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Adverse drug events represent a key challenge in public health, especially concerning drug safety 
profiling and drug surveillance. Drug-drug interactions represent one of the most popular types of 
adverse drug events. Most computational approaches to this problem have used different types of 
drug-related information utilizing different machine-learning algorithms to predict potential drug 
interactions. In this work, we focus on genetic information about the drugs, particularly the protein 
sequence and protein structure of protein targets in drug interaction networks, to predict potential 
drug interactions. We collected various drug information like drug-drug interaction (DDI), Drug 
attributes like drug active ingredients, protein targets, protein sequence, protein structure etc. We 
proposed a similarity-based Neural Network framework called protein sequence-structure similarity 
network (PS3N) and used this to predict novel DDI’s. The drug-drug similarities are computed using 
different categories of drug information based on multiple similarity metrics. Our method outperforms 
the state-of-the-art and achieves competitive results. Our performance evaluations on different 
datasets showed the predictive performance as follows: Precision 91%–98%, Recall 90%–96%, F1 Score 
86%–95%, Area Under Curve (AUC) 88%–99%, and Accuracy 86%–95%. Our evaluation demonstrates 
the effectiveness of PS3N in predicting DDI’s, including the clinical significance of some new DDI’s 
discovered by the model.

Keywords  Protien sequence structure similarity network (PS3N), Drug-drug interaction, Deep learning, 
Similarity network fusion

Given the increasing number of medications consumed concurrently by individuals, it is becoming more 
important to know more about the drugs we take. With this increased potential for polypharmacy, there is a 
corresponding increase in the chance of adverse events induced by medications. It has been revealed that drugs 
may interact with each other when taken together, and unexpected drug-drug interactions (DDIs) may lead to 
unanticipated adverse drug events1,2. The sheer number of people in polypharmacy has made the issue of drug-
drug interactions a significant public health problem. So, it increases the necessity for more accurate predictions 
and preventive measures to mitigate unforeseen adverse drug events.

Recent biomedical advances have produced vast amounts of drug-related data. Various drug knowledge 
bases like DrugBank have emerged to manage this data, containing genetic sequences, protein structures, side 
effects, and chemical structures. Researchers have proposed several approaches to predict drug interactions 
using data from these sources3–7. DrugBank is perhaps one of the most credible databases of known DDIs8–10 
and contains information on over 300,000 DDIs. However, the number of drug-drug interactions is less than 1% 
of the total possible drug pairs in DrugBank. Thus, many potential interactions remain unidentified, creating 
gaps in clinical knowledge and decision-making. Additionally, existing machine learning-based methods8,10–16 
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have become popular for predicting DDIs due to their efficiency. These methods are categorized into similarity-
based, network-based, matrix factorization-based, and ensemble learning-based approaches17. Similarity-based 
methods use similarities in drug features, such as chemical structures, side effects, or molecular interactions, 
to predict potential DDIs. Heterogeneous information model like HAN-DDI18, utilize multiple source of 
information in Graph Attention Network. However it overlooked the critical importance of protein sequence 
and structure information, which directly determine the binding affinity, specificity, and mechanism of action, 
fundamental to understand how drugs interact at the molecular level, unlike broader contextual data like 
pathways and side-effects. Models like the XGBoost Classifier19 and MDF-SA-DDI20 apply similarity metrics 
such as the Jaccard index and integrate multiple drug features for prediction. Network-based approaches utilize 
graph-based models to analyze drug networks. Examples include SSI-DDI21 and MRCGNN22, which construct 
molecular graphs and apply graph neural networks (GNNs) to learn drug representations and interactions. 
Matrix Factorization-based Approaches such as MRMF23, DDINMF23, and TMFUF24 approximate drug 
interaction matrices using factorization techniques to reveal latent relationships between drugs based on known 
interactions, side effects, and other features. Ensemble Learning-based Approaches integrate predictions from 
multiple models, combining different classifiers or feature representations to improve accuracy. For instance, the 
meta-learning approach25 combines base classifiers trained on various drug features, and MCFF-MTDDI26 uses 
multichannel feature fusion for multiple DDI types. However, Current DDI prediction methods, like similarity-
based, network-based, and matrix factorization approaches, focus on surface-level features (chemical structures, 
side effects) which may overlook more subtle functional interactions. Moreover, Network-based and matrix 
factorization models often fail to capture novel or mechanistic insights that are critical for identifying previously 
unknown DDIs. Ensemble learning approaches improve accuracy but are still limited by the quality and depth 
of the features they integrate.

DDIs are a leading cause of Adverse Drug Events (ADEs), contributing significantly to the global healthcare 
burden27–29. Traditional methods of identifying DDIs during clinical trials are hindered by the complexity of 
drug interactions, which depend on factors like dosage, genetic variability, and demographic characteristics. 
Given the limitations of clinical trials in detecting rare or long-term DDIs, there is a pressing need for predictive 
computational models that can identify potential DDIs earlier in the drug development process.

Existing computational models, including those that utilize social media data, have made some progress in 
detecting DDIs through indirect signals such as patient reports of adverse events30. However, these models often 
lack the mechanistic depth needed to explain the biological basis of the interactions. Moreover, relying on social 
media data introduces biases related to reporting accuracy and demographic representation. Our approach 
diverges from these by integrating rich biological data–namely, protein sequence and structure information–
into DDI prediction models.

A drug interaction can occur when two (or more) drugs interact or when a drug interacts with food, beverage, 
or supplement. Drug interactions can reduce the effectiveness of medication, induce unanticipated side effects, 
or boost the impact of a drug. Some drug interactions can be dangerous or even life-threatening. Therefore it 
is always recommended for patients to read the label each time taking a medication, to know more about the 
potential drug interactions31. Fortunately, clinically significant interactions are often predictable and usually 
undesired (see Some Drugs With Potentially Serious Drug-Drug Interactions)30. However, clinicians often find 
it challenging to rely on predictable drug-drug interactions to achieve the intended therapeutic effect32. It was 
reported that drug interaction is a leading cause of adverse drug events and a significant obstacle for current 
clinical practice30.It has led to a considerable public health burden. In the United States alone, > 500,000 serious 
ADEs were reported annually to the US Food and Drug Administration (FDA) during the past five years33. Here 
we reviewed the recent developments in addressing the challenge of ADEs within the range of different domains. 
We also constructed a set of data sets to search for new DDI’s.

While many studies have incorporated protein or protein target information into DDI models, they lacked of 
directly mining the rich, underlying biology encoded in protein sequences and structures. For example, ISCMF34 
fused target-based similarity scores into a matrix factorization framework but relied solely on predefined drug-
target similarity matrices without ever inspecting the amino-acid sequences or three dimensional folds of 
those targets. DMFDDI35 likewise encoded drug-target, enzyme, and transporter information as sparse binary 
vectors (reduced via Princple Component Analysis (PCA)) before fusing them into deep multimodal network. 
MUFFIN36 leveraged a biomedical knowledge graph (including drug-target edges) and molecular graphs via 
message-passing networks but again no uses of genomic information of proteins. Earlier, Kernel-based SVM 
methods37 have built drug-protein interaction predictor using Smith-Waterman alignment scores on protein 
sequences but those were aimed at Drug target interaction prediction rather than modeling DDI through shared 
targets. And very recent approaches like LAMFP38 focus exclusively on chemical fingerprint similarities to 
address cold-start in DDI prediction, omitting protein information entirely. Much earlier, Yildirim et al39 used a 
network of drug protein targets and their protein-protein interactions to study drug adverse effects, but no one 
has used information from the actual raw protein sequences and the 3D protein structures for the purpose of 
drug-drug interaction prediction.

In contrast, our work is the first to (1) directly embed both protein sequence and 3D-structure representations 
into the DDI prediction pipeline, (2) compute multiple, complementary similarity metrics focusing on the 
functional and structural aspects of proteins, which are often overlooked in favor of interaction networks alone, 
(3) integrate them end-to-end within a deep neural architecture that jointly learns which biological dimensions 
most powerfully signal interaction risk. By moving beyond proxy features or black-box knowledge-graph 
edges, our method captures the functional and structural subtleties of drug targets themselves–improving both 
predictive accuracy and biological explainability of DDI prediction.

The core challenge lies in developing a predictive framework that accounts for the complex molecular 
mechanisms underlying drug interactions. Many current models use limited data types, ignoring the potential 
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impact of a drug’s interaction with proteins at the structural level. This study aims to fill that gap by using protein 
sequence and structure information directly to predict DDIs, offering a more granular understanding of drug 
interactions at the molecular level.

Our contribution is twofold and offers significant advancement in the field of drug-drug interaction 
(DDI) prediction. First, we introduce a novel deep neural network framework that directly integrates protein 
sequence and protein structure data, which differentiates it from previous approaches that rely primarily on PPI 
networks, side effect data, drug interaction networks or indirect sources such as social media. This direct use of 
biological data provides a more nuanced understanding of the molecular mechanisms behind drug interactions, 
enabling our model to capture subtle interactions that might be overlooked by traditional methods. Second, 
our model enhances the prediction of adverse drug events by uncovering novel DDIs that may not be detectable 
through conventional approaches. By leveraging richer, biologically grounded data sources, we provide a more 
comprehensive and accurate method for predicting DDIs. Beyond improving prediction accuracy, we also 
explore how these newly predicted interactions can contribute to adverse events, offering a clinically meaningful 
framework to quantify and assess these risks. This dual focus–on both innovation in prediction and its practical 
clinical implications–demonstrates the transformative potential of our approach, pushing the boundaries of 
what is possible in DDI prediction and prevention.

The remainder of this paper is organized as follows. In Section II, we review the existing literature on DDI 
prediction, highlighting the gaps our research aims to address. Section III details the methodology of our 
proposed approach, explaining how we integrate protein sequence and structure data into a deep learning 
framework. Section IV presents the experimental results, comparing the performance of our model with state-
of-the-art methods. In Section V, we discuss the broader implications of our findings, including limitations and 
areas for future improvement. Finally, Section VI concludes the paper with directions for future research.

Related work
Most existing approaches for DDI prediction are based on different properties of the drug compound, such as 
its chemical structure, side effects, drug-target relationship, and many more. DDIs can be identified with in vivo 
models using high-throughput screening40. However, the price of such procedures is relatively high, and testing 
large numbers of drug combinations is not practical41. To reduce the number of possible drug combinations, 
numerous computational approaches have been proposed3,4,4–6,42,43. In some of these computational approaches, 
drug-target networks are constructed, and DDIs are detected by measuring the strength of network connections43, 
or by identifying drug pairs that share drug targets or drug pathways, for instance, using the random walk 
algorithm4.

Some computational approaches have used drug pairs’ structural similarity and side effect similarities. For 
example, Gottlieb et al. proposed the Inferring Drug Interactions (INDI) method, which predicts novel DDIs 
from chemical and side effect similarities of known DDIs3. Vilar et al. used similarities of fingerprints, target 
genes, and side effects of drug pairs5. Cheng et al. constructed features from the Simplified Molecular-Input 
Line-Entry System (SMILES) data and side effect similarity of drug pairs and applied support vector machines 
to predict DDIs42. Zhang et al. constructed a network of drugs based on structural and side effect similarities and 
used a label propagation algorithm to identify DDIs43. Recently, Ryu et al. proposed DeepDDI, a computational 
framework that calculates structural similarity profiles (SSP) of DDIs, reduces features using principal 
component analysis (PCA), and feeds them to a feed-forward deep neural network7. The platform generated 86 
labeled pharmacological DDI effects, so DeepDDI44 is a multi-classification (multi-label classification) model.

Some machine learning–based methods have been applied applied to the problem of DDI detection, 
including approaches based KNN45, SVM45, logistic regression3,42,46 decision tree42, naive Bayes42, and network-
based label propagation43 and random walk47 or matrix factorization48. These methods are typically based based 
on drug properties, such as chemical structure3,42,43,45,47, Anatomical Therapeutic Chemical classification (ATC) 
codes3,42,45, and side effects3,47,48.

A model was developed to predict DDIs based on the Interaction Profile Fingerprint (IPF)5. Quite simply, 
the interaction probability matrix was computed by multiplying the DDI matrix by the IPF matrix. Afterward,49 
proposed a computational framework by applying matrix perturbation based on the hypothesis that by randomly 
removing edges from the DDI network, the eigenvectors of the network’s adjacency matrix should not change 
significantly. These two methods employ no other data about drugs except known DDIs.

A new family of similarity-driven methods has followed the assumption that similar drugs should have 
almost similar interactions. Vilar et al.49 presented a neighbor recommender method by utilizing substructure 
similarity of drugs. Relying on Vilar’s framework, Zhang et al. constructed a weighted similarity network labeled 
based on interaction with each of the drugs43. They applied an integrative label propagation method using a 
random walk model on the network to estimate potential DDIs. This prediction framework only considered 
three types of similarities for predicting DDI via label propagation: substructure-based, side effect-based, 
and offside effectbased label propagation models43. Some methods have also been proposed for adverse event 
detection using signals from social media50–52.

In recent years, deep learning is becoming a promising technique for automatically capturing chemical 
compound features from data sets, and it successfully improves predictive performance. For example, Harada 
et al.53 constructed a dual graph convolutional neural network to predict DDIs by combining drugs’ internal 
and external graph structures with learning low-dimensional representations of compounds. However, this 
method works well only for moderately dense chemical networks with heavy-tailed degree distributions. Tanvir 
et.al.18 introduces HAN-DDI, a novel Heterogeneous Graph Attention Netowkr designed to predict -drug-
drug interactions (DDIs). The model uses information like drug-protein, drug-pathway, and drug-indication 
interactions alongside the chemical structure, side-effects and ATC code of drugs. Wang et al.54 combined 
interview information on drug molecular and intra-view of DDI relationships, developing a graph contrastive 
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learning framework to predict DDIs. Lin et al.55 merged several data sets into a vast knowledge graph with 1.2 
billion triples, constructing a large knowledge graph neural network (KGNN) to resolve the DDI prediction. 
On the other side, based on the structural, gene ontology term, and target gene similarity profiles, Lee et al.44 
applied an autoencoder to reduce the dimensions of each profile, constructing a DNN model by combining 
all the reduced features to predict the types of DDIs. Deng et al.56 used the chemical substructures, targets, 
enzymes, and pathways of drugs to compute a similarity matrix of drugs, inputting each matrix to a DNN 
model and combining the four submodels to predict DDI events. Besides DDI prediction, deep learning is also 
successfully applied for drug–target interaction prediction; for example, Shang et al.57 develop a multilayer 
network representation learning method to learn the feature vectors of drugs and targets. An and Yu58 use biased 
Random Walk and Word2vec algorithms to obtain the feature representation of drugs and targets59. Faizan et 
al52 introduced DeepSAVE, a deep learning based approach for adverse event detection using social media data.

In recent works, researchers have emphasized the importance of evaluation strategies that prevent 
information leakage in DDI prediction and related molecular tasks21. For example Lv et al.60 proposed a 3D 
graph neural network with few-shot learning (Meta3D-DDI) to predict DDI events under a scaffold-based cold 
start scenario, wherein no drug scaffold (core chemical structure) is shared between training and test sets. This 
approach addresses the overly optimistic results caused by random splits by ensuring the model is evaluated 
on structurally novel compounds. Lv et al.61,62 later extended the scaffold split evaluation to generalize to new 
chemical scaffolds and thus to a new areas of chemical space. Notably, all these approaches center on small-
molecule structure information (2D molecular graph or 3D conformers).

In this study, we develop a novel DDI prediction method utilizing the protein sequence data from the 
DrugBank9 and protein structure data from the Protein Data Bank63. We calculate different similarity measures 
to create the similarity matrices for each feature attribute. Then, we use the generated feature matrices to create a 
single network fusion to measure the potential for interaction between two drugs. The final decision is performed 
with the help of a neural network architecture based on multilayer perceptrons.

The main novelty of our approach is the focus on only genetic materials (protein sequence and protein 
structures) associated with the drug targets in developing our prediction model. By integrating protein target 
information on sequence and structure levels captures the orthogonal aspect of drug relationships that purely 
chemical structure-based or other drug information based models might overlook. To our knowledge, this is the 
first attempt at investigating potential DDI prediction by utilizing only information about the protein sequence 
and structure to generate the feature space fed to the neural network. This biologically informed perspective 
differentiates our work from prior DDI methods and scaffold-splitting evaluations, while still aligning with the 
shared goal of improving generalization to novel drugs.

Methodology
We developed a novel neural network model for the prediction of DDIs. The key idea in our approach is that if 
two drugs have a similar pattern of similarity with other medications, they are likely to have a similar pattern of 
interacting partners. To capture the patterns of similarity between drugs, we use information about the protein 
sequences and structures associated with the protein targets for a given drug. Thus, we construct similarity 
matrices between drugs based on the protein sequences and protein secondary structures and combine these 
into one protein sequence-structure similarity matrix using network fusion. Figure 1 (adapted from Islam 
et.al.64) shows a schematic diagram of the general proposed framework. To calculate the similarity matrices, we 
have used cosine distance, Levenshtein distance, Jensen Shannon (JS) divergence, and Euclidean Distance as the 
similarity measures between a pair of drugs.

Preliminaries
Before discussing the process of predicting drug-drug interaction, we will discuss some primary and essential 
terminologies and key concepts needed to consider the problem being addressed. All the preliminary knowledge 
for the methodology will be found in Supplementary (S1. Methodology Preliminaries). You provided information 
on different distance metrics and how those metrics have been used to calculate the similarity networks from the 
given protein sequence and protein structure information.

Protein drug targets
Protein drug targets are proteins found in living animals that are linked to specific disorders for which medications 
are typically used to achieve the desired therapeutic effect. As a result, the protein must be connected to a disease 
process to be a Protein drug target. Protein drug targets include enzymes, receptors, and transporter proteins. 
However, receptors account for the majority of the targets. The final number of proteins determined to be the 
target of an approved small molecule drug was 1324, of which 1249 were found in DrugBank and 313 in the 
Therapeutic Target Database (TTD). 238 of the proteins were common to both sources, while 1011 were unique 
to DrugBank and 75 were unique to the TTD65.

Drug action
The molecular physiological mechanisms by which a chemical creates a response in living organisms are known 
as drug action. The alterations we observed after taking medications are referred to as drug action effects. 
Penicillin, for example, interferes with bacterial cell wall formation, resulting in the bacteria’s death. Drugs are 
mainly utilized to distinguish between normal metabolic processes and any anomalies. Because the differences 
may not be significant, drugs may work in a non-specific manner, altering both normal and unwanted processes–
these results in unfavorable side effects.
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Drug pairwise similarity vs drug action similarity
Drug pairwise similarity is a mathematical representation of a relationship between two drugs based on their 
protein information, which can be either sequence or structural information, with which two drugs would be 
similar if they were both used for the same ailment. We can construct similarity measures between two drugs 
using several levels of information such as chemical structure, drug targets, side effects, indications, routes, and 
so on. We employed drug-protein targets to calculate drug pairwise similarity in this paper.

On the other hand, drug action similarity is a measure of how similar two medications are in terms of how 
they affect living creatures. The general drug-cell interaction can be used to determine the similarity of drug 
activity. If two different drugs have active implications on the same cell, we can say they have similar actions, but 
that doesn’t guarantee they will have the same effect on the human body.

Drug similarity space
Drug Similarity space is a feature space of a list of pairs of drugs with some attributes with which we can decide 
whether a pair of drugs will interact. If there is N number of drugs, then we could have N2 − N  possible pairs 
that may or may not interact.

K-mer
A k-mer is just a sequence of k characters in a string (or nucleotides in a DNA sequence). It is important to 
remember that to get all k-mers from a sequence, you need to get the first k characters, then move just a single 
character for the start of the next k-mer, and so on. Effectively, this will create sequences that overlap in k-1 
positions. Decomposing a sequence into its k-mers allows this set of fixed-size chunks to be analyzed rather than 
the sequence, which can be more efficient. K-mers are very useful in sequence matching (string matching with 
n-grams has a rich history), set operations are faster and more accessible, and there are a lot of readily available 
algorithms and techniques to work with them66.

In our work, we use k = 4 for k-mer decomposition, meaning each sequence is broken into overlapping 
substrings of length 4. From prior research, Yao et al.67 showed that smaller k values such as 3 and 4, can effectively 
capture essential sequence information while maintaining manageable feature dimensions. In KAAmer68, the 
study demonstrated that using k-mers of length 4 provides a balance between sensitivity and computational 
efficiency in protein sequence analysis. Furthermore, Zhang et al.69 proposed a k-mer natural vector method for 
characterizing protein sequences, considering the numbers and distributions of k-mers including 4-mers for its 
effectiveness in capturing phylogenetic signals.

Previous research shows that k-mer size can influence model performance. While smaller values may capture 
more general patterns, larger values yield more motifs. Many protein interaction motifs are very short sequences 
(often only a few amino acids in lengths). In fact, short linear motifs (SLiMs)70 that mediate protein-protein 
interactions are typically only about 3-10 amino acid long (on average 6). Therefore, using a small k for the k-mer 

Fig. 1.  Proposed protein sequence-structure similarity network (PS3N) model for predicting adverse drug 
events. Using the method of Similarity Network Fusion (SNF) we create a single N × N  fusion matrix for 
N drugs. From the fusion matrix, we compute the feature vectors for each pair of drugs. PT denotes protein 

targets. In this way, we will have possible 
(

N
2

)
 rows and each row will have N columns as features. These 

feature vectors are then fed into a multi-layer perception model. For the protein sequence similarity network, 
the number of hidden layers would reduce to 3 since we have less number of drugs.
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lengths is sufficient to capture these local conserved motifs. Prior studies on sequence-based classification have 
found that using k in the range of 3-6 yields comparable performance for capturing relevant motif information. 
Nugent et al.71 reported no significant difference in model accuracy when using k=3,4,5, or 6 and thus selected 
k = 4 as an optimal choice for their classification. Consistent with this evidence, we chose k = 4 as it effectively 
balances motif specificity and coverage: it is long enough to represent the short domain sequence patterns of 
interest, yet not so long that it over-generalizes to entire domains.

In our study, we did not perform an exhaustive grid search over due to the computational constraints. However, 
preliminary experimentation with k values of 3, 4, 5, and 6 showed stable behavior, and k = 4 provided a good 
trade-off between resolution and representation size for our use case. We acknowledge that further systematic 
tuning of k could offer deeper insight and leave this as a valuable direction for future work.

Suffix array
A suffix array is a sorted array of all suffixes of a string. The definition is similar to a Suffix Tree, a compressed 
trie of all suffixes of the given text. Any suffix tree-based algorithm can be replaced with an algorithm that uses 
a suffix array enhanced with additional information and solves the same problem at the same time complexity.

In short, the array of indexes to the sorted array of substrings generated during the transform is essentially a 
suffix array, which in turn is a representation of the information in a suffix tree72.

Distance matrices
We compute distance measures (and sometimes similarity measures) between medications based on their 
protein sequences and structure to estimate the similarity between drugs. In data mining, a similarity measure is 
a distance with dimensions representing object features. When the distance between two items is small, they are 
closer to being similar. However, we will see a low degree of resemblance when the distance is significant. There 
are several different types of similarity or distance metrics. However, in this work, we’ll investigate the following: 
Cosine Similarity, Levenshtein Distance, Jensen Shannon (JS) Divergence, following the methodology described 
in Islam et al.64.

Cosine similarity (CS)
Cosine similarity metric finds the normalized dot product of two vectors. By determining the cosine similarity, 
we would effectively try to find the cosine of the angle between the two objects, when represented as vectors. The 
cosine of 0◦ is 1, and it is less than 1 for any other angle. For two n-length vectors A and B, we have:

	
CS(A, B) = A.B

∥A∥ ∥B∥ =
∑n

i=1 AiBi√∑n

i=1 A2
i

∑n

i=1 B2
i

� (1)

This description is adapted from Islam et al.64.

Levenshtein Distance (L)
The Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein 
distance between two strings a, b (of lengths |a| and |b|, respectively) is given by La,b(|a|, |b|)

	

La,b(i, j) =




max(i, j) if min(i,j) = 0

min

{
L(i − 1, j) + 1
L(i, j − 1) + 1
L(i − 1, j − 1) + 1

otherwise � (2)

Essentially, La,b(i, j) is the distance between the first i characters of a and the first j characters of b.
This method is discussed in detail in Islam et al.64.

Jensen Shannon (JS) divergence(JSD)
The Jensen–Shannon divergence is a method of measuring the similarity between two probability distributions. 
Given two distributions X and Y, the JS divergence is the average Kullback-Leibler (KL) divergence of X and Y 
from their mixture distribution, M:

	
JS(X||Y ) = 1

2D(X||M) + 1
2D(Y ||M)� (3)

where M = X+Y
2 . and D(X||M) is the KL divergence between X and M. This approach follows the methodology 

in Islam et al.64.

Similarity matrices
In most of the DDI prediction methods, it takes a lot of work to find and develop the computational approaches 
that are appropriate for drug features. For this study, we consider multiple data sources to collect different types of 
drug feature information to calculate the similarity matrices. In our work, we use similarity matrices rather than 
distance matrices. Thus, we convert the values into similarity measurements for each distance measure. Here, a 
detailed discussion is provided for the types of similarity metrics used in our evaluation and the methodology 
for their computation.
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Protein sequence and structure similarity matrices
Each protein structure could have multiple chains. Moreover, each drug’s active ingredient could have various 
protein targets. Thus, we could compute the similarity between two drugs (or drug active ingredients) based 
on the protein chains associated with the respective protein targets for the drugs. For each similarity measure, 
we record 1) Minimum Similarity 2) Maximum Similarity 3) Average Similarity(AS) 4) Exponential Weighted 
Average Similarity (EWAS) as described in Islam et al.64. Here, we discuss briefly the protein sequence and 
protein structure similarity matrices used in this work.

Protein sequence similarity matrices
To compute protein sequence similarity, we utilize several metrics, such as Levenshtein distance, cosine similarity, 
and Jensen-Shannon (JS) divergence. These metrics are calculated based on k-mer profiles derived from protein 
sequences. The process involves breaking down each protein sequence into subsequences of length k (k-mers), 
and constructing k-mer profiles for each sequence using the suffix array data structure72. The similarity between 
two proteins is then computed using the following approaches:

•	 Levenshtein distance: This measures the number of single-character edits needed to transform one sequence 
into another. We normalize the distance and convert it into a similarity score by subtracting the normalized 
distance from 1.

•	 Cosine similarity:  The k-mer profiles are treated as vectors and th cosine of the angle between them is calcu-
lated to determine the similarity.

•	 JS Divergence:  We compute this metric to measure the similarity between two probability distributions, which 
are derived from the k-mer profiles.

Protein structure similarity matrices
Protein structures are more complex, consisting of multiple chains, each with its own 3D configuration. To 
simplify the comparison of protein structures, we convert each protein’s 3D structure into a string-based 
representation called pString, following the method in73. This transformation allows us to treat the protein 
structure as a sequence and apply similarity measures in a similar fashion to protein sequences.

We formalized the similarity calculation to quantify the similarity values between two drug-active ingredients 
(DAIs). Each DAI can interact with multiple protein targets, and while each protein target has a single sequence, 
it may consist of multiple chains in its 3D structure. To capture the protein structure information for a given 
DAI, we represent it as follows:

	
[
r1

1, r1
2, . . . , r1

k1 ; r2
1, r2

2, . . . , r2
k2 ; . . . ; rM

1 , rM
2 , . . . , rM

kM

]

where rj
i  denotes the i-th chain of the j-th protein targets, and M is the total number of protein targets associated 

with the DAI, and k1, k2...kM  indicate the number of chains corresponding to each protein target.
This structured approach enables us to systematically compute similarity between the protein structures of 

different DAIs. For example, If two DAIs have N and M protein targets with k1, k2, . . . , kN  and l1, l2, . . . , lM  
chains respectively, the number of pairwise comparisons (Pc) between the chains of the two DAIs is:

	
Pc =

N∑
i=1

M∑
j=1

kilj � (4)

This results in a vector of similarity values between the two DAIs, which we use to calculate the minimum, 
maximum, average, and exponentially weighted average similarity (EWAS) following Islam et al.64. The EWAS 
emphasizes higher similarity values, which we hypothesize are more biologically significant. The weight (wi) for 
each similarity value (si) is computed as:

	
wi = exp(si)∑

i
exp(si)

� (5)

The weighted average similarity is then calculated as:

	
wavg =

L∑
i=1

wisi � (6)

where L is the number of chain pairs compared between two protein structures (L = M × N ). Additionally, we 
compute minimum similarity as mins, maximum similarity as maxs and average similarity as as:

	
mins = min{s1, s2, . . . , sL}; maxs = max{s1, s2, . . . , sL}; as =

∑L

i=1 si

L
� (7)

These statistics allow us to capture different levels of similarity for further analysis. We choose these similarity 
measures based on their ability to effectively capture both sequence and structural variations. We consider 
Levenshtein Distance because this can captures the mutational and deletional differences between protein 
sequences. Cosine Similarity commonly applied in sequence and text analysis, which provides an efficient way 
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to compare k-mer profiles in a high-dimensional vector space. Similarly JS Divergence compare probability 
distributions derived from k-mer profiles. Finally EWAS emphasizes biologically relevant, higher similarity 
scores, which are crucial for accurate DDI prediction. The goal was to use these metrics to provide a robust and 
comprehensive similarity assessment between drug pairs based on protein features.

Protein sequence-structure similarity network (PS3N)
As illustrated in Fig. 1, the left side of the diagram depicts the process of generating similarity metrics. Using 
protein sequence and protein structure similarity matrices, we construct protein sequence-based and protein 
structure-based similarity networks through the Similarity Network Fusion (SNF) approach. Each network can 
be analyzed independently to explore potential drug-drug interactions (DDIs) between drugs or drug-active 
ingredients64. To enhance overall predictive performance, we subsequently integrate the sequence-based and 
structure-based similarity networks into a comprehensive network, resulting in the Protein Sequence-Structure 
Similarity Network (PS3N). Our integration process is grounded in the SNF technique, which effectively 
combines multiple data sources into a single graph that captures relationships among samples74.

During the similarity network construction and fusion process, we employ the k-nearest neighbors (KNN) 
approach with k = 5 to construct sparse similarity matrices for each type of similarity matrix based on different 
distance measures. In this approach for each drug, only its top-K most similar neighbors are retained in the 
matrix, with all other similarities set to ZERO. This sparsification strategy emphasizes the most locally reliable 
associations, helping reduce the influence of noise and spurious global similarities.

This local filtering aligns with the underlying design of the Similarity Network Fusion (SNF) algorithm74, 
which assumes that high local similarity values tend to be more trustworthy than weaker or distant ones. The 
SNF algorithm iteratively propagates similarity information across networks, such that even if a particular pair 
of drugs is not among each others top-K neighbors in one modality, consistent associations across different 
data types can still be reinforced over time through fusion process. Thus, SNF enables the retention of weak but 
consistent biological signals while dampening modality-specific noise.

Our choice of k = 5 follows presedent set by prior work in drug-drug interaction prediction using SNF, 
particularly the NDD model75, which also fixed k = 5 for both KNN based imputation and SNF sparsification 
steps. In their study, the authors linked the k used for preprocessing (imputation) to the SNF fusion, nothing 
that this design avoids introducing additional free parameters. Furthermore, the original SNF paper reports the 
method to be robust to different values of K, indicating that performance is relatively stable across a reasonable 
range. based on this evidence and to maintain consistency with validated prior work, we adopted k = 5 in our 
study, balancing robustness, reproducibility, and biological interpretability. The integrated network from SNF 
serves as the foundation for our analysis of adverse drug events, particularly in the context of predicting DDIs. 
While our model primarily focuses on protein sequence and structure similarity for DDI prediction, we also 
incorporate direct DDI pair information during the dataset labeling process. Specifically, we leverage DDI pair 
data provided by DrugBank to label known interacting drug pairs, which informs our training of the PS3N 
model.

Neural network model
Our proposed neural network model is tailored specifically to the datasets we are utilizing, meaning its 
performance is inherently influenced by the diversity and quantity of medications represented within the dataset. 
The architecture of our neural network consists of four hidden layers, with the number of neurons in each layer 
fine-tuned through cross-validation to optimize performance as described in Islam et al.64. Each hidden layer 
employs the Rectified Linear Unit (ReLU) activation function, which is defined as follows:

	 f(x) = x∗ = max {x, 0}� (8)

The ReLU activation function is chosen for its computational efficiency and effectiveness in mitigating the 
vanishing gradient problem, which is particularly beneficial when training deep networks. The final output layer 
utilizes the sigmoid function to generate interaction probabilities between drug pairs, formulated as:

	
Sigmoid(x) = 1

1 + e−x
� (9)

To avoid overfitting, we integrated dropout layers following each hidden layer, with dropout rates varying 
between 0.3 and 0.5. This technique randomly ignores a subset of neurons during the training process, which 
enhances the network’s ability to generalize and prevents co-adaptation of neurons, making the model more 
robust. We employ Xavier weight initialization for each layer to ensure that the weights are properly scaled, 
facilitating faster convergence during training. This initialization strategy is particularly useful in preventing 
issues related to the gradient propagation in deep networks.

For our loss function, we utilize categorical cross-entropy, which is suitable for multi-class classification. This 
choice maintains the generality of our predictions, even when the output labels are one-hot encoded, focusing 
only on the positive class Cp. One element in the target vector t is not zero ti = tp. So discarding the aspects of 
the summation that are zero due to target labels76, we can write Cross-Entropy (CE) as,

	
CE = −log( exp(Sp)∑C

j
exp(Sj)

)� (10)

where Sp is the CNN score for the positive class.
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Adam Optimizer is used as the optimizer which is particularly well-suited for large, sparse datasets. A learning 
rate is maintained for each network weight (parameter) and separately adapted as learning folds. It combines 
momentum and the Root Mean Square propagation (RMSProp) process to speed up the learning process. If m, v 
represents the momentum vector and β1, β2 as the exponential decay, the update rules of Adam would be77,

	
m̂k+1 = mk+1

1 − βk+1
1

� (11)

	
v̂k+1 = vk+1

1 − βk+1
2

� (12)

which will finally represent the optimization function as

	
θk+1 = θk − η

m̂k+1
√

v̂k+1 + ϵ
� (13)

Experiments and results
For the development of the PS3N model to predict effectively the DDI’s, we put significant time into data 
processing and cleaning. Our whole experimental setup is divided into multiple parts. Before going to the 
experiments and results here is a brief introduction to the datasets we utilize to prepare our similarity matrices.

Datasets
In this work, we utilized multiple sources to gather comprehensive drug-related information. Most of the 
data, including protein sequences and pathways, was obtained from DrugBank (https://go.drugbank.com/). 
Additionally, protein structural data was retrieved from the Research Collaboratory for Structural Bioinformatics 
(RCSB) Protein Data Bank (https://www.rcsb.org), where protein chains were extracted from PDB files using 
Biopython libraries. These sources were combined to create a dataset of 905 drugs (active ingredients) from 
DrugBank, containing both protein structure and protein sequence information. Information on drug side 
effects and drug indications was sourced from the Side Effect Resource )(SIDER) database ​(​h​t​t​p​:​/​/​s​i​d​e​e​f​f​e​c​t​s​.​e​
m​b​l​.​d​e​/​)​, while protein-protein interaction data was collected from the UniProt portal ​(​h​t​t​p​s​:​/​/​w​w​w​.​u​n​i​p​r​o​t​.​o​
r​g​/​u​n​i​p​r​o​t​/​)​.​​

The DrugBank dataset was primarily used to train and evaluate the performance of the proposed model. 
Furthermore, we compared the performance of our model on the DrugBank dataset with previously published 
works that also utilized this dataset for similar analyses. In addition to the DrugBank dataset, we employed 
two benchmark datasets, DS1 and DS2, originally reported by Rohani et al.75, to further assess our model’s 
performance and validate its predictive capabilities against state-of-the-art methods in drug-drug interaction 
prediction.

Performance evaluation of PS3N model
To evaluate the performance of the proposed method, we compared it with machine learning approaches such as 
kNN (k-Nearest Neighbor), RF (Random Forest), Logistic Regression, LDA (Linear Discriminant Analysis), and 
Support Vector Machine. We also compared our results with state-of-the-art methods proposed in75,5,43,78–84.We 
evaluated the competitiveness of our models using different performance metrics such as Precision, Recall, F1, 
Area under Curve (AUC), and AUC-PR (AUC using the precision-recall curve).

Here, these are defined as follows:

	
Precision = T P

T P + F P
Recall = T P

T P + F N
F-measure = 2 · Precision · Recall

Precision + Recall
� (14)

where TP, TN, FP, and FN stand for True Positive, True Negative, False Positive, and False Negative. Precision 
is the fraction of correct predicted interactions among all predicted interactions. while recall is the fraction of 
correct predicted interactions among all true interactions. Precision and recall have a trade-off thus improving 
one of them may lead to a reduction in another. Therefore, utilizing F-measure which is the geometric mean of 
precision and recall is more reasonable.

We note that if the interaction between two drugs is assigned to zero, it simply implies that no evidence of 
their interaction has been found yet. The two may still interact, but the features we have used so far are not able 
to detect the interaction.

Thus, we cannot identify TN and FP pairs correctly. The training process requires both positive and negative 
samples. Therefore, some of the zero assigned pairs are considered as non-interacting pairs in the training 
model. So every method may have some FP in its evaluations. This leads to a reduction in calculated precision 
and F-measure, while the real values of precision and F-measure may be higher. Since the values of precision, 
recall, and F-measure are dependent on the value of the threshold, we also evaluate the methods via AUC which 
is the area under the receiver operating characteristic (ROC) curve.

Experimental setup
For our training experiment, we split each dataset into training, validation, and test sets according to a 
70%/10%/20% random split to ensure an unbiased representation of data. To avoid any form of data leakage 
the test set was kept separate and never used for any training, validation, or tuning model parameters. In our 
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study, we conducted a comprehensive analysis of the two important hyperparameters: the optimizer and learning 
rate. These experiments were designed to assess the impact of different combinations of these parameters on the 
model’s accuracy, a key metric for the effectiveness of the PS3N model. For each dataset, networks were trained 
on the training set for a total of 100 epochs with a batch size of 100 for the proposed neural network method.

We initialize the weights of the network so that the neuron activation function can avoid saturation problems 
or be stuck in dead regions. We used a batch size of 100 and 20 - 50 epochs, with Categorical cross entropy and 
Adam Optimizer for optimization with a momentum parameter of 0.9. The number of epochs was set to 20 and 
50.

To provide a comprehensive evaluation, our experiments include both a standard random split for 
performance benchmarking and a challenging inductive split (cold-start split) for generalization to strike a 
balance between comparability with prior work and rigor in testing PS3N’s ability to handle novel cases.

Evaluation of single similarity metrics for PS3N model
To evaluate the contribution of individual similarity metrics to the performance of the PS3N model, we tested 
the model using single feature matrices derived from protein sequence and protein structure. The similarity 
matrices were computed using various distance metrics, including Levenshtein (L), JS Divergence (JSD), and 
Cosine Similarity (CS), under two weighting schemes: Average Similarity (AS) and Exponential Weighted 
Average Similarity (EWAS).

Tables 1 and 2 present the result of these evaluations. Table 1 focuses on protein sequence-based simialrity 
matrices, while Table 2 explores protein structure-based similarity matrices. From these results, several key 
observations emerge. Firstly, The exponential weighted average similarity (EWAS) consistently outperforms 
the simple average similarity (AS) for both protein sequences and protein structures. For example, CS EWAS 
achieves an F-measure of 0.9578 and an AUC of 0.9833 for protein sequences, significantly higher than CS AS 
(F-measure of 0.8943, AUC of 0.9315). Protein structure-based similarity matrices using EWAS metrics show 
even higher performance. Specifically, CS EWAS achieves an F-measure of 0.9741 and an AUC of 0.9910.

Secondly, Protein structure-based metrics demonstrate slightly higher predictive power compared to 
sequence-based metrics. This highlights the importance of integrating structural information in drug-drug 
interaction (DDI) predictions. The results underscore the importance of evaluating single similarity metrics 
to understand their contribution to the overall performance. Metrics like CS EWAS for structure and sequence 
exhibit stability and reliability, making them vital components of the final fused similarity model.

Comparative analysis on drugBank dataset
Table 3 presents the results of the PS3N model when using fused similarity metrics, combining protein sequence 
and protein structure information, compared with recent state-of-the-art models evaluated on the DrugBank 
dataset. PS3N achieves strong performance with high precision (0.980) and recall (0.982), alongside competitive 
AUC (0.995) and accuracy (0.973). It is important to note the limitation in directly comparing precision and recall 
metrics, as several state-of-the-art models (e.g., DSIL-DDI83, AutoDDI84, R2-DDI81, GMPNN-CS82, SSI-DDI21) 
reported only aggregated metrics such as F-measure and AUC. Given these reporting limitations, a complete 
and statistically rigorous comparison across all evaluation metrics on the DrugBank dataset was challenging. 
However, detailed comparisons with fully reported metrics and statistical analyses are comprehensively provided 
on benchmark datasets DS1 and DS2.

While models such as DSIL-DDI83 and AutoDDI84 achieve marginally higher F-measures, their absence 
of detailed precision and recall reporting raises concerns about potential trade-offs between minimizing false 

Distance metric Precision Recall F-measure AUC Accuracy

JSD AS 0.8796 0.9279 0.90313 0.9171 0.8564

CS AS 0.9037 0.9469 0.9248 0.9499 0.8889

JSD EWAS 0.9762 0.9650 0.9706 0.9895 0.9578

CS EWAS 0.9743 0.9738 0.9741 0.9910 0.9627

Table 2.  Performance of PS3N using single similarity matrices based on protein structure. *JSD = JS 
Divergence, CS = Cosine, AS = Average Similarity, EWAS = Exponential Weighted Average Similarity

 

Distance metric Precision Recall F-measure AUC Accuracy

L AS 0.9199 0.9419 0.9308 0.9673 0.9081

JSD AS 0.8837 0.8667 0.8751 0.9181 0.8377

CS AS 0.8799 0.9093 0.8943 0.9315 0.8590

L EWAS 0.9499 0.9638 0.9568 0.9832 0.9429

JSD EWAS 0.9406 0.8835 0.9112 0.9559 0.8870

CS EWAS 0.9523 0.9632 0.9578 0.9833 0.9443

Table 1.  Performance of PS3N using single similarity matrices based on protein sequences. *L = Levenshtein, 
JSD = JS Divergence, CS = Cosine, AS = Average Similarity, EWAS = Exponential Weighted Average Similarity
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positives and maximizing true positives. Similarly, R2-DDI81 and GMPNN-CS82 provide strong F-measure and 
AUC values but lack a precision-recall balance assessment, which is critical for validating their consistency 
across different datasets. In contrast, PS3N excels in both precision and recall, ensuring robust predictions that 
reduce false alarms (false positives) while capturing true interactions effectively. SSI-DDI21 , though competitive 
in F-measure (0.964) and AUC (0.989), does not offer the transparency provided by PS3N, particularly regarding 
its ability to handle diverse interaction scenarios.

Furthermore, NDD’s75 performance underscores the limitations of simpler models that do not integrate 
advanced similarity metrics. Its low F-measure (0.287) and AUC (0.737) demonstrate that without leveraging 
fused metrics, models struggle to capture the complexity of drug interactions. PS3N’s fusion of protein sequence 
and structure-based metrics addresses this limitation by synergizing the complementary strengths of both 
data types. The integration of exponential weighted average similarity (EWAS) enhances the model’s ability to 
emphasize critical patterns, resulting in superior predictive power and consistency.

In summary, PS3N offers a distinct advantage by combining state-of-the-art performance with detailed 
reporting of essential evaluation metrics. Its ability to maintain high precision, recall, and AUC, alongside its 
robustness in diverse scenarios, underscores its superiority over competing methods. The fusion approach not 
only improves performance but also ensures stability and interpretability, making PS3N a valuable tool for DDI 
prediction.

Comparative performance on benchmark dataset DS1 and DS2
In Tables 4 and 5 we present a comprehensive performance comparison of our proposed approach with state-of-
the-art algorithms, showing several noteworthy strengths in our methodology.

Our comparative analysis focuses on DS1 and DS2 datasets from75, which allowed us to generate protein 
sequence and protein metrics for a subset of drugs. By incorporating the new feature space into our model, we 
have observed significant enhancements in performance, particularly in terms of AUC, Precision, and Recall.

In Table 4, our PS3N approach stands out as a top-performing method, consistently surpassing other existing 
techniques. This substantial improvement shows the effectiveness of our proposed approach in accurately 
predicting drug interactions. It’s important to note that the performance of PS3N remains consistently strong 
across datasets based on sequence, structure, or the combination of both, as demonstrated in Table 4. This 
robustness highlights our model’s strength in handling different types of data sources effectively.

Method AUC AUC-PR F-measure Recall Precision

Substructure-based label propagation model43 0.937 0.901 0.804 0.797 0.811

Side-effect-based label propagation model43 0.936 0.903 0.806 0.793 0.820

Offside-effect-based label propagation model43 0.937 0.904 0.809 0.795 0.823

Vilar’s substructure-based model5 0.936 0.902 0.804 0.797 0.812

Classifier ensemble method78 0.956 0.928 0.836 0.827 0.843

Weighted average ensemble method78 0.948 0.919 0.831 0.835 0.826

NDD75 0.954 0.922 0.835 0.836 0.833

PS3N (Protein Sequence) (ours) 0.974 0.948 0.916 0.925 0.906

PS3N (Protein Structure) (ours) 0.972 0.949 0.917 0.932 0.903

PS3N (Sequence + Structure) (ours) 0.972 0.948 0.917 0.931 0.903

Table 4.  Performance comparison of different methods on DS1 from75. We obtained information on 469 drugs 
for protein sequences, and on 414 drugs for protein structure. Results in the first six rows are taken from75. 
Bold values indicate the best performance for each metric.

 

Method Precision Recall F-measure AUC Accuracy

SVM 0.551 0.208 0.302 0.571 0.732

KNN 0.547 0.619 0.581 0.710 0.751

NDD75 0.565 0.193 0.287 0.737 0.731

R2-DDI81 N/A N/A 0.981 0.997 0.982

GMPNN-CS82 N/A N/A 0.954 0.985 0.953

SSI-DDI21 N/A N/A 0.964 0.989 0.963

DSIL-DDI83 N/A N/A 0.993 0.989 0.981

AutoDDI84 N/A N/A 0.976 0.995 0.976

PS3N (ours) 0.980 0.982 0.981 0.995 0.973

Table 3.  Performance comparison of the proposed PS3N model with state-of-the-art methods using 1107 
drugs from the DrugBank dataset. Bold values indicate the best performance, and underlined values indicate 
the second-best performance for each metric.
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On the DS2 dataset as we see in Table 5, PS3N demonstrates clear superiority over recent methods such as 
BioDKG-DDI and DPDDI. While BioDKG-DDI leverages a knowledge graph-based approach and achieves a 
competitive F-measure of 0.903 and recall of 0.918, its lower precision (0.884) compared to PS3N (0.972 for 
Protein Sequence) indicates a higher tendency for false positives. Similarly, DPDDI, a deep learning-based model, 
achieves an AUC of 0.956 and an F-measure of 0.840 but lags behind PS3N in precision (0.754), underscoring 
its reduced reliability. PS3N achieves consistently high precision (0.972 for Sequence, 0.964 for Structure), recall 
(0.987 for Sequence, 0.992 for Structure), and F-measure (0.978 for both Sequence and Structure), reflecting 
its robust ability to capture complex drug interaction patterns while minimizing false positives. Furthermore, 
the integration of protein sequence and structure data in PS3N enhances its predictive accuracy by leveraging 
complementary insights, offering a more balanced and competitive performance compared to standalone 
methods.

Interestingly, our PS3N method and the NDD approach produced quite similar results, especially when we 
looked at performance in terms of AUC. This similarity suggests that both methods are good at understanding 
complex patterns in how drugs interact with each other. In a way, our model competes well with the established 
NDD method in predicting these interactions. This also holds in Table 5 which was created from the DS2 dataset.

Inductive (Cold-Start) evaluation
To rigorously assess PS3N’s ability to generalize to unseen drugs, we adopt a drug-centric cold-start (inductive) 
split following the SSI-DDI21 protocol. The full drug set is randomly divided into “Known” (Gold, 80 %) and 
“New” (Gnew, 20 %) subsets, ensuring no “New” drug appears in training. At test time, we evaluate on two 
partitions:

•	 CS1(New–New): Both drugs in each pair belong to Gnew (i.e., neither drug was seen during training).
•	 CS2 (Known–New): One drug in each pair is from Gold (seen in training), and the other is from Gnew (un-

seen).

To handle the information leakage recent studies utilized two types of data splits to evaluate the models 
performance. Some studies utilized scaffold-based splitting (separating compounds by core structure)60, which 
is a rigorous way to avoid information leakage in approaches that use chemical or molecular structures. While 
scaffold splits eliminates any shared substructures between training and test sets, we opted for a drug-level 
inductive split in this work for both practical and conceptual reasons. Since PS3N relies exclusively on protein 
sequence and structure information–without using any chemical or molecular representations of drugs–the 
scaffold-based splitting strategy commonly applied in molecular modeling is not applicable in our case. Our 
features are derived entirely from biological similarity among drug targets, and the cold-start drug-level split 
ensures that the model encounters novel drugs and their associated protein information for the first time at test 
time.

Inductive split ensures that the model has no prior access to the interaction behavior or protein associations 
of those test drugs, directly addressing the risk of information leakage related to drug identity or target features. 
This strategy evaluates PS3N’s ability to generalize to entirely unseen drugs, which aligns with our primary 
goal of enabling reliable DDI discovery for novel compounds. CS1 represents the fully cold-start scenario–
predicting interactions between two entirely novel drugs–while CS2 represents a semi-cold scenario–predicting 
interactions between one familiar drug and one novel drug. Table 6 compares PS3N against other state-of-the-
art baselines under these two partitions.

As illustrated in Table 6, PS3N achieves an accuracy of 70.05% on CS1, surpassing SSI-DDI’s 65.02% by 
over five percentage points. This improvement highlights PS3N’s robust capability in accurately identifying 
interactions when both drugs involved are entirely unseen during training. While PS3N’s AUROC score for CS1 
(62.12%) is lower than SSI-DDI’s 72.38%, its superior accuracy suggests that the decision threshold chosen by 
PS3N is better optimized for making correct binary predictions in this challenging fully cold-start scenario. In 
the CS2 setting, where one drug is familiar and the other is new, PS3N attains an accuracy of 69.03%, slightly 

Method AUC AUC-PR F-measure Recall Precision

Substructure-based label propagation model43 0.788 0.208 0.294 0.537 0.197

Vilar’s substructure-based model5 0.810 0.244 0.312 0.479 0.232

Classifier ensemble method78 0.936 0.487 0.553 0.689 0.462

Weighted average ensemble method78 0.646 0.440 0.15 0.226 0.118

NDD75 0.994 0.890 0.825 0.804 0.847

BioDKG-DDI79 0.967 N/A 0.903 0.918 0.884

DPDDI80 0.956 N/A 0.840 0.810 0.754

PS3N (Protein Sequence) (ours) 0.998 0.975 0.978 0.987 0.972

PS3N (Protein Structure) (ours) 0.997 0.975 0.978 0.992 0.964

PS3N (Sequence + Structure) (ours) 0.997 0.970 0.977 0.987 0.970

Table 5.  Performance comparison of different methods on the DS2 Dataset from75. We obtained information 
on 585 drugs for protein sequences, and on 504 drugs for protein structure. Results in The first five rows are 
taken from75. Bold values indicate the best performance for each metric.
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below SSI-DDI’s 73.35% by about four percentage points. Similarly, its AUROC of 67.63% trails behind SSI-
DDI’s 80.92%. Despite this, PS3N still demonstrates solid performance in binary classification tasks, maintaining 
competitiveness even when only partial information is available. However, the lower AUROC indicates PS3N’s 
limitations in perfectly ranking predicted interactions compared to graph-based approaches.

Beyond inductive splits, it is instructive to compare PS3N’s performance under both transductive and 
inductive settings. Table 6 summarizes PS3N alongside SSI-DDI and key baselines across transductive (random-
pair) and inductive partitions.

In the transductive (random-pair) setting, PS3N achieves impressive results, with an accuracy of 97.30% and 
AUROC of 99.50%, surpassing SSI-DDI’s performance of 94.47% accuracy and 98.38% AUROC. However, this 
high transductive performance may reflect model memorization or overfitting, since drugs in the test set often 
share similar patterns or neighborhood characteristics with those in the training set. Thus, evaluating models 
under inductive scenarios (such as CS1 and CS2) provides a clearer assessment of their real-world predictive 
power. Even in these more challenging contexts, PS3N remains competitive, achieving 70.05% accuracy on CS1 
compared to SSI-DDI’s 65.02%, and 69.03% accuracy on DS2 versus SSI-DDI’s 73.35%.

A detailed examination of these results yields several insights. First, PS3N’s notable accuracy advantage on 
CS1 highlights its ability to generalize effectively, capturing meaningful signals from similarity-based features 
and pretrained embeddings even when both drugs are completely new. Although PS3N’s lower AUROC score 
(62.12% compared to SSI-DDI’s 72.38%) indicates a weaker separation between positive and negative interactions, 
its accuracy advantage demonstrates that its decision threshold is better tuned for accurately classifying binary 
outcomes. This practical strength is particularly valuable for real-world drug interaction screening pipelines, 
where the priority is correctly flagging potential interactions for experimental validation rather than purely 
ranking them.

Second, in the DS2 scenario where one drug is familiar and the other is unseen, PS3N achieves an accuracy 
of 69.03%, reflecting its capacity to leverage known contextual information effectively. Yet, its AUROC (67.63%) 
trails SSI-DDI’s 80.92%. This difference suggests that PS3N might benefit from integrating techniques like 
graph propagation or topological regularization, as used by SSI-DDI, to better embed novel drugs and enhance 
interaction ranking. Still, the competitive accuracy underscores that PS3N’s existing design, which blends PCA-
transformed similarity features with fixed embeddings, already adequately supports accurate binary predictions 
in semi-cold scenarios.

Third, when comparing transductive and inductive scenarios, it becomes clear that PS3N experiences a more 
substantial decrease in AUROC–approximately 37.38 percentage points from transductive to CS1 and about 31.87 
points to CS2–compared to SSI-DDI’s more moderate declines of roughly 26.00 and 17.46 points, respectively. 
This indicates that graph-regularized methods like SSI-DDI inherently produce more stable interaction scores 
in cold-start conditions. PS3N’s reliance on fixed embeddings leads to noisier similarity representations when 
encountering entirely novel chemical spaces. Nonetheless, PS3N’s ability to achieve comparable or superior 
accuracy, particularly in fully cold-start conditions (CS1), demonstrates its robustness and practical utility for 
predicting drug interactions.

Reliability of the PS3N model: performance in datasets
To assess the reliability of the proposed PS3N model in predicting drug-drug interactions (DDIs), paired t-tests 
were conducted to compare its performance with existing state-of-the-art methods in three data sets: DrugBank, 
DS1, and DS2. The analysis focused on key performance metrics: AUC, AUC-PR, F-measure, Recall, and 
Precision. The results of the paired t-test are presented in Table 7, where statistically significant improvements 
(p < 0.05) for the PS3N model.

For the DrugBank dataset, the PS3N model showed highly significant improvements in Precision and Recall 
(both with p < 0.05), confirming the model’s strength in accurately classifying interactions. While F-measure also 
showed a marginal improvement, it was not statistically significant (p = 0.08169), suggesting that the model’s 
ability to balance precision and recall was not as enhanced in this dataset compared to others.

In DS1 dataset, the PS3N model demonstrated statistically significant improvements across all evaluated 
metrics compared to baseline methods. The improvements in Precision, Recall, and F-measure were particularly 
noteworthy, with p-values well below the 0.05 threshold. These results suggest that PS3N (using both sequence 
and structure information) showed statistically significant improvements over all baseline methods across all 
evaluated metrics (p < 0.05). These results demonstrate the model’s robust performance across diverse evaluation 
measures.

Model

Transductive CS1 (New–New) CS2 (Known–New)

ACC (%) AUROC (%) ACC (%) AUROC (%) ACC (%) AUROC (%)

DeepDDI85 93.15 99.76 47.96 88.39 68.69 95.75

MR-GNN86 94.06 99.76 49.93 91.70 72.38 97.52

MHCADDI87 78.50 86.33 66.53 72.13 72.34 79.22

SSI-DDI21 94.47 98.38 65.02 72.38 73.35 80.92

PS3N (Ours) 97.30 99.50 70.05 62.12 69.03 67.63

Table 6.  Overall performance comparison: transductive vs. inductive settings. Bold values indicate the best 
performance for each metric.
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On the DS2 dataset, the PS3N model again showed significant improvements over baseline methods in 
several metrics, including Precision, Recall, F-measure, and AUC-PR (p < 0.05). Notably, the improvement in 
AUC was not statistically significant (p = 0.066), suggesting that while the model improved in identifying true 
positives (high Recall) and reducing false positives (high Precision), its ranking ability, as indicated by AUC, did 
not show a significant difference compared to the baseline methods.

Our statistical analysis confirms that the PS3N model shows statistically significant improvements over 
baseline methods in most performance metrics for the DrugBank, DS1 and DS2 data sets. Although AUC 
improvements were not statistically significant in all cases, particularly in the DS2 dataset, this discrepancy 
can be attributed to factors such as the imbalance of the dataset and threshold sensitivity. However, the model 
demonstrated substantial improvements in key metrics such as Precision and Recall, with particularly strong 
performance in the DS1 and DrugBank datasets. These improvements, along with significant gains in the F 
measure, highlight the robustness of the PS3N model and its practical relevance for reliable prediction of DDI 
in diverse datasets.

Predicted DDI network using PS3N
We quantified all the drug-drug interactions using the PS3N model in Fig. 2. As a result, when we anticipate drug 
interactions between pairs of drugs, the model generates a likelihood of interaction between the drugs, which we 
refer to as an interaction score, which ranges from 0 to 1. We can also use the model to get the projected labels 
for the test data. To prepare network data, the drug IDs are employed as network nodes. We considered a pair of 
drugs to have an interaction if the expected labels from the model were 1. We discovered that the network data 
contained a wealth of interaction information. We proposed imposing a threshold value of 0.7 on the principal 
similarity network to eliminate some data from consideration to improve presentation. In Fig. 2, we observed 
several drug-drug interactions (DDIs), all depicted in the same shade. Our primary objective was to evaluate 
our model’s DDI prediction accuracy. As part of our analysis, we applied a threshold to the network’s similarity 
values. When we examined the predictions with the threshold, we found that 89 percent of the interactions were 
correctly labeled.

However, upon reviewing the entire network without imposing a strict threshold, we achieved an overall DDI 
detection accuracy of approximately 96 percent. This indicates that even some estimated similarity values falling 
below the 0.70 threshold still corresponded to real drug interactions.

Our model excels in predicting drug-drug interactions. The key factor here is the threshold we use. If we set a 
strict threshold, we catch fewer interactions, but we’re more certain they’re accurate. When we use a more lenient 
threshold, we capture a wider range of interactions, even if some have lower similarity scores. This approach 
helps us uncover potential interactions we might miss with a stricter threshold.

In Fig. 2, we can see that the interaction network reveals distinct clusters. A manual examination of the 
clusters revealed some interesting observations from the interaction network. Each of the distinct clusters of 
drug interactions represents different pharmacological classes, each with unique therapeutic indications and 
mechanisms of action. In the top left cluster, where almost all the drugs interact with the remaining drugs, we 
found three classes of drugs create subclusters within the cluster. These are the Dopamine Agonists Cluster 
(DBCAT000607), a class of drugs normally used in the treatment of Parkinson’s disease and related conditions; 
Phenothiazines Cluster (DBCAT000801), a class of drugs used in the treatment of various psychiatric disorders, 
including schizophrenia and agitation, Antipsychotic Agents Cluster (DBCAT000529), a class of drugs used 
to control psychotic behavior and alleviate symptoms of schizophrenia and related disorders9. From this 
information, we can deduce very important adverse drug events, for example, DAI DB00714(a dopamine 
agonist) and DB00433(a phenothiazine, which is also a dopamine antagonist) having interaction, which means 
that the therapeutic effect of DB00714 can be decreased when used in combination with DB00433 because of 
counteracting effect of these two medications on dopamine receptors9.

We also found some major subclusters in the top right cluster, which are the Diuretics Drug Cluster 
(DBCAT00542), a class of drugs to help reduce fluid buildup in the body by increasing urine output, Factor 
Xa Inhibitors Cluster (DBCAT001775) that inhibit or block Factor Xa activity, thereby exerting antithrombotic 
effects, Anticoagulants Cluster (DBCAT000007 / DBCAT003243), a class of drugs that prevent clotting, Blood 
Coagulation Factors Cluster (DBCAT000007 / DBCAT003243), a class of drugs that promote blood clot 
formation9. We found that DDI (DB00606 – DB00562) in DBCAT00542, where the efficacy of DB00606 can 

Metric

DrugBank DS1 DS2

t-stat p-value t-stat p-value t-stat p-value

Precision − 78.005 0.00016 − 4.976 0.0011 − 3.134 0.014

Recall − 4.600 0.04415 − 5.149 0.0009 − 3.143 0.014

F-measure − 2.032 0.08169 − 5.096 0.0009 − 3.034 0.016

AUC − 2.034 0.08139 − 4.345 0.0025 − 2.379 0.045

AUC-PR NA NA − 4.465 0.0021 2.878 0.028

Accuracy − 2.087 0.07528 NA NA NA NA

Table 7.  Paired t-test results for DrugBank, DS1 and DS2 dataset comparing PS3N (Sequence + Structure) 
with baseline methods. Statistically significant results (p < 0.05) are highlighted. Bold values indicate the best 
performance for each metric.
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be increased when combined with DB00562. On the other hand, DDI (DB00606-DB00703) and DB00703 may 
increase the hypotensive activities of DB006069.

Drug Interaction could be possible between drugs that are not in similar drug classes. For example, DB00606 
is interacting with DB06228. The ATC classification of DB00606 is C-Cardiovascular system CO3-DIURETICS9 
on the other hand DB06228 is a class of Xa inhibitors drug. DB00606 may increase the excretion rate of 
DB06228 which could result in a lower serum level and potentially a reduction in efficacy9. This highlights the 
complexity of drug interactions, as they can occur between medications of different classes and can significantly 
impact therapeutic outcomes. So, Fig. 2 explains how a similarity network could be useful for finding adverse 
drug effects and interpreting the positive and negative interactions. Similarity within clusters suggests shared 
pharmacological properties, while drugs in multiple clusters highlight their diverse pharmacological effects. 

Fig. 2.  DDI network diagram constructed from the DrugBank dataset. Interactions with predicted 
probabilities below 0.7 were excluded, and edges were included only for pairs with a predicted label of 1, 
resulting in the PS3N DDI network.
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Understanding these interaction networks is crucial for predicting potential drug-drug interactions, optimizing 
therapy, and minimizing the risk of adverse reactions in clinical practice.

Clinical implications of predicted drug interactions
Our model PS3N showed excellent performance in performed very well in predicting the existing drug 
interactions found from DrugBank. In Fig. 2, we observe the first cluster (top left) in which all the drugs interact 
with almost all other drugs. This can be explained from a clinical perspective. Dopamine antagonist phenomena 
are based on the different drug classes. In the cluster, there are multiple drug classes such as Dopamine 
(DBCAT000607) and phenothiazines (DBCAT000801) as pharmacologically, they all target dopamine receptors 
and Antipsychotic Agents (DBCAT000529) which are also Dopamine blockage agents. The interactions among 
the drug classes have significant clinical implications.

The subset of drugs in the top left cluster belongs to the Phenothiazines group, which is a subset of the broader 
category of Antipsychotic Agents. These drugs include Prochlorperazine (DB00433), Mesoridazine (DB00933), 
Pipotiazine (DB01621), Thioridazine (DB00679), Acetophenazine (DB01063), Fluphenazine (DB00875), 
Trifluoperazine (DB00831), Promazine (DB00420), Chlorpromazine (DB00477), Methotrimeprazine (DB01403), 
and Perphenazine (DB00850). These drugs are common to both the Phenothiazines and Antipsychotic Agents 
groups, suggesting that they interact with every drug in the Antipsychotic Agents category. Furthermore, 
interactions with drugs in the dopamine group yield similar interaction results9. That means all the dopamine 
class of drugs are interacting with the subset of drugs. This is consistent with the finding from the large cluster 
of drug interactions in Fig. 2.

These interactions increase the risk of adverse effects such as QTc prolongation, central nervous system (CNS) 
depression, orthostatic hypotension, hypotension, antihypertensive activities, and reduced gastrointestinal 
motility. These effects88 are commonly observed when medications with similar pharmacologic targets or 
mechanisms are used together, highlighting the importance of cautious prescribing practices and close 
monitoring of patients. Furthermore, these interactions can lead to changes in serum concentration, impacting 
the therapeutic efficacy, especially in antipsychotic activities. This is primarily due to the drugs sharing common 
metabolic pathways89 that utilize common enzymes, leading to competition, whereby one drug may inhibit/
induce enzymes that metabolize another one. Understanding these metabolic interactions is crucial for 
optimizing treatment outcomes and minimizing the risk of adverse effects.

New DDIs identified by PS3N
In our study, we aimed to identify novel drug-drug interactions (DDIs) using the NDD DS1 dataset75. This 
dataset comprises a substantial number of drugs, specifically 414. We trained our PS3N model using the DS1 
dataset and subsequently employed it to predict potential DDIs in a similarity network constructed from the 
DrugBank and Protein Data Bank datasets. The similarity network was generated using protein sequence and 
protein structure information. It is important to note that the DrugBank dataset used for testing contains 904 
drugs, providing a significantly larger network for evaluation compared to the training set.

Our predictions resulted in a total of 32,548 potential new DDIs. To refine these results, we applied a filtering 
step in which we eliminated interactions with predicted values below a threshold of 0.80. This filtering reduced 
the number of predicted DDIs to 26,359.

To better interpret the filtered predictions, we categorized the DDIs into score ranges based on their 
confidence levels. As shown in Table 8, a significant majority of the predicted interactions (82.45%) fall within 
the high-confidence range of 0.95 to 1.00. Furthermore, the data highlights an even higher concentration of 
DDIs in the 0.99 to 1.00 range, accounting for 62.91% of total interactions. Of these, 40.01% have scores in the 
0.999 to 1.00 range, and 29.36% with a score of 1.00.

Figure 4 visualizes the distribution of these newly identified interactions. It is important to clarify that the 
model was trained exclusively on the DS1 dataset but was used to make predictions on the DrugBank similarity 
network. The filtering and ranking process described was applied to the predictions derived from this new 
similarity network.

Ranking New DDIs based on Similarity values
Figure 4 basically shows filtered and prioritized DDIs we discovered during the prediction process. We employed 
a rigorous ranking strategy that takes into account both existing similarity values and predicted values from the 
PS3N model.

Predicted score range Number of interactions Percentage of total interactions (%)

(0.8, 0.85] 966 3.67

(0.85, 0.9] 1354 5.14

(0.9, 0.95] 2305 8.75

(0.95, 1.0] 21729 82.45

(0.99, 1.0] 16582 62.91

(0.999, 1.0] 10547 40.01

[1.00 - 1.00] 7740 29.36

Table 8.  Distribution of predicted scores for drug interactions using PS3N model in drugBank dataset.
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•	 Protien sequence similarity vs predicted similarity:  Our first ranking criterion involves a careful comparison 
between the prediction value of PS3N and the protein similarity value from the sequence similarity network. 
The underlying assumption here is that drugs with interactions are more likely to exhibit higher levels of pro-
tein interaction. We set a conservative threshold value of 0.8 to guide our filtering process. Interactions with a 
predicted similarity score below this threshold were not considered for further evaluation.

•	 Protien structure similarity vs predicted similarity: For the second level of ranking, we extended our compari-
son of the prediction value from PS3N with the similarity value from the protein structure similarity network. 
Similar to the first ranking, interactions having a similarity value below the similarity threshold of 0.8 were 
omitted from further consideration.

After carefully going through these two levels of ranking, we found a set of predicted new drug interactions, 
shown in Fig. 4. Our ranking and filtering approach identified 297 completely new interactions that represent 
the highest ranked candidates for potential drug interactions based on our proposed ranking criteria as showed 
in the Fig. 3. Selecting new predicted interactions validates the performance of the PS3N model, reinforcing the 
reliability and significance of these newly discovered DDIs.

Significance and clinical relevance of newly found DDI’s
Figure 4 shows novel interactions identified by our PS3N approach. these have never been reported in the 
literature (to our knowledge). Each interaction shows the edge weights which are the prediction probability of 
the interactions between drugs. We can also see that here some of the drugs have a larger number of interactions 
which form subtree structures for them. For example, the drugs DAI DB00548, DB00350, DB00552, DB01215, 
DB00884, DB01586, and DB01241 formed subtrees of drug interactions.

Taking DB00548 as an example, this drug is primarily used topically in a cream formulation for the treatment 
of mild to moderate acne9. This drug interacts with 20 other drugs with different pharmacological profiles and 
therapeutic uses that never been found in any dataset. They include anticancer agents, antivirals, cardiovascular 
medications, and treatments for conditions like osteoporosis, glaucoma, and inflammation9. While there may 
not be direct pharmacological connections between DB00548 and the 20 drugs, their use in clinical practice, 
especially in patients with concurrent dermatological and systemic conditions, necessitates careful consideration 
of potential interactions, both pharmacodynamic and pharmacokinetic, to ensure safe and effective treatment 
outcomes.

Further, in Fig. 4, we found some interesting brand new drug interactions discovered by our model 
which are not included in any standard sources of drug interaction data. For example, interactions between 
Acetazolamide (DB00863) and Droperidol (DB00433)/Clozapine (DB00363), Brinzolamide (DB00857) and 
Thiothixene (DB01621), Dexmedetomidine (DB00695) and Compazine (DB00494)/Ropinirole (DB00268), 

Fig. 3.  Venn diagram illustrating the overlap among drug-drug interaction pairs based on three filtering 
criteria: (1) predicted interaction probability (Predicted Prob ≥ 0.8), (2) protein sequence similarity (Protein 
Similarity ≥ 0.8), and (3) protein structure similarity (PDB Similarity ≥ 0.8). The intersections highlight 
drug pairs that meet multiple filtering criteria, emphasizing the consistency across prediction and biological 
similarity metrics.
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Celecoxib (DB00482) and Clozapine (DB00363), Entacapone (DB00494) and Clozapine (DB00363), and 
Clozapine (DB00363) and Ropinirole (DB00268)/Actigall (DB01592)/Varenicline (DB01273) are noteworthy. 
While these medications belong to different categories, they are often used together90 in clinical practice. For 
instance, Clozapine is a highly effective antipsychotic used for treatment-resistant schizophrenia, and concurrent 
prescriptions of Ropinirole and Varenicline are common in patients with schizophrenia and Restless Leg 
Syndrome91 who are also trying to quit smoking92. These interactions underscore the complexity of medication 
management in patients with multiple comorbidities and highlight the importance of comprehensive medication 
reviews and interdisciplinary communication in clinical decision-making.

Understanding the clinical relevance of drug interactions is crucial for ensuring safe and effective 
pharmacotherapy in patients with psychiatric disorders. These findings contribute to the broader understanding 
of drug interactions and provide valuable insights into optimizing medication regimens for improved patient 
outcomes.

Discussion
The main objective of this work is to develop a new computational model for DDI prediction utilizing genetic 
information about drug-protein targets. To our knowledge this is the first attempt to utilize information about the 
protien sequences and protein structures of drug protein targets to analyze potential drug-drug interaction. Our 
work presents a promising approach to tackling drug-drug interaction (DDI) prediction challenges. We explored 
multiple methods for constructing the feature space to identify interactions between drug pairs. Specifically, we 
characterized drugs using protein structure and protein sequence information. To build the labeled feature space, 
we leveraged interaction data available from DrugBank. Combining structural and sequence-based information, 
we obtained a total of 904 drugs. Unlike previous methodologies, we considered only protein sequence and 
structure similarity networks for the first time to predict drug interactions. In addition, our similarity network 
computation technique allows extracting important protein features in terms of different distance measures.

Our proposed DDI framework represents a novel approach, unlike many previous studies that primarily 
relied on patient information and considered multiple patient circumstances. We created a rich similarity 
network dataset that potentially benefits various studies related to drug interactions in different clinical trials.

A limitation of our approach is that due to the different sources of data required, getting all types of information 
for the same drug is non trivial. Moreover, the datasets have significantly more unknown interactions than known 
interactions. Thus, this creates a data imbalance problem, especially if we do not consider appropriate unknown 
thresholds. As we mainly focused on Drugbank and Protein Data Bank (PDB), finding the commonality 
between the different datasets like side effects, protein protein interaction, indication data etc. also requires 
a lot of work. Another potential drawback is that our filtering process relied heavily on protein sequence and 
structure data to construct similarity networks, which might bias the ranking criteria towards interactions with 
high protein similarity. This approach could overlook alternative mechanisms of interaction. To mitigate this, 
integrating orthogonal data sources as chemical structures of drugs and phenotypic effects could provide a more 
comprehensive evaluation and reduce reliance on protein-centric similarity measures. Lastly, the time and space 
complexity for feature space generation is significant and will need to be addressed in the future.

Fig. 4.  Detected new DDI’s from using the PS3N model using the DrugBank Dataset. The interaction network 
represents the DDI’s which has a predicted value between 0.8 to 1.00 from the PS3N model and also passed the 
2-step filtering process (297 DDI’s, 904 Drugs).
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A critical limitation arises in the context of inductive split evaluations, particularly for cold-start scenarios 
where drugs in the test set are unseen during training. While our model demonstrates competitive accuracy 
in inductive cold-split settings (CS1), its AUROC performance lags behind methods like SSI_DDI, suggesting 
reduced robustness in distinguishing positive and negative interactions for novel drugs. This gap highlights 
the need for more generalizable feature representations, possibly through advanced embedding techniques or 
multi-modal data fusion. Furthermore, the computational cost of generating protein-based feature spaces is 
non-negligible, posing scalability challenges for large-scale applications. Addressing these bottlenecks through 
optimized algorithms or distributed computing will be essential for real-world deployment.

In summary, while our protein-centric approach offers a novel perspective on DDI prediction, its current 
limitations underscore the importance of balancing protein similarity with other interaction mechanisms, 
improving robustness in inductive settings, and enhancing computational efficiency. Future efforts will focus 
on refining feature representation, incorporating auxiliary biological data, and developing scalable solutions to 
advance the model’s applicability in clinical and pharmacological research.

Conclusion
In this study, we introduced a novel mechanism for detecting drug-drug interactions, structured into three key 
stages. The first stage involves constructing similarity profiles using data from DrugBank and PDB. The second 
stage focuses on creating an integrated similarity network (PS3N) for drugs, which incorporates information 
about their protein targets, specifically the protein sequences and structures. Finally, the third stage utilizes data 
from the integrated network to develop a deep neural network model, enhancing the prediction of potential 
drug interactions. We evaluated the performance of our proposed PS3N-based deep learning framework against 
recent machine learning approaches. The results demonstrated that our methodology is highly competitive 
with current state-of-the-art techniques and, in some cases, surpasses them in performance. In our proposed 
methodology, we showed a new approach to dealing with the DDI prediction problem by exploiting genetic 
information about the drug-protein targets, particularly their protein sequence and protein structure.

Our validation process reinforced the robustness of our model in detecting new drug-drug interactions 
(DDIs). The carefully designed analysis provided strong support for the model’s performance. The DDI 
network diagram, in particular, offers valuable insights into drug interactions and their potential implications 
in identifying adverse drug events such as side effects and adverse reactions. An interesting future work would 
be to enhance the scope of our PS3N model to create a more generalized prediction framework for DDIs. 
For instance, by incorporating additional drug-related information beyond protein sequences and structures, 
allowing us to gain a more comprehensive understanding of drug interactions. Another is to assess the model’s 
performance in detecting interactions specifically related to specific disease contexts, for example cardiovascular 
and COVID-19 drugs. We plan to utilize our model in disease-specific contexts, providing valuable insights for 
clinical applications.

Furthermore, our research can extend beyond DDIs to explore other adverse drug events. By applying our 
approach to a wider spectrum of drug-related challenges, we can contribute to a deeper understanding of drug 
safety and effectiveness.

Additional information
Impact of algorithmic parameters
Table 9 shows the impact of different hyperparameters on the performance of the proposed model. From the 
table, Adam Optimizer with a learning rate of 0.01 produced the best overall result. SGD Optimizer for learning 
rate 0.05, 0.01, and 0.10 showed almost similar accuracy level as we got for Adam optimizer. In our proposed 
neural network model, the number of hidden layers will vary based on the number of drug-active ingredients 
(DAIs) on the datasets. Normally, for the protein sequence dataset, it will not be more than 4. For Protein 
structure or the combination of both, it will be between 3 to 5.

In our proposed approach, we used similarity network fusion (SNF) to build the final matrix for each dataset. 
We had different distance measures, and for each measure we have one matrix. These matrices are then combined 
to create the fusion matrix. In the SNF method, a distance metric was considered, we used the default Euclidean 
distance metric. And there were two other parameters mu- weighted k-nearest neighbors kernel to the distance 
matrix to calculate the similarity fusion matrix. We used different values in the range of 0.3 to 0.5 for mu and 10 
to 20 for k. we found that for mu = 0.3 and k = 10 works better for the performance of the model.

Optimizer Learning rate Accuracy

Adam Optimizer 0.05 0.7200

Adam Optimizer 0.10 0.7213

Adam Optimizer 0.01 0.9710

SGD 0.05 0.9646

SGD 0.10 0.9644

SGD 0.01 0.9637

RMSProp 0.01 0.7210

Table 9.  Results of PS3N with variation on algorithmic parameters.
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In the deep neural network model, we used 3 to 5 hidden layers based on the number of drug active ingredients 
present in the datasets. However, in our proposed PS3N model we used the normal distribution for the layer 
initialization when we used ReLU as the activation function in the layer. We used the normal because we used 
ReLu as activation. In the final layer, we used glorot normal distribution for the layer initialization because the 
Sigmoid function is used as the activation function. Though different initialization has very little impact on the 
performance, we select this as a general setup for our experiments.

Then we used the dropout value with a range of 0.2 to 0.5 for each of the layers. 0.3 showed the best outcome 
in the model performance. Then in the model optimization, we tested different optimization techniques, 
namely, stochastic gradient descent (SGD), Adam optimizer, RMSProp, etc in which Adam and SGD have close 
performance but in RMSProp, the algorithm performance decreases significantly.

In gradient calculation, the learning rate is very important. In our experimental setup, we choose different 
learning rates in a range from 0.001 to 0.1. We also use weight decay for the gradient update in a range from 
1e−4 to 1e−8. However, we found the best value of weight decay for the model to be 1e−6. After a different 
selection of learning rates, we found that 0.01 gives us the best result for the model.

Model performance evaluation
Figure 5a shows the behavior of the proposed model during training and validation. We observe that throughout 
the training process, both training and validation accuracy maintain a relatively stable gap (of about 5%). This 
behavior indicates that the model effectively generalizes from the training data to previously unseen validation 
data. Typically, a substantial gap between the training accuracy and validation accuracy would suggest over-
fitting, where the model is trained well on training data but struggles to generalize. In our model, the minimal 
difference between the two curves demonstrates that our model’s robustness. This observation provides us with 
confidence in the model’s predictability on unseen data in practical scenarios.

In, Fig. 5b, we can further evaluate our model performance through the precision-recall curve. Our model 
shows a high AUC score which signifies that the model effectively identifies positive DDI while minimizing false 
positives which is very crucial in DDI prediction.

Data availability
Data is provided within the manuscript or supplementary information files
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