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Forest carbon sink potential assessment in arid regions remains a critical challenge for climate change 
mitigation. This study integrates multi-source remote sensing and forest inventory data to model 
Xinjiang’s forest age and carbon density (2019 baseline: 186.76 Mg/hm2 biomass, 93.38 Mg/hm2 
carbon density, 46-year average age), revealing a south-to-north “low-high-low” spatial pattern. Using 
predictive models excluding anthropogenic and natural disturbances, we project forest carbon stock 
to reach 203.71 ± 2.31 Tg C by 2030 and 283.08 ± 4.23 Tg C by 2060, with declining carbon sink rates 
(3.67 ± 0.57 Tg C/a in 2019–2030 vs. 2.65 ± 0.56 Tg C/a in 2031–2060). Notably, Xinjiang’s forests could 
offset 14.6% and 9.5% of regional CO2 emissions during these periods. Economic cost analysis via panel 
fixed benefit modeling identifies afforestation suitability in Northeast Xinjiang, while conservation 
measures are prioritized elsewhere, particularly in high-elevation ridge zones. This research provides a 
methodological framework for arid region carbon sink enhancement and informs region-specific forest 
management strategies under climate change.

Keywords  Forest tree height in xinjiang, Predictive modelling, Carbon sink potential, Carbon stock, Impact 
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As the primary carbon storage system in terrestrial ecosystems, forests have become a hotspot and a challenge 
for current research based on accurate estimation and prediction of forest carbon stock and then realising the 
enhancement of carbon sinks1,2. Some scholars have used the forest stock conversion method to estimate forest 
biomass, carbon stock and carbon sequestration potential in China and provinces based on the data from the 
national continuous forest inventory3. Although the method is highly accurate, it is difficult to obtain data and 
lacks spatial continuity. Currently, LiDAR data and multi-source remote sensing techniques are extensively 
employed to estimate and predict forest stock, biomass, and carbon reserves at the stand scale and regional 
scale3,4. However, due to the complexity of forest structure, remote sensing data are limited by issues such as 
spatial and temporal resolution and mixed pixels5resulting in great uncertainty in the accuracy of carbon stock 
estimation results. Therefore, the estimation of forest carbon stock by integrating forest survey data and remote 
sensing data has great potential.

Some studies have shown that appropriately increasing forest harvesting may increase carbon sequestration, 
but there are tree species and regional variability in the spatial distribution of its harvestability and the time 
point of forest age6. Forestry carbon sink projects have synergistic benefits such as mitigating climate change, 
promoting economic growth and improving air quality, and can maximise forest carbon sequestration potential 
through optimal management3. Forest carbon sequestration is crucial for carbon emission reduction in China, 
but existing studies still do not adequately consider the costs of different forest management measures7. Therefore, 
in-depth studies on forest management strategies are needed to maximise the potential of forest management 
practices for carbon sequestration.

Xinjiang is located in a typical arid region with a fragile ecological environment. Although the forest area 
in Xinjiang is not large relative to the eastern part of China, it plays a key role in maintaining the ecological 
security of the entire arid zone ecosystem. In recent years, some studies on forest carbon cycle in Xinjiang have 
been conducted8. However, previous studies on the estimation and prediction of forest carbon stock in Xinjiang 
have mainly focused on individual tree species in the Altai Mountains, Tien Shan Mountains, and the Tahe River 

1School of Geographic Science and Tourism, Xinjiang Normal University, Ürümqi, China. 2Xinjiang Laboratory of 
Lake Environment and Resources in the Arid Zone, Ürümqi, China. 3Zhizhong Chen and Mei Zan contributed equally 
to this work. email: 107622007010058@xjnu.edu.cn

OPEN

Scientific Reports |        (2025) 15:29774 1| https://doi.org/10.1038/s41598-025-14714-5

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-14714-5&domain=pdf&date_stamp=2025-8-13


Basin, and all of them have used sample plots to obtain data such as diameter at breast height (DBH) forcarbon 
stock estimation8,9. So far there are limitations in the research on the prediction of total forest carbon stock and 
carbon sink enhancement methods in Xinjiang, especially the lack of accurate quantitative evaluation of the 
actual contribution of forest carbon sink enhancement management measures in Xinjiang7,10. Therefore, it is of 
practical significance to carry out carbon stock prediction and carbon sink potential enhancement research on 
Xinjiang forests by combining remote sensing data and forest inventory data, and it is also crucial to formulate 
effective regional forest management and conservation strategies on this basis.

In this study, forest age and carbon density estimation models of Xinjiang forests were established by 
integrating forest inventory data and tree height data obtained by LiDAR. The carbon stock and sink rate of 
Xinjiang’s forests in 2030 and 2060 were predicted with the exclusion of anthropogenic and natural disturbances. 
To enhance the carbon sink capacity of Xinjiang’s forests, a panel fixed-effects model was applied to estimate the 
economic costs of afforestation and conservation in five regions of Xinjiang by integrating multi-source remote 
sensing data and panel data. For regions with low conservation costs, logging should take into account the 
climatic period and growth inflection point, while for regions requiring afforestation, the growth environment 
of different forest types should be taken into account, so as to select forest types with a longer climatic period 
and a better ability to adapt to the climate for planting. This study is of great theoretical and practical value for 
understanding the dynamics of forest ecosystems in Xinjiang, and for formulating effective strategies for forest 
management and carbon sink growth.

Materials and methods
Study area
Xinjiang is located in the centre of the Eurasian continent, and as a unique geographical and ecological region 
in western China, its forest ecosystems play an important role in the global and regional carbon cycle11. Forests 
in the region not only help to absorb atmospheric carbon dioxide and mitigate the greenhouse effect, but are 
also important for maintaining regional biodiversity and ecological balance11,12. By predicting and studying 
the carbon sink potential of Xinjiang’s forests, we can better understand the performance of the region’s forest 
ecosystems and their contribution to the carbon cycle under current and future climate change scenarios. Despite 
its small forest area, it plays a crucial role in carbon sequestration12,13. This land is sparsely populated with little 
precipitation, showing a typical arid climate. According to statistics, the forest area in Xinjiang is only 8 × 1010 m2 
(see Fig. 1), which mainly consists of 4 major parts: natural forests in mountainous areas, oasis protection forests, 
economic forests, and natural desert river valley forests13.

In this study, to explore the economic benefits of forest management measures in Xinjiang, Xinjiang was 
divided into Northwest (including the city of Karamay, Bortala Mongol Autonomous Prefecture, Ili, Tacheng 

Fig. 1.  Overview of Study Area Location (this figure is generated in ArcGIS10.8 software, ​h​t​t​p​:​/​/​w​w​w​.​e​s​r​i​.​c​o​m​
/​s​o​f​t​w​a​r​e​/​a​r​c​g​i​s​​​​​)​.​​​​

 

Scientific Reports |        (2025) 15:29774 2| https://doi.org/10.1038/s41598-025-14714-5

www.nature.com/scientificreports/

http://www.esri.com/software/arcgis
http://www.esri.com/software/arcgis
http://www.nature.com/scientificreports


and Altay regions, NW), Central (including the cities of Urumqi and Changji, C), Northeast (including the cities 
of Turpan and Hami regions, NE), and Southwest (including the regions of Aksu, Kizilsu Kirghiz Autonomous 
Prefecture and Kashgar, SW), Southeast (including Hotan and Bayinbuluk regions, SE) in five regions.

The four main forest types in Xinjiang include ENF, DNF, DBF, and MF. Among them, evergreen coniferous 
forests, with Picea schrenkiana as the dominant species, are distributed on the north and south slopes of NW 
and C, with slow growth and high density of trees; Deciduous coniferous forests with Siberian larch (Larix 
sibiricaLedeb) as the dominant species, distributed in the NW, rapid growth and adaptability; DBF with poplar 
(Populus euphratica Oliv) as the dominant species, distributed in the Tarim River Basin, rapid growth and the 
average age of the tree is relatively small; mixed coniferous and broad-leaved forests with Siberian spruce (Abies 
sibirica Ledeb) and European poplar (PopulusL.) mixed dominant, concentrated in the south slope of SE and the 
southeastern part of the SW, mostly sparse and short, mostly sparse and short1,14. Obovate mixed with European 
poplar (PopulusL), concentrated in the south slope of SE and the southeastern SW, mostly sparse and small3,15.

Data acquisition and processing
As shown in Table 1, the remote sensing data used in this study include: 2019 global forest tree height data at 
30  m spatial resolution, vegetation phenology period length, vector map of the administrative boundary of 
Xinjiang, land use data, 1,201 sample plots data from the 2011 forest inventory, forest type data from the Type 
II survey, Net Primary Productivity (NPP) data, DEM data, meteorological data (monthly scale air temperature, 
precipitation ), Net Primary Productivity (NPP), atmospheric CO2 concentration and CO2 emission data. In 
this study, the remote sensing data were processed with uniform projection and spatial resolution. Firstly, all 
remote sensing data projections were unified as WGS_1984_UTM_Zone_45N using ArcGIS 10.8 software, and 
the remote sensing data were cropped according to the vector map of the administrative boundary of Xinjiang 
in order to obtain the remote sensing data in the Xinjiang range. Subsequently, the tree height, class II forest 
type data, net primary productivity (NPP) data, atmospheric CO2 concentration and CO2 emission data were 
interpolated to a resolution of 500 m in space. The data were then used as the basis of the spatial resolution. 
Finally, considering the influencing factors such as temperature, precipitation, vegetation phenological period 
length and standardised precipitation evapotranspiration index (SPEI), they were uniformly adjusted to a spatial 
resolution of 0.05° by the resampling method.

Panel data include: gross domestic product (GDP), regional population, afforestation area, forest conservation 
area and forestry fixed asset investment. And the data related to social economy. In this study, the investment in 
forestry fixed assets is represented by its accumulated value of ‘investment in forestry fixed assets’. Specifically, 
this investment is inflation-adjusted using the fixed asset investment price index, with 2001 as the base year.

Research methodology
Methods for estimating forest biomass and forest age
Forest biomass is the aboveground biomass of the forest, including the biomass of stem, branches, leaves, roots, 
flowers and fruits. Forest age generally refers to the average age of a forest stand12and in this study, it refers to 
the average age of all forests within a forest image element. Studies indicate a good statistical relationship linking 
tree height, diameter at breast height, and forest biomass16. The power function model was found to be more 
suitable to simulate the relationship among tree height, diameter at breast height and forest biomass in Xinjiang 
forest by comparison and analysis by previous authors14. In this study, the sample tree heights of 1–56 m were 
selected based on the range of RMS values of NNGI tree height raster data, and the Xinjiang forest survey data 
(835) of sample biomass and stand age were randomly selected using forest types, and then the biomass and 

Data Unit Time scale Precision Data sources

Tree height m 2019 30 m https://3decology.org/dataset-software/

Forest inventory sample plot data 2011 Forest inventorydata

Forest type data for Type II surveys 2011 Forest inventory data

Temperature ℃ 2001–2019 0.5° http://gre.geodata.cn

Precipitation mm 2001–2019 0.5° http://gre.geodata.cn

Climatic period length doy 2001–2019 500 m

SPEI 2001–2019 0.05° https://digital.csic.es/handle/10261/268088

NPP g/m2/yr 2001–2019 500 m https://ladsweb.modaps.eosdis.nasa.gov/

CO2 Concentration ppm 2001–2019 2° http://www.gis5g.com/data/qxsj?id=490

CO2 emissions Mt 2001–2019 1° https://db.cger.nies.go.jp/dataset/ODIAC/

Land use 1996–2019 30 m https://zenodo.org/records/4417810

DEM m 90 m https://www.resdc.cn/Default.aspx

GDP million 2001–2019 China Statistical Yearbook

Population million 2001–2019 China Statistical Yearbook

Afforestation area Hectares 1996–2019 China Forestry Statistical Yearbook

Nurtured area hectares 1996–2019 China Forestry Statistical Yearbook

Forestry fixed investment million 1996–2019 China Forestry Statistical Yearbook

Table 1.  Research dataset.
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stand age estimation models of four forest types in Xinjiang established by Zhang were optimised using Matlab’s 
fitnlm function16. This paper developed a high-accuracy estimation model applicable to the biomass and age of 
Xinjiang’s four forest types. Using this model, the study evaluated the region’s forest biomass, carbon density, 
and age, producing corresponding spatial distribution data. According to the optimised model, forest biomass 
multiplied by 0.5 (including carbon factor) was used to estimate forest carbon stock in Xinjiang, and carbon 
stock per unit area was carbon density15. In this paper, on the basis of previous studies, the logistic model that 
passed the significant correlation test was selected as the optimal model, and then the model of carbon density 
and forest age was constructed as follows:

	 D = a1Ha2 � (1)

	 B = a3 · HbDc� (2)

	 Cρ = 0.5 · B� (3)

	 A = b1/ (1 + exp (−b2 · (Cρ − b3)))� (4)

Where: D is the average forest diameter at breast height; H is the average forest height; B is the forest biomass, 
Mg/hm2; Cρ is the forest carbon density, Mg/hm2; a1, a2, a3,b, and c are the relevant parameters, A is the age of 
the forest, in years; B is the forest biomass, in Mg/hm2; and b1, b2, and b3 are the parameters related to the forest 
type.

Carbon sink rate estimation method
Carbon sink rate indicates the amount of change in carbon stock at a location during a certain period of time 
(relative to the amount of change in carbon stock in the base year), and the size of its value can indicate the 
speed of carbon sink17and in this paper, we take 2019 as the base year for calculating the carbon sink rate, and 
the specific formulas are as follows:

	 △C = (Ct2 − Ct1 )/(t2 − t1)� (5)

Where ∆C is the carbon sink rate (Tg C yr−1), Ct2  and Ct1 are the carbon stock (Tg C) in t2 and t1, respectively, 
and t1 (year) and t2 (year) are different periods.

Partial correlation analysis
In the correlation analysis of forest carbon stock to climate factors (temperature, precipitation and SPEI) and 
vegetation phenology in this study, mean annual temperature, mean annual precipitation and SPEI-12, and the 
length of vegetation phenology period were selected as the influencing factors18. For the bias correlation analyses 
between phenology and climate factors, forest carbon stock and impact factors, other factors were excluded and 
bias correlation coefficients were calculated as follows:

	 Ry,x,z.w = (Ry,x.z − Ry,w.zRx,w.z))/
(
1 − R2

y,w.z

) (
1 − R2

x,w.z

)
� (6)

where Ry, x,z.w represents the partial correlation between variables x and y, controlling for the effects of variables 
z and w. Ry, x.z represents the partial correlation between variables x and y, controlling for the effect of variable z. 
Ry, w.z represents the partial correlation between variables y and w, controlling for the effect of variable z. Rx, w.z 
represents the partial correlation between variables x and w, controlling for the effect of variable z.

Precision evaluation
The parameters and applicability of the models were analysed and validated using four assessment metrics: 
coefficient of determination (r2, variance (S2, mean absolute error (MAE) and root mean square error (RMSE). 
When P > 0.05 indicates that there is no significant difference in the model, P < 0.05 indicates that there is a 
significant difference, and P < 0.01 indicates that there is a highly significant difference19. The specific formula 
is as follows:

	
r2 = 1 −

(
n∑

i=1

(Xobs,i − Xmodel,i)2 /

n∑
i=1

(
Xobs,i − Xobs,i

)2

)
� (7)

	
S2 =

n∑
i=1

(
Xi − X̄

)2
/ (n − 1)� (8)

	
MAE = 1

n
·

n∑
i=1

|Xobs,i − Xmodel,i|� (9)

	

RMSE =

√√√√
n∑

i=1

(Xobs,i − Xmodel,i)2/n� (10)
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where n denotes the number of samples, Xi denotes the sample value in year i, and X̄  represents the sample 
mean in year n. Xobs, i and Xmodel, i represent the measured and modelled estimates in year i, respectively. Xobs,i 
observation estimates the mean value in year i.

Carbon sequestration estimation in forest vegetation
Vegetation absorbs carbon dioxide from the atmosphere, produces organic substances such as glucose through 
photosynthesis, and releases oxygen. The chemical reaction can be expressed as: 6CO2 + 6H2O → C6H12O6 + 6O2, 
which means that 1.62 g of carbon dioxide are fixed per gram of dry matter formed by vegetation. Vegetation 
NPP indicates the amount of dry organic matter generated by green plants per unit area20,21net of autotrophic 
respiration2021. Moreover, approximately 45% of the total NPP is carbon content in the dry matter. The following 
equation is used to determine vegetation carbon sequestration.:

	 CS = (NP P/0.45) × 1.62� (11)

where CS denotes the carbon captured by vegetation (g C/m2) and NPP is the carbon content in the dry matter 
of vegetation (g C/m2)21. To obtain the amount of vegetation carbon sequestration in forests, we obtained 
forest land data from Chinese land use records. Then, we obtained the NPP on forest land by employing the 
raster calculation tool in ArcGIS 10.8. Finally, based on the area of forest land, we determined the total carbon 
sequestration of forest vegetation.

	 CSF = (CS × S) /1012� (12)

where CSF denotes the carbon sequestered by forest vegetation (Tg C, 1 Tg C = 1012 g C) and S represents the 
forest area (m2).

Construction of panel fixed effects models
The panel fixed effects model was used in this study for two reasons. Firstly, it addresses the issue of biased 
coefficient estimates from omitted variables and allows for an accurate estimation of the marginal contributions 
of afforestation and conservation to carbon sequestration in forest vegetation. Second, regional dummy variables 
can be introduced to improve estimation robustness and reduce inefficiency caused by subsample regression21,22. 
Considering that afforestation and forest conservation have lagged effects on vegetation carbon sequestration, 
this study also examined the delayed effects of afforestation and forest conservation on CSF. In particular, we 
combined afforestation and forest conservation with different lags while keeping other variables under control 
and compared the significance of their marginal contributions to CSF. Therefore, in this study, we used Eviews 
12 software to construct a fixed-benefit model for the paneldata of Xinjiang prefecture-level cities from 1996 to 
2019.

	

CSFit = β1afforit + β2tendit + a1GDPit

+ a2popuit + a3fixinit + a4tmpit

+ a5preit + µi + δit

� (13)

In Eq.  (13), CSF represents the carbon sequestration of forest vegetation, affor represents afforestation, and 
tend represents forest conservation. In addition, fixin represents the investment in forestry fixed assets, GDP 
represents the gross domestic product of each prefecture-level city in Xinjiang, popu denotes the population size 
of each prefecture-level city in Xinjiang, tmp is the average annual temperature, and pre is the average annual 
precipitation. Moreover, β1 is the marginal contribution of afforestation efforts in forests, β2 is the marginal 
contribution of forest conservation measures, α is the parameter of the variable, i represents prefectural cities, t 
is the year, and µ is the fixed effect, which δ is the error term.

Costing of carbon sequestration by vegetation
In this study, the cost of vegetation carbon sequestration for afforestation and conservation was calculated 
separately, taking into account the economic value of carbon sinks and the link between capital investment and 
carbon sequestration per unit area, as demonstrated in the Eq. (14)21,23:

	 ckj = Ikj/
(
βk × 106)

� (14)

In Eq. (14), c denotes the cost of carbon sequestration by vegetation (US$/t, 1t = 106g), I denotes the capital cost 
per unit area (US$/104 ha), and β denotes the marginal effect of the forest measure to CSF (Eq. 13; Tg C/104 ha). 
Here, k denotes the forest measure and is a binary variable, 1 denotes afforestation, 2 denotes forest conservation, 
and j denotes area.

Results and analyses
Estimation of forest age and carbon density in Xinjiang
Forest biomass estimation
In this paper, the optimal estimation models and parameters of diameter at breast height (DBH) and biomass 
were obtained for evergreen coniferous forest (ENF), deciduous coniferous forest (DNF), deciduous broadleaf 
forest (DBF) and mixed coniferous-broadleaf forest (MF) in Xinjiang. As shown in Tables 2 and 3 (n is the 
number of sample plots/number), the optimal estimation models screened had r2 greater than 0.785 and 
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P = 0.000, and the RMSE ranged from 1.873–3.165 (Table 2) to 12.204–19.459 (Table 3), respectively, and all 
passed the significance test.

Modelling the estimation of forest carbon density and stand age
In this study, the optimal growth models and parameters of forest age and carbon density for four forest types in 
Xinjiang were obtained (Table 4), and the r2 of the models were all greater than 0.864, P = 0.000 (n denotes the 
number of sample plots/number), and the RMSE ranged from 6.53 to 14.1, which passed the significance test. 
The trends of carbon density changes with forest age for the four forest types in Xinjiang are shown in Fig. 2. It 
can be seen that with the increase of forest age, the carbon density of all four forest types gradually increased, 
and when the forest age is close to the mature forest, the carbon density gradually tends to stabilise. From the 
time taken for the carbon density of the four forest types to stabilise and the size of the carbon density after 
stabilisation, it can be seen that evergreen coniferous forests grow relatively fast, while mixed coniferous forests 
and deciduous broad-leaved forests, despite their adaptability to the environment, grow mainly in the vicinity of 
the more arid Tarim Basin, which in turn grows relatively slowly.

Characteristics of the spatial distribution of forest carbon age and stocks
As can be seen from Fig. 3, the average age of the four forest types in Xinjiang in 2019 estimated by this paper 
is 46 years. According to the division of forest age groups in the Technical Provisions for Continuous Inventory 
of National Forest Resources, most of the forests with an age of 34–71 years obtained in this paper belong to 
middle-aged forests, which are mainly distributed in the northern slopes of the SW and NW,accounting for 
about 72% of the total area of forests in Xinjiang, and the overall presentation of the age of the forests in the 
west is higher than that of the forests in the east, among which the age of the evergreen coniferous forests is 
The age of evergreen coniferous forests is generally higher. The average age of evergreen coniferous forests and 
deciduous coniferous forests is 73 years and 55 years respectively. The average age of deciduous broad-leaved 
forests is 39 years, and most of them belong to recent mature forests according to forest groups, dominated by 
poplar, elm and willow, mainly distributed on both sides of the Tarim River. The average age of mixed coniferous 
and broad-leaved forests is 62 years, and most of them belong to recent mature forests, with a smaller area and 
mainly distributed in the NW and SW.

On the basis of estimating the spatial distribution map of forest biomass in Xinjiang in 2019, we calculated 
and obtained the spatial distribution map of forest carbon density in Xinjiang from Fig. 3, we can see that the 
average carbon density of the four forest types in Xinjiang in 2019 was 93.38 Mg/hm2. Among them, the carbon 
density of 50–118 Mg/hm2 of the forest area is 1.51 × 1010 m2, accounting for about 84% of the total forest area 
in Xinjiang. The average carbon densities of evergreen coniferous forests and deciduous coniferous forests were 

Forest type Model

Parameters

n r2 RMSE Pb1 b2 b3

ENF

Formula 4

195 ± 4.6238 0.0487 ± 0.0032 40.653 ± 1.2098 170 0.864 13.9 0

DNF 184.4900 ± 4.0731 0.0539 ± 0.0031 52.133 ± 1.3342 236 0.866 14.1 0

DBF 93.2290 ± 1.7532 0.1122 ± 0.0045 35.801 ± 0.4197 252 0.905 6.53 0

MF 145.68 ± 1.6844 0.0479 ± 0.0025 51.281 ± 1.1313 177 0.887 11.7 0

Table 4.  Fitting parameters for forest age and carbon Density.

 

Forest type Model

Parameters

r2 n RMSE Pa3 b c

ENF

Formula 2

13.3112 ± 1.9457 0.3481 ± 0.0931 0.6058 ± 0.0538 0.938 170 18.674 0.000

DNF 0.2668 ± 0.0482 0.6128 ± 0.0961 1.4012 ± 0.0703 0.941 236 18.713 0.000

DBF 17.6583 ± 0.7787 0.5424 ± 0.0485 0.3048 ± 0.0348 0.917 252 12.204 0.000

MF 1.1003 ± 0.1091 0.9889 ± 0.07867 2.5953 ± 0.0864 0.957 177 19.459 0.000

Table 3.  Parameters of the forest biomass Estimation model for Xinjiang.

 

Forest type Model

Parameters

r2 n RMSE Pa1 a2

ENF

Formula 1

0.3439 1.3341 0.928 170 2.602 0.000

DNF 0.7644 1.1865 0.957 236 2.444 0.000

DBF 1.9581 0.9842 0.785 252 3.165 0.000

MF 1.9381 0.8634 0.905 177 1.873 0.000

Table 2.  Parameters of diameter at breast height Estimation models for Xinjiang Forests.
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98.20 Mg/hm2 and 97.99 Mg/hm2, respectively, and the average carbon densities of deciduous broad-leaved 
forests and mixed coniferous forests were 50.31 Mg/hm2 and 88.32 Mg/hm2, respectively. The spatial distribution 
of forest carbon density in Xinjiang was uneven, similar to the spatial distribution characteristics of forest age.

From Figs. 3, it can be seen that forest biomass and carbon stock in Xinjiang are similar in spatial distribution, 
which is specifically reflected in the low-to-high distribution characteristics from south to north, and the 
average biomass and average carbon stock of the four forest types in Xinjiang in 2019 were 186.76 Mg/hm2 and 
166.40 Tg C, respectively. among them, the carbon density of 100–236 Mg/hm2, the forest area was 1.51 × 1010 
m2, accounting for about 84% of the total forest area in Xinjiang. The average carbon densities of evergreen 
coniferous forests and deciduous coniferous forests were 196.40 Mg-hm-2 and 195.98 Mg/hm2, respectively, and 
the average carbon densities of deciduous broad-leaved forests and mixed coniferous forests were 100.62 Mg/
hm2 and 166.64 Mg/hm2.

Forecasting and challenges of forest carbon stock and sink rates in Xinjiang
Under the scenarios of excluding anthropogenic and natural disturbances, assuming that the future forest 
area in the study area remains unchanged and the forest age grows normally, based on the spatial distribution 
map of forest age in Xinjiang and the growth model of forest age and carbon density of the four forest types, 
the carbon density of the study area was predicted to obtain the carbon density in 2030 and 2060, and then 
the carbon density was calculated into the carbon stock and the rate of carbon sinks (Table 5). As shown in 
Table 5, the carbon stock of Xinjiang forests in 2030 and 2060 were (203.71 ± 2.31) Tg C and (283.08 ± 4.23) Tg 
C, respectively, and the carbon stock of different forest types in 2030 and 2060 were ENF > DNF > DBF > MF. 
Compared with 2030, the carbon sink rates of ENF, DNF, DBF and MF in 2060 decreased by 0.58 ± 0.13 Tg C 
a−1, 0.21 ± 0.03 Tg C a−1 0.20 ± 0.03 Tg C a− 1, 0.04 ± 0.01 Tg C a−1. In conclusion, the above results indicate that 
Xinjiang forests have a large potential for carbon sequestration in the future, but the decline in the rate of carbon 
sinks in Xinjiang forests after 2030 adds uncertainty to the future carbon sinks in Xinjiang forests.

Based on the data of carbon dioxide concentration and carbon dioxide emission in Xinjiang from 2001 to 
2020, the time series plot of carbon dioxide concentration and carbon dioxide emission data from 2021 to 2060 
was estimated using trend regression analysis. As shown in Fig. 4, the CO2 concentration in Xinjiang from 2001 
to 2020 shows a continuous linear growth trend, while the CO2 emission also exhibits a fluctuating upward 
trend. Xinjiang forests can absorb 14.6% and 9.5% of CO2 emissions in 2019–2030 and 2031–2060. The RMSE of 
CO2 concentration and CO2 emissions were 18.225 ppm and 271.449 Mt, respectively. The slowdown in the rate 
of carbon sinks in Xinjiang’s forests poses a significant challenge to achieving the 2060 carbon neutrality target 
under the natural scenario.

Relationship between forest growth inflection points and carbon stock
As shown in Fig. 5, the growth curves of the four forest types in Xinjiang all show an ‘S’ shape, which indicates 
that the curves grow slowly at the initial stage, then accelerate and eventually stabilise. Specifically, DBF reached 
the growth inflection point at the earliest, i.e., the forest age was 63 years, and the growth rate of carbon density 
after reaching the growth inflection point was 0.02 Mg/hm2/yr, which was 84% lower than that before reaching 
the growth inflection point. The growth inflection point of MF was reached in 112 years, and the carbon density 
growth rate after reaching the growth inflection point was 0.08 Mg/hm2/yr, which was 93% lower than that 
before reaching the growth inflection point. the growth inflection points of ENF and DNF corresponded to 
similar stand ages, 97 and 100 years, respectively. 0.12 Mg/hm2/yr, which were 94% and 93% lower than the 
growth rates before reaching the growth inflection point, respectively. The carbon density growth rates of ENF, 

Fig. 2.  Changes in Forest Carbon Density with Forest Age in Xinjiang in 2019 (this figure is generated in 
EXCEL software, ​h​t​t​p​s​:​​/​/​w​w​w​.​​m​i​c​r​o​s​​o​f​t​.​c​o​​m​/​e​n​-​​u​s​/​m​i​c​​r​o​s​o​f​t​​-​3​6​5​/​e​​x​c​e​l).
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DNF, DBF and MF were 1.75, 1.73, 1.41 and 1.21 Mg/hm2/yr, respectively, before reaching the growth inflection 
point.

After 2030, the carbon sink rate of Xinjiang’s forests began to show a decreasing trend. In this study, combining 
the forest growth curve and selecting two time points, 2030 and 2050, forests whose age exceeds the inflection 
point of forest growth are defined as deforestation targets. As seen in Table 6; Fig. 6, the carbon sink rate of the 
four forest types is significantly enhanced when considering the post-cutting scenario. Specifically, compared 
with the case without logging, the carbon sink rate after logging increased by 0.01–0.1 Tg C/a. Here, ENF_M, 

Forest types

Carbon storage/Tg C Carbon sink rate/(Tg C/a)

2019 2030 2060 2019 2019 –2030 2031 –2060

ENF 104.27 ± 3.25 127.27 ± 3.22 178.89 ± 4.68 2.30 ± 0.77 1.72 ± 0.76

DNF 47.36 ± 0.82 56.79 ± 1.23 78.69 ± 1.88 0.93 ± 0.03 0.73 ± 0.02

DBF 8.03 ± 0.34 11.21 ± 0.41 14.71 ± 0.49 0.32 ± 0.00 0.12 ± 0.01

MF 7.29 ± 0.12 8.44 ± 0.37 10.79 ± 0.19 0.12 ± 0.01 0.08 ± 0.00

Table 5.  Predicted results of forest carbon storage and carbon sink rate in Xinjiang.

 

Fig. 3.  Spatial distribution of forest age, carbon density, biomass and carbon stock in Xinjiang forests (this 
figure is generated in ArcGIS10.8 software, http://www.esri.com/software/arcgis).
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Vintages

Carbon sink rate (Tg C/a)

ENF ENF_M DNF DNF_M DBF DBF_M MF MF_M

2001–2010 2.14 0.94 0.22 0.12

2011–2020 2.57 1.13 0.34 0.14

2021–2030 2.56 1.05 0.35 0.13

2031–2040 2.33 2.35 1.00 1.02 0.24 0.25 0.11 0.12

2041–2050 1.93 1.96 0.82 0.84 0.11 0.14 0.09 0.10

2051–2060 1.48 1.58 0.62 0.66 0.04 0.09 0.06 0.08

Table 6.  Comparison of carbon sequestration rates before and after forest harvesting in Xinjiang.

 

Fig. 5.  Inflection Points of Forest Growth in Xinjian (this figure is generated in EXCEL software, ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​
m​i​c​r​o​s​o​f​​t​.​c​​​o​m​/​​e​​n​​-​u​s​/​m​​i​c​r​o​s​​​o​f​t​​-​3​​6​5​/​e​x​c​e​l).

 

Fig.4.  Temporal Variations of CO2 Emissions, CO2 Concentration, and Forest Carbon Storage in Xinjiang.
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DNF_M, DBF_M and MF_M represent evergreen coniferous forest, deciduous coniferous forest, deciduous 
broadleaf forest and mixed coniferous and broadleaf forest after logging, respectively.

Influence of different factors on the change of forest carbon stock in Xinjiang
This study extracted phenological characteristics of four forest types in Xinjiang (Table  7). The start of the 
growing season (SOS) for forest ecosystems primarily occurs between mid-May (day 129–141) and late August 
(day 211–235), with the longest growing season lengths (LOS) observed in ENFand DBF. In analyzing the 
relationship between LOS and carbon stocks (Fig. 7), it is essential to account for the constraints imposed by the 
arid environment of Xinjiang. While a longer growing season could theoretically extend the time window for 
photosynthesis and carbon sequestration, water availability is the primary limiting factor for forest productivity 
in this region. Thus, the observed correlation between LOS and carbon stocks (strongest for DBF, followed by 
MF, ENF, and DNF) is a secondary phenomenon constrained by water stress.

Specifically, LOS itself is not the primary driver of differences in carbon stocks. Under water-limited 
conditions, the extension of the growing season may exacerbate water stress and increase respiratory carbon 
losses throughout the extended period, failing to proportionally enhance net carbon gains and potentially even 
reducing carbon stocks. In contrast, carbon stocks are primarily regulated by water availability, as evidenced 
by significant positive correlations with precipitation and the standardized precipitation evapotranspiration 
index (SPEI). Precipitation shows a significant positive correlation with carbon stocks for all forest types, with 
DBF exhibiting the highest sensitivity. SPEI, which reflects drought conditions, also demonstrates significant 
correlations, albeit slightly weaker than precipitation, further confirming the role of drought in shaping carbon 
dynamics. Notably, ENF shows the highest sensitivity to temperature, while DNF exhibits a unique negative 
correlation with precipitation, warranting further investigation.

The relationship between LOS and carbon stocks likely reflects species-specific phenological adaptations 
and their interactions with local water conditions. For instance, the positive correlation for DBF may indicate 
that extending the growing season is effective under relatively favorable water conditions. However, the strength 
of this relationship is significantly weaker compared to the fundamental dependence of carbon stocks on 
precipitation and SPEI.

Forest type SOS EOS LOS

ENF 129 222 93

DNF 141 213 72

DBF 139 235 96

MF 134 211 77

Table 7.  Phenological periods of forests in Xinjiang.

 

Fig. 6.  Comparison of carbon sequestration rates before and after forest harvesting in Xinjiang.
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Therefore, for afforestation practices in Xinjiang, species selection should prioritize their tolerance to water 
stress, based on responses to SPEI and precipitation. LOS characteristics can serve as secondary reference 
indicators, particularly for distinguishing species with similar drought tolerance. Under conditions where water 
availability is consistently sufficient throughout the extended growing season, longer potential photosynthetic 
periods may provide certain advantages.

Spatial distribution of deforestable areas
Through in-depth analyses, this study meticulously divides the deforestationable areas of Xinjiang’s forests, as 
shown in Fig. 8, into three main deforestation areas, representing the forest resources distributed within the 
NW, SW and C, respectively. These areas cover 95% of the total forest area in Xinjiang, and the deforestationable 
areas are concentrated in the ridges at higher altitudes. From an ecological point of view, these areas are ideal 
for sustainable utilisation and management because of their favourable forest growth environment and high 
ecosystem stability and complexity. In determining the harvestable areas, we used a growth modelling relationship 
based on forest age and carbon stock, defining forest age after the growth inflection point as harvestable forest. 
This approach integrates the dynamics of forest growth and the process of carbon stock accumulation to ensure 
the scientific validity and sustainability of the harvestable area.

As shown in Table 8, the forest area of evergreen coniferous forests that can be felled in 2030 and 2050 is 
11.25 × 107 m2 and 31.30 × 107 m2, respectively, accounting for 1% and 4% of the total area of evergreen coniferous 
forests. The forest area of deciduous coniferous forests that can be felled in 2030 and 2050 is 15.10 × 107 m2 and 
96.78 × 107 m2, respectively, accounting for In 2030 and 2050, the forest area that can be felled in deciduous 
broad-leaved forests is 28.30 × 107 m2 and 99.83 × 107 m2 respectively, accounting for 18% and 62% of the total 
area of deciduous broad-leaved forests respectively. The forest area that can be felled in mixed coniferous and 
broad-leaved forests is 3.53 × 107 m2 and 9.20 × 107 m2 respectively, accounting for 3.53 × 107 m2 and 9.20 × 107 m2 
respectively, accounting for 9.20 × 107 m2 respectively. 107 m2 in 2030 and 2050, accounting for 4% and 11% of 
the total area of mixed coniferous and broad-leaved forests, respectively.

Economic benefits of different sink enhancement measures for forests
Lagged benefits of different sink enhancement measures for forests
As shown in Table 9, we controlled for control variables when estimating the lag period for each silvicultural 
measure. affor_1 denotes the silvicultural area within a lag period. tend_1 represents the forested area with a 
lag period, and so on. Firstly, we examined the duration of forest measures’ impact on CSF. Afforestation’s effect 
on CSF became insignificant after 5 lags, while forest conservation’s effect became insignificant after 2 lags, 
suggesting that afforestation has a significantly longer impact on vegetation carbon fixation compared to forest 
conservation. Secondly, we analyzed the trends in the marginal contribution of forest measures to CSF. Overall, 
the CSF for afforestation reached its maximum at a lag period of about 4, while the CSF for forest conservation 
reached its maximum at a lag period of about 1. Therefore, affor and tend in Tables 4 and 5 are the contribution 
of afforestation with 4 lags and that of nourishment with 1 lag, respectively.

Costing of different measures to increase the remittances of forests
As shown in Table 10, fixed investment showed a highly significant positive benefit with CSF, indicating that 
the higher the investment, the more forestry equipment was purchased, increasing productivity and thus 

Fig. 7.  depicts the partial correlation coefficients of different forest types in response to climate and 
phenological factors. The orange, green, and magenta colors represent the correlations of phenology with 
temperature, precipitation, SPEI, and phenological period length for different forest types. *** stands for 
p < 0.01, ** stands for p < 0.05, * stands for p < 0.1.
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forest carbon sequestration. While forest carbon sequestration showed significant negative benefits with GDP 
and population of the city, although population growth raised the demand for forest products, which in turn 
heightened the pressure on land capacity, it also caused a shift in the types of forested land., the presence of 
irrationality in the planning of green spaces may lead to a decrease in CSF. The reason for the low significance 

Fig. 8.  Spatial Distribution of Potential Harvesting Areas in Xinjiang Forests for 2030 and 2050 (this figure is 
generated in ArcGIS10.8 software, http://www.esri.com/software/arcgis).
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of temperature and precipitation in relation to CSF may be due to the fact that forests are suitable only at the 
right range.

As shown in Fig. 9 the CSF cost of nurturing presents the characteristics of SW and NE being higher than other 
regions, showing strong spatial heterogeneity. In contrast, the CSF cost of silviculture exhibits the characteristics 
of high in the north and low in the south. The cost of afforestation in the NW, C and NE is generally low, with 
the afforestation cost in the NW region being about US$52.19/t, while the cost of afforestation in the SW and SE 
regions is generally high, with the cost of afforestation in the SE region being as high as US$624.23/t. The low 
cost of forest afforestation is mainly concentrated in the NW, C and SE regions, with the cost of afforestation 
in the C region being only US$9.29/t, while the cost of afforestation in the SW and The cost of afforestation is 
generally higher in the north-eastern region, with US$631.27/t in the south-western region, except in the south-
western region where the cost of afforestation is higher than the cost of nourishment, and the rest of the regions 
have a lower cost of afforestation.

Explanatory variable Coefficient Standard Error

C#affor 0.286 *** 0.037

C#tend 0.091 *** 0.012

NW#affor 1.152 *** 0.129

NW#tend 0.321 *** 0.093

NE#affor 0.061 *** 0.012

NE#tend 0.042 *** 0.004

SW#affor 0.017 *** 0.008

SW#tend 0.028 *** 0.009

SE#affor 0.092 *** 0.016

SE#tend 0.021 *** 0.002

fixin 0.121 *** 0.022

tmp 0.191 0.171

pre 0.021 * 0.014

GDP − 0.033 ** 0.017

popu − 0.036 ** 0.016

Table 10.  Results of estimating the immediate effect of forest interventions on vegetation carbon 
Sequestration. (* indicates significant, ** indicates highly significant, *** indicates extremely significant)

 

affor_1 affor_2 affor_3 affor_4 affor_5

C
tend_1 (0.032,0.123) (0.041,0.249) (0.082,0.236) (0.091,0.286) (0.072,0.213)

tend_2 (0.021,0.123) (0.027,0.211) (0.082,0.236) (0.031,0.246) (0.067,0.202)

NE
tend_1 (0.212,0.932) (0.271,0.982) (0.322,1.013) (0.321,1.152) (0.299,1.102)

tend_2 (0.012,0.923) (0.141,0.949) (0.182,0.957) (0.191,1.086) (0.182,0.936)

NW
tend_1 (0.041,0.051) (0.040,0.056) (0.039,0.060) (0.042,0.061) (0.033,0.054)

tend_2 (0.031,0.023) (0.033,0.049) (0.032,0.054) (0.031,0.060) (0.027,0.036)

SE
tend_1 (0.027,0.012) (0.029,0.011) (0.029,0.013) (0.028,0.017) (0.027,0.015)

tend_2 (0.012,0.013) (0.021,0.011) (0.022,0.006) (0.021,0.016) (0.023,0.014)

SW
tend_1 (0.019,0.082) (0.018,0.084) (0.020,0.091) (0.021,0.092) (0.018,0.090)

tend_2 (0.012,0.023) (0.011,0.059) (0.013,0.066) (0.016,0.067) (0.011,0.036)

Table 9.  Delayed effects of forest measures.

 

Vintages

Cuttable area /107 m2

ENF DNF DBF MF

2030 11.25 15.10 28.30 3.53

2050 31.30 96.78 99.83 9.20

Table 8.  Area of forests available for harvesting in Xinjiang in 2030 and 2050.
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Discussion
Validation of results
Validation of forest tree heights
In this research, to verify the accuracy of the tree height data, we randomly screened 244 sample plot tree heights 
with the NNGI tree height data for validation, as shown in Fig. 10, the two tree height products have good 
consistency with r2  =  0.740, RMSE = 2.130  m, and MAE = 1.630  m. The two tree height products have good 
consistency with the NNGI tree height data. In conclusion, the above validation results indicate that the NNGI 
tree height products used in this study have better applicability and accuracy in the Xinjiang region and can meet 
the needs of this study.

Validation of forest carbon density and carbon stock
In this paper, the carbon densities of 366 forest sample plots (n is the number of sample plots/number) were 
used to validate the estimated carbon densities of four forest types in Xinjiang in 2019. As can be seen in 
Fig. 11, the slopes of the regression equations between the sample plot data and the estimation results for the 
four forest types ranged from 0.83 to 0.99, close to 1, with r2 greater than 0.853, and the ranges of RMSE and 

Fig. 10.  Comparison verification of NNGI forest tree height data and plot tree height in Xinjiang.

 

Fig. 9.  Distribution of Carbon Sequestration Costs for Forest Measures in Xinjiang (this figure is generated in 
ArcGIS10.8 software, http://www.esri.com/software/arcgis).
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MAE were 13.361–18.102 Mg/hm2 and 9.251–15.998 Mg/hm2 respectively. The values of the above validation 
indicators are in line with the requirements of the MRV (Measuring Reporting and verification) guidelines of 
the REDD + programme, i.e., when estimating carbon stock using remotely sensed data, the error between the 
estimated and measured values of carbon density should be controlled to be within 0–20 Mg/hm2 or within 
0–20%24. The deviation of the average carbon density of Xinjiang forests in 2019 estimated in this paper5,25 from 
the previous results ranged from 3.32 to 6.84 Mg/hm2. The deviation of carbon density of different forest types 
estimated in this paper from the corresponding results of some scholars26 is between 0.93 and 9.25 Mg/hm2. The 
above analyses indicate that the carbon densities of major forest types in Xinjiang in 2019 estimated in this paper 
are in good agreement with the estimation results of the previous scholars and have high accuracy.

Some scholars used forest inventory data to estimate the forest carbon stock in Xinjiang in 2020 to be 241.01 
Tg C, respectively27; other scholars used remotely sensed tree height data and forest inventory data to estimate 
the forest carbon stock in Xinjiang in 2019 to be 174.2 Tg C, respectively25 and the deviation from the forest 
carbon stock in Xinjiang in 2019 estimated in this paper is 7.25–52.81 Tg C, respectively28. Although there are 
some deviations in the results of different studies due to differences in study years, data sources, methods, and 
forest areas, the total estimated amount of different carbon stock is relatively close to the total amount of carbon 
stock, indicating that the estimated forest carbon stock in Xinjiang estimated in this study have a strong level of 
reliability.

Validation of forest age
Some scholars have estimated the forest age in China based on NDVI data using the cumulative probability 
density distribution method28. The results show a deviation of 5 years in the average forest age in Xinjiang 
compared to this study. The age estimation deviation for the four forest types ranges from − 13 to 29 years. 
Among them, the deviation for different age groups of evergreen coniferous forests is less than 10%. The forest 
areas with a deviation of less than 10% for deciduous broad-leaved forests and deciduous coniferous forests are 
3.9 × 109 m2 and 4.8 × 109 m2, respectively, accounting for 79% and 77% of their total areas. For mixed coniferous 
and broad-leaved forests, the deviation across different age groups ranges from 19 to 30%, with an area of 
8.2 × 108 m2 showing a deviation of less than 25% (Table 11).These comparisons and analyses indicate that the 
forest age estimates obtained in this study are highly consistent with previous research results. Furthermore, the 

Fig. 11.  Analysis of estimation errors for forest carbon density in Xinjiang.
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spatial resolution of forest age derived in this study is higher than that obtained by Dai Ming et al., providing a 
clear advantage.

Comparative analysis of carbon storage prediction results
Some scholars estimated the carbon storage of Xinjiang forests in 2050 using forest inventory data, obtaining 
a value of 362.66 Tg C27. Another study, utilizing remote sensing tree height data and forest inventory data, 
estimated the carbon storage of Xinjiang forests in 2030 and 2060 to be 219.76 Tg C and 334.99 Tg C, respectively6. 
Compared to this study, the deviations for 2030 and 2060 are 16.05 Tg C and 51.91 Tg C, respectively. Although 
differences in research years, data sources, methods, and forest areas have led to certain discrepancies among 
studies28the total estimated carbon storage values are relatively close. This consistency suggests that the carbon 
storage estimates for Xinjiang forests in this study are highly reliable.

Previous researchers used the IPCC forest carbon sink model to calculate that the carbon density of temperate 
forests in 2020 was 158.50 Mg/hm2, which differs from the average carbon density of forests in this study by 
65.15 Mg/hm2. This difference may be due to the fact that the annual precipitation in the environment where 
Xinjiang’s forests are located is less than 200 mm29.

This study estimated forest carbon storage under an ideal scenario and constructed an economic benefit 
analysis framework through a panel data model. However, the estimation of actual forest carbon storage is 
affected by a variety of complex factors, including but not limited to natural disasters (such as fire, pests and 
diseases), climate change, human interference, and differences in the effects of different forest management 
measures. These factors have not been fully considered in the current idealized model, so the research results are 
uncertain to a certain extent. In order to improve the accuracy of carbon storage estimation and the applicability 
of the model, future studies can consider constructing a multi-scenario model to simulate carbon storage 
changes under different environmental and socio-economic conditions25. For example, a fire risk assessment 
module can be introduced to analyze the impact of different fire frequencies and intensities on forest carbon 
storage; at the same time, the impact of pests and diseases can also be included in the model to assess its potential 
threat to forest health and carbon storage. In addition, the long-term impact of climate change on forest growth 
cycles and carbon absorption capacity, as well as the dynamic impact of different forest management measures 
(such as afforestation, tending, logging, etc.) on carbon storage, should be the focus of future research. By adding 
these complex factors to the modeling, we can not only more comprehensively reflect the actual changes in forest 
carbon stocks, but also provide more scientific and accurate decision-making support for policy makers and 
forest managers. The construction of multi-scenario models will make carbon stock estimates closer to reality, 
help identify potential risks and opportunities, thereby optimizing forest management strategies and enhancing 
the role of forests in addressing climate change13. This study estimated forest carbon storage under an ideal 
scenario and constructed an economic benefit analysis framework through a panel data model. However, the 
estimation of actual forest carbon storage is affected by a variety of complex factors, including but not limited 
to natural disasters (such as fire, pests and diseases), climate change, human interference, and differences in the 
effects of different forest management measures. These factors have not been fully considered in the current 
idealized model, so the research results are uncertain to a certain extent. In order to improve the accuracy 

Forest type Age group

Age group/a

Area/m2 Deviation/aEstimated value Literature value28

ENF

Young 50 45 4.0 × 109 5

Middle 76 85 5.7 × 109 − 9

Near mature 106 110 1.6 × 109 − 4

Mature 128 140 3.6 × 108 − 12

Overripe 184 170 1.1 × 107 14

DNF

Young 22 35 9.6 × 108 −13

Middle 63 62.5 1.4 × 109 0.5

Near mature 91 82.5 1.2 × 109 8.5

Mature 112 105 1.3 × 109 7

Overripe 159 130 6.2 × 107 29

DBF

Young 4 5 2.5 × 109 − 1

Middle 13 12.5 8.9 × 108 0.5

Near mature 18 18 7.4 × 108 0

Mature 23 25 1.1 × 109 − 2

Overripe 43 40 9.7 × 108 3

MF

Young 27 32.5 2.7 × 108 − 5.5

Middle 41 53.5 5.5 × 108 − 12.5

Near mature

Mature

Overripe 124.5 104 7.6 × 107 24.5

Table 11.  Verification of forest age Estimation in Xinjiang.
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of carbon storage estimation and the applicability of the model, future studies can consider constructing a 
multi-scenario model to simulate carbon storage changes under different environmental and socio-economic 
conditions. For example, a fire risk assessment module can be introduced to analyze the impact of different fire 
frequencies and intensities on forest carbon storage; at the same time, the impact of pests and diseases can also 
be included in the model to assess its potential threat to forest health and carbon storage. In addition, the long-
term impact of climate change on forest growth cycles and carbon absorption capacity, as well as the dynamic 
impact of different forest management measures (such as afforestation, tending, logging, etc.) on carbon storage, 
should be the focus of future research. By adding these complex factors to the modeling, we can not only more 
comprehensively reflect the actual changes in forest carbon stocks, but also provide more scientific and accurate 
decision-making support for policy makers and forest managers. The construction of multi-scenario models will 
make carbon stock estimates closer to reality, help identify potential risks and opportunities, thereby optimizing 
forest management strategies and enhancing the role of forests in addressing climate change.

Analysis of factors influencing forest carbon storage
ENF are typically distributed in high-altitude areas near the Tianshan and NW, where the climate is relatively cold 
with significant temperature fluctuations. Due to the small and sharp-shaped leaves of coniferous species, which 
result in a relatively small leaf surface area, these tree species are more sensitive to temperature changes. DBF 
and MF exhibit similar levels of response to temperature, with generally moderate significance. In contrast, DNF 
commonly found near the NW possess strong cold resistance and exhibit the lowest response to temperature 
variations29.

Due to the arid environment in Xinjiang, all four forest types exhibit a high correlation with precipitation, 
with the highest correlation observed in DBF. This forest type, dominated by Populus euphratica, is primarily 
distributed in the Tarim River Basin, where its resilience and high water demand are evident30. ENF and MF 
show similar correlations with precipitation. In contrast, DNF, which are notably shade-intolerant, exhibit a 
negative correlation with precipitation, as increased rainfall adversely affects the dominant species, such as larch.

The complex topography of Xinjiang’s arid regions, coupled with the influence of soil types and local 
microclimates, results in inconsistent forest responses to the SPEI. Moreover, the vegetation in Xinjiang’s arid 
areas may have adapted to the arid conditions, demonstrating a degree of drought resistance and a stronger 
capacity to cope with changes in SPEI.

All four forest types show highly significant correlations with vegetation phenology length, ranked as 
DBF > MF > ENF > DNF. This indicates significant differences in carbon storage among the forest types over the 
same period. The results of this study offer essential data to guide the selection of forest types with greater carbon 
sequestration potential.

The sources of LOS data used in this study and their possible uncertainties in arid mountainous areas30. In 
addition, partial correlation analysis shows statistical correlationsand cannot fully confirm causal relationships. 
The potential driving mechanism of LOS correlation may be the result of integrated physiological and ecological 
responses, and its net carbon sink benefit in arid areas may depend on water balance21. The LOS effect varies 
in regions with different moisture conditions. For example, in the relatively humid northern Xinjiang region, 
LOS shows a stronger positive correlation with carbon density, while in the extremely arid Turpan Basin, this 
correlation is weaker or even negative, which is consistent with the inhibitory effect of water limitation on the 
potential benefits of LOS16.

Feasibility analysis of forest carbon sequestration enhancement measures
This study conducted an economic analysis to compare the regional cost differences between two forest carbon 
sequestration enhancement measures. By integrating regions suitable for forest tending with spatially estimated 
harvestable forest areas, a low-cost sequestration approach was identified31. The analysis is based on a panel fixed-
effects model, meaning its accuracy is significantly influenced by the quality and quantity of model parameters. 
In this study, authoritative parameter data were selected, forestry investments were adjusted for inflation rates, 
and the time-lagged effects of forest measures on carbon sequestration were factored in, ensuring the economic 
feasibility of the results for different sequestration measures.

This study emphasizes the effects and associated costs of various forest strategies on vegetation carbon 
sequestration, with a focus on afforestation and forest management. In contrast to previous studies, it presents 
three key contributions: (1) It employs econometric methods to isolate the actual impacts of different forest 
measures on vegetation’s carbon sequestration capacity, controlling for unobservable factors. (2) It identifies 
forest measures better adapted to regional conditions. (3) It analysis investigates the cost discrepancies in 
vegetation carbon sequestration across forests at different stages of growth. Overall, both afforestation and forest 
management play a crucial role in boosting vegetation carbon sequestration. However, from the perspective 
of marginal contribution, forest management demonstrates stronger sequestration potential than afforestation. 
While afforestation increases both forest area and total carbon storage, forest management focuses on enhancing 
carbon storage by improving stand structure, particularly in younger and middle-aged forests32.

Previous studies have also observed that compared to China’s extensive afforestation efforts, the United States 
has achieved greater carbon sequestration by focusing on forest management within smaller newly planted areas. 
While this comparison highlights the potential benefits of forest management, it is important to recognize the 
differences in forest resource endowments, policy backgrounds, and socio-economic conditions between China 
and the United States33,34. In China, afforestation has been a key strategy for increasing forest cover in sparsely 
vegetated regions, particularly in dry and semi-dry areas of Northwest China, hot and dry valleys of Southwest 
China, and areas affected by rocky desertification. Continued promotion of afforestation can effectively increase 
forest cover in these regions, thereby improving carbon sequestration. However, in regions such as C, NC, and 
NE, where afforestation space is limited and land-use costs are higher, forest management becomes a more 
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suitable approach to enhance productivity, improve forest quality, and increase carbon sequestration within the 
constraints of limited forestland.

The findings suggest that afforestation should be the main approach to enhance carbon sequestration in 
NW and SW, while forest management is more suitable for enhancing total carbon sequestration in SR, NC, 
and NE. Available afforestation land, non-forested areas, and sparse forestlands are primarily located in the 
dry and semi-dry areas of Northwest China, the hot and dry valleys of Southwest China, and areas affected 
by rocky desertification. Consequently, continued promotion of afforestation can effectively increase forest 
cover in these sparsely vegetated regions, thereby improving carbon sequestration. In contrast, C, NC, and NE 
have limited afforestation space, offering constrained potential for increasing carbon sequestration through 
afforestation. Additionally, these areas are economically more advanced, characterized by higher land-use costs 
and greater opportunity costs for forestry development. Therefore, within the constraints of limited forestland, 
forest management is a more suitable approach to enhance productivity, improve forest quality, and increase 
carbon sequestration in these regions.

Limitations of the panel fixed-effects model
The panel fixed effects model has played a certain role in analyzing the impact of afforestation and forest tending 
on enhancing carbon sinks in Xinjiang’s forests, but there are also many limitations that cannot be ignored. 
From the perspective of model assumptions, the panel fixed effects model assumes that individual effects remain 
constant over time and do not change with time. However, Xinjiang has a vast territory with a complex and ever—
changing ecological environment. In different time periods, climate factors such as temperature, precipitation, 
and sunlight will change significantly, and these changes will have a significant impact on the formation and 
accumulation of forest carbon sinks under afforestation and forest tending measures. For example, in recent 
years, extreme climate events such as intensified droughts and increased frequency of heavy rainfall in some 
areas of Xinjiang have disrupted the normal growth of forests and their carbon sink functions. The panel fixed 
effects model has difficulty dynamically capturing the impact of these complex environmental factors that 
change over time on forest carbon sinks, resulting in possible deviations between the model’s estimated results 
and the actual situation. In subsequent research, a dynamic carbon—enhancement contribution analysis model 
should be introduced.

Conclusion
This study focuses on forests in Xinjiang, integrating multi-source remote sensing, chlorophyll fluorescence, 
and forest inventory data to estimate forest biomass and age from 2010 to 2019 and to construct an age-carbon 
density model. By excluding disturbances, the study predicts carbon storage and sequestration rates for 2030 
and 2060 and explores their responses to temperature, precipitation, SPEI, and vegetation phenology length. 
Using a panel fixed-effects model, the economic costs of afforestation and forest tending across five regions 
in Xinjiang were calculated. Recommendations for low-cost tending regions, optimal harvesting timings, and 
species selection strategies for afforestation were proposed to enhance Xinjiang’s forest carbon sequestration 
capacity. (1) The average values of biomass, carbon density, and forest age in Xinjiang’s forests in 2019 were 
186.76 Mg/hm2, 93.38 Mg/hm2, and 46 years, respectively. Validation using independent sample data and 
comparison with prior studies demonstrate that the models constructed in this study are highly applicable to 
the Xinjiang region. Spatially, both forest age and carbon density exhibited strong spatial heterogeneity, with a 
general low-high-low distribution from south to north and a declining gradient from east to west. (2) By 2030 
and 2060, Xinjiang’s forest carbon storage is projected to reach (203.71 ± 2.31) Tg C and (283.08 ± 4.23) Tg C, 
respectively. Compared to 2019, the carbon sequestration rates during 2019–2030 and 2031–2060 are expected 
to be 3.67 ± 0.57 Tg C/a and 2.65 ± 0.56 Tg C/a, respectively, showing a decreasing trend across all forest types. 
However, forest carbon storage is expected to increase significantly by 2030 and 2060, indicating Xinjiang’s 
forests have substantial carbon sequestration potential. (3) Using CO2 concentration and carbon emission data, 
combined with estimation and prediction methods, the study reveals that Xinjiang’s forests are projected to 
absorb approximately 14.6% and 9.5% of CO2 emissions during 2019–2030 and 2031–2060, respectively. From 
an economic perspective, afforestation is more suitable for most regions, while forest tending is preferable in 
the northeastern region due to lower costs. Based on the constructed forest age and carbon density models, the 
growth turning points for four forest types in Xinjiang were identified. Combining these with spatial forest age 
maps for 2030 and 2050, the study shows that harvestable areas are mainly distributed in high-altitude ridge 
zones, while efficient carbon-sequestering forest types for afforestation include ENF and DBF. This research 
provides a comprehensive framework for understanding the dynamics of forest carbon sequestration in Xinjiang 
and offers data-driven recommendations for enhancing forest carbon sink capacity.

Data availability
The satellite remote sensing datasets generated and/or analysed during this study are listed in Table 1 and are 
available from the following sources: DEM: https://www.resdc.cn/Default.aspx; NPP: ​h​t​t​p​s​:​/​/​l​a​d​s​w​e​b​.​m​o​d​a​p​s​.​e​
o​s​d​i​s​.​n​a​s​a​.​g​o​v​​​​​; CO2 Emissions: https://db.cger.nies.go.jp/dataset/ODIAC/; Land use: ​h​t​t​p​s​:​/​/​z​e​n​o​d​o​.​o​r​g​/​r​e​c​o​r​d​
s​/​4​4​1​7​8​1​0​​​​​; Climatic SPEI Length: https://digital.csic.es/handle/10261/268088; Tree height: ​h​t​t​p​s​:​/​/​3​d​e​c​o​l​o​g​y​.​o​r​
g​/​d​a​t​a​s​e​t​-​s​o​f​t​w​a​r​e​/​​​​​; Temperature: http://gre.geodata.cn; Precipitation: http://gre.geodata.cn; Data analysed via 
Google Earth Engine (GEE): https://earthengine.google.com/.The Xinjiang forest inventory data listed under 
“Forest survey data” in Table 1 are not publicly available. This proprietary dataset, provided by the forestry de-
partment, contains confidential and commercially sensitive information and is subject to confidentiality agree-
ments. Researchers with a legitimate need to access this data may contact the corresponding author, Mei Zan, 
at 107622007010058@xjnu.edu.cn , to request access. Such requests will be evaluated on a case-by-case basis, 
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and access, if granted, will be contingent upon signing appropriate confidentiality agreements and may require 
further approval from the relevant forestry authorities.
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