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Regular inspection of the health of railway tracks is crucial to maintaining reliable and safe train 
operations. Some factors including cracks, rail discontinuity, ballast issues, burn wheels, super-
elevation, loose nuts and bolts, and misalignment developed on the railways due to pre-emptive 
investigations, non-maintenance, and delay in detection pose grave threats and danger to the safe 
operation of railway transportation. In the past, manual inspection was performed for the rail track 
by a rail cart which is both prone to error and inefficient due to human biases and error. Several train 
accidents are reported in Pakistan; it is important to automate these techniques to avoid such train 
accidents for the safety of countless lives. This study aims to enhance railway track fault detection 
using an automatic rail track fault detection technique with acoustic analysis. Moreover, the proposed 
method contributes to making the dataset large by using the CTGAN technique. Results show that 
acoustic data may help to determine the railway track faults effectively and logistic regression is used 
to perform the classification for railway track faults with an accuracy of 100%.

Keywords  Railway track monitoring, Fault detection, Acoustic data, Mel-Frequency Cepstral Coefficient, 
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The railway network is a highly essential transportation conduit in various developing nations, such as Pakistan, 
and is utilized to satisfy public transit demands. The railway structure is crucial for trade and supply networks1. 
The railway market has gotten stronger, opening up new opportunities for the country’s public and economy. 
According to2, the railway industry’s annual report from 2016 to 2018 showed a growth rate ranging from 1.3% to 
2.4%. As a result, high-performance railway operations are essential to ensure that the railway runs continuously 
and that passengers are safe. The railway system is getting more burdened and complex as the number of train 
passengers grows. According to3, mechanical forces and environmental factors accelerate the deterioration of 
train rails. The railway tracks are crucial components of the railway network. Rail track inspection helps decrease 
accidents, injuries, and deaths4. From 2013 to 2020, the registered train accidents were 127 due to rail track faults 
according to the annual reports in Pakistan4. People including students, tourists, and commuters use trains 
for traveling in Pakistan. From 2012 to 2017, a total of 757 train accidents have been reported5. Additionally, 
22 goods and 16 passenger trains were derailed in 2014, and 37 goods and 37 passenger train accidents were 
reported in 2015. In 2019, 11434 railway accidents were recorded, causing 937 casualties and 7730 injuries6. 
However, the train accident ratio is higher in under-developing countries7. The railway network contributes to 
the Pakistani economy as it has a huge network in the North-South corridor that links the seaport of Karachi 
with the country’s main production centers and population8. In 2020, 152 train accidents are reported causing 
19 deaths9. In 2021, 32 casualties and 64 injuries were recorded in railway accidents9.

Timely detection and proper inspection of faults may protect several human lives and reduce the financial 
losses for railway systems10. However, the maintenance and inspection of railway tracks is a time-consuming and 
expensive activity. Several non-destructive evaluation (NDE) methods for railway track inspection have been 
applied including detection using phased array technology11. Eddy current testing12, guided wave detection13, 
ultrasonic testing14, and other techniques have been the focus of rail track inspections. However, there has 
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been a recent surge in enthusiasm for employing machine learning models, the Internet of Things (IoT), and 
deep learning networks in these inspections. These advanced technologies aim to enhance the speed, precision, 
uniqueness, and overall success of non-destructive evaluation (NDE) approaches. The integration of acoustic 
transducers15 and high-speed cameras16 with machine learning classifiers is becoming common to modernize 
traditional inspection methods. In particular, hand-crafted feature engineering (HCFE) has been utilized in 
audio and image-based machine learning applications. Nevertheless, HCFE demands domain-specific expertise, 
extensive problem-solving, and system modifications to optimize performance (PS18). Moreover, railway track 
classification and inspection have three main stages. Firstly, preprocessing of ‘wav’ files is performed to eliminate 
the undesired sounds. Secondly, feature extraction is performed with spectrograms. Thirdly, the classification 
method is trained to detect rail track faults.

Maintaining a reliable and safe rail network demands uninterrupted train operations, which entails extensive 
monitoring of hundreds of thousands of kilometers of track. This endeavor requires substantial investments of 
time and money. Timely and sufficient maintenance of railway tracks is crucial; any failures can disrupt train 
services, leading to potential financial and human consequences17. Crack identification is very important to 
run the system rapidly and efficiently. In Pakistan, track inspection is currently conducted using a railway 
cart, where human specialists manually assess the track to identify areas requiring repairs. Recognizing the 
critical importance of track inspection, this study introduces and integrates an intelligent automated system for 
analyzing the condition of train tracks. In summary, the study offers the following contributions:

•	 This study investigates the use of various machine learning and deep learning models for autonomously eval-
uating railway tracks, focusing on distinguishing between three distinct track conditions: wheel burn, su-
perelevation, and standard track.

•	 A significant dataset is also produced for studies with the acoustic signals from an ECM-X7BMP microphone 
that was collected over one year.

•	 The Mel-frequency cepstrum coefficients (MFCC) and Constant-Q transform (CQT) characteristics of audio 
signals are combined with various classifiers to automatically detect track problems. Conditional GAN (CT-
GAN) is also used to create an equal amount of samples for each error.

The sections of this paper are grouped as follows: Section 2 provides a summary of several forms of fractures 
seen in railway tracks, as well as major studies on identifying defects in rail tracks. Section 3 describes data 
collecting procedures, equipment, and suggested study strategy. Section 4 presents the findings and comments, 
while Section 5 provides the conclusion.

Related work
Track inspection is an essential task that has been adopted periodically to control the conditions of rail tracks and 
avoid train accidents. Geometric inspection and structural inspection are two main classes for the inspections 
of rail tracks18. Structural checks are performed to detect structural faults such as wheel burn, superelevation, or 
other structural issues. Geometric inspections are used to identify geometric anomalies such as rail misalignment 
and other comparable degradation. Furthermore, geometric anomalies are caused by structural flaws, which can 
lead to train accidents. The authors explained various geometric and structural flaws in19.

Researchers worked on the detection of geometric defects with an SVM model in20. The RAS problem-solving 
competition 2015 dataset was used for experimentation. The study considered some severe geometric defects 
which may increase the geometric defects. To detect structural defects, a structural inspection is performed 
using shallow machine learning methods in this study. SVM was used in this study which also worked on a novel 
parameter called positive and un-labeled learning performance (PULP). Moreover, PULP was applied to check 
the performance of models on different datasets comprising faulty results. In21, experimentation was performed 
to detect faults on railway tracks. Both Support SVM and CNN were utilized in this study for analyzing an 
image-based dataset. Rail fasteners are classified as missing, good, or broken. This technique showed improved 
accuracy in detecting defects in rail fasteners and ties.

The study22 investigated fault detection using traditional acoustic-based systems, enhancing performance 
and reducing train accidents through deep learning methodologies. Additionally, the research concentrated 
on LSTM, 2D convolutional, and 1D convolutional approaches. Various types of faults, such as wheel burn, 
superelevation, and normal tracks, were identified in this study. Experimental analysis was conducted on a real 
acoustic dataset to detect rail track faults.LSTM model shows improved results with 99.7% accuracy. In the 
study23, local binary pattern (LLBP) was employed on railway images to classify track fasteners. Gabor filters24, 
SVM25, and edge detection26 methods were utilized to identify fasteners in railway images. Faster Region-
based CNN was utilized for detecting rail track faults in27. CNN and ResNet-50 were applied in study28 to 
detect structural defects and damages, particularly related to broken rail fasteners. The study utilized Haar-like 
feature sets, including geometric features for fasteners, achieving a 94% accuracy with CNN and 94.4% accuracy 
with ResNet-50. Additionally, various classification methods, including SVM, GNB, KNN, RF, Adaboost, and 
Gradient Boosting Decision Trees (GBDT), were tested and evaluated to detect and analyze missing clamps in 
the fastening structure in29.

The categorization of railway cracks with acoustic-emission waves based on a multi-branch CNN is discussed 
in30. The railway fastener defects are identified from images using CNN31, residual network32, GAN, faster 
region-CNN33, and point cloud deep learning (PCDL)34. Dynamic stiffness for rail pads was anticipated with 
machine learning techniques including KNN, multi-linear regression, regression tree, gradient boosting, RF, 
SVM, and MLP35. Feature extraction approaches have also been investigated for rail track fault detection.

The study36 introduced tree-based classification approaches such as RF and DT which performed a comparison 
of deep learning techniques for rail track inspections. The authors proposed a new RF-based approach that is 
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used to combine LMD, TFD, and TD feature extraction for the detection of track slab deformation. In37, an 
automated inspection technique based on IoT is presented for rail track fault detection. Acoustic data is used to 
rail track fault classification including wheel burn, crash sleeper, loose nuts, and bolts, low joint, creep, and point 
and crossing. The experimental results showed that acoustic data may successfully support selective track defects 
and localized these defects in real time. This method achieved a 98.4% accuracy with MLP.

Materials and methods
This section discusses dataset collection and strategy, feature extraction techniques, machine learning methods 
for classification, and the recommended approach.

Dataset collection
The dataset holds crucial importance in the automated identification of faulty railroad tracks. Illustrated in 
Figure 1, the mechanical cart provided by officials at the Rahim Yar Khan station of Pakistan Railways Khanpur 
district was utilized for collecting this dataset. A setup was arranged on-site at Khanpur’s train station to gather 
the necessary data. Positioned at a safe maximum distance of 1.75 inches from the point of contact between the 
wheel and the track, two microphones were installed. These microphones were affixed to the right and left sides 
of the cart for data collection purposes. The propulsion of the mechanical cart was facilitated by a generator, 
which operated at an average speed of 35 km/h to drive the cart’s engine.

The audio data collection did not specify the geographic location. Two ECM-X7BMP Unidirectional electric 
condenser microphones, equipped with 3-pole locking small plugs, were mounted on the left and right wheels 
of the railway cart. These microphones possess an output impedance of 1.2 k and a sensitivity of 44.0 3 dB. 
Additional specifications of the microphones are detailed in Table 1.

Both microphones, positioned in separate locations, serve the purpose of recording. A single trigger button 
activates both microphones simultaneously to initiate data recording. The recorded data is stored as 16-bit 
audio files with the ”.wav” extension. The Sony ECM-X7BMP microphone is employed for this data collection 
process. As depicted in Figure  1, a metal strip is fashioned with one end serving as a secure mount for the 
microphone, while the other end is firmly screwed onto the cart. Foam or fur material is utilized to protect the 
microphone diaphragm from air currents. Without a windshield, wind or breathing can cause loud pops in the 
audio transmission.

Foam windshields are employed to mitigate cart vibrations, preventing their transmission to the microphone. 
Typically serving as the primary defense against wind noise, these windshields comprise open-cell foam covers 
surrounding the microphone. This design disperses and diminishes the acoustical energy of wind striking the 

Parameter Value

Sensitivity −44.0 ±3 dB

Output impedance 1.2kΩ±30

Dynamic range 88 dB

Signal-to-Noise Ratio 62 dB

Max. input sound pressure level 120 dB PSL

Direction Unidirectional

Connectivity Wired

Operating voltage 5.0 V

Table 1.  Important parameters of Sony ECM-X7BMP microphone.

 

Fig. 1.  Mechanical railway cart used for data collection.
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microphone capsule, reducing low-end vibration. Streamlining these windshields is essential to ensure that wind 
flows around them rather than directly into them. Although some vibration remains uniformly present in the 
entire audio signal, it does not significantly impact the detection of faulty signals, as it is also present in normal 
track sounds. The windshields intercept air gusts before they can interact with the microphone diaphragm, 
effectively minimizing their impact. Using this setup, 720 audio recordings, totaling 17 seconds in duration, 
were captured during data collection at a sampling frequency of 22,050 Hz. Subsequently, the recordings were 
manually tagged to organize the dataset. They were then segmented into 758 frames using a window length of 
1024 and 512 hops, based on the collected recordings.

Figure 2 presents the waveform and spectrogram of three different sample audio recordings: ‘wheel burn’, 
‘superelevation’, and ‘standard’ track conditions. The waveform illustrates the amplitude variations over 
time, while the spectrogram provides a time-frequency representation, highlighting the intensity of different 
frequencies. The visual differences between these three track conditions are evident in both representations. 
The Mel spectrogram provides insights into the distribution of sound intensity across various frequency ranges. 
For instance, in the 64–256 Hz frequency range, the normal track sound exhibits an intensity level between 
approximately −30 dB and −60 dB. In contrast, the superelevation track demonstrates a higher intensity, ranging 
from −2 dB to −20 dB. Meanwhile, the track with wheel burn shows a broader variation in noise intensity, 
spanning from −20 dB to −72 dB within the same frequency range. These distinctions highlight the unique 
spectral characteristics associated with each track condition.

Proposed methodology for track fault detection
The proposed methodology for fault detection has been utilized in three scenarios. The architecture diagram 
of the proposed methodology is presented in Figure  3. In the first stage, features from the audio signal are 
extracted. In this study, we extract two types of features: one is MFCC while the other is CQT features. These 
feature sets are then divided into train and test parts.

The model is trained using a training dataset while evaluation is carried out using a testing dataset using 
accuracy, precision, recall, and F1 score. The acoustic features are then used to train machine learning and deep 
learning classifiers. The data size for each sample is 720 per class and 40 MFCC features are extracted from each 
sample. Along with MFCC features, another feature extraction technique i.e. CQT is also applied for models’ 
training.

The architecture diagram for scenario 2 is shown in Figure  4. In order to enhance track fault detection 
accuracy, a feature fusion technique is applied where the features are combined. For that purpose, the best 
features are selected for model training. As a result, accuracy is improved for rail track fault detection.

The data size is small to train machine learning algorithms, so, data are re-sampled by using CTGAN, and 
400 samples are created for each class. These Samples are then split into train and tests with ratios of 0.8 to 0.2. 

Fig. 2.  Waveform and spectrogram representations of audio samples.

 

Scientific Reports |        (2025) 15:30914 4| https://doi.org/10.1038/s41598-025-14763-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The sample data distribution before and after the training and testing split is presented in Table  2. Machine 
learning and deep learning models are then trained by these training samples and then test samples are applied 
for prediction. The Architecture diagram for Scenario 3 has been explained in Figure 5.

Obtaining implementation code
For reproducibility of the proposed approach, the implementation code has been made public on the GitHub, 
and can directly be accessed using the link https://github.com/Arehmans/railways.

Fig. 5.  Architecture diagram based on hybrid features and newly generated features set for faulty track 
detection.

 

Class Original Samples Synthetic AI Samples Total Samples

Normal track 720 400

3,360Superelevation 720 400

Wheel burn 720 400

 Train Test 
Split

Training 
Samples Testing Samples Total Samples

Normal track 896 224

3,360Superelevation 896 224

Wheel burn 896 224

Table 2.  Class-wise data partitioning for model training and testing.

 

Fig. 4.  Architecture diagram using hybrid features for faulty track detection.

 

Fig. 3.  Architecture diagram based on feature extraction for faulty track detection.
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Experiment details
Railway track inspection professionals from Pakistan Railways discovered and validated the damaged tracks. The 
cart was driven over the damaged rails, and the following tracks’ audio signals were recorded:

•	 Normal track (Unfaulty sound)
•	 Superelevation
•	 Wheel burn

The data is categorized as follows with respect to labels:

•	 Normal track - labeled as 0,
•	 Superelevation - labeled as 1,
•	 Wheel burn - labeled as 2

Wheel burns38 occur when the driving wheels of locomotives skid along the rail surface, typically in areas with 
steep grades or after rainfall, due to insufficient hauling power to bear the train load, resulting in the rail surface 
melting. Superelevation39 refers to the gradual elevation change between the rails of a railway track, creating 
banked turns that allow vehicles to navigate curves at higher speeds compared to level tracks, especially crucial 
on curved sections.

Both wheel burns and superelevation are recognized as critical factors contributing to railway derailments40,41. 
Railways face various track issues such as cracked or broken rails, faulty welds, broad gauges, missing nuts and 
bolts, and disjointed tracks. However, this study concentrates specifically on wheel burns and superelevation, 
deferring other concerns for future research. The selection of the experimental route was deliberate; it was a 
heavily trafficked mainline, and during the study period, it was only affected by these two issues.

Mel-Frequency Cepstral Coefficients(MFCC)
MFCC features are discussed primarily for the detection of monosyllabic words within continuous speech rather 
than for speaker identification. The approach outlined in the paper aims to mimic the human ear’s functioning, 
leveraging the assumption that the human ear is a reliable recognizer of speakers. To capture the phonetically 
significant aspects of speech, frequency filters are organized linearly at lower frequencies and logarithmically at 
higher frequencies, forming the foundation of MFCC features.

Speech signals contain tones with varying frequencies, and the Mel scale is used to perceive pitch. Under the 
Mel scale, each tone corresponds to an actual frequency denoted as f (in Hz). Below 1000 Hz, the Mel frequency 
scale demonstrates linear frequency spacing, while beyond 1000 Hz, it adopts logarithmic frequency spacing. 
A reference point is set by a 1 kHz tone registering 40 dB above the perceptual hearing threshold, equivalent to 
1000 Mel. In equation form, it can be written as

	
mel(f) = 2592 × log10(1 + f

700)� (1)

where mel(f) is the frequency in mels and f is the frequency in Hz. The final feature vector space F of size 40 is 
obtained as follows

	
F =

[
1
N

758∑
i=1

ai1,
1
N

758∑
i=1

ai2,
1
N

758∑
i=1

ai3, ...,
1
N

758∑
i=1

ai40

]
� (2)

where i is the ith frame and N is the total number of frames i.e., 758.

Constant-Q-transform
Constant Q transformation is a technique to convert sound or signal data into frequency-domain data42. 
CQT mainly shows good performance for both perceptual and music processing. It is the same as Fourier 
transform (FT) whereas it has additional advantages. Firstly, it applies a logarithmic scale to ensure wide and 
narrow bandwidths in high-frequency and low-frequency regions. CQT is more useful than FT and reports 
low resolution in regions of low frequency. Additionally, the bandwidth is proportionally divided by the central 
frequency, making it simple to discriminate even if the frequency spans many octaves. Figure  6 provides a 
logarithmically spaced frequency resolution, offering a detailed representation of spectral content over time. 
The intensity variations indicate distinct spectral characteristics across different track conditions, with clear 
differences in frequency distribution and energy concentration. In the Wheel Burn case, higher intensity levels 
(−5 dB to 0 dB) appear as localized bright spots, indicating sudden energy spikes caused by irregular vibrations 
and impacts from wheel defects. This suggests a non-uniform frequency distribution, revealing abnormal 
disturbances in the track. In contrast, the Superelevation case exhibits moderate intensity (−10 dB to −20 dB) 
with a more evenly spread pattern, reflecting systematic frequency shifts due to track banking. This results in a 
smoother transition of forces acting on the track rather than abrupt variations. Lastly, the Normal Track serves 
as a baseline, showing lower intensity levels (−30 dB to −50 dB) with minimal bright spots, indicating uniform 
frequency distribution and the absence of major external disturbances. By analyzing these intensity variations, 
we can effectively diagnose track conditions, distinguishing between defects, structural features, and normal 
behavior.

Constant Q transformation is used to analyze the frequency domain and can be estimated using the following 
equation43.
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y(w) = 1

n

∑
y(b)j(b)e( − ib/n) +

∑
y(b)j(b)� (3)

where w is used for the sequence number of the spectral line and q is for the quality factor and its value is equivalent 
to the result for center frequency to the bandwidth. The center frequency is an exponential distribution. The 
window function n can be calculated as

	
n =

[
q ∗ gs

g4(w/a)

]
� (4)

where gs is used for sampling frequency, g is used for the low frequency of the musical signal, gw is the frequency 
value with spectral line and C is used for a number of spectral lines in an octave.

As an octave is separated by 12 semi-tones using an average temperament of 12, C mostly inputs a value 
for 12 or twelve multiple. However, CQT spectrum-frequency and scale-frequency have similar exponential 
distribution formula43, CQT is used to analyze and process the musical signals. Therefore, the main issue of 
constant Q transformation is that the computation speed is very slow.

Fig. 6.  Constant-Q transformed spectra for different track conditions, (a) Wheel burn, (b) Superelevation, and 
(c) Normal track.
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Composite travel generative adversarial network
Composite travel generative adversarial network is a GAN-based technique that is used for tabular data 
and sample rows from the distribution44. The CTGAN approach is made up of 2 GAN networks including 
the sequence model and the tabular model. The main use for the tabular components is learning the joint 
distribution for elementary socio-demographic attributes. On the other hand, the sequential component is used 
to learn the distribution of trips that are selected by an individual per day. The properties include correlated 
features, different mixed data types like continuous or discrete features, problems in learning from higher 
sparse vectors, and potential mode failure due to the highest class imbalance. To solve these types of problems, 
we select composite travel generative adversarial network as the essential generative technique. CTGAN has 
many additional hyperparameters that are used to control its learning behavior and may impact the classifier 
performance for the computational time and quality of the generated data. CTGAN system considers that every 
component is employed as an independent network that is trained with its parameters based on data distribution. 
The presented method adopts just tabular components for the CTGAN approach and also trains the parameters. 
Conditional sampling only allows sampling using a conditional distribution with the CTGAN method, which 
means we may generate just values to satisfy the definite conditions. To overcome the multimodal and non-
Gaussian distribution, the proposed method invents the mode-specific normalization in CTGAN.

Supervised machine learning models
The proposed approach uses several machine learning models to detect rail track defects. SVM, RF, RNN, DT, 
LR, NB, voting classifier, KNN, CNN, GRU, and LSTM are used in this study. These models are fine-tuned to 
optimize their performance.

Decision tree
The Decision Tree (DT) method, as discussed in45, is a supervised classification technique characterized by its 
non-linear structure resembling a tree. In the context of evaluating faults and defects in transformers, the DT 
algorithm proves useful. In DT, connection points between branches represent conditions for differentiation, 
while the leaf nodes signify classifications. The classification process involves determining whether data meets 
the conditions outlined at each node, selecting appropriate branches to proceed, and repeating these steps until 
a leaf node is reached. In our study, DT is utilized with 2 hyperparameters. We specifically employ the ”max_
depth” hyperparameter, set to 250, which restricts the decision tree’s growth to a maximum depth of 250 levels 
to prevent overfitting and manage complexity.

Support vector machine
SVM is a versatile linear model widely adopted for regression, classification, and various other tasks across 
numerous research articles46,47. It operates by dividing sample data into distinct classes using a set of hyperplanes 
or a single hyperplane in a g-dimensional space, where g represents the number of features. SVM’s primary 
function is classification, aiming to identify the ”best fit” hyperplane that effectively separates different 
classes. In this study, we employ a ’linear’ kernel for the SVM classifier, which is commonly utilized when 
dealing with datasets featuring a high number of features. The SVM classifier offers two key advantages: high 
speed and enhanced performance even with a limited number of samples. For our current investigation, two 
hyperparameters are employed: a regularization parameter (C) set to 1.0 and the use of a ’linear’ kernel for 
experimentation purposes.

Random forest
RF is a classifier based on decision trees known for its ability to make accurate predictions by combining multiple 
weak learners, as described in48. It employs the bagging method, where various types of decision trees are utilized 
during training, employing numerous bootstrap samples, as outlined in49. These bootstrap samples are generated 
by randomly selecting subsets from the training dataset with replacement, maintaining a similar sample size as 
the original dataset. Ensemble classification is achieved by training multiple models and aggregating their results 
through a voting process. Several contributors have introduced ensemble learning methods, including boosting 
and bagging, which are widely utilized, as discussed in50–52. Bagging, specifically, focuses on reducing variance 
in classification by training models on bootstrap samples. The definition of RF is as follows:

	

RFp =mode{dt1, dt2, dt3, ..., dtn}
OR

RFp =mode{
N∑

i=1

dti}
� (5)

where dt1, dt2, dt3, ..., dtn are the predictions by decision trees and rfp is prediction by RF using majority 
voting. We employed RF with three hyperparameters, as outlined in Table 3. The parameter n_estimators was 
set to 200, indicating that RF generated 200 decision trees for the prediction process. Additionally, max_depth 
was set to 50, limiting the depth of the decision trees to a maximum of 50 levels to prevent complexity and over-
fitting.

Logistic regression
LR as referenced in53, is a statistical classifier employed to address classification problems. When dealing with 
classification tasks where target variables are well-defined, logistic regression emerges as the primary choice. 
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LR analyzes the association between one or more independent variables and categorical dependent variables by 
estimating probabilities using a logistic function. The logistic function, typically represented by a sigmoid curve, 
is defined as follows:

	
Y = h

1 + E−n(u−u0) � (6)

where E is the classification53, Euler number u0 is used for the value of the sigmoid mid-point, h is the maximum 
value of the curve, and n is used for the steepness of the curve. LR performs better on binary classification and 
demonstrates improved performance for the text.

Naive Bayes
NB classifier is a supervised learning technique that is based on the Bayes formula and used to solve classification 
issues54. NB is essentially applied to detect faults in the rail track. NB is one of the easiest and most effective 
classifiers that helps to build machine learning-based methods that can predict quickly. NB is a probabilistic 
model which means it performs prediction based on probability for an object. Suppose a set of d vectors 
E = e1, e2, ..., ed and performs classification along a set F of p classes F = f1, f2, ..., fp, Bayesian models 
estimate the probabilities for every category Fi given an Ej is described in the below equation54

	
P (ei|fk) = P (fk|ei)P (ei)

(P (fk))f(x) � (7)

where P (ei) is the probability and picked randomly has vector ei as its demonstration that belongs to fk . To 
estimate the P (fk|ei), NB considers that the probability for a given value is independent. NB shows improved 
results than other classifiers. Additionally, only values are used as the predictors, the simplification of naive 
allows computing the model for data that is associated with this technique. It is possible to define P (fk|ei) as the 
product for the probabilities of every term that appears using this simplification. However, P (fk|ei) is estimated 
using equation54.

	 P (Gk|fi) = Πt
1(P (Ujk|fi))� (8)

K Nearest Neighbors
KNN classifier stands out as the most straightforward and non-parametric supervised machine learning 
technique, utilized for regression, classification, and addressing missing value imputation problems54. Its 
approach involves storing all available data and determining the classification of a data point based on similarity. 
During the training phase, the KNN algorithm solely retains the dataset and assigns the data to a category highly 
resembling the new data. To precisely define the nearest neighbors, a distance metric such as Manhattan or 
Euclidean distance is computed54. KNN is alternatively known as a lazy or instance-based learner. However, it’s 
worth noting that KNN cannot predict values that fall outside the range of the sampled data.

Ensemble classifier
Ensemble voting is a voting classifier that combines several classifiers into a single model which is more robust 
than individual models55. For the current study, hard voting is used. Every model votes for a category in the hard 
voting and the category with the maximum votes wins. Every model in soft-voting allocates a probability value 
to every data point that belongs to a specific target category. In the presented model, we combine LR, GNB, and 
SVC classifiers into a single method.

Deep learning models
Besides using machine learning models, several deep learning models are used.

Long short-term memory
LSTM as referenced in56, resembles RNN (Recurrent Neural Network) but incorporates efficient memory cells 
designed to either forget or retain information. It addresses the problem of long-term dependency by employing 
a chain of RNN modules. The LSTM architecture includes four gates: the update gate, output gate, forget gate, 
and input gate. The forget gate determines whether the information is discarded from the cell state, while the 
input gate, consisting of a tanh layer and a sigmoid layer, determines which values will be modified. The update 

Algorithm Hyperparameters

LR solver=saga, C=2.0, max_iter=100, penalty=’l2’, multi_clas=multinomial

SVM kernel=’linear’, C=2.0, random_state=500

RF n_estimators=200,max_depth=50, random_state=2

DT max_depth=50, random_state=2

LSTM Input layer, Hidden layer, Output layer, optimizer=adam, Dropout=0.5 loss=categorical_crossentropy, activation= ReLU, Softmax, epoches=10

CNN Conv2D (filter=16, 32, 64, 128, kernel=2x2), maxpooling2D=2x2, optimizer=adam, loss=categorical_crossentropy, Dropout=0.5, epoches=200

Table 3.  Hyperparameters used for machine and deep learning models.
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gate refreshes the old cell state with the value derived from the input gate. Finally, the output gate is utilized to 
determine the value to be outputted from the layer56.

	 RL = ϕ(YR[GL − 1, ZL] + AR)� (9)

where G_L denotes the weight matrix and A_R is used for the bias vector. Suppose R_L is a number between 
0 and 1, then 0 indicates that the value is to forget and 1 indicates to keep the value.

	 PL =ϕ(YP [GL − 1, ZL] + AL) � (10)

	 W ∼
L =tanh(YW [GL − 1, Z] + AW ) � (11)

where Y _P  and Y _w are used for weight matrices and A_L and A_W  are used for bias vectors. For output, 
P_L and W_L are used.

	 WL = RL ∗ WL − 1 + PL ∗ W ∼
L � (12)

where R_L is used to decide which information is to be forgotten. P_L ∗ W_L chooses the total number of 
values that are used to modify the cell.

	 PE =ϕ(YE [GL − 1, ZL] + AE) � (13)

	 HL =EL ∗ tanh(fl) � (14)

where PE is used to decide which is the output state. The new cell state WL is multiplied by EL. The tanh function 
is used to achieve HL which is the output of PE. The presented model used LSTM which takes the least time for 
training. LSTM is the most efficient method than other machine learning techniques.

Convolutional neural network
CNN is mostly used to deal with the variability of 2D shapes57. This architecture is tested for feature extraction 
of images. CNN contains two layers including the convolution layer and the pooling layer. The convolutional 
layer is used to perform convolution of the previous layer using the sliding filter to attain the output feature map, 
where F de

c  denotes the pthoutput feature map in de layer, j(de−1)
l  is used for lth input feature map in (de − 1) 

layer. ϕ is used for the sigmoid function that is employed as the network’s activation function. Both Y ae
pl  and P ae

p  
are used for filters that create the training parameters of convolutional layers as in bellow equation57

	
F de

c = ϕ(
k∑

l=1

jde−1 ∗ Yplae + P ae
p )� (15)

To minimize the feature-map resolution and sensitivity for output, the pooling layer is used. The max pooling is 
commonly used for pooling in CNN. The max pooling is described58 as in the bellow equation.

	 Hdi
p = max{b1, b2, b3, b4}� (16)

where Hdi
p  shows the pth output feature map of pooling layer.

Recurrent neural network
RNN model59 is used to save the output for specific layers and feedback to the input in sequential form to predict 
the output. RNN is considered to handle the sequential data.

RNNs memorize the previous inputs due to internal memory. It simulates a discrete-time dynamical system 
that has xe for the input layer, ye for the hidden layer, and ze for the output layer, and e is used to denote time. 
The dynamical model is defined as in equation and bellow equation59

	 ye =Gy(xe, ye−1) � (17)

	 z0 =G0(ye) � (18)

where Gy  and G0 are functions that are used for state transition and output respectively. Each function is 
parameterized by a set of parameters as θy and θ0.

Gated recurrent unit
GRU represents the next evolution of RNNs, utilizing the hidden state for information transmission. Unlike 
LSTM, GRU incorporates only two gates: an update gate and a reset gate60. The update gate functions similarly 
to the input and forget gates in LSTM, determining which information to discard and what new information to 
incorporate. On the other hand, the reset gate is responsible for determining the extent to which information 
should be forgotten.
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Results and discussion
The experiments are conducted using the Google Colab service alongside a Python Jupyter Notebook. Librosa is 
employed to extract MFCC and CQT features, while machine learning models utilize the sci-kit-learn package 
and deep learning models utilize the TensorFlow library.

An equal number of data points for each class are used for experiments. The dataset was structured to ensure 
uniform representation across all categories including normal track (0), superelevation (1), and wheel burn 
(2), to prevent class imbalance and ensure fair model training and evaluation. Performance evaluation of the 
classifiers is carried out using standard parameters such as accuracy, precision, recall, and F1 score, which are 
computed using the following equations.

	
Accuracy = TrPo + TrNe

TrPo + TrNe + F Po + F Ne
� (19)

	
P = TrPo

TrPo + F Po
� (20)

	
R = TrPo

TrPo + F Ne
� (21)

	
F 1 − score = 2 ∗ P ∗ R

P + R
� (22)

Results of machine learning classifiers using MFCC features
Table 4 depicts the accuracy results of different machine learning models using MFCC features. Several models 
have been applied for experiments including DT, SVM, KNN, LR, NB, RF, and voting classifiers. Accuracy results 
for DT, SVM, KNN, LR, and NB are 96%, 99%, 85%, 97%, 78%, and 97%, respectively. Experimental results show 
that tree-based models like DT and RF perform best with accuracy results of 96% and 99%, respectively. While 
regression and probabilistic-based models perform poorly like NB and KNN yield 78% and 85%, respectively. 
The accuracy of the voting classifier with hard and soft voting is 98%.

Results of machine learning classifiers using CQT features
Table 5 shows the performance of different machine learning models using CQT features. Accuracy scores for 
DT, SVM, KNN, LR, NB, and RF are 96%, 99%, 85%, 97%, 78%, and 97%, respectively. Results demonstrate that 
tree-based models like DT, RF, and liner based models perform best with accuracy scores of 95%, 97%, and 93% 
as compared to regression and probabilistic-based models like NB and KNN with 87% and 72% accuracy scores, 

Model Class Precision Recall F1 Score Model Class Precision Recall F1 Score

DT

0 0.96 0.92 0.94

LR

0 1.0 0.92 0.96

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 0.92 0.96 0.94 2 0.92 1.0 0.96

Micro avg. 0.96 0.96 0.96 Micro avg. 0.97 0.97 0.97

Weighted avg. 0.96 0.96 0.96 Weighted avg. 0.97 0.97 0.97

Accuracy 0.96 Accuracy 0.97

SVC

0 0.98 0.98 0.98

NB

0 0.63 0.81 0.71

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 0.98 0.98 0.98 2 0.74 0.53 0.62

Micro avg. 0.99 0.99 0.99 Micro avg. 0.79 0.78 0.78

Weighted avg. 0.99 0.99 0.99 Weighted avg. 0.79 0.78 0.77

Accuracy 0.99 Accuracy 0.78

KNN

0 0.78 0.79 0.78

RF

0 0.96 0.94 0.95

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 0.79 0.78 0.78 2 0.94 0.96 0.95

Micro avg. 0.86 0.86 0.86 Micro avg. 0.97 0.97 0.97

Weighted avg. 0.85 0.85 0.85 Weighted avg. 0.97 0.97 0.97

Accuracy 0.85 Accuracy 0.97

HardVoting

0 0.98 0.96 0.97

Soft Voting

0 0.98 0.96 0.97

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 0.96 0.98 0.97 2 0.96 0.98 0.97

Micro avg. 0.98 0.98 0.98 Micro avg. 0.98 0.98 0.98

Weighted avg. 0.98 0.98 0.98 Weighted avg. 0.98 0.98 0.98

Accuracy 0.98 Accuracy 0.98

Table 4.  Results of machine learning classifiers using MFCC features.
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respectively. The liner-based algorithm also performs well with an accuracy of 93%. Accuracy of the voting 
classifier with hard and soft voting yield 95% and 94% accuracy, respectively.

Results of classifiers using hybrid features
Feature fusion is a technique that is formulated with multiple features that are extracted from the same dataset. 
The benefit of feature fusion is the increased versatility in feature sets; different types of features can be extracted 
and used for model training. In Table 6 accuracy of different machine learning models is reported using a fusion 
of MFCC and CQT. Classifiers like DT, SVC, KNN, LR, NB, and RF yield accuracy scores of 93%, 95%, 85%, 
93%, 47%, and 97%, respectively. Probability-based models yield less accuracy for all scenarios.

Results of machine learning classifiers using MFCC features with CTGAN
Data augmentation methods like GAN create new data samples. GAN creates distinctive samples that imitate 
the feature distribution of the original dataset using random noise taken from latent space. Table 7 displays the 
accuracy results of classifiers using MFCC features along with CTGAN. As CTGAN techniques create more 
sample features with the big size of the dataset models can be better tuned and results are improved substantially. 
SVC, KNN, LR, NB, RF, and voting classifiers with hard and soft voting yield 100% accuracy after applying 
CTGAN while the performance of DT is decreased to 94%.

Results of machine learning classifiers using CQT features with CTGAN
In Table 8, the performance of machine learning classifiers with CQT features along with the augmentation 
technique CTGAN is evaluated. LR, NB, RF, SVC, and voting classifier yield accuracy results of 100% while 
DT and KNN perform less with 92% and 71% accuracy, respectively. Overall, the performance of probabilistic 
classifiers is increased.

Results of machine learning classifiers using Hybrid features with CTGAN
We have performed experiments along with a combination of both features MFCC and CQT after data 
augmentation using CTGAN and results are given in Table 9. Different machine learning classifiers are trained 
and accuracy results for SVM, KNN, LR, NB, and voting classifiers indicate a 100% accuracy. DT shows 
poor performance with an 85% accuracy because it is a Singleton algorithm and when data size increases the 
complexity level is also increased resulting in a decrease in its performance.

Results of deep learning classifiers using MFCC and CQT features
Table 10 depicts the accuracy results of different deep learning models using MFCC and CQT features extracted 
from the audio signal with an 80 to 20 train test ratio.

Model Class Precision Recall F1 Score Model Class Precision Recall F1 Score

DT

0 0.87 0.94 0.90

LR

0 0.85 0.96 0.90

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 0.93 0.86 0.89 2 0.95 0.84 0.89

Micro avg. 0.93 0.93 0.93 Micro avg. 0.93 0.93 0.93

Weighted avg. 0.93 0.93 0.93 Weighted avg. 0.93 0.93 0.93

Accuracy 0.93 Accuracy 0.93

SVC

0 0.90 0.96 0.93

NB

0 0.80 0.81 0.80

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 0.96 0.90 0.93 2 0.81 0.80 0.80

Micro avg. 0.95 0.95 0.95 Micro avg. 0.87 0.87 0.87

Weighted avg. 0.95 0.95 0.95 Weighted avg. 0.87 0.87 0.87

Accuracy 0.95 Accuracy 0.87

KNN

0 0.55 0.85 0.67

RF

0 0.92 0.98 0.95

1 1.00 0.89 0.94 1 1.00 1.00 1.00

2 0.74 0.41 0.53 2 0.98 0.92 0.95

Micro avg. 0.76 0.72 0.71 Micro avg. 0.97 0.97 0.97

Weighted avg. 0.76 0.72 0.71 Weighted avg. 0.97 0.97 0.97

Accuracy 0.72 Accuracy 0.97

HardVoting

0 0.90 0.96 0.93

Soft Voting

0 0.88 0.96 0.92

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 0.96 0.90 0.93 2 0.96 0.88 0.91

Micro avg. 0.95 0.95 0.95 Micro avg. 0.94 0.94 0.94

Weighted avg. 0.95 0.95 0.95 Weighted avg. 0.94 0.94 0.94

Accuracy 0.95 Accuracy 0.94

Table 5.  Results for CQT features using machine learning classifiers.
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Model Class Precision Recall F1 Score Model Class Precision Recall F1 Score

DT

0 0.90 0.92 0.91

LR

0 1.00 1.00 1.00

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 0.92 0.90 0.91 2 1.00 1.00 1.00

Micro avg. 0.94 0.94 0.94 Micro avg. 1.00 1.00 1.00

Weighted avg. 0.94 0.94 0.94 Weighted avg. 1.00 1.00 1.00

Accuracy 0.94 Accuracy 1.00

SVC

0 1.00 1.00 1.00

NB

0 1.00 1.00 1.00

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 1.00 1.00 1.00 2 1.00 1.00 1.00

Micro avg. 1.00 1.00 1.00 Micro avg. 1.00 1.00 1.00

Weighted avg. 1.00 1.00 1.00 Weighted avg. 1.00 1.00 1.00

Accuracy 1.00 Accuracy 1.00

KNN

0 0.99 1.00 1.00

RF

0 1.00 1.00 1.00

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 1.00 1.00 1.00 2 1.00 1.00 1.00

Micro avg. 1.00 1.00 1.00 Micro avg. 1.00 1.00 1.00

Weighted avg. 1.00 1.00 1.00 Weighted avg. 1.00 1.00 1.00

Accuracy 1.00 Accuracy 1.00

Hard Voting

0 1.00 1.00 1.00

Soft Voting

0 1.00 1.00 1.00

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 1.00 1.00 1.00 2 1.00 1.00 1.00

Micro avg. 1.00 1.00 1.00 Micro avg. 1.00 1.00 1.00

Weighted avg. 1.00 1.00 1.00 Weighted avg. 1.00 1.00 1.00

Accuracy 1.00 Accuracy 1.00

Table 7.  Results of models using MFCC with CTGAN.

 

Model Class Precision Recall F1 Score Model Class Precision Recall F1 Score

DT

0 0.89 0.90 0.89

LR

0 0.89 0.91 0.90

1 0.99 0.99 0.99 1 1.00 1.00 1.00

2 0.90 0.89 0.89 2 0.91 0.90 0.90

Micro avg. 0.93 0.93 0.93 Micro avg. 0.93 0.93 0.93

Weighted avg. 0.93 0.93 0.93 Weighted avg. 0.93 0.93 0.93

Accuracy 0.93 Accuracy 0.93

SVC

0 0.90 0.95 0.93

NB

0 0.37 0.77 0.50

1 1.00 1.00 1.00 1 0.74 0.50 0.60

2 0.96 0.91 0.93 2 0.46 0.16 0.24

Micro avg. 0.95 0.95 0.95 Micro avg. 0.52 0.48 0.45

Weighted avg. 0.95 0.95 0.95 Weighted avg. 0.53 0.47 0.45

Accuracy 0.95 Accuracy 0.47

KNN

0 0.72 0.89 0.79

RF

0 0.96 0.92 0.94

1 0.98 0.95 0.93 1 1.00 1.00 1.00

2 0.88 0.72 0.79 2 0.93 0.97 0.95

Micro avg. 0.85 0.85 0.85 Micro avg. 0.97 0.96 0.96

Weighted avg. 0.85 0.85 0.85 Weighted avg. 0.97 0.97 0.97

Accuracy 0.85 Accuracy 0.97

Hard Voting

0 0.89 0.94 0.92

Soft Voting

0 0.87 0.93 0.90

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 0.95 0.90 0.92 2 0.94 0.88 0.91

Micro avg. 0.95 0.95 0.95 Micro avg. 0.94 0.94 0.94

Weighted avg. 0.95 0.95 0.95 Weighted avg. 0.94 0.94 0.94

Accuracy 0.95 Accuracy 0.94

Table 6.  Results of machine learning classifiers using hybrid features with CTGAN.
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Deep learning models have been applied in this experiment including LSTM, CNN, RNN, and GRU. Results 
show that LSTM, CNN, RNN, and GRU models show the accuracy of 33%, 93%, 72%, and 89%, respectively. 
While with CQT features deep learning classifiers yield 36%, 89%, 63%, and 88%, respectively. The overall 
performance of deep learning classifiers is lower as compared to machine learning classifiers because of dataset 
size. Deep learning models perform best on large datasets.

Results of deep learning classifiers using MFCC and CQT with CTGAN
Table 11 shows the results for deep learning models after data augmentation is performed using CTGAN and 
MFCC and CQT features are used for model training. For MFCC features with augmentation, LSTM, CNN, 
RNN, and GRU yield 48%, 100%, 76%, and 100% accuracy, respectively. From the results, it can be observed 
that the models’ performance is enhanced as the dataset size is increased. Similarly with CQT features with 
augmentation, accuracy for LSTM, CNN, RNN, and GRU is 40%, 100%, 51%, and 100%, respectively. The 
accuracy is also improved in this case.

Results of deep learning classifiers using hybrid features and hybrid features with CTGAN
Table 12 shows results for two types of experiments; in the first part, a fusion of both MFCC and CQT is used 
to train deep learning classifiers while the second part involves experiments with feature fusion from CTGAN-
generated data. For the first scenario, the accuracy results for LSTM, CNN, RNN, and GRU are 36%, 89%, 
63%, and 88% respectively. Results show a slight improvement as compared to the single-feature extraction 
technique. On the other hand, results for the second part are much better with 40%, 100%, 78%, and 100% 
accuracy for LSTM, CNN, RNN, and GRU, respectively. Figure 7 shows the accuracy scores comparison between 
all approaches.

K-fold cross-validation results
We have also performed k-fold cross-validation to check the performance of the model that is outperformed and 
gives a 1.00 mean accuracy score with +/−0.00 standard deviation using the proposed approach. The results of 
our approach using 10-fold cross-validation are the same as per the train test split method. The results of K fold 
cross-validation with and without CTGAN are shown in Tables 13 and 14. After applying CTGEN with feature 
extraction techniques the machine learning models improve the accuracy which shows that CTGAN helps to 
generate enough data for the learning models.

Comparison With existing studies
Several studies have worked on the detection of rail faults using machine learning approaches; some of these 
studies used the same dataset. For the studies which used the same dataset we compared their results while for 

Model Class Precision Recall F1 Score Model Class Precision Recall F1 Score

DT

0 0.86 0.89 0.88

LR

0 0.99 0.99 0.99

1 0.99 0.98 0.99 1 1.00 1.00 1.00

2 0.90 0.89 0.89 2 1.00 1.00 1.00

Micro avg. 0.92 0.92 0.92 Micro avg. 1.00 1.00 1.00

Weighted avg. 0.92 0.92 0.92 Weighted avg. 1.00 1.00 1.00

Accuracy 0.92 Accuracy 1.00

SVC

0 0.99 0.99 0.99

NB

0 1.00 1.00 1.00

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 0.99 1.00 0.99 2 1.00 1.00 1.00

Micro avg. 1.00 0.99 0.99 Micro avg. 1.00 1.00 1.00

Weighted avg. 1.00 0.99 0.99 Weighted avg. 1.00 1.00 1.00

Accuracy 1.00 Accuracy 1.00

KNN

0 0.53 0.99 0.69

RF

0 1.00 1.00 1.00

1 1.00 0.34 0.50 1 1.00 1.00 1.00

2 0.97 0.80 0.88 2 1.00 1.00 1.00

Micro avg. 0.83 0.71 0.69 Micro avg. 1.00 1.00 1.00

Weighted avg. 0.84 0.71 0.69 Weighted avg. 1.00 1.00 1.00

Accuracy 0.71 Accuracy 1.00

HardVoting

0 1.00 1.00 1.00

Soft Voting

0 1.00 1.00 1.00

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 1.00 1.00 1.00 2 1.00 1.00 1.00

Micro avg. 1.00 1.00 1.00 Micro avg. 1.00 1.00 1.00

Weighted avg. 1.00 1.00 1.00 Weighted avg. 1.00 1.00 1.00

Accuracy 1.00 Accuracy 1.00

Table 8.  Results of machine learning classifiers using CQT features with CTGAN.
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those which used other datasets, we deployed their approaches on the currently used dataset and performed 
experiments for a fair comparison. The study61 performed experiments on the same dataset while the study37,51,57 
carried out experiments on other datasets for railway track fault detection. So we deploy the proposed approaches 
in37,51,57 using the currently used dataset and show the comparative performance in Table 15. The results show 
the significance of the proposed approach indicating the superior performance of the proposed approach. 
This study focuses on dataset size which is ignored by previous studies which elevated the performance of the 
machine learning models. In addition, we also deployed hybrid features while most of the existing studies only 
used MFCC features. The use of hybrid features helps to achieve better results than merely using MFCC features.

Conclusions and future work
The railway network serves as the backbone of today’s transportation system and its regular operations are very 
important for the transportation of goods and humans. Cracks, ballast issues, burn wheels, superelevation, etc. 
can disrupt railway tracks and cause financial and human losses. Automatic detection of such faults can avoid 
laborious and error-prone manual fault detection. Contrary to existing studies that rely on MFCC features, this 
study proposes the use of hybrid features including MFCC and CQT features with an enlarged audio dataset and 
shows improved performance with an ensemble model. In addition, using the CTGAN model for generating 
additional samples yields better performance than existing state-of-the-art approaches for railway track fault 
detection. An accuracy of 100% can be obtained using CTGAN and hybrid features.

Model Class Precision Recall F1 Score Model Class Precision Recall F1 Score

DT

0 0.81 0.80 0.81

LR

0 1.00 1.00 1.00

1 0.91 0.92 0.91 1 1.00 1.00 1.00

2 0.83 0.82 0.82 2 1.00 1.00 1.00

Micro avg. 0.85 0.85 0.85 Micro avg. 1.00 1.00 1.00

Weighted avg. 0.85 0.85 0.85 Weighted avg. 1.00 1.00 1.00

Accuracy 0.85 Accuracy 1.00

SVC

0 1.00 1.00 1.00

NB

0 1.00 1.00 1.00

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 1.00 1.00 1.00 2 1.00 1.00 1.00

Micro avg. 1.00 1.00 1.00 Micro avg. 1.00 1.00 1.00

Weighted avg. 1.00 1.00 1.00 Weighted avg. 1.00 1.00 1.00

Accuracy 1.00 Accuracy 1.00

KNN

0 0.66 1.00 0.80

RF

0 1.00 1.00 1.00

1 1.00 0.03 0.07 1 1.00 1.00 1.00

2 0.37 0.55 0.45 2 1.00 1.00 1.00

Micro avg. 0.68 0.53 0.44 Micro avg. 1.00 1.00 1.00

Weighted avg. 0.68 0.52 0.43 Weighted avg. 1.00 1.00 1.00

Accuracy 0.52 Accuracy 1.00

Hard Voting

0 1.00 1.00 1.00

Soft Voting

0 1.00 1.00 1.00

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 1.00 1.00 1.00 2 1.00 1.00 1.00

Micro avg. 1.00 1.00 1.00 Micro avg. 1.00 1.00 1.00

Weighted avg. 1.00 1.00 1.00 Weighted avg. 1.00 1.00 1.00

Accuracy 1.00 Accuracy 1.00

Table 9.  Results of models using MFCC and CQT features from CTGAN data.

 

Scientific Reports |        (2025) 15:30914 15| https://doi.org/10.1038/s41598-025-14763-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


MFCC

Model Class Precision Recall F1 Score Model Class Precision Recall F1 Score

LSTM

0 0.33 1.00 0.50

CNN

0 0.96 0.86 0.81

1 0.00 0.00 0.00 1 94.0 1.00 97.0

2 0.00 0.00 0.00 2 0.89 0.92 0.91

Micro avg. 0.11 0.33 0.17 Micro avg. 0.93 0.93 0.93

Weighted avg. 0.11 0.33 0.16 Weighted avg. 0.93 0.93 0.93

Accuracy 0.33 Accuracy 0.93

RNN

0 0.57 0.78 0.66

GRU

0 0.82 0.90 0.86

1 0.96 1.00 0.98 1 0.96 1.00 0.98

2 0.69 0.42 0.52 2 0.89 0.77 0.83

Micro avg. 0.74 0.73 0.72 Micro avg. 0.89 0.89 0.89

Weighted avg. 0.73 0.72 0.71 Weighted avg. 0.89 0.89 0.89

Accuracy 0.72 Accuracy 0.89

CQT

Model Class Precision Recall F1 Score Model Class Precision Recall F1 Score

LSTM

0 0.36 1.00 0.53

CNN

0 0.90 0.83 0.86

1 0.00 0.00 0.00 1 94.0 1.00 97.0

2 0.00 0.00 0.00 2 0.84 0.87 0.86

Micro avg. 0.12 0.33 0.18 Micro avg. 0.89 0.90 0.90

Weighted avg. 0.16 0.36 0.19 Weighted avg. 0.89 0.89 0.89

Accuracy 0.36 Accuracy 0.89

RNN

0 0.53 0.46 0.49

GRU

0 0.83 0.88 0.85

1 0.87 0.91 0.89 1 0.98 1.00 0.99

2 0.51 0.57 0.54 2 0.86 0.79 0.82

Micro avg. 0.64 0.64 0.64 Micro avg. 0.89 0.89 0.89

Weighted avg. 0.62 0.63 0.63 Weighted avg. 0.88 0.88 0.88

Accuracy 0.63 Accuracy 0.88

Table 10.  Results of deep learning classifiers using hybrid features.
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MFCC+CTGAN

Model Class Precision Recall F1 Score Model Class Precision Recall F1 Score

LSTM

0 0.00 0.00 0.00

CNN

0 1.00 1.00 1.00

1 1.00 0.59 0.74 1 1.00 1.00 1.00

2 0.36 0.01 0.53 2 1.00 1.00 1.00

Micro avg. 0.45 0.53 0.42 Micro avg. 1.00 1.00 1.00

Weighted avg. 0.42 0.48 0.39 Weighted avg. 1.00 1.00 1.00

Accuracy 0.48 Accuracy 1.00

RNN

0 0.71 0.65 0.68

GRU

0 1.00 1.00 1.00

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 0.58 0.64 0.61 2 1.00 1.00 1.00

Micro avg. 0.76 0.76 0.76 Micro avg. 1.00 1.00 1.00

Weighted avg. 0.76 0.76 0.76 Weighted avg. 1.00 1.00 1.00

Accuracy 0.76 Accuracy 1.00

CQT+CTGAN

Model Class Precision Recall F1 Score Model Class Precision Recall F1 Score

LSTM

0 0.40 1.00 0.57

CNN

0 1.00 1.00 1.00

1 0.00 0.00 0.00 1 1.00 1.00 1.00

2 0.00 0.00 0.00 2 0.99 0.99 0.99

Micro avg. 0.13 0.33 0.19 Micro avg. 1.00 1.00 1.00

Weighted avg. 0.16 0.40 0.22 Weighted avg. 1.00 1.00 1.00

Accuracy 0.40 Accuracy 1.00

RNN

0 0.58 0.40 0.47

GRU

0 1.00 1.00 1.00

1 0.53 0.66 0.58 1 1.00 1.00 1.00

2 0.43 0.50 0.46 2 0.99 1.00 1.00

Micro avg. 0.51 0.52 0.51 Micro avg. 1.00 1.00 1.00

Weighted avg. 0.52 0.51 0.50 Weighted avg. 1.00 1.00 1.00

Accuracy 0.51 Accuracy 1.00

Table 11.  Results of deep learning classifiers using hybrid features with CTGAN.
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MFCC+CQT

Model Class Precision Recall F1 Score Model Class Precision Recall F1 Score

LSTM

0 0.36 1.00 0.53

CNN

0 0.90 0.83 0.86

1 0.00 0.00 0.00 1 94.0 1.00 97.0

2 0.00 0.00 0.00 2 0.84 0.87 0.86

Micro avg. 0.12 0.33 0.18 Micro avg. 0.89 0.90 0.90

Weighted avg. 0.13 0.36 0.19 Weighted avg. 0.89 0.89 0.89

Accuracy 0.36 Accuracy 0.89

RNN

0 0.53 0.46 0.49

GRU

0 0.83 0.88 0.85

1 0.87 0.91 0.89 1 0.98 1.00 0.99

2 0.51 0.57 0.54 2 0.86 0.79 0.82

Micro avg. 0.64 0.64 0.64 Micro avg. 0.89 0.89 0.89

Weighted avg. 0.62 0.63 0.63 Weighted avg. 0.88 0.88 0.88

Accuracy 0.63 Accuracy 0.88

MFCC+CQT+GAN

Model Class Precision Recall F1 Score Model Class Precision Recall F1 Score

LSTM

0 0.40 1.00 0.57

CNN

0 1.00 1.00 1.00

1 0.00 0.00 0.00 1 1.00 1.00 1.00

2 0.00 0.00 0.00 2 1.00 1.00 1.00

Micro avg. 0.13 0.33 0.19 Micro avg. 1.00 1.00 1.00

Weighted avg. 0.16 0.40 0.22 Weighted avg. 1.00 1.00 1.00

Accuracy 0.40 Accuracy 1.00

RNN

0 0.72 0.72 0.72

GRU

0 0.99 1.00 1.00

1 1.00 1.00 1.00 1 1.00 1.00 1.00

2 0.62 0.61 0.62 2 0.99 0.99 0.99

Micro avg. 0.78 0.78 0.78 Micro avg. 1.00 1.00 1.00

Weighted avg. 0.78 0.78 0.78 Weighted avg. 1.00 1.00 1.00

Accuracy 0.78 Accuracy 1.00

Table 12.  Results of deep learning models for hybrid MFCC+CQT with CTGAN.
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Features DT SVC KNN LR NB RF Voting (Hard) Voting (Soft)

MFCC 0.93(± 0.02) 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00) - -

CQT 0.91(± 0.02) 0.99 (± 0.01) 0.78 (± 0.05) 0.99 (± 0.01) 1.00 (± 0.00) 1.00 (± 0.00) 0.99 (± 0.01) 1.00 (± 0.00)

MFCC+CQT 0.83(± 0.04) 1.00 (± 0.00) 0.52 (± 0.04) 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00)

Table 14.  K-fold cross-validation results with MFCC, CQT features, and CTGAN augmentation using 
machine learning models.

 

Features DT SVC KNN LR NB RF Voting (Hard) Voting (Soft)

MFCC 0.93(± 0.08) 0.99 (± 0.02) 0.85 (± 0.08) 0.96 (± 0.05) 0.99 (± 0.02) 0.98 (± 0.02) - -

CQT 0.92(± 0.05) 0.94 (± 0.04) 0.80 (± 0.10) 0.90 (± 0.05) 0.72 (± 0.15) 0.95 (± 0.07) 0.94 (± 0.04) 0.94 (± 0.04)

MFCC+CQT 0.91(± 0.07) 0.95 (± 0.05) 0.83 (± 0.07) 0.90 (± 0.04) 0.48 (± 0.09) 0.95 (± 0.04) 0.94 (± 0.04) 0.90 (± 0.05)

Table 13.  K-fold cross-validation results with MFCC, CQT features using machine learning models.

 

Fig. 7.  Comparison of accuracy scores: (a) Results of machine learning classifiers with MFCC, CQT, and 
hybrid features, (b) Results of deep learning classifiers with MFCC, CQT, and hybrid features, and (c) Results 
of machine learning classifiers with MFCC, CQT, and hybrid features using GAN data, and (d) Results of deep 
learning classifiers with MFCC, CQT, and hybrid features using GAN data.
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Data availability
”The datasets used and/or analysed during the current study available from the corresponding author on rea-
sonable request.”

Code availability
The implementation code is publicly available at the following link: https://github.com/Arehmans/railways
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