSn+1In +
∑n+1

ν=1 Cζ
ν En+1−ν + rζ

n+1E0

1 + (Φ (h))ζ (θ + µ)
≥ 0
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In+1 =

(Φ (h))ζθEn+1 +
∑n+1

ν=1 Cζ
ν In+1−ν + rζ

n+1I0

1 + (Φ (h))ζ (γ + µ)
≥ 0

	
Rn+1 =

∑n+1
ν=1 Cζ

ν Rn+1−ν + rζ
n+1R0 + γ(Φ (h))ζIn+1

1 + µ(Φ (h))ζ
≥ 0

Therefore, in the discrete model, all the state variables ensure that the solution remains non-negative, as needed.

Theorem 9  (Boundedness)

Let Λ > 0, µ > 0, θ > 0, β > 0, γ > 0, (ψ(h))ζ > 0 For all ζ ∈ (0,1), then there is a constant

	
N (N0 + 1, ζ) =

N(N0, ζ) + 1
Γ(1−ζ) + (Φ (h))ζΛ

1 + (Φ (h))ζµ

Such that

	 Sn+1, In+1, In+1, Rn+1 ≤ N (N0 + 1, ζ) for n = 0, 1, 2, . . . , N0

Proof  Consider the discretized equation for the susceptible class as given by,

	
Sn+1 =

Λ(Φ (h))ζ + rζ
n+1S0 +

∑n+1
ν=1 Cζ

ν Sn+1−ν

1 + (Φ (h))ζβIn + (Φ (h))ζµ

	
Sn+1

(
1 + (Φ (h))ζβIn + (Φ (h))ζµ

)
= Λ(Φ (h))ζ + rζ

n+1S0 +
n+1∑
ν=1

Cζ
ν Sn+1−ν � (2)

	 En+1 + θ (Φ (h))ζEn+1 + µ(Φ (h))ζEn+1

	
= (Φ (h))ζβSn+1In +

n+1∑
ν=1

Cζ
ν En+1−ν + rζ

n+1E0� (3)

	 In+1 + γ (Φ (h))ζIn+1 + µ (Φ (h))ζIn+1

	
= θ(Φ (h))ζEn+1 +

n+1∑
ν=1

Cζ
ν In+1−ν + rζ

n+1I0� (4)

	
Rn+1 + µ(Φ (h))ζRn+1 =

n+1∑
ν=1

Cζ
ν Rn+1−ν + rζ

n+1R0 + γ(Φ (h))ζIn+1� (5)

By adding equations from (2) to (5) and simplifying, we have

	
Sn+1 + En+1 + In+1 + Rn+1 =

Λ(Φ (h))ζ +
∑n+1

ν=1 Cζ
ν (Sn+1−ν + En+1−ν + In+1−ν + Rn+1−ν) + rζ

n+1

1 + (Φ (h))ζµ

For, n = 0, we reach the following expression,

	
S1 + E1 + I1 + R1 =

Λ(Φ (h))ζ + ζ + 1
Γ(1−ζ)

1 + (Φ (h))ζµ

	 S1 + E1 + I1 + R1 = N(1, ζ)

Now for n = 1 and ζ ∈ (0,1), we get,

	
S2 + E2 + I2 + R2 <

Λ(Φ (h))ζ + N (1, ζ) + 1
Γ(1−ζ)

1 + (Φ (h))ζµ

	 S2 + E2 + I2 + R2 < N(2, ζ)

where,
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N (2, ζ) =

Λ(Φ (h))ζ + N (1, ζ) + 1
Γ(1−ζ)

1 + (Φ (h))ζµ

Similarly, for n = 2, we arrive at

	
S3 + E3 + I3 + R3 <

Λ(Φ (h))ζ + N (2, ζ)
∑∞

ν=1 Cζ
ν + 1

Γ(1−ζ)

1 + (Φ (h))ζµ
= N(3, ζ)

	 S3 + E3 + I3 + R3 < N(3, ζ)

Now, we suppose that for n ∈ {3,4, . . . , N0 − 1} and for ζ ∈ (0,1)

	
SN0 + EN0 + IN0 + RN0 <

N (N0 − 1, ζ) + 1
Γ(1−ζ) + Λ(Φ (h))ζ

1 + (Φ (h))ζµ
,

	 SN0 + EN0 + IN0 + RN0 < N (N0, ζ) ,

Thus, for n = N0, we obtain

	
SN0+1 + EN0+1 + IN0+1 + RN0+1 <

Λ(Φ (h))ζ + Cζ
1 N(N0, ζ) + Cζ

2 N(N0, ζ) + Cζ
3 N(N0, ζ) + · · · + Cζ

N0
N(N0, ζ)+Cζ

N0+1N(N0, ζ) + rζ
1

1 + (Φ (h))ζµ

	
SN0+1 + EN0+1 + IN0+1 + RN0+1 <

Λ(Φ (h))ζ + N(N0, ζ)
∑N0+1

ν=1 Cζ
ν + rζ

1

1 + (Φ (h))ζµ

	
SN0+1 + EN0+1 + IN0+1 + RN0+1 <

N (N0, ζ) + 1
Γ(1−ζ) + Λ(Φ (h))ζ

1 + (Φ (h))ζµ
= N (N0 + 1, ζ)

Finally, we conclude that.

	 Sn+1, En+1, In+1, Rn+1 ≤ N (N0 + 1, ζ) for n = 0, 1, 2, . . . , N0,

as desired.
Using the MATLAB software the diagrams are created for norovirus-free equilibrium (NFE) and norovirus-
existing equilibrium (NEE) by using the values of the parameters as presented in Table 1:

Results and discussion
In this section, we present the simulated graphs of Norovirus for various classes of population. To start with, 
Fig. 1 represents the nonlinear evolution of the susceptible compartment. The figure reflects that the number 
of susceptible individuals increases when the virus is extinct from society. The different trajectories depict the 
rates of convergence against highlighted values of ζ as shown in the figure. The graphical templates are similar 
with different peak values, but they show the rates of convergence. For the greater value of ζ, the convergence 
speed is higher as compared to the smaller values of ζ. Consequently, the fractional value of ζ decides the speed 
of convergence. It is in line with the real disease phenomena. For instance, COVID-19 spread in the world at 
different rates. Similarly, the Fig. 2 illustrates the nonlinear behavior of the exposed class. The number of exposed 
individuals decreases with time as the disease dies out. Because, when the disease-free equilibrium, the exposed 
population approaches zero. Biologically, when the disease diminishes, the number of exposed individuals also 

Fig. 2.  This figure illustrates the decline of the recovered population over time under the NFE condition.
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decreases gradually and ultimately becomes zero within due course of time. The rate of convergence towards the 
NFE depends upon the fractional order parameters ζ. Likewise, Fig. 3 portrays the scenario about the infected 
populace, which also hits the virus-free point (i.e. zero). Four graphs in the figure touch the accurate point with 
different speeds according to the value of ζ. The curved graph that reaches the target point earlier than the other 
possesses a higher speed and greater value of ζ. Lastly, the graphs in Fig. 4 capture the nonlinear behavior of the 
recovered class. It is evident from the graphs that they advanced towards the right point with different rates of 
convergence. Remarkably, all the graphs in Figs. 1, 2, 3, 4 reach the target with different paces. Correspondingly, 
Figs. 5, 6, 7, 8 outline the dynamical behavior of the susceptible, exposed, infected, and recovered classes at the 
NEE. Every graph converges towards the analytically calculated endemic equilibrium point with different rates 
depending upon the fractional value of ζ. The graph depicts that the number of susceptible individuals decreases 
while the individuals’ other compartments increase when the disease persists in the community. This behavior of 
the graphs is by the disease phenomena. When the disease outbreaks the infected and exposed individuals start 
increasing and the susceptible individuals start decreasing. After some time, the infected individuals become 
recovered after treatment. Therefore, the size of the recovered class increases with time. Notably, fractional order 
ζ describes the rate of convergence. In practical settings, model parameters such as transmission rate, recovery 
rate, and latency period could be calibrated using outbreak data from schools, hospitals, or cruise ships. This 
calibration, through data-fitting techniques like least squares or Bayesian inference, would enhance the model’s 
predictive accuracy and make it more applicable for public health planning.(Fig. 9).

Conclusion
This study presents a Fractional Order Norovirus Epidemic Model that provides valuable biological insights into 
the transmission dynamics of Norovirus. Through analytical derivations and numerical simulations, our results 
illuminate the influence of various biological factors on Norovirus outbreaks, especially in environments with 
high contact rates. We derived the equilibrium points and the basic reproduction number R0, of the model. This 
reproduction number plays a crucial role in understanding the conditions necessary for outbreak prevention 
or persistence. When R0 > 1, the model indicates sustained transmission, aligning with observed patterns in 

Fig. 4.  This figure shows how the exposed population decreases over time under NFE. With no new infections 
occurring, the exposed class gradually diminishes to zero.

 

Fig. 3.  This figure illustrates the decline of the infected population over time under the NFE condition. It 
demonstrates that the infection gradually vanishes as the system converges to a disease-free state.
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Fig. 7.  This figure shows the infected population approaching a non-zero steady state under NEE, indicating 
persistent norovirus transmission in the community.

 

Fig. 6.  This graph represents the dynamics of the recovered individuals under the norovirus-endemic 
equilibrium (NEE). The increase in the recovered class over time reflects ongoing infections and subsequent 
recoveries.

 

Fig. 5.  This plot depicts the growth of the susceptible population when the infection dies out. As norovirus 
transmission ceases, individuals remain uninfected, and the susceptible class approaches a steady state.
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Norovirus outbreaks, where limited immunity and environmental persistence drive recurrent infections. This 
highlights the high contagiousness of Norovirus and the challenges in controlling its spread in closed settings, 
even after initial infection peaks. The model’s ability to account for temporary immunity also emphasizes 
the necessity for frequent hygiene measures and disinfection to break the transmission cycle. Moreover, our 
stability analysis verifies that if R0 < 1 , the infection eventually dies out, providing vital biological insight 
into containment strategies. The Lyapunov function and LaSalle’s invariance principle verify that, for certain 
conditions, global stability can be achieved, keeping outbreaks biologically under control. Numerical results 
generated by the NSFD scheme confirm these analytical findings. This simulation shows both biologically 
relevant insights, the persistence of the virus in the environment with time, and high infectivity. Fractional-
order modelling will appropriately capture the memory effect of infected surfaces and objects causing further 
infections even after the primary cases have recovered-a reason to emphasize cleaning protocols in outbreak 
scenarios. Our results suggest that fractional-order models have an edge over the classical integer-order models 
in providing a more refined and realistic representation of Norovirus transmission dynamics. Future work might 
enhance the predictive capacity of the model by integrating it with real-time outbreak data from facilities such 
as schools, hospitals, and cruise ships, and extension of the work into several areas could also be explored. This 
would increase the relevance of the model to real-life situations as well as help to identify effective containment 
measures. As a future direction, this work can be extended by exploring the integration of quantum computing 
techniques to enhance the efficiency of epidemic simulations. Quantum algorithms, particularly those based on 
quantum differential equation solvers, could potentially accelerate the numerical solution of complex fractional-
order systems. This approach may open new pathways for real-time analysis and high-dimensional optimization 
in infectious disease modeling, especially when dealing with large-scale data or uncertain environments.

Data availability
The data that support the findings of this study are available within the article.
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Fig. 9.  This graph illustrates the decline of the susceptible population over time in the presence of ongoing 
infections. It suggests that more individuals are transitioning from susceptible to exposed or infected due to 
active disease spread.

 

Fig. 8.  This plot depicts the exposed population stabilizing at a positive level, highlighting that a constant rate 
of new exposures continues due to sustained transmission.
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