
Global map of characterized dust 
sources using multisource remote 
sensing data
Ali Darvishi Boloorani1,2,3, Masoud Soleimani1,2, Ramin Papi4, Nastaran Nasiri2, 
Fatemeh Amiri1,2, Najmeh Neysani Samany1,2, Kan Huang5, Iraj Gholami3,6 &  
Ali Al-Hemoud7

The most recent high-resolution global map of dust emission sources is provided by Ginoux et al. 
(2012), which utilizes an aerosol loading approach based on time series of MODIS Aerosol Optical 
Depth (AOD). However, advancements in remote sensing technology and analytical techniques have 
created a growing need for more accurate and up-to-date maps of global dust sources to enhance 
the understanding and management of this phenomenon. In this study, we first calculated the global 
mean Sentinel-5P Absorbing Aerosol Index (AAI) for the period 2018–2024. Regions with AAI values 
greater than 0.25 were identified as potential dust sources through histogram analysis validated by 
ground truth data. Next, areas without dust emission potential were excluded from the mean AAI 
map using a multi-stage masking process that considers land surface characteristics such as soil depth, 
permanent water bodies, and built-up areas. Validation results demonstrate strong performance, with 
a Precision of 84.7%, Recall of 80.7%, and F1-score of 82.6%, confirming the reliability of the global 
dust source map produced. The findings indicate that about 5% of the world’s land area acts as a dust 
emission source, mainly located in North Africa (67%) and Asia (30%). Land use/land cover analysis 
reveals that global dust sources comprise deserts, vegetative, and hydrological categories, accounting 
for 65%, 26%, and 9%, respectively. Among these, sandy areas, rangelands, and intermittent water 
bodies exhibit the largest extent on a global scale, respectively. Natural and human factors contribute 
65% and 35%, respectively, to the formation of global dust sources. The frequency of dust events from 
desert sources has experienced an increasing trend worldwide, but in the case of non-desert sources, 
it has decreased in some regions, such as the Middle East. This study focused on identifying major dust 
emission sources based on relatively high aerosol loads over time. Our results provide a new global 
dust atlas that can serve as a practical foundation for climate modeling and for formulating disaster 
risk reduction and management plans.

Keywords  Dust source mapping, Remote sensing, Sentinel-5P, Absorbing aerosol index (AAI)

In recent decades, land use/land cover (LULC) change, desertification, and deforestation affected by climate 
change and prolonged droughts1 caused by anthropogenic and natural processes2–6 have led to the expansion 
of dust sources, particularly in arid and semi-arid regions, such as the Middle East. Dust storms impact various 
Earth components, such as cloud nucleation and precipitation processes, radiative forcing, hydrological cycles, 
terrestrial and marine biogeochemical cycles, vegetation health and productivity, water pollution, soil fertility 
and food production, etc., and pose a significant threat to human health7–10. Identifying dust emission sources is 
the first necessary step in managing this phenomenon and reducing/controlling its adverse effects11. In addition, 
this is important for understanding the environmental and climatic mechanisms for the development of global 
dust forecasting and climate models12–14.

Dust storms and their various consequences are not limited to the emission sources; fine-grained dust particles 
can be carried by wind thousands of kilometers across the hemisphere15, affecting even pristine remote areas and 
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the polar regions16. Hence, dust is considered a global hazard because it mainly arises from the interaction of 
environmental and human factors on a regional or global scale17, and can impact anywhere as a function of the 
general atmospheric circulation. Accordingly, dust-related studies, especially in terms of identifying emission 
sources and impact areas, seem to require a global perspective, independent of natural and political boundaries.

Due to its critical importance, the topic of dust source identification/mapping has been studied extensively 
on a global scale12,18–26. Given the constraints of ground-based/field observations27, most research relies on 
satellite remote sensing data28. Dust storms are very dynamic and short-lived phenomena that can disperse 
quickly after emergence. Hence, the remote sensing sensor must have high temporal and spatial resolutions to 
monitor dust events effectively29,30.

According to the literature, the most employed approaches to identify and characterize dust emission sources 
that take advantage of various satellite remote sensing data fall into three main categories: expert knowledge-
based visual interpretation31,32, simulation model-based12,20,22, and aerosol load-based25,26. Each approach has 
its strengths and limitations, and since they are suited for different applications, determining which method is 
superior can be challenging. Visual interpretation focuses more on accurately identifying hotspot dust sources 
at typically local scales, as its implementation on a large scale is very costly and time-consuming. Moreover, 
this approach is inherently subjective, relying heavily on expert knowledge. Consequently, if the interpreter 
lacks sufficient experience and skills in interpreting satellite imagery, the level of uncertainty can increase 
significantly33. Model-based approaches often focus on the large-scale simulation of emission and deposition 
rates, their characteristics, and variability across different dust emission sources and impact areas34. Aerosol 
load-based approaches are centered on analyzing the long-term spatial-temporal behavior of ambient columnar 
atmospheric aerosol loading observed through satellite imagery33.

The latter approach, despite its shortcomings, particularly the uncertainty of satellite aerosol products, 
is more cost-effective and applicable in terms of processing cost and time to identify and characterize dust 
sources on a global scale. In this regard, the Moderate Resolution Imaging Spectroradiometer - Aerosol Optical 
Depth (MODIS-AOD), include the “deep-blue”35,36 and “dark-target”37 algorithms developed to obtain the 
aerosol optical thickness over bright land areas and oceans and predominantly vegetated (dark) land surfaces, 
is considered the most widely used satellite aerosol product for dust studies26,38–40, and due to its fine nominal 
spatial resolution of 3–10 km and sub-daily temporal resolution (two acquisitions per day by Terra and Aqua with 
equatorial overpass times of 10:30 and 13:30, respectively), near-global spatial coverage, relatively long temporal 
coverage (from 2000 to the present), wavelength diversity (0.412, 0.47, 0.65, and 2.13 μm), free availability33, 
and relatively high correlation with the ground-based AERONET-retrieved AOD data41,42. However, due to the 
limitations of existing datasets, such as MODIS-AOD, which is subject to high uncertainty influenced by aerosol 
type, elevation, and LULC43,44, as well as given the rapid advancements in satellite remote sensing technologies 
and algorithms, there remains a pressing need to explore and utilize new remote sensing data and methodologies.

To the best of our knowledge, one of the most comprehensive maps of global dust sources has been produced 
using aerosol load approaches based on MODIS-AOD by Ginoux et al. (2012)26. Uncertainties in MODIS-AOD 
retrievals, limitations in spatial resolution, potential overestimation of AOD values due to dust transported from 
upwind sources, and the omission of variability in dust emission potential among different LULC classes may 
introduce errors that substantially undermine the map’s reliability11,39. In this context, the sun-synchronous 
Sentinel-5P satellite–the European Space Agency’s (ESA) first Copernicus mission dedicated to high spatial and 
temporal resolution atmospheric measurements of air quality, ozone and ultraviolet (UV) radiation, and climate 
monitoring–has now provided over seven years of data. This presents valuable opportunities to leverage its 
products for identifying global dust sources and addressing the limitations of previous datasets.

The Absorbing Aerosol Index (AAI) is an atmospheric parameter measured by the TROPOMI instrument 
onboard the Sentinel-5P satellite. It is derived from wavelength-dependent variations in Rayleigh scattering 
within the UV spectral range, specifically at two wavelengths: 354 and 388  nm. The AAI is calculated by 
subtracting the observed reflectance captured by the sensor from the modeled reflectance, which represents the 
theoretical reflectance of the atmosphere during Rayleigh scattering. This index illustrates the concentration of 
UV-absorbing aerosols in the atmosphere, such as dust particles and smoke. Since ozone absorption is minimal 
at these two wavelengths, the Sentinel-5P AAI is less affected by atmospheric cloud cover compared to the 
MODIS-AOD measurements45.

Our study aims to identify global dust sources by developing a novel aerosol load-based approach that 
leverages the unique capabilities of the Sentinel 5P-AAI time series data. Given the key role of LULC in 
dust formation, we employ a multi-stage masking approach based on histogram analysis using land surface 
characteristics (e.g., soil depth, permanent water bodies and built-up areas) to minimize the potential influence 
of false AAI values on the identification of dust emission sources. Since various environmental factors—such 
as desert aeolian processes, vegetation dynamics, and hydrological conditions—contribute to the formation of 
dust storms, the identified sources are ultimately characterized by their origin and type, based on the dominant 
driving factors. This research presents a global dust atlas that offers critical insights for policymakers worldwide, 
enabling the development of more effective adaptation and mitigation strategies to address the impacts of dust 
storms.

Methodology
Identification of potential dust sources
In this study, areas exhibiting consistently high atmospheric aerosol loads over time are identified as potential 
dust emission sources. The time series of the daily Sentinel 5P-AAI product with a spatial resolution of 1 km 
from 2018 to 2024 is employed to analyze the spatiotemporal patterns of ambient atmospheric aerosol loading. 
The AAI is a dimensionless measure of the columnar prevalence of aerosols in the atmosphere. It is derived from 
the spectral contrast between a pair of UV wavelengths, where the difference between the observed and modeled 
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reflectance results in a residual. A positive residual indicates the presence of UV-absorbing aerosols, such as dust 
and smoke. Clouds typically yield residuals near zero, while strongly negative residuals may suggest the presence 
of non-absorbing aerosols, including sulfate aerosols.

To this end, AAI’s daily global products (OFFL/L3_AER_AI) are first averaged over the period using the 
Google Earth Engine (GEE) data catalog. Accordingly, areas with higher positive AAI values can be interpreted 
as potential dust sources. However, the choice of a specific AAI threshold significantly influences the spatial 
pattern and boundary of detectable potential dust sources. According to the approach proposed by Darvishi 
Boloorani et al. (2023c), the primary dust-emitting areas in the Middle East are initially identified as ground truth 
data through the visual interpretation of sub-daily true-color composite MODIS-Terra & Aqua imagery for the 
period from 2018 to 202433. This approach relies on the human analyst context-based subjective judgment. The 
Middle East has a variety of dust emission sources, including desert, vegetative, and hydrological46, which can 
be a good representative of other dust source regions, taking into account the necessity for minimum processing 
and time costs associated with the visual interpretation approach. Ground truth dust areas are identified using 
the visualization capabilities of NASA’s EOSDIS web-based application and the on-screen digitizing method 
using ArcGIS 10.8 tools. These areas are correspond to landforms that have experienced dust emission hotspots 
at various times due to the interaction of different drivers such as high temperatures, high evaporation rates, 
low soil moisture content, sparse or poor vegetation coverage, fine-grained eroded soil particles, and erosive 
winds47. Hotspots are defined as locations in source areas where the highest emission rates are observed 
during dust events17. Accordingly, ground truth dust sources are areas where several dust emission hotspots 
are observed over time on MODIS true-color composite images as a result of hydroclimatic dynamics. During 
the visual interpretation process, the boundaries of ground truth dust sources are determined by considering 
the characteristics of landforms and prevailing wind directions in areas associated with dust emission hotspots.

Next, the mean AAI values associated with pixels within the ground truth dust areas during the period 
2018–2024 are extracted. Finally, the mean AAI across all identified dust areas in the Middle East is calculated 
and considered as a general threshold for use in a histogram slicing process. This approach enables classifying 
the global mean AAI product into two binary categories: 0, indicating no potential dust source, and 1, indicating 
a potential dust source. This procedure facilitates the determination of the optimal AAI threshold for identifying 
potential dust sources on a global scale. Fig. 1 presents a schematic overview of this stepwise methodology.

Dust source mapping
Due to the common uncertainties associated with aerosol load-based approaches to dust source identification, it 
is necessary to consider the spatiotemporal behavior of land surface characteristics to minimize overestimation 
and refine the potential dust source maps39. Accordingly, false AAI-based columnar aerosol concentration values 
due to wind direction and topography patterns are largely excluded by eliminating areas without dust emission 
potential. This allows for the transition from potential dust sources to dust sources. In fact, in this process, the 
behavior of the Earth’s surface characteristics is linked to the columnar atmospheric aerosol, which referred to 
as “dust source mapping”.

Geology, pedology, soil moisture, and LULC are the primary surface characteristics that play a role in the 
formation of dust sources. According to the literature, many other factors can be effective, but they are often 
correlated with these four characteristics17,48. Here, a multi-stage masking approach is utilized to consider soil 
thickness, water bodies, and built-up areas, which helps eliminate falsely detected dust sources. Binary masks 
(no dust emission potential = 0, dust emission potential = 1) are created from each of these parameters and then 
multiplied by the mean AAI product. Finally, the regions remaining after these steps are labelled as dust sources 
(Fig. 1). The specifications of the binary masks are presented in Table 1.

Validation of the dust source map
Standard binary classification metrics, including precision, recall, and F1-score, are employed to evaluate the 
spatial accuracy of the generated global dust source map. The evaluation is conducted by comparing the binary 
dust source outputs produced by the proposed methodology with ground truth dust and non-dust hotspots 
identified through visual interpretation of MODIS true-color composite imagery across the Middle East. Non-
dust hotspots are carefully selected from regions with no observed dust emission potential during the 2018–2024 
period, including areas such as dense vegetation, water bodies, urban environments, rocky mountains, and other 
naturally stable surfaces.

To compute the validation metrics, a confusion matrix (Table 2) is constructed by comparing the classified 
outputs of the dust source map with the corresponding ground truth classes derived from visual interpretation. 
The matrix summarizes classification outcomes using four standard metrics: True Positives (TP), False Positives 
(FP), True Negatives (TN), and False Negatives (FN)52,53. Here, TP refers to the number of dust hotspots that 
truly fall within identified dust sources. FP represents the number of dust hotspots that falsely fall in non-
dust sources (Type I error). TN is the number of non-dust hotspots that truly fall within non-dust sources. FN 
denotes the number of non-dust hotspots that falsely fall in dust sources (Type II error). These metrics form the 
basis for calculating precision, recall, and the F1-score to quantitatively evaluate the spatial accuracy of the dust 
source map through Eqs. (1)–(3)53.

	
P recision = T P

T P + F P
� (1)

	
Recall (Sensitivity) = T P

T P + F N
� (2)
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Parameter Data source
Spatial 
resolution

Time 
span References Description of produced mask

Soil thickness Soil and sedimentary 
deposit thickness 1 Km 1900–

2015
49

Areas with thin sedimentary soil layers, particularly those with a thickness of less than 5 m, 
are unlikely to produce dust storms, even if other conditions are favorable. Therefore, regions 
with soil depths below this threshold are excluded from potential dust source considerations

Water bodies
JRC Yearly Water 
Classification 
History, v1.4- GEE 
data catalog

30 m 1984–
2021

50
Since water bodies do not emit dust–mainly because moisture causes soil particles to stick 
together–the maximum extent of global permanent inland water bodies is designated as 
areas with no dust emission potential

Built-up areas Esri Land Cover 10 m 2017–
2023

51
Built-up areas and impervious urban surfaces do not contribute to dust emissions. To 
account for spatiotemporal changes in LULC, built-up areas persisting for at least one year 
between 2017 and 2023 are classified as having no dust emission potential

Table 1.  Data used and details of the multi-stage masking approach.

 

Fig. 1.  Proposed approach to identify and characterize global dust sources using multi-source satellite remote 
sensing data.
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F 1 score = 2 × (P recision × Recall)

(P recision + Recall) � (3)

where according to Table 2, T P = a/ (a + b), F P = b/ (b + d), T N = d/ (c + d), and F N = c/ (a + c).

Categorization of various dust sources
Given that dust storm formation is influenced by multiple environmental factors, the emission sources can differ 
in their origins46. By incorporating various LULC classes and landforms with potential for dust emission into 
the global dust source map, we can discriminate between different types of dust sources (Fig. 1). This approach 
ensures a comprehensive understanding of dust source typologies, facilitating targeted analysis and mitigation 
strategies.

This study utilizes the Esri Land Cover, Global Lakes and Wetlands Database (GLWD), and OpenLandMap54 
datasets,  combined using geometric-based intersection functions in ArcGIS 10.8 to separate dust sources 
associated with vegetation (cropland and rangeland), hydrology (lake, intermediate water, floodplain, wetland, 
coastal, and swamp forest), and desert.

To differentiate cropland and rangeland dust sources, areas consistently classified under these categories for 
at least three years between 2017 and 2023 are selected, accounting for spatial-temporal variability and potential 
classification errors in the Esri Land Cover product. Next, “vegetative dust sources” are defined as areas of global 
dust sources that overlap with relatively persistent classes of cropland and rangeland. “Vegetative dust sources” 
are then defined as regions within the global dust source map that intersect with stable cropland and rangeland 
classifications. To separate coastal areas as one of the “hydrological dust sources”, the Digital Elevation Model 
(DEM) from the Shuttle Radar Topography Mission (SRTM) (Farr et al., 2007) with a spatial resolution of 30 
m is used. To delineate coastal zones as a subset of “hydrological dust sources,” the Digital Elevation Model 
(DEM) from the Shuttle Radar Topography Mission (SRTM) (Farr et al., 2007), with a spatial resolution of 30 
m, is employed. Accordingly, coastal dust sources are defined as regions within approximately 5 km of oceans 
and seas with an elevation of less than 20 m above sea level. Coastal dust sources are defined as areas located 
within approximately 5 km of oceanic or sea boundaries and exhibiting elevations below 20 m above sea level. 
After completion of the above separation and labeling steps, the remaining areas are considered to be “desert 
dust sources”. Following the above classification and labeling procedures, residual regions are categorized as 
“desert dust sources.” Desert dust sources are further categorized into “sandy” and "non-sandy" sources by 
incorporating detailed classifications of different soil types. These desert dust sources are further subdivided 
into “sandy” and “non-sandy” categories based on detailed soil type classifications. To discriminate between 
cropland and rangeland dust sources, due to spatial-temporal variations and uncertainties associated with 
image classification errors in the Esri Land Cover product, areas that have been in these classes for at least three 
years between 2017 and 2023 are considered. Next, “vegetative dust sources” are defined as areas of global dust 
sources that overlap with relatively persistent classes of cropland and rangeland. To separate coastal areas as 
one of the “hydrological dust sources”, the Digital Elevation Model (DEM) from the Shuttle Radar Topography 
Mission (SRTM)55 with a spatial resolution of 30 m is used. Accordingly, coastal dust sources are defined as 
regions within approximately 5 km of oceans and seas with an elevation of less than 20 m above sea level. After 
completion of the above separation and labeling steps, the remaining areas are considered to be “desert dust 
sources”. Desert dust sources are further categorized into “sandy” and “non-sandy” sources by incorporating 
detailed classifications of different soil types.

Analysis of dust spatial-temporal patterns
To derive a global dust spatial-temporal profile, the month exhibiting the highest AAI value is determined for 
each pixel. This analysis enables identification of peak dust activity periods across different global regions. A 
similar approach is performed to determine the year with maximum dust activity, using daily MODIS-AOD due 
to the long-term data availability (2003–2023).

Additionally, we performed a change detection analysis (Eq.  4) for the MODIS-AOD on a global scale 
by comparing the mean AOD values between two periods: 2003–2013 and 2013–2024. Conventional break/
change point detection analysis methods, including von Neumann’s ratio test56, Pettitt’s test57, standard normal 
homogeneity test (SNHT)58,59, and Buishand’s test60,61 are applied to determine the turning point in the yearly 
AOD time series. Both Pettitt’s test and SNHT yielded consistent results, indicating that 2013 represents a 
statistically significant turning point (P-value < 0.05).

	
Change detection = AOD2013−2024 − AOD2003−2013

AOD2003−2013
× 100� (4)

Ground truth class

Dust hotspot (1) Non-dust hotspot (0)

Map class
Dust source (1) a b

Non-dust source (0) c d

Table 2.  Confusion matrix for validation of proposed methodology.
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This approach provided a more robust understanding of spatial dust emission trends over a longer period, 
complementing the shorter-term insights provided by the AAI data. The integration of these datasets provided 
a clearer picture of both current and historical trends in dust activity, enabling more informed conclusions and 
strategies for dust management.

Results and discussion
AAI-based aerosol load approach
This study employs a novel global dust source identification/mapping approach based on aerosol loading and 
time series of the Sentinel 5P-AAI daily products. This approach incorporates the spatial-temporal behavior of 
AAI within ground truth dust areas to accurately identify global dust sources. Previous studies have utilized 
long-term mean aerosol load satellite products, such as MODIS-AOD, for dust source identification62. However, 
since AOD values at a given pixel can be influenced by dust transported from upwind sources, relying solely on 
AOD for identifying dust emission sources is limited in effectiveness and subject to considerable uncertainty63. 
Consequently, applying thresholds to aerosol load products offers a practical and operationally feasible solution 
for reducing potential errors and improving the accuracy of dust source identification39.

Here, the mean AAI of the main dust areas in the Middle East for 2018–2024 was considered as the basis 
for determining the appropriate threshold. These main dust areas (comprising a total of 26 landform-related 
polygons) were identified through visual interpretation of sub-daily MODIS true-color composite imagery as 
ground truth data (Fig. 2). During the visual interpretation process, a total of 11,242 dust emission hotspots were 
observed in parts of these polygons as a function of hydroclimatic conditions11 from 2018 to 2024. Since the 
spatiotemporal pattern of AAI is a function of wind speed and direction, values in downwind pixels are usually 
highly correlated with upwind areas. Therefore, to achieve a generalizable threshold, instead of extracting pixel-
wise AAI values in dust emission hotspots, we considered the spatial neighborhood behavior by calculating the 
mean AAI across polygons of dust areas (Fig. 2). Mean AAI values in these polygons range from about 0.02 
(in central Syria) to 1.11 (in Saudi Arabia). The average AAI across all polygons is 0.25, which was applied as a 
threshold to classify the global mean AAI map into non-potential dust sources (labeled as a binary value of 0) 
and potential dust sources (labeled as a binary value of 1).

Distribution of global dust sources
By excluding areas with no dust potential (e.g., thin soil thickness, permanent inland water bodies, and built-
up areas) from the binary classified global mean AAI map (considered as potential dust sources), a relatively 
accurate boundary map of global dust sources was extracted. Our results indicate that, global dust sources are 
mainly located in the Earth’s desert belt. The spatial distribution of global dust sources, with a total area of 
7,892,663 km2, across continents shows that Africa is the largest contributor with an area of 5,301,025 km2 
(67.16%). Asia comes second with 2,395,173 km2 (30.34%), reflecting the continent’s large arid and semi-arid 

Fig. 2.  Ground-truth main dust areas and associated dust emission hotspots in the Middle East identified by 
visual interpretation of MODIS-Terra & Aqua sub-daily true color composite imagery (2018–2024) to Sentinel 
5P-AAI thresholding process.
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regions, particularly in the Middle East, Central Asia, and East Asia. The remaining 2.5% of global dust sources 
are located in North America (Southwestern United States) with an area of 85,552 km2 (1.1%), South America 
(Northern Argentina) with an area of 56,489 km2 (0.71%), Australia with an area of 54,281 km2 (0.68%) and 
Europe (only in Spain) with an area of 143 km2 (0.001%).

According to the LULC analysis, global dust sources can be broadly classified into three categories: desert 
( ∼65%), vegetative ( ∼26%), and hydrological ( ∼9%). Given that 97.5% of identified global dust sources are 
located in Africa and Asia, this study specifically focuses on describing the spatial distribution of dust sources 
within these continents. Dust sources on these continents are mainly located in the regions of North Africa, 
Southwest Asia, Central Asia, and East Asia. To illustrate this distribution, separate maps of dust sources are 
presented for North Africa (Fig. 3), Southwest and Central Asia (Fig. 4), and East Asia (Fig. 5).

North Africa dust sources
As shown in Fig. 3, dust sources in Africa are primarily located in the northern region, particularly in the vast 
Sahara, the largest hot desert on Earth. North Africa is a major contributor to global dust emissions due to its 
extremely dry climate, sparse vegetation, and extensive sandy soils64, combined with anthropogenic pressures 
such as overgrazing and deforestation65.

Our results show that, about 70% of the dust sources in this region are desert-type. The vegetative and 
hydrological sources of dust storms are mostly located in the southern latitudes of the North Africa region, 
closer to the equator, where the climate is more humid but still experiences seasonal dry periods12. Dust storms 
in these areas, such as the Sahel and near the Sahara, originate from dried beds of lakes, seasonal wetlands, and 
floodplains. During the dry season, as these water bodies shrink, their fine-grained fluvial and alluvial sediments 
are eroded by aeolian processes. Seasonal variations invegetation cover also contribute to dust emissions12.

Vegetative dust sources are often located on the marginal lands surrounding deserts, which account for 
about 25.5% of Africa’s sources. In addition, over 98% of the area of ​​vegetative dust sources is associated with 
rangelands. Regarding hydrological dust sources, which account for 4.5% of the area of the North African dust 
sources, the largest share is from flood plains (33%), swamp forests (24%), intermittent waters (20%), and 
wetlands (18%), respectively.

The dominant trade winds, particularly the Harmattan and Sirocco, which cross the Mediterranean, play an 
important role in the emission and transport of dust from the North African region66,67. These winds often carry 
dust particles over long distances, sometimes reaching the United States68 and even East Asia69.

Southwest and central Asia dust sources
Most dust sources in the Southwest and Central Asia regions are found in deserts ( ∼53%), particularly in sandy 
deserts ( ∼87%) such as the An-Nafud, Ad-Dahna, and Rub’ al-Khali deserts in Saudi Arabia, as well as large 
parts of Oman and Yemen (Fig. 4). These deserts are primarily natural dust emission sources, driven by their 
hot and dry climate and unconsolidated sand particles that lead to frequent regional dust events70,71. Vegetative 
dust sources in these regions account for a significant share of 33%, of which 94% is associated with rangelands. 
Vegetative dust sources are mainly located in the Tigris and Euphrates river basins, the Helmand river basin in 
Afghanistan, and the Indus river basin in Pakistan. The presence of ephemeral and dried-up lakes and wetlands 

Fig. 3.  Distribution of various dust source types in the North Africa region.
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in the Mesopotamian region of Iraq, Central Iran, the Sistan Plain (Hamoun Lakes) on the Iran-Afghanistan 
border, and the Aral Sea on the Kazakhstan-Uzbekistan border has given Southwest and Central Asia a higher 
share of hydrological dust sources ( ∼14%) compared to the North Africa region. Intermittent waters constitute 
the largest share ( ∼38%) among the various types of hydrological dust sources, covering an area of over 97,000 
km2. The share of floodplain-related dust sources ( ∼34%) is also important in the second degree. In general, 
three main wind systems, including the Shamal winds over the Arabian Peninsula, the northerly Levar winds 
(wind of 120 days) over southwest Asia, and the low-level southwesterly monsoon jet blowing over the western 
Arabian Sea, characterize dust activity in this region62. These winds interact with other hydroclimatic and 
environmental conditions to cause dust emissions from sources at different times of the year, from spring to 
winter. However, dust emissions in this region are often caused by the Shamal and Levar wind systems, which 
are active during spring and summer72,73.

East Asia dust sources
The spatial distribution of different dust source types in the East Asian region is shown in Fig. 5. As evident, the 
largest area ( ∼ 69%) is associated with desert dust sources, which also have a higher share compared to sources 
in North Africa and Southwest and Central Asia. The primary sources of dust emissions in East Asia are large 
desert areas, particularly sandy deserts such as the Taklamakan, Badain Jaran, and Kumtag. Classified as cold 
deserts, these regions are primarily located in China, which lies in the rain shadow of the Tibetan Plateau and 
other Central Asian highlands (e.g., the Himalayas), resulting in a cold and dry climate74. These cold deserts 
contribute significantly to the occurrence of dust storms in the region. The Taklamakan Desert, known for its 
vast sand dunes and extremely dry conditions75, is a major natural source of dust emissions76.

East Asia exhibits the lowest proportion of vegetative dust sources, accounting for approximately 13%, 
with rangelands playing a dominant role, representing about 89% of vegetative sources compared to the other 

Fig. 4.  Distribution of various dust source types in the Southwest and Central Asia region.
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regions. Conversely, hydrological dust sources are more prominent in this region, constituting approximately 
18%. Within this hydrological category, intermittent water bodies cover the largest area, comprising 56% of the 
hydrological dust sources. Although less extensive than desert regions, hydrological sources nonetheless have a 
significant influence on the overall dust dynamics in East Asia77,78.

In this region, dust storms primarily result from near-surface wind regimes that are closely tied to the 
broader atmospheric circulation patterns and the local topography. Two prevailing wind directions play a role 
in the formation of dust storms in the region, particularly in the Taklamakan Desert. Generally, the eastern 
parts of the desert are affected by northeasterly winds, while the western parts experience northwesterly winds. 
Additionally, the southwestern edge of the desert experiences the highest frequency of dust storms, driven by 
persistent northwesterly winds79.

Characterization of global dust sources
Fig. 6a shows the global distribution of the area of various dust source types in the involved countries. Accordingly, 
Algeria, with an area of more than 900,000 km2, contains the largest share ( ∼12%) of global dust sources, 
including desert (79.63%), vegetative (18.05%), and hydrological (2.32%). In contrast, India has the smallest 
share (18,000 km2) of global dust sources, of which approximately 60% are hydrological. In most of the countries 
involved, except Pakistan, Iran, Iraq, and Australia, desert dust sources account for the largest share. On the 
other hand, no desert dust sources have been identified in some of the involved countries, including Senegal, 
Kazakhstan, Uzbekistan, Turkmenistan, Bolivia, Nigeria, Namibia, and India. In the second rank, vegetative dust 
sources also cover a significant area in many countries involved. Fig. 6b, c and d show the area distribution of 
various types of hydrological, vegetative, and desert dust sources, respectively.

Hydrologically, China has the largest share of dust sources, with over 96,000 km2, of which about 56% 
are associated with dried beds of intermittent waters. After China, Iran ranks second in terms of the extent 
of hydrological dust sources, with a reduction of about 46%. In Iran, similar to China, the largest share of 
hydrological dust sources is associated with intermittent waters ( ∼ 45%). Meanwhile, flood plains also represent 
a significant contribution to the hydrological dust sources in most of the countries involved (Fig. 6b). As pointed 
out in previous studies, the formation of hydrological dust sources such as lakes, intermittent waters, flood 
plains, and wetlands in countries located in the Middle East and North Africa (MENA) region is due to water 
crises resulting from factors such as reduced precipitation, increased temperature, periodic droughts, population 
growth, agricultural expansion, and unsustainable water resource management46,80. In this regard, many studies 
have highlighted the role of dried-up water bodies (wetlands, lakes, and rivers), particularly in the Mesopotamian 
Marshes in Iraq29, Urmia Lake81,82 and the Hamoun Lakes83,84 in Iran, and the Aral Sea between Kazakhstan in 
the north and Uzbekistan in the south85,86, in dust emissions and their widespread impacts.

In terms of vegetative dust sources, Niger is the largest contributor with an area of over 237,000 km2, of 
which approximately 99% is associated with rangeland. In the other 29 countries involved, the highest share of 
dust sources came from rangelands (Fig. 6c). It should be noted that the low share of cropland as a source of 
dust storms does not necessarily mean that rangelands could always contribute more to global dust emissions. 
The reason for our finding is largely dependent on LULC51, as the area of rangelands is much larger than that 
of croplands in all countries. Countries located in desert areas with very limited agricultural activities, such 

Fig. 5.  Distribution of various dust source types in the East Asia region.
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as Niger, Mali, Mauritania, Chad, Algeria, Saudi Arabia, etc., have a very low potential for the formation of 
cropland dust sources. To better understand this issue, in countries such as China, Afghanistan, Pakistan, and 
Iran, which have more extensive agricultural activities, the share of rangeland dust sources has decreased by up 
to 85.6% compared to Niger (i.e. a decrease of 13.4%). In these countries, the share of cropland dust sources is 
11.34%, 14.4%, 8.61%, and 7.89%, respectively (Fig. 6c). Accordingly, a high share of a LULC cannot necessarily 
be interpreted as a higher potential for dust emissions. Since croplands are highly exposed to land degradation 
processes due to unsustainable anthropogenic agricultural activities, and given the presence of soil particles 
that are more susceptible to aeolian processes87, they may have a much higher potential for dust emissions than 
rangelands. However, as a fact, our results suggest the dominant role of rangelands in global vegetative dust 
sources.

The area distribution of global desert dust sources (including sandy and non-sandy) in the countries involved 
is illustrated in Fig. 6d. Algeria, Libya, and Saudi Arabia are the top three countries in terms of desert dust 
sources with shares of 14.27%, 11.44%, and 10.94%, respectively. Together, these countries account for more than 
a third of the world’s desert dust sources. In all countries with desert dust sources, except Iran, the United States, 
Mexico, and Australia, sandy sources dominate. The largest share of non-sandy desert dust sources observed in 
China ( ∼24%) and Sudan ( ∼12%). Sand particles, typically between 0.05 and 2 mm in diameter, are coarser 
than other soil particles. Due to their greater weight, these particles are less likely to be detached from the 
surface by aeolian processes than clay and silt particles9. Assuming that main dust drivers such as soil moisture, 
wind speed and direction, and vegetation remain constant, sandy soils may have a lower dust emission potential 
compared to silt and clay. On the other hand, heavier particles have a lower mobility as a function of the wind 
speed and the force of gravity. In this regard, as acknowledged by Shepherd et al. (2016), most soil particles 
transported by the wind more than 100 km from their emission sources are smaller than 20 μm in diameter88. 
Accordingly, as a fact that requires further investigation, non-sandy dust sources, regardless of their extent, 
maybe more hazardous due to the greater potential for emission of fine-grained soil particles and affecting more 
distant areas.

Contribution of natural and anthropogenic factors in the formation of global dust sources
The various types of dust sources identified in North Africa (Fig. 3), Southwest and Central Asia (Fig. 4), and East 
Asia (Fig. 5) generally result from the interaction between natural processes and human activities. However, it is 

Fig. 6.  Distribution of various types of dust sources across the global involved countries: (a) primary 
categories of dust sources, including desert, vegetative, and hydrological; (b) hydrological dust sources; (c) 
vegetative dust sources; and (d) desert dust sources.
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important to note that making a precise distinction between the causes of dust source formation is challenging, 
as both natural and anthropogenic factors often contribute simultaneously and interactively on a global scale. 
However, as highlighted in the research literature46,89, desert dust sources are predominantly shaped by natural 
drivers, whereas non-desert sources—such as vegetative and hydrological areas—are primarily influenced by 
anthropogenic activities. Accordingly, it can be said that in desert areas, natural factors such as aeolian processes, 
hydroclimatic conditions (low rainfall, high temperature, low soil moisture, and high evaporation), and sparse 
vegetation cover contribute to the formation of dust sources. Regarding vegetative dust sources, the issue of 
LULC changes90,91 caused by human activities as well as climate change in the form of rangeland destruction and 
abandonment of agricultural lands play a role in dust emissions1. Hydrological dust sources, such as dried or 
ephemeral lakes and wetlands, are formed by natural hydroclimatic variability (e.g., drought periods) and human-
induced upstream development such as dam construction, water diversions, and agricultural expansion29,83. As 
illustrated above, considering the area distribution of various global dust sources, the contribution of natural and 
anthropogenic factors can be estimated at 65% and 35%, respectively. These percentages may vary depending on 
the regional distribution of dust source types across North Africa, Southwest and Central Asia, and East Asia.

Uncertainty and accuracy of the dust source maps
Considering the pixel size of the AAI product (spatial resolution of approximately 1  km and a detectable 
object dimension of around 2 km), the resulting thematic maps (Figs. 3, 4 and 5) have an estimated scale of 
approximately 1:2,000,000. In comparison, one of the most successful global dust maps by Ginoux et al. (2012) is 
at an approximate scale of 1:20,000,000, indicating that the maps produced in this study offer roughly a tenfold 
improvement in spatial detail26. Additionally, the aerosol load approach utilizing Sentinel 5P-AAI products, 
combined with a multi-stage masking process to exclude non-dust potential areas, constitutes an innovative 
aspect of this study that significantly reduces uncertainties in the identification of global dust sources. However, 
it is worth noting that the use of mean AAI data over a seven-year period (2018–2024) may lead to the exclusion 
of short-lived or episodic dust events. Temporary dust storms or seasonal variations that do not persist over 
multiple years could be averaged out, resulting in a loss of temporal detail. While this averaging approach is 
useful for identifying persistent dust sources, it may not fully account for the variability and intensity of dust 
emissions that occur on shorter time scales. Moreover, this study does not account for dust generated from non-
traditional sources, such as those resulting from the melting of polar and mountain glaciers and permafrost16, 
which can release particulate matter previously trapped in ice layers.

The new approach used in this study aims to be simple, straightforward, generalizable, and quickly applicable 
on a global scale by leveraging the capabilities of UV-AAI and its optimal thresholding, which resulted in 
accurately identifying global dust sources. In this regard, the sources identified in the Middle East (Fig. 4) show 
a spatial agreement of over ∼80% with the ground truth dust areas (Fig.  2). It should be clarified that, the 
identified dust sources are based on an atmospheric aerosol loading approach and therefore may not necessarily 
be geometrically aligned with the ground truth dust areas, which are linked to specific landforms.

The spatial accuracy of the generated global dust source map was quantitatively evaluated using confusion 
matrix-based Precision, Recall, and F1-score metrics. This assessment was based on a comparison between the 
model’s output classes (dust sources and non-dust sources) with 3,000 randomly selected dust and non-dust 
hotspots as ground truth data obtained from visual interpretation across the Middle East. The model achieved a 
Precision of 0.847, indicating that a high proportion of areas identified as dust sources by the model corresponded 
correctly to dust hotspots. The Recall value of 0.807 reflects the model’s ability to successfully detect the majority 
of dust hotspots present in the ground truth, demonstrating its effectiveness in minimizing omissions. The F1-
score of 0.826, as a harmonic mean of Precision and Recall, confirms the balanced and reliable performance of 
the proposed methodology in identifying spatial patterns of global dust source areas.

Previous global maps12,25,26 appear to have significantly overestimated the extent of identified dust sources 
due to significant uncertainty in the data and methodologies applied. In light of these limitations, we present the 
most recent and accurate global dust atlas, which is based on the mapping and characterization of satellite remote 
sensing data. While the methodology employed in this study is designed to be globally consistent, cost-effective, 
and broadly applicable, it does not explicitly account for regional ecological, climatic, and geomorphological 
variations that may influence dust emission processes. We acknowledge that variations in vegetation cover, soil 
characteristics, LULC, and hydroclimatic factors across regions can affect both the frequency and intensity of 
dust emissions. Future studies could enhance the methodology by integrating region-specific parameters or 
adaptive thresholds to better reflect local environmental conditions.

Global dust calendar
Comparing two distinct time periods, 2003–2013 and 2013–2024, the global trend in AOD associated with dust 
sources shows an overall increase (Fig. 7). This indicates that on a global scale, except for limited areas such as 
Mesopotamia and south-eastern Iran in southwest Asia, southern and south-western Niger, and southern and 
south-eastern Mali in North Africa, dust emissions have increased significantly over more than two decades. It 
is noteworthy that areas experiencing declines in dust activity largely overlap with vegetative and hydrological 
dust sources. Accordingly, the intensification of dust emissions has occurred more in desert areas, especially in 
North Africa and East Asia. The increasing frequency and intensity of dust storms in many parts of the world 
is largely attributed to factors such as LULC change, desertification, and the intensification of arid conditions 
driven by global climate change92,93. Contrasting the global trend, the decrease in dust emissions observed in 
the Middle East and southeastern Iran is closely linked to significant dust storm activity during the mid-2000s, 
particularly in 2007 and 2008. These periods of heightened activity were driven by prolonged droughts and 
human interventions29. This pattern of intense dust activity during those years is clearly illustrated in Fig. 8a.
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Dust storms are driven by the interaction of various hydroclimatic and environmental conditions, resulting 
in distinct annual and seasonal dust patterns. Fig. 8a illustrates the annual distribution of dust activity across 
global sources, highlighting the years and regions with the highest emissions based on long-term MODIS-AOD 
data. The results reveal that dust sources in North Africa were particularly active during the second decade of 
the 21st century, whereas sources in Southwest and Central Asia, as well as East Asia, showed greater activity 
during the first decade (Fig. 8a).

Regarding monthly patterns, dust storms in the Northern Hemisphere are most prevalent in late spring and 
summer, especially from March to May and June to August (Fig. 8b). In East Asia, dust activity typically peaks 
during late winter to spring (March–May). Similar seasonal patterns are observed over large parts of Libya, 
Egypt, Sudan, Chad, and Niger in North Africa. In the Southern Hemisphere, the highest dust storm activity 
generally occurs between September and November, aligning with late winter and spring months, particularly in 
regions such as Australia and South America.

Conclusion
This study identified high-resolution (0.01°) global dust sources using multitemporal satellite remote sensing 
data. An aerosol loading approach based on the Sentinel-5P absorbing aerosol index (AAI) was employed 
to characterize dust sources. We produced a global dust atlas to provide an up-to-date understanding of this 
destructive environmental phenomenon.

First, a global mean AAI map (2018–2024) was generated. Using a histogram analysis method based on 
ground truth dust emission areas across the Middle East–obtained through visual interpretation of MODIS 
true-color composite imagery–an average AAI threshold of 0.25 was established to identify potential global 
dust sources. By excluding areas with no dust potential from the thresholded mean AAI map, an accurate global 
dust source map was produced at a scale of approximately 1:2,000,000. The validation results, with a Precision 
of 84.7%, Recall of 80.7%, and F1-score of 82.6%, confirm the proposed method’s strong spatial accuracy and 
reliability in identifying global dust source areas. Additionally, spatial overlap analysis with different land 
use/cover (LULC) types was employed to categorize dust sources into three classes–desert, vegetative, and 
hydrological–each further divided into specific subclasses.

Our findings indicate that North Africa accounts for the largest proportion of global dust sources (67%), 
followed by Asia—particularly the Southwest, Central, and East regions—which contributes approximately 30%. 
Scattered and low-extent dust sources were also identified in other regions, including North and South America, 
Australia, and Europe. In terms of source types, deserts contribute around 65%, vegetative sources 26%, and 
hydrological sources 9%. While the distribution of these source types varies by region, desert sources are the 
predominant type globally. In North Africa, Southwest Asia, and Central Asia, the distribution of dust source 
types aligns with global trends. However, in East Asia, hydrological dust sources account for a greater share 
than vegetative sources. Among global vegetative dust sources, rangelands contribute the most, accounting for 
over 89%, compared to croplands. Intermittent water bodies (20–56%) and floodplains (21–34%) represent the 
primary hydrological dust sources across many regions worldwide. Our analysis also reveals the contributions 

Fig. 7.  Detection of global MODIS-AOD change in dust sources from 2003–2013 to 2013–2024. The 
percentage of change in AOD is scaled from green (i.e., decrease in dust emission) to red (i.e., increase in dust 
emission).
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of individual countries to different dust source types globally. Algeria, Libya, and Saudi Arabia are the top three 
contributors to desert dust sources, collectively accounting for more than one-third of the global total. Niger 
holds the largest area of vegetative dust sources, with rangelands comprising approximately 99% of this category. 
China is the leading contributor to global hydrological dust sources, with over 50% of these associated with 
intermittent water bodies.

An examination of the global distribution of dust sources and the underlying causes of their formation 
indicates that both natural and anthropogenic factors interact to drive dust emissions across different regions. 
Accurately quantifying the individual contributions of these factors remains complex and challenging. 
However, desert dust sources are generally associated with natural processes, whereas non-desert sources–such 
as vegetative and hydrological types–are predominantly influenced by human activities. Overall, natural and 
anthropogenic factors are estimated to contribute approximately 65% and 35%, respectively, to the formation of 
global dust sources.

Analysis of global dust patterns reveals an overall increase in emissions from desert sources in recent 
decades. However, certain regions, particularly the Middle East, exhibit a reverse trend, with rising emissions 
from vegetative and hydrological dust sources. This shift is largely attributed to intensified dust activity during 
severe droughts in the early 21st century. The annual pattern of dust events shows that dust sources in North 

Fig. 8.  Global spatial distribution of the most active dust sources: (a) on an annual basis, and (b) on a monthly 
basis.
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Africa were most active during the second decade of this century, while those in Southwest, Central, and East 
Asia peaked during the first decade. Across both regions, dust emissions from primary sources occur most 
frequently in summer, with a secondary peak in late winter to spring.

This study presents a novel and effective global dust source mapping methodology by leveraging the Sentinel-
5P AAI product combined with a multi-stage spatial filtering approach. This strategy greatly enhances the spatial 
precision and reliability of identifying dust sources, making it a valuable tool for climate modeling, air quality 
forecasting, and environmental risk assessment. The AAI product offers daily temporal resolution; however, for 
the purpose of this study, it was averaged over the period from 2018 to 2024 to generate the primary potential 
dust source map. As a result, short-lived or episodic dust events may not be fully captured in the final analysis. 
Accordingly, the proposed methodology focuses on identifying stable dust-emitting sources by considering 
areas with relatively high aerosol load over time.

To build upon the findings of this study, future research could integrate higher temporal resolution analyses 
by incorporating shorter time windows or seasonal aggregations of the AAI data to better capture transient or 
episodic dust events. Additionally, combining high spatial resolution Sentinel-5P AAI data with complementary 
satellite products (e.g., Suomi NPP-VIIRS, Meteosat-SEVIRI, or CALIPSO) and ground-based observations 
may further improve the temporal sensitivity and vertical characterization of dust emissions. Incorporating 
meteorological parameters such as wind speed, soil moisture, and surface roughness could also enhance the 
dynamic modeling of dust mobilization processes. Moreover, the application of machine learning or data 
assimilation techniques could provide a more adaptive and predictive framework for identifying emerging or 
shifting dust source areas under changing climatic conditions.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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