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The low-frequency variability of the mid-latitude atmosphere involves complex nonlinear and chaotic 
dynamical processes posing predictability challenges. It is characterized by sporadically recurring, 
often long-lived patterns of atmospheric circulation of hemispheric scale known as weather regimes. 
The evolution of these circulation regimes in addition to their link to large-scale teleconnections can 
help to extend the limits of atmospheric predictability. They also play a key role in sub- and inter-
seasonal weather forecasting. Their identification and modeling remains an issue, however, due to 
their intricacy, including a clear conceptual picture. In recent years, the concept of metastability has 
been developed to explain regimes formation. This suggests an interpretation of circulation regimes 
as communities of states in the neighborhood of which the atmospheric system remains abnormally 
longer than typical baroclinic timescales. Here we develop a new and effective method to identify 
such communities by constructing and analyzing an operator of the system’s evolution via hidden 
Markov model (HMM). The method makes use of graph theory and is based on probabilistic approach 
to partition the HMM transition matrix into weakly interacting blocks – communities of hidden states 
– associated with regimes. The approach involves nonlinear kernel principal component mapping 
to consistently embed the system state space for HMM building. Application to northern winter 
hemisphere using geopotential heights from reanalysis yields four persistent and recurrent circulation 
regimes. Statistical and dynamical characteristics of these circulation regimes and surface impacts are 
discussed. In particular, unexpected high correlations are obtained with EL-Niño Southern Oscillation 
and Pacific decadal oscillation with lead times of up to one year.

Humans have, since the dawn of civilization from the Babylonian to present day, sought to predict the weather 
far in the future. The theory of modern mathematical models of nonlinear dynamical systems show that weather 
cannot be forecast accurately beyond 1 − 2 weeks ahead. However, this is not the full story. In fact, the atmosphere 
exhibits complex variation on a wide spectrum of spatio-temporal scales ranging from synoptic to decadal and 
longer time scales originating from internal nonlinear dynamics and also from the boundary conditions such 
as sea surface temperature (SST) variation. These sources can contribute to extending the chaotic predictability 
limits to include subseasonal-to-seasonal (S2S) timescales.

Low-frequency variability (LFV) of the atmosphere, spanning spatio-temporal scales greater than typical 
synoptic and baroclinic timescales is poorly understood and is difficult to predict. Extratropical LFV, in particular, 
involves recurring and persistent large-, e.g. hemispheric-scale structures. These structures of atmospheric 
circulation are often referred to as teleconnection patterns or regimes and are known to have profound impact 
on weather predictability on intraseasonal and longer timescales1,2. With such scales, the ensuing circulation 
anomalies strongly modulate the tracks and intensity of synoptic disturbances in the atmosphere, operating like 
waveguides, and hence determine the long-term behavior of weather over large areas. The modeling and analysis 
of the mid-latitude climate is closely related to recurring circulation regimes. Both the identification and the 
understanding of their dynamics continue to be a debatable issue due to the complexity and nonlinearity of the 
problem beside the unsettled concept of regimes.

Quasi-geostrophic theory of large-scale atmospheric circulation shows that LFV is essentially the result 
of nonlinear dynamics3. Experimental analyses based on quasi-geostrophic barotropic and baroclinic models 
reveal the high-dimensional nature and chaotic dynamics of the LFV atmospheric flow4. There is suggestion in 
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the literature5 that in an infinite set of saddle-invariant manifolds of a chaotic attractor, the most stable of those 
manifolds form the skeleton of the dynamics, and sporadic adherence of the system state in their neighborhood 
can cause regime persistence. This nonlinear perspective leads to the understanding of regimes as metastable 
regions in the system’s phase space where the system slows down. To consistently adopt this paradigm of 
persistent regimes, an extra requirement on regime detection methodology has to be added, namely, it should 
account for temporal relationships of observed states rather than just their similarity in a selected projection of 
phase space. A number of existing methods6 for identifying recurrent patterns, e.g. based on PDF decomposition 
or partitioning networks of similarity, do not satisfy this requirement.

An appropriate and elegant way to address this issue is to construct and analyze an evolution operator of the 
system using hidden Markov model (HMM)7,8. A conventional Markov chain is a stochastic model based on 
’observed’ states of the chain. An HMM7,9 is an extension of the Markov chain by including other (hidden) states, 
which generate the observed sequence. Because of the finite and short-memory representation of the system, 
HMM is a consistent method for detecting metastability as well as identifying the basins of metastable states. 
Essentially, with HMM, nonlinear effects, like metastability and trace of multiple equilibria, can be captured by 
linear transfer operator pretty much like dynamic mode decomposition (DMD)10. HMM has been used to study 
atmospheric regimes via spectral analysis of the Markovian operator8,11.

Inspired by ideas from8, we elaborate a new methodology for constructing and analyzing HMM aimed at 
detecting persistent and recurrent circulation regimes determined as metastable communities of hidden states. 
We derive and use a method of partitioning the HMM transition probability matrix into blocks, providing 
significantly low probabilities of transitions between them. The method is based on maximizing a cost-function 
for a given partition and has a clear probabilistic meaning. In fact, the approach finds that partition with 
abnormally high mean probability that the state will remain within its community, i.e. persistent. We show that 
this optimization problem effectively reduces to the Newman iterative algorithm, widely used in graph theory 
for graph decomposition12. We pay special attention to the significance test, which rejects the null hypothesis 
that the detected communities could have been obtained by chance from a sample of a randomized process with 
similar spectral properties.

Another key part of the methodology is the choice of an embedding space, i.e. a set of dynamic variables 
for dimension reduction and model construction. This is of paramount importance because it determines the 
projection of the phase space in which the model operates. The dimension of this space is desired to be as low as 
possible to ensure stable results during the HMM learning process, but at the same time it should be informative 
enough for regime detection and identification. Kernel principal component analysis (KPCA)6,13 is considered 
here, which belongs to the class of nonlinear data transformation, and has been shown to enable a reliable 
and robust separation of states based on similarity measure in a space of just few leading components. Recent 
works14,15 used it to study recurrent patterns of the mid-latitude atmospheric circulation. In this manuscript, 
KPCA serves as a prepossessing step for the HMM to get both recurrent1 and persistent circulation flows.

The paper is organized as follows. In Section “Methods” we describe the methodology of HMM building, 
regimes detection and analysis, with an illustration using a low-order chaotic dynamical system. Section 
“Results” presents the properties of circulation regimes obtained from historical climate data. Finally, in Section 
“Discussion”, we summarize and discuss advantages and prospects of the presented methodology and results. 
Model examples together with additional details on the methodology as well as additional illustrations are 
detailed in the Supplementary Material.

Methods
Hidden Markov model
In the present setup the observed atmospheric variability is represented by time series of some dynamic variables 
X = (x1, x2, . . . , xd). For example, in case of spatially distributed data, as is the case here, the embedding 
space for X can be constructed by means of projecting the data onto a lower dimensional space such as the 
linear empirical orthogonal functions (EOFs) or using a more sophisticated nonlinear functions, e.g., kernel 
principal components (see Sec. 2.6). We assume that the evolution of these variables is driven by transitions 
between a finite number of hidden states of the system, J = 1, 2, . . . , K , where J denotes a state number. The 
transitions are random and are modeled by a discrete-time Markov chain defined by the transition probability 
matrix Qij = p(Ji|Jj), which is a stochastic matrix, i.e. has a unit sum along each column (

∑
i

Qij = 1). Each 

hidden state is connected with the dynamic variables via emission probabilities P (X|J). Here we use Gaussian 
probability density function (PDF) for the emissions:

	
P (X|J) = 1√

(2π)d|ΣJ |
exp

(
−1

2(X − aJ )T Σ−1
J (X − aJ )

)
,� (1)

although more complex PDFs can be employed. For example, using Gaussian mixture models as emission 
probabilities would allow us to obtain hidden states that have a more complex distribution in the data space. One 
would expect a smaller optimal number of hidden states than for the simple Gaussian emissions due to the more 
efficient approximation of phase space. The price to pay is an increase in the number of parameters corresponding 
to each hidden state that may lead to an increase in the optimization problem complexity. Such a generalization 
of HMM in context of atmospheric circulation modeling is an interesting task for future investigations.

The described HMM is fully determined by its parameters µ = (Q, Σ, a), which are to be estimated from 
the observed time series (X1, X2, . . . , XN ). The likelihood function for HMM contains the sum over huge 
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number of possible sequences of the hidden states S1, S2, . . ., where each Sk  contains Nk  hidden states 
Sk = {J1, J2, . . . , JNk }, with JNk < N :

	
P (X1, . . . , XN |µ) =

∑
k

P (X1, . . . , XN , |Sk, Σ, a)P (Sk|Q),� (2)

and hence, cannot be calculated and maximized directly. Here we use Baum-Welch algorithm16 that provides 
convergence to a local maximum of Eq. (2). This is an iterative EM-algorithm, based on repeating two steps: 
(i) estimating the state occupation probabilities (E-step) and (ii) estimating the HMM parameters µ using the 
occupation probabilities (M-step). Thus, at the end of this procedure, we obtain the estimates of transition 
probabilities, position and orientation of emission functions in the phase space of dynamic variables X, in 
addition to the occupation probability of the observation Xt in the hidden state J = j: P (J = j|Xt).

Since we are to train the HMM from natural stochastic time series, we will almost surely obtain a Markov 
chain that does not have both fully closed communities (classes) of states and pure periodic states. This 
guarantees the existence of a unique stationary distribution π to which the Markov process converges starting 
from any initial distribution q:

	
lim

k→∞
Qkq = π,� (3)

or, equivalently, π is the unique right eigenvector of the matrix Q corresponding to its largest eigenvalue which is 
exactly equal to 1: Qπ = π. One more assumption we use in Eq. (3) is that the transition matrix does not depend 
on time, i.e. a stationary process. Although this assumption seems relevant in case of quite short atmospheric 
time series (after removing the regression on the CO2 trend; see the result section), it should be relaxed when 
studying a nonlinear response of the atmosphere to external forcing.

The number of hidden states K is a structural parameter of the HMM, that determines the model resolution. 
Generally speaking, it is recommended to set this parameter as large as possible, provided that it is adequate to 
available statistics, i.e. each hidden state is reasonably well visited in the observed sample. While a too-coarse 
model with unreasonably small K may miss important features of the metastable state space, an overfitted model 
with too large K will have a nearly binary transition matrix Q that describes the unique given sample rather 
than the underlying system, i.e. overfitting. Since the Baum-Welch algorithm used for learning HMM allows us 
to calculate the likelihood Eq. (2), the optimal K can be roughly estimated based on the conventional Akaike 
information criterion (AIC). The idea behind is that the large-scale structure of the metastable regimes we are 
trying to find should be insensitive to K when K greatly exceeds the number of regimes (e.g., saturation), and any 
value near the AIC optimum provides a good model for regime detection.

Modularity, graphs and persistent regimes
According to Franzke et al.8, an atmosphere circulation regime is associated with a metastable state of the system, 
i.e. a region of slow evolution of the trajectory in the system’s phase space. With the HMM representation of the 
atmospheric circulation, a regime can be sought as a block (a subset of the hidden states) of the transition matrix 
with small probabilities of transitions to the states out of the block. Decomposing the full transition matrix Q 
into such blocks, some sort of tiling, gives us a reduced matrix of transition probabilities between the basins 
of stability in the space of hidden states. Going this way, we treat the HMM hidden states as microstates of the 
system11, meanwhile a regime is determined as a community of the microstates. Such an approach helps reduce 
the influence of a specific sample on the result. The coverage of the data space by the hidden states, their size and 
location, can depend on the data sample we have. For example, the longer the time series on which the model is 
trained, the more hidden states we can expect provided that each of them is well visited by the observations. This 
means that each individual microstate reflects particular observations rather than the dynamical properties of 
the system and therefore lacks physical interpretation. In our study, the microstates serve only as a support for 
representing fundamental, data-independent invariant structures in the system’s phase space, that underlie the 
metastable regimes. In other words, the regimes must be less sensitive to the sample, since they are determined 
as unions of many microstates, and, therefore not so sensitive to their specific positions and sizes.

Now we can safely assume that a sign of metastability in a Markov chain appears when there exists a partition 
{Ak} of the hidden states such that the average probability of remaining in a given subset Ak  is larger, compared 
to that in a completely randomized chain having the same stationary distribution π. Thus, to find the best 
partition {Ak}, we should maximize the quantity:

	

⟨PQ(J ∈ Ak|J ∈ Ak) − PQ∞ (J ∈ Ak|J ∈ Ak)⟩Ak

=
∑

k

[PQ(J ∈ Ak|J ∈ Ak) − π(Ak)] π(Ak),� (4)

where PQ(a|b) is the probability of an event a given an event b at the previous state in the Markov chain Q; π(Ak) 

is the stationary probability of a subset Ak , i.e. π(Ak) =
∑

i∈Ak

πi; the chain Q∞ is the white-noise process with 

the stationary distribution π, which is generated by the transition matrix Q∞ having identical columns given by 
π. The obtained largest value of Eq. (4) should be positive to consider the partition viable, otherwise we conclude 
that there are no persistent regimes states.

Noting that
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PQ(J ∈ Ak|J ∈ Ak) = 1

π(Ak)
∑

i,j∈Ak

Qijπj ,

we can rewrite Eq. 4 in the following form:

	
M =

∑
Ak

∑
i,j∈Ak

[Qijπj − πiπj ] =
∑
i,j

[Qijπj − πiπj ] gij =
∑
i,j

Bijgij ,� (5)

where gij = 1 if hidden states J = i and J = j belong to the same subset Ak  and gij = 0 otherwise. Written 
this way, and this is the novelty here, the expression M in Eq. (5) is precisely similar to the modularity introduced 
by Newman12, which stems from graph theory17,18. The modularity was previously used by14 for detecting 
atmospheric regimes in connection with recurrence networks. One of the attractive feature of this formulation, 
Eq.  (5), is the possibility of using the iterative splitting algorithm to maximize M simply via solving for an 
eigenvalue problem. The algorithm proceeds by iteratively splitting each subset Ak  into two communities so that 
each split provides the maximal positive increment of the modularity ∆M , until indivisible subsets are obtained. 
Splitting of some subset A into two groups can be represented by a classifier – a vector s of dimension |A| (size 
of A) whose elements si = −1 (for the first group) and si = 1 (for the second group), i = 1, . . . |A|). Now 
denoting by B(A) the submatrix of B = (Bij) obtained by selecting the elements of B with the indices i, j ∈ A, 
it can be shown that the increment ∆M  of the whole modularity, after this split, takes the form:

	

∆M = 1
2

∑
i,j

(BA)ij(sisj + 1) = 1
2 sT BAs,

(BA)ij = B
(A)
ij − δij

∑
k

B
(A)
ik ,

� (6)

where δij  is the Kronecker delta. The algorithm is initiated by setting A equal to the whole set of hidden states, 
that is BA = B.

It is worth noting that the matrix BA is symmetric only when the Markov chain obeys the detailed balance 
condition, i.e. Qijπj = Qjiπi. However, this is not true for a general dynamical system and is not required in 
the HMM training procedure. The interesting point here, another advantage of this formulation, is that in the 
general non-symmetric situation, finding the binary vector s that maximizes ∆M , makes use of the fact that the 
quadratic form in Eq. (6) depends only on the symmetric part of the matrix BA, that is H = 1

2

(
BA + BT

A

)
, and 

the change in the modularity can simply be expressed in terms of the eigen-elements of H:

	
∆MA = 1

2 sT Hs = 1
2λ1(wT

1 s)2 + . . . ,� (7)

where λ1 is the largest eigenvalue of H and w1 the corresponding eigenvector. Eq. (7) tells us that the binary 
vector maximizing the modularity increment ∆MA is precisely given by the sign of w1, s = sign(w1). In other 
words, the optimum vector s is the one whose i′th component si is 1 if the corresponding component of w1 is 
positive and −1 otherwise. A key conclusion follows from this, namely, if the matrix H has positive eigenvalues, 
two new subsets defined by the vector s emerge, provided that ∆MA > 0. Otherwise, its largest eigenvalue is 
zero, since this matrix has the zero sum over each row or column, and no further splitting of the community A 
is possible.

As provided by maximizing the modularity Eq. 4, the probability of staying in each regime Ak  is relatively 
high, but the residence time of the system in individual hidden states belonging to Ak  can differ. Eq. (7) shows 
that the absolute values |w1i| of the i′th component of w1 determines the contribution of states with the 
corresponding classifiers si to the modularity increment. This means that the system more often falls into states 
corresponding to large |w1i|, and hence, this value can be treated as a measure of state stability. The most stable 
states form the cores of the obtained regimes and constitute the skeleton of metastable structure of the system 
phase space. The metastable states of dynamical systems determine in fact the structure of the system’s attractor.

The splitting process continues until the increment ∆MA ceases to be positive for the subset A. In practical 
terms a threshold is used for ∆MA in order to eliminate insignificant splits. The significance test is based on 
surrogates obtained by random block shuffling of a time series generated by the HMM preserving main spectral 
properties of the original process (see the Supplementary Material). Given the fixed emission PDFs, Eq. (1), 
estimated from data, an ensemble of transition matrices is obtained by training the HMM on the ensemble 
of surrogates. These surrogates preserve the stationary distribution π, but may not preserve autocorrelations 
at large lags. The ensemble of the modularity increments ∆MA based on the surrogate matrices is then used 
to construct a confidence interval of ∆MA from the original sample. Specifically, when a split is carried out 
of some community with the original Q, the same block in every surrogate matrix is also split to obtain the 
null distribution of increments. Thus, the value of increment on the right tail of the surrogate ensemble, that 
corresponds to the significance level, is used as a threshold for accepting ∆MA.

Time step selection
An important aspect of HMM is the choice of time step. For example, using daily data successive states are 
very likely to be highly correlated. As a result, the diagonal elements of the transition matrix will be dominant, 
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reflecting high persistence in the hidden states, and making partition difficult and the results prone to noise. 
Traditionally, this weakness is addressed by adjusting the time step via smoothing and/or resampling the data. 
But the HMM provides another solution to analyze the Markov operator across L days, that is, to decompose 
the transition matrix QL (instead of the one-step Q) where Lrepresents the spatiotemporal resolution of regime 
determination. This approach is akin to diffusion maps, see e.g.18–20, which selects the step size of the Markov 
process to determine the scale of the underlying structure. Moderately large L reduces regime sensitivity to noise. 
However, quite large L can lead to matrix degeneracy, eventually ending up with rank-1 transition matrix with 
columns composed of the stationary distribution π. We can expect that persistent states are reliably detected 
when L is comparable to the characteristic timescale of the regimes, hence the need to look for a range of L for 
which the regimes do not change significantly. It is worth noting that by adjusting the time step via L, we do not 
distort the original data as with smoothing and/or resampling, but rather involve all daily observations in model 
learning. A schematic representation of the method is sketched in Fig. 1a.

Illustration with a low-order chaotic model
Here we demonstrate the identification method using a low-order nonlinear chaotic dynamical system. The 
system is the classical Lorenz21 model with stochastic forcing:

	

ẋ = 10(y − x) + σξx

ẏ = x(28 − z) − y + σξy

ż = xy − 8
3z + σξz.

� (8)

Here σξ are Gaussian uncorrelated processes with variance σ2 = 20. From a 10,000-length trajectory generated 
by this system with time step 0.1, we consider the time series of x and z as our “observations” shown in Fig. 1b. 
The (unforced) Lorenz system has 3 equilibria; an unstable center at the origin and two metastable equilibria 
located at the centers of the butterfly wings. The high density around the origin (Fig. 1b) is not genuine, and is 
partly due to the fact that this region corresponds to transition path between the two metastable equilibria, and 
partly to the stochastic forcing. Next, an HMM has been constructed using these time series. As it can be seen 
from Fig. 1b, the obtained two communities of HMM hidden states represent well the metastable regions, and 
the most stable hidden states (see Sec. 2.2) lie close to, and around their centers. It is interesting that parts of 
the outer region of each of the “wings” are assigned to the regime dominating the other wing. This means that 
starting from these regions, the system goes to another wing with substantially higher probability than to the 
current wing.

Probabilistic analysis of regimes
The obtained block structure of the matrix Q enables the calculation of reduced matrices QL with elements 
defined by:

	
QL

kl =

[∑
j∈Al

πj

]−1 ∑
i∈Ak,j∈Al

QL
ijπj .� (9)

The columns of this matrix represent the probability distributions of transitions between different regime states 
and allow us to predict the preferred transition path from any current regime. In particular, we can estimate the 
expected lifetime τk  of the k′th regime:

	 τk = Q1
kk/(1 − Q1

kk) + 1.� (10)

Note that the term (τk − 1) coincides with the mean of the geometric probability distribution

	 P (τ) = qτ (1 − q),� (11)

which represents the probability of a continuous series of length τ  for an event with probability q.
When dealing with real high-dimensional data, as the case here, one practically maps the observations Y 

onto a lower dimensional space X, for HMM application, hence possibly compromising the inverse mapping 
onto the physical space. This is the case of many nonlinear projections like kernel principal components (see 
the next section), diffusion maps, etc., for which we cannot derive an exact image of the hidden states and their 
groups in the data space.

Here, to get anomalies associated with states Ak , we compute a composite pattern ⟨Y|Ak⟩, that is the mean 
of observed value Y given Ak  via the obtained estimates of P (J = j|Yt), i.e. probability that the observation 
Y at time t belongs to the hidden state J = j (see sec. 1.1). For each Yt, the regime occupation probability is 
f﻿irst calculated:

	
P (Ak|Yt) =

∑
j∈Ak

P (J = j|Yt),� (12)

which is then used to estimate the composite pattern:
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Fig. 1.  (a) Schematic representation of the method for regime identification and analysis. (b) Illustration of the 
method with the Lorenz model, Eq. (8), showing the metastable states within the (x, z) phase space. The cloud 
of points (black dots) represent the “observations”, whereas the filled circles and triangles represent the centers 
of the HMM hidden states (vectors aJ  in Eq. 1) for regimes 1 and 2 respectively. The size of these symbols is 
proportional to the stability measure |w1i|, see Sec. 2.2. The green line represents a fragment of the trajectory 
on the attractor of the deterministic Lorenz system corresponding to σ = 0.
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⟨Y|Ak⟩ =

∑
t

YtP (Ak|Yt)
∑

t

P (Ak|Yt)
.� (13)

Note that the community Ak , Eq. (12), can be used wholly or replaced by a subset corresponding, for example, 
to the most stable states (with the largest |w1i|). The occupation probability, Eq. (12), can also be used to derive 
other dynamical characteristics linked, for example, to long-term behavior such as mean number of days Dk  
within Ak , in a given winter T:

	
Dk(T ) =

∑
t∈T

P (Ak|Yt).� (14)

Kernel PCA
To take into consideration the high-dimensional complex nonlinear structure of the atmospheric dynamical 
system, with possible nonlinear manifold of the dynamics an enable an efficient application of HMM, we apply 
nonlinear dimension reduction method based on kernel principal components (KPCs). Linear methods, such as 
conventional EOFs, are unable to identify a nonlinear low-dimensional embedding of the system (e.g.15).

Kernel principal component analysis (KPCA) has been shown14 to efficiently separate families of recurrent 
patterns of the mid-latitude atmospheric circulation and identify low-dimensional nonlinear manifold15. 
KPCA belongs to the class of spectral methods and is based on embedding the data into a higher-, e.g. infinite-
dimensional space where the system most likely becomes linear, and nonlinear manifolds and nonlinear features 
become linearly identifiable15. It allows implicit nonlinear mapping from the initial space by means of redefining 
the dot product, that tends to bring similar states closer together. Such a transformation makes it possible to 
embed the classes of similar states into low-dimensional subspace of a few leading scalar components. T﻿he 
measure of similarity of two states can be defined in the form of a Gaussian kernel

	
K(Yi, Yj) = exp

[
−d2(Yi, Yj)

2σ2

]
.� (15)

Here d() is a distance between the states, which should be properly selected depending on the problem. Focusing 
on similarity of the pattern’s structures/shapes rather than their amplitudes, we use Euclidean distance between 
the normalized vectors:

	
d(xi, xj) =

∥∥∥∥
xi

∥xi∥
− xj

∥xj∥

∥∥∥∥ ,� (16)

where the norm of x, ∥x∥ = (xT Λx)
1
2 , is based on a weight (diagonal) matrix Λ to reflect the uneven density 

of grid nodes especially near the poles. Typically, the weight matrix depends on the latitude θi of the i′th grid 
cell. For example, if the focus is on the global grid then Λii = cos θi, but if the focus is on midlatitude large scale 
dynamics then one uses (see the work14 for details):

	 Λii = cos θi sin2 θi.� (17)

An eigenanalysis of the kernel matrix Kij = K(Yi, Yj) is then conducted after some kind of centering15

	 Kc = C · K · C,� (18)

with C = I − 1
N

1, I and 1 are respectively the identity matrix and the matrix of ones. The result of this centering 
operation can be interpreted as a dot product matrix calculated from a sample with zero mean. The eigenelements 
of Kc are then derived, yielding our kernel PCs used in the HMM.

We point out here that the hyperparameter σ in Eq. (15) entails the degree of nonlinearity of the mapping. 
For instance, the smaller σ is the better the local proximity preservation gets, that is nearby states in the 
input space map onto nearby states in the feature space. This is an attractive feature which allows easy cluster 
separation. Furthermore, when σ is large it can be seen via Taylor expansion that for centered time series Y we 
have Kcij = 1

∥Yi∥∥Yj ∥ YT
i ΛYj + o(σ−2), yielding similar results to conventional linear principal component 

analysis.
The entire method described in this section is schematically represented in Fig.  1a. On the dimension 

reduction step the observed high-dimensional data vectors are mapped onto several KPCs, making thus a 
low-dimensional state space, which is used to separate classes of similar states. The HMM is then constructed 
and trained in this space, and communities of hidden states associated with metastable circulation regimes 
identified. Finally, dynamical and statistical characteristics of the circulation regimes are investigated along with 
association to large-scale teleconnections.
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Results
Circulation regime identification
We have, first, applied the method to simulation from a simplified system of atmospheric dynamics, namely, a 
3-layer quasi-geostrophic (QG3) model3 and check stability of the method. The results of this experiment are 
presented in the Supplementary Material (see Figs. S1-S2 and text). In this section we discuss the application to 
daily geopotential heights at 500-hPa pressure level (hereinafter Z500) in winter seasons over the mid-latitude 
of the Northern Hemisphere. The Z500 fields are taken from the National Center of Environmental Prediction/
National Center of Atmospheric Research (NCEP/NCAR) reanalysis dataset22. This is a gridded time series with 
2.5o × 2.5o latitude-longitude resolution, that covers the period 1950–2023. We focus here on the Northern 
Hemisphere mid-latitudes by considering latitudes north of 30N. The annual cycle is removed by subtracting 
the daily seasonal means over the whole period smoothed in time with a Gaussian window with the standard 
deviation of 15 days. This smoothing suppresses the day-to-day noise in the resulting annual cycle while 
retaining the intra-annual seasonal structure. And only winter (December–January–February) segments are 
taken, making a sample size of 6588 days, between winter 1950-51 and winter 2022-23.

Relying on previous findings14, for constructing of an HMM, we use a space of three leading KPCs, that 
provides good separating groups (high modularity) of similar states. Note that a more formal optimization 
algorithm for the number of KPCs has yet to be developed. The HMM that has been derived from the described 
dataset has optimal number of hidden states equal to 50 (see Fig.  S1 in the Supplementary Material). We 
decomposed the obtained 50 × 50 transition matrix into metastable blocks for different powers L determining 
the time steps of the analyzed evolution operator (see Sec. 2.3). Only significant splits of communities at the 1% 
level were accepted during the splitting procedure. An example of how the states in the used KPC projection are 
arranged to the detected communities is presented in Fig. 2b, for the whole observed sample as well as for points 
attributed to the most stable hidden states within each circulation regime. It is seen that the communities are 
clearly separated in the KPC space, especially the most stable ones that form the cores of the regimes.

Structure of regimes and weather impact
Figure 2 illustrates the splitting process of the communities for L = 7. Other values of L have been investigated 
and are presented in figures S3-S9 of the Supplementary Material. These figures show the composite patterns of 
the obtained communities calculated using Eq. 13. For spatio-temporal resolution L ≤ 9 days, the method yields 
consistently 4 highly significant communities. We notice, however, that the structure of the obtained circulation 
regimes with L ≤ 5 and 5 < L ≤ 9 are somehow not quite similar. This dissimilarity can be explained by the 
existence of many short-lived recurrent fluctuations that corrupt the results at low L which cannot be correctly 
resolved due to lack of statistics. This is confirmed by examining an experiment by dropping the significance 
test and the threshold of the modularity increment ∆M . We found (see, for example, supplementary figure S4) 
that, in case of low values of L we get many more communities which vary with L, but for L > 5 such spurious 
communities are filtered out and we obtain a few communities.

Increasing the power L will eventually lead to degeneracy of the transition matrix. For instance, with L > 9 
the degeneracy first starts by merging regimes 3 and 4 yielding a broader community. With L = 11 only two 
communities are obtained, which remain for larger values, corresponding to an indivisible matrix. As a result, 
this consistently suggests that reliable and statistically significant persistent communities are detected for 
5 < L ≤ 9, and, since the set of patterns for this range of values are almost identical, we hereinafter discuss the 
results corresponding to L = 7.

The first split of the initial community of all hidden states provides about 89% of the relative community 
increment, and leading eventually to four communities (see Fig. 2). The communities resulting from the first 
split represent opposing Z500 anomalies over the Arctic, Greenland, with anomalies in Eastern Europe and 
Far Eastern Siberia. Roughly speaking, these two communities reflect a Rossby wave structure with zonal 
wavenumber 4, and project respectively on states of intensified and weakened westerly flow. The following 
(and final) split yields smaller, but still significant, contribution to the modularity, providing identification of 
qualitatively different families of circulation patterns within the basic communities, hereinafter referred to as 
regimes 1–4.

These communities, regarded as metastable states in the low-frequency range, have longer time scales than 
typical synoptic systems and can therefore affect surface conditions over periods of time longer than synoptic 
time scales. To investigate the effect on surface weather we consider NCEP/NCAR daily surface air temperature 
(SAT) anomalies at 0.995 sigma level. The anomalies are computed in the same way as with the Z500 anomalies 
(see sec. 3.1). The regime occupation probabilities obtained for Z500 anomalies, Eq. 12, are used as weights to 
get the SAT composites patterns associated with the four circulation regimes (e.g., Eq. 13). The obtained SAT 
composites are shown in Fig. 3.

Pattern 1 (Fig. 2), projects strongly on the positive phase of the Arctic Oscillation (AO) characterized by 
lower than normal pressure over the Arctic ocean. The negative anomalies over the Arctic extends occasionally 
to reach the North Pacific and eastern Europe resulting in a stronger, than normal, jet stream there bringing 
weather systems from the west, e.g. loaded with rainfall. The second circulation regime Regime 2 combines 
features of the positive phase of the North Atlantic Oscillation (NAO), manifested as a deepened northern-
subtropical Atlantic dipole in atmospheric pressure, and the negative Pacific North America Pattern (PNA) with 
an area of high pressure over the northeastern Pacific.

A negative meridional pressure gradient in the North Atlantic, for both regimes, strengthens the zonal 
westerly flow in the Euro-Atlantic region, which may bring warm and wet conditions from Europe to Siberia 
(see SAT composites in Fig. 3). Over North America, the two patterns have opposite effects. Regime 1 causes 
a strengthening of the zonal flow bringing warm and wet oceanic air to this region, especially over North east 
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US/east Canada and the Canadian Archipelago. However, the blocking high pressure anomalies in the northern 
Pacific Ocean in regime 2 contributes to pumping arctic cold air to the region.

The remaining two circulation patterns 3 and 4 (Fig. 2) emerge from the splitting of the community 
characterized by high pressure over the Arctic, i.e. negative phase of AO. Pattern 3 clearly projects on the 

Fig. 2.  Circulation regime representation in data and KPC spaces. (a) Composite patterns of communities 
obtained with L = 7 days. Each pattern is calculated as a soft average of observed Z500 anomalies over a 
community of hidden states according to Eq. 13. Parent and child patterns of emerging communities during 
the iterative splitting process (see text) are shown by thick arrows. For each split, the relative increment 
∆M
M  of modularity is indicated, where M is the final modularity after process completion. The four resulting 

communities are highlighted in the center of the diagram. Thin arrows indicate probabilities of transitions 
between regimes (red) as well as self transitions (blue). Additionally, for each community, the fraction of 
residence F (days) as well as its mean lifetime τ  (see Eq. 10) are indicated. (b) States of the system within 
the three leading KPCs color-coded according to their regime assignment showing points with assignment 
probability (see Eq. 12) greater than 0.9 (left panel) and points belonging to 20% of the most stable hidden 
states, see Sec. 2.2, (right panel).
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negative NAO phase, which prevents moist and warm Atlantic air masses from reaching Europe and contributes 
to cooling northern Eurasia. At the same time, the northwest Atlantic area, including Greenland and Labrador 
sea, are getting warmer than normal, in addition to warmer and wetter, than normal, Mediterranean. In the 
circulation pattern 4, anticyclonic anomalies are shifted eastward, centered over the Barents sea. This pattern 
contributes to cooling northern Siberia, but also warms the Eurasian basin of the Arctic Ocean.

Transition probabilities, lifetimes and pattern diversity
Another, yet important characteristic feature of the identified patterns is their lifetime and transitions. The 
transition probabilities between the regimes, i.e. the reduced matrix calculated via Eq. 12 with L = 7 is

	

QL ≈




0.52 0.17 0.17 0.18
0.26 0.51 0.1 0.06
0.13 0.12 0.51 0.23
0.09 0.2 0.22 0.53


� (19)

Several points can be inferred from the above transition matrix. First and foremost we can derive the probability 
distribution of the likelihood of the transition to the next circulation regime. These distributions are clearly 
different from the uniform PDF, as it is seen from Fig. 2 (thin arrows). Circulation regimes 3 and 4, for example, 
are more likely to interact with each other than with the remaining regimes. Both these circulation patterns 
concern similar blocking structures in the Euro-Atlantic region, and during the coldest Eurasian winters they 
often alternate in time (see the Supplementary Animation S1 Video). The next likely transition, from these two 
patterns, is toward circulation pattern 1, which, in turn, prefers to resolve into regime 2. However, the preferred 
path from the latter is regime 4, although the probability of switching to regime 1 is also high. These transitions 
lead to a preferred loop of circulation regime dynamics, namely, r1 → (r2 ↔ r1) → (r4 ↔ r3) → r1.

The probabilities of self transitions, given by the diagonal elements of the transition matrix, QL, Eq. 19, can 
be used to estimate a posteriori the distribution of regimes lifetime via Eq. 11. At the same time we can use the 
HMM to generate an ensemble of surrogate time series mimicking the observations. These surrogates can be 
used to derive various statistics, such as regime lifetime distribution, and can be used in hypothesis testing. Figure 
4 shows the obtained lifetime distribution compared to that from the observations for each of the circulation 
patterns. Overall the figure shows comparable values of the expected lifetimes of all circulation regimes, ranging 
from 7 to 8 days, though an anomalous maximum, of 25-30 days, can be noted in the observational distribution 
of circulation pattern 3. In the meantime, Fig. 4 also shows that such rare events fit well into the model statistics 
and cannot be rejected based on the quasi-geometric model distribution. We caution, however, that the available 
statistics are not sufficient to cover the tail of the observational distribution well because of the sample size, and 
there is no decisive evidence to suggest that regime 3 tends to live systematically longer than other regimes.

In addition, the time series of the regime probabilities P (Ak|Yt) (see Eq.  12) permits to estimate non-
Markovian predictability of a regime Ai by calculating the measure of convergence to stationary distribution 
starting from this regime at t = 0. This is the Kullback-Leibler (KL) divergence between probability distribution 
of regimes at time t given the regime Ai at t = 0, and stationary distribution π (see23). The result obtained for 
our four regimes shown in logarithmic scale reveals a sign of slower than Markov relaxation to the stationary 
distribution for Regimes 2 and 3 (see Fig. S10 in the Supplementary Material), indicating that these regimes, 
dominated by NAO, could be predicted on longer times than with one-step HMM.

To investigate the similarity of the atmospheric circulation within the patterns we show in Fig. 4 the relative 
variance of observations given a specific regime k:

	
Rk = Ωk − Ω

Ω
,� (20)

where Ωk =
⟨
Y2|Ak

⟩
− ⟨Y|Ak⟩2 is the variance of the k′th regime (the operator ⟨⟩ is defined as in Eq. 13), and 

Ω is the total sample variance of the observations. The quantity Rk  provides a measure of intra-regime variance. 
Overall, we see low intra-regime variance in areas of high values of anomaly composites for regimes 1, 2, and 4 
(shown in Fig. 2). But this is not the case for regime 3, which shows small variance in the Euro-Atlantic region, 

Fig. 3.  Composite of surface air temperature anomalies based on the resulting Z500 circulation regimes.
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while in the subtropics the variance significantly exceeds the total sample variance. This circulation regime 
projects onto −NAO for which the blocking high around Greenland is known by its high persistence24. But the 
subtropical low pressure system is not as persistent explaining the larger variance there. It is also possible that the 
weakening of the pressure gradient between the polar region and the midlatitudes yields unstable disturbances 
that can travel equatorward reaching the subtropics and modify the flow there (see Supplementary Animation 
S1 Video for the winter 2009-2010 with dominating regime 3). A similar situation occurs for regime 2 over the 
North Pacific, where the blocking high leads to increased variances further south.

Long-term dynamics of circulation regimes and teleconnection
One of the question of importance here is related to the characteristics and variability across scales of these 
patterns. Figure 5 shows the mean number of days per winter, i.e. regime frequencies, as in Eq. 14. The figure 
exhibits pronounced interannual (2–4 year) and decadal variability. Note that we attempted to assemble the time 
series into pairs based on the blocking action of the zonal flow in the Euro-Atlantic region resulting in either 
warm or cold winters over northern Eurasia (see Fig, 3). Although cross-regime correlations appear quite low 
on interannual timescales, we observe clear decadal correlations between the “warm” regimes 1 and 2 as well 
as the “cold” regimes 3 and 4. In particular, there is an approximate 10-year period of warmer than normal 
winters extending from the mid-80s to the mid-90s, a consequence of the abnormally high difference between 
the frequencies of “warm” and “cold” regimes. Opposite conditions arose in the 1960 s and early 2010s. Examples 
of atmospheric behavior in two winters with opposite anomalies in the Euro-Atlantic region are presented in the 
y Animations S1 Video and S2 Video, where it is shown that 2009-2010 and 1991-1992 winters are dominated 
by regimes 3 and 1, respectively.

Detailed analysis of whether this dynamical behavior can be attributed to decadal climate modes such as, 
e.g., Pacific decadal oscillation (PDO), or whether it is a manifestation of internal atmospheric variability known 
to be a characteristic feature of mid-latitudes, goes beyond the present paper, and is subject of further research. 
Here we only report significant correlations of regime frequency with El-Niño Southern Oscillation (ENSO) 
represented by the Niño 3.4 index25 and PDO index26. We also leave beyond the scope of this article a detailed 
numerical analysis of directional (causal) relationships between processes, similar to the one that was performed, 
for example, in the recent work27 for climate indices.

ENSO is one of the dominant modes of climate variability bringing about a complex network of teleconnections 
worldwide28,29. The Niño 3.4 index defined as mean sea surface temperature in the central tropical pacific region 
(5S-5N and 170-120W) is widely used for ENSO monitoring and forecast30. Correlation analyses between the 
Niño 3.4 index and regime frequency produce small but significant correlations with regimes 1,2 and 4 (see 
Fig. 5 and 6). Positive correlation with regime 1 is likely due to the influence of ENSO on the positive PNA-like 
anomaly31 in the North Pacific (see Fig. 2). Interestingly, there is a lagged influence of regime 2 on ENSO, but 

Fig. 4.  Properties of the regimes. Top panel: distributions of regime lifetimes. Blue bars represent 
observational distribution, i.e. interval statistics of sequences of observations assigned to the regime with 
probability more than 0.95. Orange shade shows 95% confidence interval of an ensemble of 10,000 realizations 
generated by the HMM. Geometric distribution Eq. 11 with a parameter q equal to the probability of a regime 
to transit into itself for a one-day interval (i.e. the diagonal element of the one-day reduced transition matrix), 
as well as its mean, are indicated by dashed and dash-dotted line, respectively. Bottom panel: relative Z500 
variance anomalies within a regime with respect to the sample variances (see Eq. 20).
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with no significant contemporaneous correlation. This indicates that negative PNA, which projects onto regime 
2, impacts North Pacific Oscillation mode in the following months making it favorable for developing El-Niño in 
the following season, see, e.g.32,33. Note that directed nonlinear influence of PNA and AO on ENSO was detected 
in27. Finally, there is a negative correlation between winter Niño 3.4 and circulation regime 4. Because this 
regime is dominated by high pressure anomaly over north/eastern Europe, its association with the culminating 
ENSO phase suggests an influence of the latter on weather in the Euro-Atlantic region.

The PDO, a dipole of SST pattern in the North Pacific, is driven by internal feedbacks from the complex 
interaction of coupled ocean-atmosphere system and by tropical/extratropical forcing. This results in a wide 
spectrum of PDO including interannual, decadal, and longer timescales. In an attempt to scrutinize the relation 

Fig. 5.  Interannual fluctuation of regime frequency and link to large-scale teleconnection. Top row: Frequency 
of the number of days in each regime during winter, see Eq. 14. Second row: Regimes 2 and 4 frequency and 
ENSO showing the Niño 3.4 index with 1-yr lag (left) and (opposite) Niño 3.4 (right). Third row: Regimes 2 
and 3 frequency and detrended PDO index filtered using the first three IMFs. Fourth row: Regimes 2 and 3 
frequency and smoothed PDO index by removing the first (short time-scale) IMF. When plotted together with 
regime 2 frequency, the PDO index is multiplied by −1. Correlation coefficients of the regime frequency with 
the (non-inverted) indices are also indicated. The year in the x-axis refers to that of January.
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to teleconnections we filter out high-frequency variability and compare the obtained time series. We use 
Empirical Mode Decomposition (EMD)34 – a powerful data-driven approach for extracting dominant intrinsic 
modes/components ranked by their characteristic timescales, referred to as Intrinsic Mode Functions (IMFs). 
These IMFs provide a consistent smoothing tool by discarding for example the fastest modes or by removing 
long-term trends. We identified highly significant correlations of the PDO index with regimes 2 and 3 frequency 
both in the short time-scale band, dominated by 1-10 year periods, and in the intermediate, 10-20 year, band 
(see Fig. 5). The highest correlation, around −0.4, is reached with the short time-scale component of the PDO 
index and regime 2 frequency time series, both represented by IMFs 1–3. This reflects a significant impact of 
PDO-induced SST anomalies in the eastern North Pacific on the mass field and geopotential height anomalies 
where regime 2 is pronounced. A significant positive, but lower, correlation is obtained with regime 3 frequency. 
For the intermediate time scale, we consider a smoothed PDO index by discarding the high-frequency IMF-1 
and smooth the regime frequency time series using IMFs 2–3. Figure 5 shows highly significant negative and 
positive correlation with regimes 2 and 3, respectively. Since regime 3 is largely dominated by the NAO pattern, 
the obtained correlation suggests interactions between North Pacific and North Atlantic climate variability on 
decadal time-scales. To highlight the effect of these timescales, Figure 6 shows the correlations between PDO 
index and regimes 2 and 3 frequency using IMFs 1–3. Unexpectedly high correlations are obtained with IMF-3 
of PDO and 1-year lag regimes frequency of the order −0.8 for regime 2 and 0.73 for regime 3. The substantial 
PDO influence on the low frequency variability of the NAO was also discussed in27. Correlations based on IMFs 
1 and 2 are also highly significant for regime 2 with values −0.38 and −0.43 respectively. It is worth noting that 
the time period from the 70’s to the 90’s, identified as a positive PDO epoch29,35, has the largest contribution to 
the obtained correlations.

Discussion
We present a novel methodology of data-driven detection of recurring atmospheric circulation patterns by 
considering these patterns as metastable communities of the nonlinear system dynamics. The nonlinear 
formulation of the problem effectively narrows the class of recurrent states of the atmospheric flow into 
circulation regimes. This is based on building a dynamic stochastic model of the system evolution operator, 
allowing one to determine areas in the state space of trajectory slowing down. Data-driven nonlinear modeling is 
known to be a challenging inverse problem, and nonlinear optimization is needed, see e.g.36,37. Here we adopt a 
simplified representation of the system via a finite-state Markov model whose complexity, or resolution, depends 
on the extent of observational statistics. The approach recasts the nonlinear dynamics of the original system into 
a linear operator on a set of probability distributions, and where metastability can be captured via stochastic 
matrix analytic methods.

The method uses HMM combined with nonlinear dimension reduction and community splitting based on 
graph theory. One of the main advantage of the method is that no prior assumptions about number of regimes 
are needed, as this number is recognized by the iterative division algorithm based on clear stopping condition. 

Fig. 6.  Leading three IMFs of PDO winter mean index (orange), regimes 2 (black) and regime 3 (blue) 
frequencies. The PDO IMFs time series in the middle and bottom left panels are multiplied by −1 (inverted) for 
convenience. Correlation coefficients of regime IMFs with corresponding PDO IMFs (non-inverted) are also 
indicated. In the bottom panels correlation of PDO IMF3 with 1-year lagged IMFs 3 of regimes 2 and 3 are also 
shown. The year in the x-axis refers to that of January.
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The number of microstates K is also chosen to be optimal relative to the data and is not predefined. Given the 
available sample size, a substantial part of our analysis is devoted to investigating the reliability of the results. 
First, each community splitting must pass a fairly stringent significance test before acceptance. Next, the degree 
L of the transition matrix, which determines the model resolution, is adjusted, and the range corresponding 
to stable results is selected. This contributed to results reliability and helped yield roughly coherent metastable 
structures of the system dynamics. The method has been successfully applied to a low-order chaotic model 
and a 3-level quasi-geostrophic model, which is a simplified low-complexity atmospheric model of midlatitude 
dynamics. The method is then applied to the NCEP/NCAR Z500 over the NH during winters 1950-2023. Four 
(nonlinear) circulations patterns are identified. These patterns partially project onto NAO and PNA. Lifetime 
and likely transitions between these metastable patterns are then identified.

One important question that arises often in discussions is related to the connection between these patterns 
and “standard” modes of atmospheric teleconnections emerging in atmospheric LFV. The typical patterns, 
such as NAO, PNA, and AO, etc., have historically been isolated empirically by studying regional dynamical 
processes and by their influence on weather systems, and then confirmed via linear correlation analysis38. 
However, from a global perspective, all these modes are manifestation of a more general evolution of the 
planetary-scale atmospheric circulation involving many nonlinear and complex processes, including lower 
boundary conditions, nonlinear wave-wave interaction, and complex forcing patterns. The dynamical feature 
of atmospheric circulation manifests itself partly in those linear modes, but the full picture needs a deeper 
investigation into the nonlinear structure of the system trajectory within its state space. The metastable regimes 
constitute the backbone elements of the dynamics of this global system and are of paramount importance for 
understanding the dynamics of all regionally significant large-scale processes, and helps toward extending the 
chaotic limits of predictability. In particular, in Sec. 3 we show that each of the obtained regimes contributes to 
those well-known teleconnections, and can provide suggestions for predictability of various atmospheric flows. 
The presented method allows to extract areas of metastability, but also gives a consistent probabilistic assessment 
of their evolution via the transition matrix.

The method presented here can provide potential for subseasonal-to-seasonal (S2S) prediction. One pivotal 
direction of the method extension consists in adopting it for long-term regime prediction, including inter-
seasonal forecasting. This requires a model that evolves continuously across the year involving the interaction 
between the circulation regimes and the annual cycle. Moreover, the model should be able to take into account 
the response of the system to forcings of different nature like CO2 trend or long-period climate modes like 
ENSO and PDO. In its current version the method deals with the autonomous HMM regarding the hidden 
states and Markov operator. As a result, the metastable communities of states associated with regimes are defined 
for the whole dataset despite of its long-scale components (which certainly remain even after removing the 
additive trend/annual component). However, the method allows us to study such components by considering 
the time series of occupation probabilities of the observations in different hidden states. Such probability vectors 
are the new (transformed) dynamical variables, which store the information about the non-stationarity of the 
process. For example, using these variables, we can construct and study the time series of regime frequencies, 
which contain long-period components associated with decadal processes, as is shown in Sec. 3.4 and Figs. 5-
6. Further enhancement of the approach could incorporate an external long-period signals directly in the 
HMM (see e.g.39). To expand the current stationary HMM, our future model extension will include forcing by 
nonstationary teleconnection and includes the annual variability.

Data availability
The analyzed NCEP/NCAR data of 500-hPa geopotential heights and surface atmosphere temperatures are open 
to the public. Niño 3.4 and PDO time series are provided by the NOAA Physical Sciences Laboratory, Boulder, 
Colorado, USA, from their website at https://psl.noaa.gov/. The package of Python programs developed by the 
authors that implements the described technique for identifying regimes is available here.
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