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Improved railway track faults
detection using Mel-frequency
cepstral coefficient and constant-Q
transform features

Rahman Shafique'*, Khadija Kanwal®**, Venkata Chunduri?, Gyu Sang Choi'*’ &
Imran Ashraf**!

Regular inspection of the health of railway tracks is crucial to maintaining reliable and safe train
operations. Some factors including cracks, rail discontinuity, ballast issues, burn wheels, super-
elevation, loose nuts and bolts, and misalignment developed on the railways due to pre-emptive
investigations, non-maintenance, and delay in detection pose grave threats and danger to the safe
operation of railway transportation. In the past, manual inspection was performed for the rail track
by a rail cart which is both prone to error and inefficient due to human biases and error. Several train
accidents are reported in Pakistan; it is important to automate these techniques to avoid such train
accidents for the safety of countless lives. This study aims to enhance railway track fault detection
using an automatic rail track fault detection technique with acoustic analysis. Moreover, the proposed
method contributes to making the dataset large by using the CTGAN technique. Results show that
acoustic data may help to determine the railway track faults effectively and logistic regression is used
to perform the classification for railway track faults with an accuracy of 100%.

Keywords Railway track monitoring, Fault detection, Acoustic data, Mel-Frequency Cepstral Coefficient,
Machine learning, Constant-Q transform features

The railway network is a highly essential transportation conduit in various developing nations, such as Pakistan,
and is utilized to satisfy public transit demands. The railway structure is crucial for trade and supply networks'.
The railway market has gotten stronger, opening up new opportunities for the country’s public and economy.
According to?, the railway industry’s annual report from 2016 to 2018 showed a growth rate ranging from 1.3% to
2.4%. As a result, high-performance railway operations are essential to ensure that the railway runs continuously
and that passengers are safe. The railway system is getting more burdened and complex as the number of train
passengers grows. According to’, mechanical forces and environmental factors accelerate the deterioration of
train rails. The railway tracks are crucial components of the railway network. Rail track inspection helps decrease
accidents, injuries, and deaths®*. From 2013 to 2020, the registered train accidents were 127 due to rail track faults
according to the annual reports in Pakistan®. People including students, tourists, and commuters use trains
for traveling in Pakistan. From 2012 to 2017, a total of 757 train accidents have been reported®. Additionally,
22 goods and 16 passenger trains were derailed in 2014, and 37 goods and 37 passenger train accidents were
reported in 2015. In 2019, 11434 railway accidents were recorded, causing 937 casualties and 7730 injuries®.
However, the train accident ratio is higher in under-developing countries’. The railway network contributes to
the Pakistani economy as it has a huge network in the North-South corridor that links the seaport of Karachi
with the country’s main production centers and population®. In 2020, 152 train accidents are reported causing
19 deaths’. In 2021, 32 casualties and 64 injuries were recorded in railway accidents’.

Timely detection and proper inspection of faults may protect several human lives and reduce the financial
losses for railway systems!®. However, the maintenance and inspection of railway tracks is a time-consuming and
expensive activity. Several non-destructive evaluation (NDE) methods for railway track inspection have been
applied including detection using phased array technology!!. Eddy current testing'?, guided wave detection'3,
ultrasonic testing'!, and other techniques have been the focus of rail track inspections. However, there has
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been a recent surge in enthusiasm for employing machine learning models, the Internet of Things (IoT), and
deep learning networks in these inspections. These advanced technologies aim to enhance the speed, precision,
uniqueness, and overall success of non-destructive evaluation (NDE) approaches. The integration of acoustic
transducers!® and high-speed cameras!® with machine learning classifiers is becoming common to modernize
traditional inspection methods. In particular, hand-crafted feature engineering (HCFE) has been utilized in
audio and image-based machine learning applications. Nevertheless, HCFE demands domain-specific expertise,
extensive problem-solving, and system modifications to optimize performance (PS18). Moreover, railway track
classification and inspection have three main stages. Firstly, preprocessing of ‘wav’ files is performed to eliminate
the undesired sounds. Secondly, feature extraction is performed with spectrograms. Thirdly, the classification
method is trained to detect rail track faults.

Maintaining a reliable and safe rail network demands uninterrupted train operations, which entails extensive
monitoring of hundreds of thousands of kilometers of track. This endeavor requires substantial investments of
time and money. Timely and sufficient maintenance of railway tracks is crucial; any failures can disrupt train
services, leading to potential financial and human consequences'’. Crack identification is very important to
run the system rapidly and efficiently. In Pakistan, track inspection is currently conducted using a railway
cart, where human specialists manually assess the track to identify areas requiring repairs. Recognizing the
critical importance of track inspection, this study introduces and integrates an intelligent automated system for
analyzing the condition of train tracks. In summary, the study offers the following contributions:

o This study investigates the use of various machine learning and deep learning models for autonomously eval-
uating railway tracks, focusing on distinguishing between three distinct track conditions: wheel burn, su-
perelevation, and standard track.

o Asignificant dataset is also produced for studies with the acoustic signals from an ECM-X7BMP microphone
that was collected over one year.

o The Mel-frequency cepstrum coefficients (MFCC) and Constant-Q transform (CQT) characteristics of audio
signals are combined with various classifiers to automatically detect track problems. Conditional GAN (CT-
GAN) is also used to create an equal amount of samples for each error.

The sections of this paper are grouped as follows: Section 2 provides a summary of several forms of fractures
seen in railway tracks, as well as major studies on identifying defects in rail tracks. Section 3 describes data
collecting procedures, equipment, and suggested study strategy. Section 4 presents the findings and comments,
while Section 5 provides the conclusion.

Related work

Track inspection is an essential task that has been adopted periodically to control the conditions of rail tracks and
avoid train accidents. Geometric inspection and structural inspection are two main classes for the inspections
of rail tracks!®. Structural checks are performed to detect structural faults such as wheel burn, superelevation, or
other structural issues. Geometric inspections are used to identify geometric anomalies such as rail misalignment
and other comparable degradation. Furthermore, geometric anomalies are caused by structural flaws, which can
lead to train accidents. The authors explained various geometric and structural flaws in'®.

Researchers worked on the detection of geometric defects with an SVM model in?®. The RAS problem-solving
competition 2015 dataset was used for experimentation. The study considered some severe geometric defects
which may increase the geometric defects. To detect structural defects, a structural inspection is performed
using shallow machine learning methods in this study. SVM was used in this study which also worked on a novel
parameter called positive and un-labeled learning performance (PULP). Moreover, PULP was applied to check
the performance of models on different datasets comprising faulty results. In?!, experimentation was performed
to detect faults on railway tracks. Both Support SVM and CNN were utilized in this study for analyzing an
image-based dataset. Rail fasteners are classified as missing, good, or broken. This technique showed improved
accuracy in detecting defects in rail fasteners and ties.

The study?? investigated fault detection using traditional acoustic-based systems, enhancing performance
and reducing train accidents through deep learning methodologies. Additionally, the research concentrated
on LSTM, 2D convolutional, and 1D convolutional approaches. Various types of faults, such as wheel burn,
superelevation, and normal tracks, were identified in this study. Experimental analysis was conducted on a real
acoustic dataset to detect rail track faults. LSTM model shows improved results with 99.7% accuracy. In the
study?, local binary pattern (LLBP) was employed on railway images to classify track fasteners. Gabor filters!,
SVM?%, and edge detection®® methods were utilized to identify fasteners in railway images. Faster Region-
based CNN was utilized for detecting rail track faults in?”’. CNN and ResNet-50 were applied in study®® to
detect structural defects and damages, particularly related to broken rail fasteners. The study utilized Haar-like
feature sets, including geometric features for fasteners, achieving a 94% accuracy with CNN and 94.4% accuracy
with ResNet-50. Additionally, various classification methods, including SVM, GNB, KNN, RE, Adaboost, and
Gradient Boosting Decision Trees (GBDT), were tested and evaluated to detect and analyze missing clamps in
the fastening structure in®.

The categorization of railway cracks with acoustic-emission waves based on a multi-branch CNN is discussed
in%. The railway fastener defects are identified from images using CNN?!, residual network®’, GAN, faster
region-CNN?>3, and point cloud deep learning (PCDL)**. Dynamic stiffness for rail pads was anticipated with
machine learning techniques including KNN, multi-linear regression, regression tree, gradient boosting, RF,
SVM, and MLP?. Feature extraction approaches have also been investigated for rail track fault detection.

The study®® introduced tree-based classification approaches such as RFand DT which performed a comparison
of deep learning techniques for rail track inspections. The authors proposed a new RF-based approach that is
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Fig. 1. Mechanical railway cart used for data collection.

Parameter Value
Sensitivity —44.0 +3 dB
Output impedance 1.2kQ+£30
Dynamic range 88 dB
Signal-to-Noise Ratio 62dB

Max. input sound pressure level | 120 dB PSL
Direction Unidirectional
Connectivity Wired
Operating voltage 50V

Table 1. Important parameters of Sony ECM-X7BMP microphone.

used to combine LMD, TED, and TD feature extraction for the detection of track slab deformation. In*’, an
automated inspection technique based on IoT is presented for rail track fault detection. Acoustic data is used to
rail track fault classification including wheel burn, crash sleeper, loose nuts, and bolts, low joint, creep, and point
and crossing. The experimental results showed that acoustic data may successfully support selective track defects
and localized these defects in real time. This method achieved a 98.4% accuracy with MLP.

Materials and methods
This section discusses dataset collection and strategy, feature extraction techniques, machine learning methods
for classification, and the recommended approach.

Dataset collection

The dataset holds crucial importance in the automated identification of faulty railroad tracks. Illustrated in
Figure 1, the mechanical cart provided by officials at the Rahim Yar Khan station of Pakistan Railways Khanpur
district was utilized for collecting this dataset. A setup was arranged on-site at Khanpur’s train station to gather
the necessary data. Positioned at a safe maximum distance of 1.75 inches from the point of contact between the
wheel and the track, two microphones were installed. These microphones were affixed to the right and left sides
of the cart for data collection purposes. The propulsion of the mechanical cart was facilitated by a generator,
which operated at an average speed of 35 km/h to drive the cart’s engine.

The audio data collection did not specify the geographic location. Two ECM-X7BMP Unidirectional electric
condenser microphones, equipped with 3-pole locking small plugs, were mounted on the left and right wheels
of the railway cart. These microphones possess an output impedance of 1.2 k and a sensitivity of 44.0 3 dB.
Additional specifications of the microphones are detailed in Table 1.

Both microphones, positioned in separate locations, serve the purpose of recording. A single trigger button
activates both microphones simultaneously to initiate data recording. The recorded data is stored as 16-bit
audio files with the "wav” extension. The Sony ECM-X7BMP microphone is employed for this data collection
process. As depicted in Figure 1, a metal strip is fashioned with one end serving as a secure mount for the
microphone, while the other end is firmly screwed onto the cart. Foam or fur material is utilized to protect the
microphone diaphragm from air currents. Without a windshield, wind or breathing can cause loud pops in the
audio transmission.

Foam windshields are employed to mitigate cart vibrations, preventing their transmission to the microphone.
Typically serving as the primary defense against wind noise, these windshields comprise open-cell foam covers
surrounding the microphone. This design disperses and diminishes the acoustical energy of wind striking the
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microphone capsule, reducing low-end vibration. Streamlining these windshields is essential to ensure that wind
flows around them rather than directly into them. Although some vibration remains uniformly present in the
entire audio signal, it does not significantly impact the detection of faulty signals, as it is also present in normal
track sounds. The windshields intercept air gusts before they can interact with the microphone diaphragm,
effectively minimizing their impact. Using this setup, 720 audio recordings, totaling 17 seconds in duration,
were captured during data collection at a sampling frequency of 22,050 Hz. Subsequently, the recordings were
manually tagged to organize the dataset. They were then segmented into 758 frames using a window length of
1024 and 512 hops, based on the collected recordings.

Figure 2 presents the waveform and spectrogram of three different sample audio recordings: ‘wheel burn,
‘superelevation, and ‘standard’ track conditions. The waveform illustrates the amplitude variations over
time, while the spectrogram provides a time-frequency representation, highlighting the intensity of different
frequencies. The visual differences between these three track conditions are evident in both representations.
The Mel spectrogram provides insights into the distribution of sound intensity across various frequency ranges.
For instance, in the 64-256 Hz frequency range, the normal track sound exhibits an intensity level between
approximately —30 dB and —60 dB. In contrast, the superelevation track demonstrates a higher intensity, ranging
from -2 dB to —20 dB. Meanwhile, the track with wheel burn shows a broader variation in noise intensity,
spanning from —20 dB to —72 dB within the same frequency range. These distinctions highlight the unique
spectral characteristics associated with each track condition.

Proposed methodology for track fault detection

The proposed methodology for fault detection has been utilized in three scenarios. The architecture diagram
of the proposed methodology is presented in Figure 3. In the first stage, features from the audio signal are
extracted. In this study, we extract two types of features: one is MFCC while the other is CQT features. These
feature sets are then divided into train and test parts.

The model is trained using a training dataset while evaluation is carried out using a testing dataset using
accuracy, precision, recall, and F1 score. The acoustic features are then used to train machine learning and deep
learning classifiers. The data size for each sample is 720 per class and 40 MFCC features are extracted from each
sample. Along with MFCC features, another feature extraction technique i.e. CQT is also applied for models’
training.

The architecture diagram for scenario 2 is shown in Figure 4. In order to enhance track fault detection
accuracy, a feature fusion technique is applied where the features are combined. For that purpose, the best
features are selected for model training. As a result, accuracy is improved for rail track fault detection.

The data size is small to train machine learning algorithms, so, data are re-sampled by using CTGAN, and
400 samples are created for each class. These Samples are then split into train and tests with ratios of 0.8 to 0.2.

Time-Domain Representation: Wheel Burn Mel Spectrogram: Wheel Burn
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Fig. 2. Waveform and spectrogram representations of audio samples.
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Scenario 1

Dataset feature Data Splitting Model Training Model

Extractions & Testing Evaluation

Fig. 3. Architecture diagram based on feature extraction for faulty track detection.
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Fig. 4. Architecture diagram using hybrid features for faulty track detection.

Class Original Samples | Synthetic AI Samples | Total Samples
Normal track | 720 400

Superelevation | 720 400 3,360

Wheel burn 720 400

Train Test Training

Split Samples Testing Samples Total Samples
Normal track | 896 224

Superelevation | 896 224 3,360

Wheel burn 896 224

Table 2. Class-wise data partitioning for model training and testing.

Scenario 3

heatre Hybrid Features CTGAN Data Splitting Model Training Model

Dataset Extractions & Testing

Evaluation

Fig. 5. Architecture diagram based on hybrid features and newly generated features set for faulty track
detection.

The sample data distribution before and after the training and testing split is presented in Table 2. Machine
learning and deep learning models are then trained by these training samples and then test samples are applied
for prediction. The Architecture diagram for Scenario 3 has been explained in Figure 5.

Obtaining implementation code
For reproducibility of the proposed approach, the implementation code has been made public on the GitHub,
and can directly be accessed using the link https://github.com/Arehmans/railways.
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Experiment details
Railway track inspection professionals from Pakistan Railways discovered and validated the damaged tracks. The
cart was driven over the damaged rails, and the following tracks’ audio signals were recorded:

« Normal track (Unfaulty sound)
o Superelevation
e Wheel burn

The data is categorized as follows with respect to labels:

o Normal track - labeled as 0,
o Superelevation - labeled as 1,
o Wheel burn - labeled as 2

Wheel burns®® occur when the driving wheels of locomotives skid along the rail surface, typically in areas with
steep grades or after rainfall, due to insufficient hauling power to bear the train load, resulting in the rail surface
melting. Superelevation® refers to the gradual elevation change between the rails of a railway track, creating
banked turns that allow vehicles to navigate curves at higher speeds compared to level tracks, especially crucial
on curved sections.

Both wheel burns and superelevation are recognized as critical factors contributing to railway derailments
Railways face various track issues such as cracked or broken rails, faulty welds, broad gauges, missing nuts and
bolts, and disjointed tracks. However, this study concentrates specifically on wheel burns and superelevation,
deferring other concerns for future research. The selection of the experimental route was deliberate; it was a
heavily trafficked mainline, and during the study period, it was only affected by these two issues.

40,41

Mel-Frequency Cepstral Coefficients(MFCC)

MFCQC features are discussed primarily for the detection of monosyllabic words within continuous speech rather
than for speaker identification. The approach outlined in the paper aims to mimic the human ear’s functioning,
leveraging the assumption that the human ear is a reliable recognizer of speakers. To capture the phonetically
significant aspects of speech, frequency filters are organized linearly at lower frequencies and logarithmically at
higher frequencies, forming the foundation of MFCC features.

Speech signals contain tones with varying frequencies, and the Mel scale is used to perceive pitch. Under the
Mel scale, each tone corresponds to an actual frequency denoted as f (in Hz). Below 1000 Hz, the Mel frequency
scale demonstrates linear frequency spacing, while beyond 1000 Hz, it adopts logarithmic frequency spacing.
A reference point is set by a 1 kHz tone registering 40 dB above the perceptual hearing threshold, equivalent to
1000 Mel. In equation form, it can be written as

mel(f) = 2592 x log10(1 + %) (1)

where mel(f) is the frequency in mels and f is the frequency in Hz. The final feature vector space F of size 40 is
obtained as follows

758 758 758 758

F= ]1]2(11'1,;[2&12,]i]zlai;%,--w]b;ai‘lo &)

where i is the i*" frame and N is the total number of frames i.e., 758.

Constant-Q-transform
Constant Q transformation is a technique to convert sound or signal data into frequency-domain data®?.
CQT mainly shows good performance for both perceptual and music processing. It is the same as Fourier
transform (FT) whereas it has additional advantages. Firstly, it applies a logarithmic scale to ensure wide and
narrow bandwidths in high-frequency and low-frequency regions. CQT is more useful than FT and reports
low resolution in regions of low frequency. Additionally, the bandwidth is proportionally divided by the central
frequency, making it simple to discriminate even if the frequency spans many octaves. Figure 6 provides a
logarithmically spaced frequency resolution, offering a detailed representation of spectral content over time.
The intensity variations indicate distinct spectral characteristics across different track conditions, with clear
differences in frequency distribution and energy concentration. In the Wheel Burn case, higher intensity levels
(-5 dB to 0 dB) appear as localized bright spots, indicating sudden energy spikes caused by irregular vibrations
and impacts from wheel defects. This suggests a non-uniform frequency distribution, revealing abnormal
disturbances in the track. In contrast, the Superelevation case exhibits moderate intensity (-10 dB to —20 dB)
with a more evenly spread pattern, reflecting systematic frequency shifts due to track banking. This results in a
smoother transition of forces acting on the track rather than abrupt variations. Lastly, the Normal Track serves
as a baseline, showing lower intensity levels (-30 dB to —50 dB) with minimal bright spots, indicating uniform
frequency distribution and the absence of major external disturbances. By analyzing these intensity variations,
we can effectively diagnose track conditions, distinguishing between defects, structural features, and normal
behavior.

Constant Q transformation is used to analyze the frequency domain and can be estimated using the following
equation®’,
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Q-Transformed Spectrum: Wheel Burn
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Fig. 6. Constant-Q transformed spectra for different track conditions, (a) Wheel burn, (b) Superelevation, and
(c) Normal track.
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where wis used for the sequence number of the spectral line and q is for the quality factor and its value is equivalent
to the result for center frequency to the bandwidth. The center frequency is an exponential distribution. The
window function 7 can be calculated as

s
n= [q 94(w/a)] ®

where gs is used for sampling frequency, g is used for the low frequency of the musical signal, gw is the frequency
value with spectral line and C is used for a number of spectral lines in an octave.

As an octave is separated by 12 semi-tones using an average temperament of 12, C mostly inputs a value
for 12 or twelve multiple. However, CQT spectrum-frequency and scale-frequency have similar exponential
distribution formula®}, CQT is used to analyze and process the musical signals. Therefore, the main issue of
constant Q transformation is that the computation speed is very slow.
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Composite travel generative adversarial network

Composite travel generative adversarial network is a GAN-based technique that is used for tabular data
and sample rows from the distribution’. The CTGAN approach is made up of 2 GAN networks including
the sequence model and the tabular model. The main use for the tabular components is learning the joint
distribution for elementary socio-demographic attributes. On the other hand, the sequential component is used
to learn the distribution of trips that are selected by an individual per day. The properties include correlated
features, different mixed data types like continuous or discrete features, problems in learning from higher
sparse vectors, and potential mode failure due to the highest class imbalance. To solve these types of problems,
we select composite travel generative adversarial network as the essential generative technique. CTGAN has
many additional hyperparameters that are used to control its learning behavior and may impact the classifier
performance for the computational time and quality of the generated data. CTGAN system considers that every
component is employed as an independent network that is trained with its parameters based on data distribution.
The presented method adopts just tabular components for the CTGAN approach and also trains the parameters.
Conditional sampling only allows sampling using a conditional distribution with the CTGAN method, which
means we may generate just values to satisfy the definite conditions. To overcome the multimodal and non-
Gaussian distribution, the proposed method invents the mode-specific normalization in CTGAN.

Supervised machine learning models

The proposed approach uses several machine learning models to detect rail track defects. SVM, RE, RNN, DT,
LR, NB, voting classifier, KNN, CNN, GRU, and LSTM are used in this study. These models are fine-tuned to
optimize their performance.

Decision tree

The Decision Tree (DT) method, as discussed in?’, is a supervised classification technique characterized by its
non-linear structure resembling a tree. In the context of evaluating faults and defects in transformers, the DT
algorithm proves useful. In DT, connection points between branches represent conditions for differentiation,
while the leaf nodes signify classifications. The classification process involves determining whether data meets
the conditions outlined at each node, selecting appropriate branches to proceed, and repeating these steps until
a leaf node is reached. In our study, DT is utilized with 2 hyperparameters. We specifically employ the “max_
depth” hyperparameter, set to 250, which restricts the decision tree’s growth to a maximum depth of 250 levels
to prevent overfitting and manage complexity.

Support vector machine

SVM is a versatile linear model widely adopted for regression, classification, and various other tasks across
numerous research articles?®*”. It operates by dividing sample data into distinct classes using a set of hyperplanes
or a single hyperplane in a g-dimensional space, where g represents the number of features. SVM’s primary
function is classification, aiming to identify the “best fit” hyperplane that effectively separates different
classes. In this study, we employ a ’linear’ kernel for the SVM classifier, which is commonly utilized when
dealing with datasets featuring a high number of features. The SVM classifier offers two key advantages: high
speed and enhanced performance even with a limited number of samples. For our current investigation, two
hyperparameters are employed: a regularization parameter (C) set to 1.0 and the use of a ’linear’ kernel for
experimentation purposes.

Random forest

RF is a classifier based on decision trees known for its ability to make accurate predictions by combining multiple
weak learners, as described in*®. It employs the bagging method, where various types of decision trees are utilized
during training, employing numerous bootstrap samples, as outlined in*®. These bootstrap samples are generated
by randomly selecting subsets from the training dataset with replacement, maintaining a similar sample size as
the original dataset. Ensemble classification is achieved by training multiple models and aggregating their results
through a voting process. Several contributors have introduced ensemble learning methods, including boosting
and bagging, which are widely utilized, as discussed in>*-52. Bagging, specifically, focuses on reducing variance
in classification by training models on bootstrap samples. The definition of RF is as follows:

RFp :777,Od€{d2517 dt27 dtg, cery dtn}
OR
N (5)
RF, zmode{z dt;}
i=1

where dt1,dta, dts, ..., dt, are the predictions by decision trees and rf, is prediction by RF using majority
voting. We employed RF with three hyperparameters, as outlined in Table 3. The parameter n_estimators was
set to 200, indicating that RF generated 200 decision trees for the prediction process. Additionally, max_depth
was set to 50, limiting the depth of the decision trees to a maximum of 50 levels to prevent complexity and over-
fitting.

Logistic regression
LR as referenced in®?, is a statistical classifier employed to address classification problems. When dealing with
classification tasks where target variables are well-defined, logistic regression emerges as the primary choice.
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Algorithm

Hyperparameters

LR

solver=saga, C=2.0, max_iter=100, penalty="12} multi_clas=multinomial

SVM kernel="linear, C=2.0, random_state=500

RF n_estimators=200,max_depth=50, random_state=2

DT max_depth=50, random_state=2

LSTM Input layer, Hidden layer, Output layer, optimizer=adam, Dropout=0.5 loss=categorical_crossentropy, activation= ReLU, Softmax, epoches=10
CNN Conv2D (filter=16, 32, 64, 128, kernel=2x2), maxpooling2D=2x2, optimizer=adam, loss=categorical_crossentropy, Dropout=0.5, epoches=200

Table 3. Hyperparameters used for machine and deep learning models.

LR analyzes the association between one or more independent variables and categorical dependent variables by
estimating probabilities using a logistic function. The logistic function, typically represented by a sigmoid curve,
is defined as follows:

h

Y = 14 E—n(u—uo)

(6)

where E is the classification®?, Euler number 10 is used for the value of the sigmoid mid-point, k is the maximum
value of the curve, and # is used for the steepness of the curve. LR performs better on binary classification and
demonstrates improved performance for the text.

Naive Bayes

NB classifier is a supervised learning technique that is based on the Bayes formula and used to solve classification
issues®’. NB is essentially applied to detect faults in the rail track. NB is one of the easiest and most effective
classifiers that helps to build machine learning-based methods that can predict quickly. NB is a probabilistic
model which means it performs prediction based on probability for an object. Suppose a set of d vectors
E =el,e2,...,ed and performs classification along a set F of p classes F' = f1, f2, ..., fp, Bayesian models
estimate the probabilities for every category Fi given an Ej is described in the below equation®

P(frle:) P(ei)

Plel) = o) fla)

7

where P(e;) is the probability and picked randomly has vector e; as its demonstration that belongs to fi. To
estimate the P(fx|e;), NB considers that the probability for a given value is independent. NB shows improved
results than other classifiers. Additionally, only values are used as the predictors, the simplification of naive
allows computing the model for data that is associated with this technique. It is possible to define P(fx|e;) as the
product for the probabilities of every term that appears using this simplification. However, P( fx|e;) is estimated
using equation®.

P(Gr|fi) = L (P(U;k|f:)) ®)

K Nearest Neighbors

KNN classifier stands out as the most straightforward and non-parametric supervised machine learning
technique, utilized for regression, classification, and addressing missing value imputation problems>. Its
approach involves storing all available data and determining the classification of a data point based on similarity.
During the training phase, the KNN algorithm solely retains the dataset and assigns the data to a category highly
resembling the new data. To precisely define the nearest neighbors, a distance metric such as Manhattan or
Euclidean distance is computed®*. KNN is alternatively known as a lazy or instance-based learner. However, it’s
worth noting that KNN cannot predict values that fall outside the range of the sampled data.

Ensemble classifier

Ensemble voting is a voting classifier that combines several classifiers into a single model which is more robust
than individual models®. For the current study, hard voting is used. Every model votes for a category in the hard
voting and the category with the maximum votes wins. Every model in soft-voting allocates a probability value
to every data point that belongs to a specific target category. In the presented model, we combine LR, GNB, and
SVC classifiers into a single method.

Deep learning models
Besides using machine learning models, several deep learning models are used.

Long short-term memory

LSTM as referenced in, resembles RNN (Recurrent Neural Network) but incorporates efficient memory cells
designed to either forget or retain information. It addresses the problem of long-term dependency by employing
a chain of RNN modules. The LSTM architecture includes four gates: the update gate, output gate, forget gate,
and input gate. The forget gate determines whether the information is discarded from the cell state, while the
input gate, consisting of a tanh layer and a sigmoid layer, determines which values will be modified. The update
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gate refreshes the old cell state with the value derived from the input gate. Finally, the output gate is utilized to
determine the value to be outputted from the layer>®.

R = ¢(Yr[Gr — 1,Z1] + AR) 9)

where G L denotes the weight matrixand A R is used for the bias vector. Suppose R L is a number between
0 and 1, then 0 indicates that the value is to forget and 1 indicates to keep the value.

Py, :¢(YP[GL—1,ZL]+AL) (10)
Wi =tanh(Yw|[Gr — 1, Z] + Aw) (11)

whereY PandY w are used for weight matricesand AL and AW are used for bias vectors. For output,
P _Land W _ L are used.

Wr=Rp+«Wr -1+ Pr«Wr (12)

where R__ L is used to decide which information is to be forgotten. P_ L x W _ L chooses the total number of
values that are used to modify the cell.

Pp =¢(Yp|GL — 1,ZL] + Ag) (13)
Hp =F % tanh(fl) (14)

where PE is used to decide which is the output state. The new cell state WL is multiplied by EL. The tanh function
is used to achieve HL which is the output of PE. The presented model used LSTM which takes the least time for
training. LSTM is the most efficient method than other machine learning techniques.

Convolutional neural network
CNN is mostly used to deal with the variability of 2D shapes®’”. This architecture is tested for feature extraction
of images. CNN contains two layers including the convolution layer and the pooling layer. The convolutional
layer is used to perform convolution of the previous layer using the sliding filter to attain the output feature map,
where F¢ denotes the p'"*“P“* feature map in de layer, jl(de*1> is used for I*" input feature map in (de — 1)
layer. ¢ is used for the sigmoid function that is employed as the network’ activation function. Both Y;;* and P,*
are used for filters that create the training parameters of convolutional layers as in bellow equation571j

k
FEC = () 5" Y0 + B (15)
=1

To minimize the feature-map resolution and sensitivity for output, the pooling layer is used. The max pooling is
commonly used for pooling in CNN. The max pooling is described®® as in the bellow equation.

HY = max{b1,ba, b3, ba} (16)
where H" shows the p™ output feature map of pooling layer.

Recurrent neural network
RNN model® is used to save the output for specific layers and feedback to the input in sequential form to predict
the output. RNN is considered to handle the sequential data.

RNNs memorize the previous inputs due to internal memory. It simulates a discrete-time dynamical system
that has xe for the input layer, ye for the hidden layer, and ze for the output layer, and e is used to denote time.

The dynamical model is defined as in equation and bellow equation®
Yo =Gy(Te,Ye-1) (17)
20 =Go(ye) (18)

where G, and Gy are functions that are used for state transition and output respectively. Each function is
parameterized by a set of parameters as 6y and 60.

Gated recurrent unit
GRU represents the next evolution of RNNs, utilizing the hidden state for information transmission. Unlike
LSTM, GRU incorporates only two gates: an update gate and a reset gate®®. The update gate functions similarly
to the input and forget gates in LSTM, determining which information to discard and what new information to
incorporate. On the other hand, the reset gate is responsible for determining the extent to which information
should be forgotten.
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Results and discussion

The experiments are conducted using the Google Colab service alongside a Python Jupyter Notebook. Librosa is
employed to extract MFCC and CQT features, while machine learning models utilize the sci-kit-learn package
and deep learning models utilize the TensorFlow library.

An equal number of data points for each class are used for experiments. The dataset was structured to ensure
uniform representation across all categories including normal track (0), superelevation (1), and wheel burn
(2), to prevent class imbalance and ensure fair model training and evaluation. Performance evaluation of the
classifiers is carried out using standard parameters such as accuracy, precision, recall, and F1 score, which are
computed using the following equations.

Accuracy = T Po + T, Ne (19)
Y TP, +I,N. + FP, + FN,
T,.P,
~T.p, + FP, (20)
TP,
R=7 P+ FN. @1
Flfscore:2*P*R (22)

P+R

Results of machine learning classifiers using MFCC features

Table 4 depicts the accuracy results of different machine learning models using MFCC features. Several models
have been applied for experiments including DT, SVM, KNN, LR, NB, RE, and voting classifiers. Accuracy results
for DT, SVM, KNN, LR, and NB are 96%, 99%, 85%, 97%, 78%, and 97%, respectively. Experimental results show
that tree-based models like DT and RF perform best with accuracy results of 96% and 99%, respectively. While
regression and probabilistic-based models perform poorly like NB and KNN yield 78% and 85%, respectively.
The accuracy of the voting classifier with hard and soft voting is 98%.

Results of machine learning classifiers using CQT features

Table 5 shows the performance of different machine learning models using CQT features. Accuracy scores for
DT, SVM, KNN, LR, NB, and RF are 96%, 99%, 85%, 97%, 78%, and 97%, respectively. Results demonstrate that
tree-based models like DT, RF, and liner based models perform best with accuracy scores of 95%, 97%, and 93%
as compared to regression and probabilistic-based models like NB and KNN with 87% and 72% accuracy scores,

Model Class Precision | Recall | F1 Score | Model Class Precision | Recall | F1 Score
0 0.96 0.92 0.94 0 1.0 0.92 0.96
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 0.92 0.96 0.94 2 0.92 1.0 0.96
DT LR
Micro avg. 0.96 0.96 0.96 Micro avg. 0.97 0.97 0.97
Weighted avg. | 0.96 0.96 0.96 Weighted avg. | 0.97 0.97 0.97
Accuracy 0.96 Accuracy 0.97
0 0.98 0.98 0.98 0 0.63 0.81 0.71
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 0.98 0.98 0.98 2 0.74 0.53 0.62
svC NB
Micro avg. 0.99 0.99 0.99 Micro avg. 0.79 0.78 0.78
Weighted avg. | 0.99 0.99 0.99 Weighted avg. | 0.79 0.78 0.77
Accuracy 0.99 Accuracy 0.78
0 0.78 0.79 0.78 0 0.96 0.94 0.95
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 0.79 0.78 0.78 2 0.94 0.96 0.95
KNN RF
Micro avg. 0.86 0.86 0.86 Micro avg. 0.97 0.97 0.97
Weighted avg. | 0.85 0.85 0.85 Weighted avg. | 0.97 0.97 0.97
Accuracy 0.85 Accuracy 0.97
0 0.98 0.96 0.97 0 0.98 0.96 0.97
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 0.96 0.98 0.97 2 0.96 0.98 0.97
HardVoting Soft Voting
Micro avg. 0.98 0.98 0.98 Micro avg. 0.98 0.98 0.98
Weighted avg. | 0.98 0.98 0.98 Weighted avg. | 0.98 0.98 0.98
Accuracy 0.98 Accuracy 0.98

Table 4. Results of machine learning classifiers using MFCC features.
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respectively. The liner-based algorithm also performs well with an accuracy of 93%. Accuracy of the voting
classifier with hard and soft voting yield 95% and 94% accuracy, respectively.

Results of classifiers using hybrid features

Feature fusion is a technique that is formulated with multiple features that are extracted from the same dataset.
The benefit of feature fusion is the increased versatility in feature sets; different types of features can be extracted
and used for model training. In Table 6 accuracy of different machine learning models is reported using a fusion
of MFCC and CQT. Classifiers like DT, SVC, KNN, LR, NB, and RF yield accuracy scores of 93%, 95%, 85%,
93%, 47%, and 97%, respectively. Probability-based models yield less accuracy for all scenarios.

Results of machine learning classifiers using MFCC features with CTGAN

Data augmentation methods like GAN create new data samples. GAN creates distinctive samples that imitate
the feature distribution of the original dataset using random noise taken from latent space. Table 7 displays the
accuracy results of classifiers using MFCC features along with CTGAN. As CTGAN techniques create more
sample features with the big size of the dataset models can be better tuned and results are improved substantially.
SVC, KNN, LR, NB, RE, and voting classifiers with hard and soft voting yield 100% accuracy after applying
CTGAN while the performance of DT is decreased to 94%.

Results of machine learning classifiers using CQT features with CTGAN

In Table 8, the performance of machine learning classifiers with CQT features along with the augmentation
technique CTGAN is evaluated. LR, NB, RE, SVC, and voting classifier yield accuracy results of 100% while
DT and KNN perform less with 92% and 71% accuracy, respectively. Overall, the performance of probabilistic
classifiers is increased.

Results of machine learning classifiers using Hybrid features with CTGAN

We have performed experiments along with a combination of both features MFCC and CQT after data
augmentation using CTGAN and results are given in Table 9. Different machine learning classifiers are trained
and accuracy results for SVM, KNN, LR, NB, and voting classifiers indicate a 100% accuracy. DT shows
poor performance with an 85% accuracy because it is a Singleton algorithm and when data size increases the
complexity level is also increased resulting in a decrease in its performance.

Results of deep learning classifiers using MFCC and CQT features
Table 10 depicts the accuracy results of different deep learning models using MFCC and CQT features extracted
from the audio signal with an 80 to 20 train test ratio.

Model Class Precision | Recall | F1 Score | Model Class Precision | Recall | F1 Score
0 0.87 0.94 0.90 0 0.85 0.96 0.90
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 0.93 0.86 0.89 2 0.95 0.84 0.89
DT LR
Micro avg. 0.93 0.93 0.93 Micro avg. 0.93 0.93 0.93
Weighted avg. | 0.93 0.93 0.93 Weighted avg. | 0.93 0.93 0.93
Accuracy 0.93 Accuracy 0.93
0 0.90 0.96 0.93 0 0.80 0.81 0.80
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 0.96 0.90 0.93 2 0.81 0.80 0.80
svC NB
Micro avg. 0.95 0.95 0.95 Micro avg. 0.87 0.87 0.87
Weighted avg. | 0.95 0.95 0.95 Weighted avg. | 0.87 0.87 0.87
Accuracy 0.95 Accuracy 0.87
0 0.55 0.85 0.67 0 0.92 0.98 0.95
1 1.00 0.89 0.94 1 1.00 1.00 1.00
2 0.74 0.41 0.53 2 0.98 0.92 0.95
KNN RF
Micro avg. 0.76 0.72 0.71 Micro avg. 0.97 0.97 0.97
Weighted avg. | 0.76 0.72 0.71 Weighted avg. | 0.97 0.97 0.97
Accuracy 0.72 Accuracy 0.97
0 0.90 0.96 0.93 0 0.88 0.96 0.92
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 0.96 0.90 0.93 2 0.96 0.88 0.91
HardVoting Soft Voting
Micro avg. 0.95 0.95 0.95 Micro avg. 0.94 0.94 0.94
Weighted avg. | 0.95 0.95 0.95 Weighted avg. | 0.94 0.94 0.94
Accuracy 0.95 Accuracy 0.94

Table 5. Results for CQT features using machine learning classifiers.
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Model Class Precision | Recall | F1 Score | Model Class Precision | Recall | F1 Score
0 0.89 0.90 0.89 0 0.89 0.91 0.90
1 0.99 0.99 0.99 1 1.00 1.00 1.00
2 0.90 0.89 0.89 2 0.91 0.90 0.90
DT LR
Micro avg. 0.93 0.93 0.93 Micro avg. 0.93 0.93 0.93
Weighted avg. | 0.93 0.93 0.93 Weighted avg. | 0.93 0.93 0.93
Accuracy 0.93 Accuracy 0.93
0 0.90 0.95 0.93 0 0.37 0.77 0.50
1 1.00 1.00 1.00 1 0.74 0.50 0.60
2 0.96 0.91 0.93 2 0.46 0.16 0.24
SVC NB
Micro avg. 0.95 0.95 0.95 Micro avg. 0.52 0.48 0.45
Weighted avg. | 0.95 0.95 0.95 Weighted avg. | 0.53 0.47 0.45
Accuracy 0.95 Accuracy 0.47
0 0.72 0.89 0.79 0 0.96 0.92 0.94
1 0.98 0.95 0.93 1 1.00 1.00 1.00
2 0.88 0.72 0.79 2 0.93 0.97 0.95
KNN RF
Micro avg. 0.85 0.85 0.85 Micro avg. 0.97 0.96 0.96
Weighted avg. | 0.85 0.85 0.85 Weighted avg. | 0.97 0.97 0.97
Accuracy 0.85 Accuracy 0.97
0 0.89 0.94 0.92 0 0.87 0.93 0.90
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 0.95 0.90 0.92 2 0.94 0.88 0.91
Hard Voting Soft Voting
Micro avg. 0.95 0.95 0.95 Micro avg. 0.94 0.94 0.94
Weighted avg. | 0.95 0.95 0.95 Weighted avg. | 0.94 0.94 0.94
Accuracy 0.95 Accuracy 0.94

Table 6. Results of machine learning classifiers using hybrid features with CTGAN.

Model Class Precision | Recall | F1 Score | Model Class Precision | Recall | F1 Score
0 0.90 0.92 0.91 0 1.00 1.00 1.00
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 0.92 0.90 0.91 2 1.00 1.00 1.00
DT LR
Micro avg. 0.94 0.94 0.94 Micro avg. 1.00 1.00 1.00
Weighted avg. | 0.94 0.94 0.94 Weighted avg. | 1.00 1.00 1.00
Accuracy 0.94 Accuracy 1.00
0 1.00 1.00 1.00 0 1.00 1.00 1.00
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 1.00 1.00 1.00 2 1.00 1.00 1.00
svC NB
Micro avg. 1.00 1.00 1.00 Micro avg. 1.00 1.00 1.00
Weighted avg. | 1.00 1.00 1.00 Weighted avg. | 1.00 1.00 1.00
Accuracy 1.00 Accuracy 1.00
0 0.99 1.00 1.00 0 1.00 1.00 1.00
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 1.00 1.00 1.00 2 1.00 1.00 1.00
KNN RF
Micro avg. 1.00 1.00 1.00 Micro avg. 1.00 1.00 1.00
Weighted avg. | 1.00 1.00 1.00 Weighted avg. | 1.00 1.00 1.00
Accuracy 1.00 Accuracy 1.00
0 1.00 1.00 1.00 0 1.00 1.00 1.00
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 1.00 1.00 1.00 2 1.00 1.00 1.00
Hard Voting Soft Voting
Micro avg. 1.00 1.00 1.00 Micro avg. 1.00 1.00 1.00
Weighted avg. | 1.00 1.00 1.00 Weighted avg. | 1.00 1.00 1.00
Accuracy 1.00 Accuracy 1.00

Table 7. Results of models using MFCC with CTGAN.
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Model Class Precision | Recall | F1 Score | Model Class Precision | Recall | F1 Score
0 0.86 0.89 0.88 0 0.99 0.99 0.99
1 0.99 0.98 0.99 1 1.00 1.00 1.00
2 0.90 0.89 0.89 2 1.00 1.00 1.00
DT LR
Micro avg. 0.92 0.92 0.92 Micro avg. 1.00 1.00 1.00
Weighted avg. | 0.92 0.92 0.92 Weighted avg. | 1.00 1.00 1.00
Accuracy 0.92 Accuracy 1.00
0 0.99 0.99 0.99 0 1.00 1.00 1.00
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 0.99 1.00 0.99 2 1.00 1.00 1.00
SvC NB
Micro avg. 1.00 0.99 0.99 Micro avg. 1.00 1.00 1.00
Weighted avg. | 1.00 0.99 0.99 Weighted avg. | 1.00 1.00 1.00
Accuracy 1.00 Accuracy 1.00
0 0.53 0.99 0.69 0 1.00 1.00 1.00
1 1.00 0.34 0.50 1 1.00 1.00 1.00
2 0.97 0.80 0.88 2 1.00 1.00 1.00
KNN RF
Micro avg. 0.83 0.71 0.69 Micro avg. 1.00 1.00 1.00
Weighted avg. | 0.84 0.71 0.69 Weighted avg. | 1.00 1.00 1.00
Accuracy 0.71 Accuracy 1.00
0 1.00 1.00 1.00 0 1.00 1.00 1.00
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 1.00 1.00 1.00 2 1.00 1.00 1.00
HardVoting Soft Voting
Micro avg. 1.00 1.00 1.00 Micro avg. 1.00 1.00 1.00
Weighted avg. | 1.00 1.00 1.00 Weighted avg. | 1.00 1.00 1.00
Accuracy 1.00 Accuracy 1.00

Table 8. Results of machine learning classifiers using CQT features with CTGAN.

Deep learning models have been applied in this experiment including LSTM, CNN, RNN, and GRU. Results
show that LSTM, CNN, RNN, and GRU models show the accuracy of 33%, 93%, 72%, and 89%, respectively.
While with CQT features deep learning classifiers yield 36%, 89%, 63%, and 88%, respectively. The overall
performance of deep learning classifiers is lower as compared to machine learning classifiers because of dataset
size. Deep learning models perform best on large datasets.

Results of deep learning classifiers using MFCC and CQT with CTGAN

Table 11 shows the results for deep learning models after data augmentation is performed using CTGAN and
MFCC and CQT features are used for model training. For MFCC features with augmentation, LSTM, CNN,
RNN, and GRU yield 48%, 100%, 76%, and 100% accuracy, respectively. From the results, it can be observed
that the models’ performance is enhanced as the dataset size is increased. Similarly with CQT features with
augmentation, accuracy for LSTM, CNN, RNN, and GRU is 40%, 100%, 51%, and 100%, respectively. The
accuracy is also improved in this case.

Results of deep learning classifiers using hybrid features and hybrid features with CTGAN
Table 12 shows results for two types of experiments; in the first part, a fusion of both MFCC and CQT is used
to train deep learning classifiers while the second part involves experiments with feature fusion from CTGAN-
generated data. For the first scenario, the accuracy results for LSTM, CNN, RNN, and GRU are 36%, 89%,
63%, and 88% respectively. Results show a slight improvement as compared to the single-feature extraction
technique. On the other hand, results for the second part are much better with 40%, 100%, 78%, and 100%
accuracy for LSTM, CNN, RNN, and GRU, respectively. Figure 7 shows the accuracy scores comparison between
all approaches.

K-fold cross-validation results

We have also performed k-fold cross-validation to check the performance of the model that is outperformed and
gives a 1.00 mean accuracy score with +/—0.00 standard deviation using the proposed approach. The results of
our approach using 10-fold cross-validation are the same as per the train test split method. The results of K fold
cross-validation with and without CTGAN are shown in Tables 13 and 14. After applying CTGEN with feature
extraction techniques the machine learning models improve the accuracy which shows that CTGAN helps to
generate enough data for the learning models.

Comparison With existing studies
Several studies have worked on the detection of rail faults using machine learning approaches; some of these
studies used the same dataset. For the studies which used the same dataset we compared their results while for
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Model Class Precision | Recall | F1 Score | Model Class Precision | Recall | F1 Score
0 0.81 0.80 0.81 0 1.00 1.00 1.00
1 0.91 0.92 0.91 1 1.00 1.00 1.00
2 0.83 0.82 0.82 2 1.00 1.00 1.00
DT LR
Micro avg. 0.85 0.85 0.85 Micro avg. 1.00 1.00 1.00
Weighted avg. | 0.85 0.85 0.85 Weighted avg. | 1.00 1.00 1.00
Accuracy 0.85 Accuracy 1.00
0 1.00 1.00 1.00 0 1.00 1.00 1.00
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 1.00 1.00 1.00 2 1.00 1.00 1.00
SVC NB
Micro avg. 1.00 1.00 1.00 Micro avg. 1.00 1.00 1.00
Weighted avg. | 1.00 1.00 1.00 Weighted avg. | 1.00 1.00 1.00
Accuracy 1.00 Accuracy 1.00
0 0.66 1.00 0.80 0 1.00 1.00 1.00
1 1.00 0.03 0.07 1 1.00 1.00 1.00
2 0.37 0.55 0.45 2 1.00 1.00 1.00
KNN RF
Micro avg. 0.68 0.53 0.44 Micro avg. 1.00 1.00 1.00
Weighted avg. | 0.68 0.52 0.43 Weighted avg. | 1.00 1.00 1.00
Accuracy 0.52 Accuracy 1.00
0 1.00 1.00 1.00 0 1.00 1.00 1.00
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 1.00 1.00 1.00 2 1.00 1.00 1.00
Hard Voting Soft Voting
Micro avg. 1.00 1.00 1.00 Micro avg. 1.00 1.00 1.00
Weighted avg. | 1.00 1.00 1.00 Weighted avg. | 1.00 1.00 1.00
Accuracy 1.00 Accuracy 1.00

Table 9. Results of models using MFCC and CQT features from CTGAN data.

those which used other datasets, we deployed their approaches on the currently used dataset and performed
experiments for a fair comparison. The study®! performed experiments on the same dataset while the study*”>1->’
carried out experiments on other datasets for railway track fault detection. So we deploy the proposed approaches
in37°157 using the currently used dataset and show the comparative performance in Table 15. The results show
the significance of the proposed approach indicating the superior performance of the proposed approach.
This study focuses on dataset size which is ignored by previous studies which elevated the performance of the
machine learning models. In addition, we also deployed hybrid features while most of the existing studies only
used MFCC features. The use of hybrid features helps to achieve better results than merely using MFCC features.

Conclusions and future work

The railway network serves as the backbone of today’s transportation system and its regular operations are very
important for the transportation of goods and humans. Cracks, ballast issues, burn wheels, superelevation, etc.
can disrupt railway tracks and cause financial and human losses. Automatic detection of such faults can avoid
laborious and error-prone manual fault detection. Contrary to existing studies that rely on MFCC features, this
study proposes the use of hybrid features including MFCC and CQT features with an enlarged audio dataset and
shows improved performance with an ensemble model. In addition, using the CTGAN model for generating
additional samples yields better performance than existing state-of-the-art approaches for railway track fault
detection. An accuracy of 100% can be obtained using CTGAN and hybrid features.
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MFCC

Model | Class Precision | Recall | F1 Score | Model | Class Precision | Recall | F1 Score
0 0.33 1.00 0.50 0 0.96 0.86 0.81
1 0.00 0.00 0.00 1 94.0 1.00 97.0

LSTM 0.00 0.00 0.00 CNN 2 0.89 0.92 0.91
Micro avg. 0.11 0.33 0.17 Micro avg. 0.93 0.93 0.93
Weighted avg. | 0.11 0.33 0.16 Weighted avg. | 0.93 0.93 0.93
Accuracy 0.33 Accuracy 0.93
0 0.57 0.78 0.66 0 0.82 0.90 0.86
1 0.96 1.00 0.98 1 0.96 1.00 0.98
2 0.69 0.42 0.52 2 0.89 0.77 0.83

RNN GRU
Micro avg. 0.74 0.73 0.72 Micro avg. 0.89 0.89 0.89
Weighted avg. | 0.73 0.72 0.71 Weighted avg. | 0.89 0.89 0.89
Accuracy 0.72 Accuracy 0.89

CQT

Model | Class Precision | Recall | F1 Score | Model | Class Precision | Recall | F1 Score
0 0.36 1.00 0.53 0 0.90 0.83 0.86
1 0.00 0.00 0.00 1 94.0 1.00 97.0

0.00 0.00 0.00 2 0.84 0.87 0.86

LSTM CNN
Micro avg. 0.12 0.33 0.18 Micro avg. 0.89 0.90 0.90
Weighted avg. | 0.16 0.36 0.19 Weighted avg. | 0.89 0.89 0.89
Accuracy 0.36 Accuracy 0.89
0 0.53 0.46 0.49 0 0.83 0.88 0.85
1 0.87 0.91 0.89 1 0.98 1.00 0.99

RNN 2 0.51 0.57 0.54 GRU 2 0.86 0.79 0.82
Micro avg. 0.64 0.64 0.64 Micro avg. 0.89 0.89 0.89
Weighted avg. | 0.62 0.63 0.63 Weighted avg. | 0.88 0.88 0.88
Accuracy 0.63 Accuracy 0.88

Table 10. Results of deep learning classifiers using hybrid features.
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MFCC+CTGAN

Model | Class Precision | Recall | F1 Score | Model | Class Precision | Recall | F1 Score
0 0.00 0.00 0.00 0 1.00 1.00 1.00
1 1.00 0.59 0.74 1 1.00 1.00 1.00

LSTM 0.36 0.01 0.53 CNN 2 1.00 1.00 1.00
Micro avg. 0.45 0.53 0.42 Micro avg. 1.00 1.00 1.00
Weighted avg. | 0.42 0.48 0.39 Weighted avg. | 1.00 1.00 1.00
Accuracy 0.48 Accuracy 1.00
0 0.71 0.65 0.68 0 1.00 1.00 1.00
1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 0.58 0.64 0.61 2 1.00 1.00 1.00

RNN GRU
Micro avg. 0.76 0.76 0.76 Micro avg. 1.00 1.00 1.00
Weighted avg. | 0.76 0.76 0.76 Weighted avg. | 1.00 1.00 1.00
Accuracy 0.76 Accuracy 1.00

CQT+CTGAN

Model | Class Precision | Recall | F1 Score | Model | Class Precision | Recall | F1 Score
0 0.40 1.00 0.57 0 1.00 1.00 1.00
1 0.00 0.00 0.00 1 1.00 1.00 1.00

LSTM 0.00 0.00 0.00 CNN 2 0.99 0.99 0.99
Micro avg. 0.13 0.33 0.19 Micro avg. 1.00 1.00 1.00
Weighted avg. | 0.16 040 | 0.22 Weighted avg. | 1.00 1.00 1.00
Accuracy 0.40 Accuracy 1.00
0 0.58 0.40 0.47 0 1.00 1.00 1.00
1 0.53 0.66 0.58 1 1.00 1.00 1.00

RNN 2 0.43 0.50 0.46 GRU 2 0.99 1.00 1.00
Micro avg. 0.51 0.52 0.51 Micro avg. 1.00 1.00 1.00
Weighted avg. | 0.52 0.51 0.50 Weighted avg. | 1.00 1.00 1.00
Accuracy 0.51 Accuracy 1.00

Table 11. Results of deep learning classifiers using hybrid features with CTGAN.
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MFCC+CQT

Model | Class Precision | Recall | F1 Score | Model | Class Precision | Recall | F1 Score
0 0.36 1.00 0.53 0 0.90 0.83 0.86
1 0.00 0.00 0.00 1 94.0 1.00 97.0

LSTM 0.00 0.00 0.00 CNN 2 0.84 0.87 0.86
Micro avg. 0.12 0.33 0.18 Micro avg. 0.89 0.90 0.90
Weighted avg. | 0.13 0.36 0.19 Weighted avg. | 0.89 0.89 0.89
Accuracy 0.36 Accuracy 0.89
0 0.53 0.46 0.49 0 0.83 0.88 0.85
1 0.87 091 0.89 1 0.98 1.00 0.99

RNN 2 0.51 0.57 0.54 GRU 2 0.86 0.79 0.82
Micro avg. 0.64 0.64 0.64 Micro avg. 0.89 0.89 0.89
Weighted avg. | 0.62 0.63 0.63 Weighted avg. | 0.88 0.88 0.88
Accuracy 0.63 Accuracy 0.88

MFCC+CQT+GAN

Model | Class Precision | Recall | F1 Score | Model | Class Precision | Recall | F1 Score
0 0.40 1.00 0.57 0 1.00 1.00 1.00
1 0.00 0.00 0.00 1 1.00 1.00 1.00

0.00 0.00 0.00 2 1.00 1.00 1.00

LSTM CNN
Micro avg. 0.13 0.33 0.19 Micro avg. 1.00 1.00 1.00
Weighted avg. | 0.16 040 | 0.22 Weighted avg. | 1.00 1.00 1.00
Accuracy 0.40 Accuracy 1.00
0 0.72 0.72 0.72 0 0.99 1.00 1.00
1 1.00 1.00 1.00 1 1.00 1.00 1.00

RNN 2 0.62 0.61 0.62 GRU 2 0.99 0.99 0.99
Micro avg. 0.78 0.78 0.78 Micro avg. 1.00 1.00 1.00
Weighted avg. | 0.78 0.78 0.78 Weighted avg. | 1.00 1.00 1.00
Accuracy 0.78 Accuracy 1.00

Table 12. Results of deep learning models for hybrid MFCC+CQT with CTGAN.
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Fig. 7. Comparison of accuracy scores: (a) Results of machine learning classifiers with MFCC, CQT, and
hybrid features, (b) Results of deep learning classifiers with MFCC, CQT, and hybrid features, and (c) Results
of machine learning classifiers with MFCC, CQT, and hybrid features using GAN data, and (d) Results of deep
learning classifiers with MFCC, CQT, and hybrid features using GAN data.
[Feawres DT [svC  [KNN  [iR  [NB_ [RF [Voting(iard) [ Voting (Soft)
MECC 0.93(+0.08) | 0.99 (+0.02) | 0.85 (+ 0.08) | 0.96 (+ 0.05) | 0.99 (+0.02) | 0.98 (+0.02) | - -
CQT 0.92(+ 0.05) | 0.94 (+0.04) | 0.80 (+0.10) | 0.90 (+ 0.05) | 0.72 (0.15) | 0.95 (+ 0.07) | 0.94 (+ 0.04) | 0.94 (+ 0.04)
MFCC+CQT | 0.91( 0.07) | 0.95 (+0.05) | 0.83 (0.07) | 0.90 (+ 0.04) | 0.48 (+0.09) | 0.95 (+0.04) | 0.94 (+0.04) | 0.90 (+0.05)
Table 13. K-fold cross-validation results with MFCC, CQT features using machine learning models.
[Featwres  [DT  [svC  [KNN IR |NB  [RF [Voting(Hard) [ Voting (Sof) |
MEFCC 0.93(+0.02) | 1.00 (+ 0.00) | 1.00 (+ 0.00) | 1.00 (+ 0.00) | 1.00 (+ 0.00) | 1.00 (+ 0.00) | - -
CQr 0.91(+0.02) | 0.99 (+0.01) | 0.78 (+ 0.05) | 0.99 (+0.01) | 1.00 (+0.00) | 1.00 (+ 0.00) | 0.99 (+0.01) | 1.00 (+ 0.00)
MFCC+CQT | 0.83( 0.04) | 1.00 (+ 0.00) | 0.52 (+ 0.04) | 1.00 (+ 0.00) | 1.00 (+ 0.00) | 1.00 (+0.00) | 1.00 (+ 0.00) | 1.00 (+ 0.00)
Table 14. K-fold cross-validation results with MFCC, CQT features, and CTGAN augmentation using
machine learning models.
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Ref. Faults Features Models | Cross-validation | Accuracy
ol Ballast, Obstruction, Slackened Nuts, Ice Blockage MFCC SVM No 94.1%
57 Normal Track, Wheel Burn, Super Elevation MEFCC RE&DT | No 97.0%
9 Normal Track, Wheel Burn, Super Elevation Spectrogram of audio dataset of” | Conv2D | Yes 96.5%
37 Crash Sleeper, Wheel Burn, Points and Crossing, Low joints, Creep, Loose Nutt Bolts | MFCC MLP Yes 98.4%
Proposed | Normal Track, Wheel Burn, Super Elevation MFCC&CQT Models | Yes 100%

Table 15. Comparison with other existing studies.

Data availability
”The datasets used and/or analysed during the current study available from the corresponding author on rea-
sonable request.”

Code availability
The implementation code is publicly available at the following link: https://github.com/Arehmans/railways
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