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Skin cancer continues to pose a formidable global health challenge, where expedient detection 
is paramount to diminishing mortality. However, the inherent heterogeneity of skin lesions, 
exacerbated by class imbalance, frequently undermines automated classification efforts, particularly 
in unconstrained environments such as smartphone imagery that lacks dermoscopic clarity. In 
this research, we present DualRefNet, a novel multimodal deep learning paradigm that employs a 
dual-stage feature refinement strategy. First, an auxiliary super-resolution task augments visual 
representations; subsequently, a class-frequency-based regularization of the final fully connected 
layers refines the fused features, thus mitigating errors induced by high intra-class and low inter-class 
variability. Concurrently, a weighted cross-entropy loss deftly addresses class imbalance. Empirical 
evaluations on the PAD-UFES20 and ISIC-2019 datasets demonstrate balanced accuracies of 0.845 
and 0.815, respectively, attesting to DualRefNet’s prowess under varied conditions. Furthermore, the 
confusion matrix and class-wise analyses highlight its equitable performance across all categories, 
rendering it a potential candidate for widespread, resource-constrained deployments.

Among the most prevalent malignancies worldwide, skin cancer stands out for its extensive impact on individuals 
of every age and background. According to the World Health Organization (WHO), approximately 330,000 new 
melanoma cases were recorded globally in 2022, culminating in nearly 60,000 deaths1. By 2040, projections 
indicate over 500,000 novel melanoma diagnoses and 100,000 associated fatalities annually, thus emphasizing 
the paramount importance of early detection in reducing mortality rates2,3.

Dermatoscopy, guided by the ABCD rule (Asymmetry, Border, Color, Diameter), remains a widely embraced 
clinical modality for diagnosing pigmented skin lesions4,5. While efficacious, this practice can be susceptible 
to diagnostic subjectivity, laborious screening procedures, and inconsistencies in interpretation, particularly 
in regions bereft of sufficient dermatological expertise6,7. As illustrated in Fig.  1(a), developing automated 
solutions for skin lesion classification entails multiple technical challenges, including robust feature extraction 
and balancing class distributions. Consequently, there is a growing need for automated classification systems 
that can handle class imbalance and lesion variability, thereby enabling clinicians to make more accurate and 
efficient diagnoses8.

Automated skin lesion classification has advanced significantly through the use of dermoscopic images9–11. 
Nevertheless, as depicted in Fig. 1(b), these methods frequently encounter difficulties such as low inter-class 
variation, high intra-class variation, inconsistent illumination, and significant class imbalance12. These issues 
become even more pronounced in unconstrained scenarios where smartphone-captured images, despite their 
broader accessibility, generally lack the level of detail captured by dermoscopic equipment. Addressing these 
gaps requires solutions that effectively manage data imbalance, capture nuanced class variations, and function 
reliably in resource-limited settings.

Skin lesion classification research can be broadly categorized into unimodal and multimodal approaches, 
distinguished by the type or variety of input data. Unimodal methods rely on a single data source (e.g., images or 
text) and concentrate on feature extraction, class imbalance mitigation, and addressing image-centric variability. 
Broadly, these approaches can be classified into deep feature extraction13–15, attention mechanisms16–19, 
feature enhancement via additional blocks20, or ensemble learning21,22. Although unimodal techniques have 
demonstrated significant progress in extracting robust features and optimizing model architectures23, their 
reliance on image data alone can limit diagnostic comprehensiveness-particularly when lesion classes appear 
visually similar. In contrast, multimodal approaches integrate images with additional metadata (e.g., clinical or 
demographic information), aligning more closely with the diagnostic workflow employed by dermatologists, 
who often combine visual inspection with patient-specific details.
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Multimodal strategies integrate image data with complementary metadata (e.g., clinical or demographic 
information) to provide a holistic diagnostic perspective that closely mirrors the workflow of dermatologists, 
who routinely combine visual inspection with patient-specific details24. By jointly leveraging both visual features 
and metadata, these approaches more effectively address challenges such as class imbalance and visually similar 
lesions25. Representative paradigms include feature-level fusion26–29, multi-task learning30–32, attention-based 
mechanisms33–35, and joint fusion models36–39. Despite their advantages, multimodal methods can still encounter 
difficulties when aligning and merging disparate data types, and simplistic fusion techniques may underperform 
if fused representations are not carefully optimized. Moreover, many of the existing approaches rely on simple 
concatenation or fusion methods and do not focus on improving the quality of the extracted features. Hence, 
there is a scope to refine the extracted features before classification to improve model performance.

Research contributions: This paper introduces DualRefNet, a novel dual-stage feature refinement framework 
specifically designed to tackle persistent challenges in skin lesion classification, such as class imbalance, high 
intra-class variation, and low inter-class variation. As illustrated in Fig.  1(c) and 2, DualRefNet systematically 
refines both visual and fused feature spaces through two key mechanisms: 

	1.	 Auxiliary task for visual feature refinement. A super-resolution prediction task is jointly trained with the pri-
mary classification objective using a shared encoder. This setup prompts the visual features to capture richer, 
class-specific details and mitigates challenges arising from limited visual quality or significant intra-class 
variation32,40–42.

	2.	 Class-frequency-based weight regularization for fused features. In the second stage, the model integrates 
metadata (e.g., clinical or demographic attributes) into the fused feature space. A class-frequency-driven 
regularization term is applied to the weights of the final fully connected layers using class-specific weights. By 
including these class weights in the regularization term, we impose amplified penalties on weights associated 
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Fig. 1.  Overview of the proposed DualRefNet (a) motivation and technical challenges in skin lesion 
classification (b) Dataset analysis showing variations in image illumination and lesion classes and the 
histogram showing the class distribution to highlight data imbalance (c) the high-level view of the proposed 
DualRefNet, where the visual features are first extracted from input images, then refined through an auxiliary 
super-resolution task, followed by weight regularization of the final fully connected layers to enhance fused 
features (visual and metadata) and accuracy (d) the AUC curves showing the classwise performance for 
each dataset (left: PAD-UFES20, right: ISIC-2019) and (e) the ablation results presenting the improvement 
in performance by integrating metadata, auxiliary task and the class-weighted weight regularization, 
accompanied by the table presenting the effect of varying super-resolution methods (SR) in the proposed 
approach.
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with rarer lesion types. This ensures balanced learning by reducing bias toward the majority classes and is 
further reinforced by a weighted cross-entropy loss function.

Unlike methods that optimize only visual representations or rely on simplistic data fusion strategies, DualRefNet 
provides a synergistic combination of super-resolution guidance and frequency-based weight regularization. 
Figure 3 presents the comparison of the proposed DualRefNet with the existing architectures for multimodal 
skin lesion classification. Building on our preliminary work32, which focused on refining visual features via 
an auxiliary super-resolution task, this enhanced version additionally optimizes fused (visual + textual) 
representations through class-frequency-based weight regularization. By strengthening class separation and 
prioritizing underrepresented classes, DualRefNet enables more accurate and equitable performance-particularly 
in real-world, resource-constrained scenarios where high-fidelity imaging and comprehensive metadata may be 
scarce.

We evaluate our approach on two multimodal benchmark datasets-PAD-UFES20 [43]  (smartphone-
captured images) and ISIC-2019 [44,45,46] (dermoscopic images)-under unconstrained conditions that include 
variability in image quality and metadata availability. Experimental results confirm that DualRefNet surpasses 
state-of-the-art methods, achieving more robust and balanced classification across different lesion types.

Results
This section presents the datasets used to evaluate DualRefNet, followed by a detailed discussion of the 
experimental outcomes.

Dataset details
We evaluated the proposed framework on two well-established multimodal skin lesion datasets: PAD-UFES2043 
and ISIC-201944–46. These datasets were specifically chosen due to their diversity, multimodal nature, and strong 
relevance to practical clinical scenarios. Beyond supporting multi-class classification, they incorporate a range of 
metadata that aids in evaluating the generalization capacity of deep learning models for lesion diagnosis. Table 1 
summarizes the train, test, and validation splits for each dataset.

PAD-UFES2043. This dataset contains 2298 images captured by smartphones, categorized into six lesion 
types: Melanoma (MEL), Melanocytic nevus (NV), Basal Cell Carcinoma (BCC), Actinic Keratosis (AK), 
Squamous Cell Carcinoma (SCC), and Seborrheic Keratosis (SEK). Each image is accompanied by 26 metadata 
features, including patient demographics (age, gender), lesion characteristics (e.g., location, itch, growth), and 
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Fig. 2.  Showcasing the architecture of the proposed approach, illustrating the training and testing process of 
the proposed approach. The auxiliary task acts as a guide to refine the visual features, and class-frequency-
based weight regularisation ensures balanced learning to handle the class imbalance.
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unique identifiers (e.g. patient ID). Following prior studies32,34, we employ an 80:20 split for training and testing. 
The training split is further divided into training and validation subsets.

ISIC-2019 44–46. Comprising 25,331 dermoscopic images for training and 8238 for testing, this dataset covers 
eight lesion classes: MEL, NV, BCC, AK, Benign Keratosis (BKL), Dermatofibroma (DF), Vascular Lesion 
(VASC), and SCC. Each image is supplemented with metadata on the patient age, gender, and anatomical site. To 
avoid biases, we excluded approximately 3051 samples lacking metadata. Since the official test set is not publicly 
available, we partitioned the remaining data into a new training and testing set in an 80:20 ratio. The training set 
is then further divided into training and validation subsets for model selection.

Classification results
We evaluated DualRefNet using five CNN architectures: VGG-1347, ResNet5048, MobileNet-V249, 
EfficientNet-B450, and DenseNet-12151, all pre-trained on ImageNet52. These models vary in depth, width, and 
connection patterns (e.g. sequential vs. residual), making them an ideal suite of feature extractors. Each CNN 
was fine-tuned on the respective dataset (PAD-UFES20 or ISIC-2019) to account for different capture devices 
and imaging conditions. For the final classification, we added two fully connected layers on top of each backbone 
network, with the first layer mapping the extracted features to an intermediate latent space, and the second layer 
producing the final class probabilities.

Dataset Total images Split BCC SEK ACK/AK SCC NEV/NV MEL BKL DF VASC

PAD-UFES20 2298

Train 563 157 486 128 163 35 – – –

Test 141 39 122 32 40 9 – – –

Val 141 39 122 32 41 8 – – –

ISIC-2019 22480

Train 2337 – 591 458 7642 3171 1667 168 151

Test 646 – 182 121 2119 832 489 47 60

Val 262 – 72 43 871 343 177 20 11

Table 1.  Dataset details showcasing the number of samples from each class in each split with individual 
classes being Melanoma (MEL), Melanocytic nevus (NV), Basal cell carcinoma (BCC), Actinic keratosis (AK), 
Benign keratosis (BKL), Dermatofibroma (DF), Vascular lesion (VASC), Squamous cell carcinoma (SCC), and 
Seborrheic Keratosis (SEK).
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For metadata processing (clinical and demographic), we employed a fully connected four-layer network 
with dimensions of [64, 128, 256, 512]. We also incorporated an auxiliary super-resolution task-implemented 
via bilinear or bicubic interpolation, as well as deep-learning-based techniques53,54-to enhance visual feature 
learning. The images were uniformly resized to 224×224×3 and then upscaled by a factor of 2 to 448×448×
3. Model training continued for 70 epochs with a batch size of 32, using stochastic gradient descent (SGD) as 
the optimizer. We set the learning rate, weight decay, and patience hyperparameters to [0.01, 1e-3, 5] for PAD-
UFES20 and [0.001, 1e-5, 20] for ISIC-2019, respectively. In addition, standard data augmentations (e.g., flips, 
random scaling, brightness/contrast changes, saturation adjustments, and noise) were applied to increase the 
diversity of training samples. All experiments were performed in PyTorch on an Nvidia DGX station.

Tables 3a and 3b present the classification results and comparative analyses for PAD-UFES20 and ISIC-2019, 
respectively. We report balanced accuracy (BACC), classification accuracy (ACC), and area under the ROC 
curve (AUC) to assess overall performance. To provide a deeper clinical insight, we also computed precision, 
F1 score, sensitivity, specificity, and class-wise accuracy for the best-performing model, along with Positive 
Predictive Value (PPV), Negative Predictive Value (NPV), and Kappa Statistic (K) given in Tables 2a and 2b. 
This comprehensive evaluation demonstrates both predictive accuracy and reliability across different lesion 
categories, offering a robust understanding of DualRefNet’s capabilities.

Results on PAD-UFES20 Dataset43: For this dataset, our best performing model (VGG13) achieves an ACC 
of 0.851, a BACC of 0.845, and an AUC of 0.997. Notably, similar gains are observed with other CNN backbones, 
emphasizing the overall effectiveness of the proposed approach. Table 2 presents additional evaluation metrics 
for VGG13, including precision, recall, sensitivity, specificity, and class-wise accuracy, which are critical in 
assessing clinical reliability for medical imaging applications.

The results in Table 2 a indicates that specificity exceeds 90% for all classes in PAD-UFES20, highlighting 
the strong ability of the model to correctly identify non-lesion or benign cases. Except for class SCC, sensitivity 
values for all other classes surpass 80%, reflecting robust detection of true positives and affirming the clinical 
utility of the approach for assisting in reliable diagnoses. Although SCC shows comparatively lower sensitivity, 
it generally warrants a confirmatory biopsy due to its pigmentation, minimizing any adverse clinical impact.

In addition to sensitivity and specificity, we report PPV and NPV values, both of which are high across most 
classes. PPV scores greater than 0.87 demonstrate strong confidence in positive predictions, while NPV scores 
emphasize the accuracy of the method in ruling out negatives. The Kappa statistic (0.80) and overall accuracy of 
0.85 (95% CI ) provide further evidence of consistency and reliability.

Results on ISIC-2019 Dataset44–46. For ISIC-2019, DenseNet-121 emerges as the best-performing backbone, 
achieving ACC, BACC, and AUC of 0.854, 0.815, and 0.986, respectively. Table 2b reports additional metrics, 
showing that specificity remains above 90% across all classes and sensitivity stays above 70%. PPV and NPV 
values are similarly high (above 0.70), emphasizing the method’s reliable classification of both positive and 
negative instances. The Kappa statistic (0.79) and overall accuracy of 0.85 (95% CI) confirm the model’s strong 
agreement with ground truth and its robustness across varying lesion types.

Collectively, these results confirm that DualRefNet maintains a balanced performance by effectively managing 
trade-offs between sensitivity and specificity. The consistently high AUC values-especially pronounced with 
VGG13 on PAD-UFES20 (0.997)-highlight the role of dual-stage feature refinement in creating well-separated, 
discriminative feature representations. By boosting both visual and fused features, the proposed approach 
delivers enhanced clarity in lesion classification.

Metrics ACK BCC MEL NEV SCC SEK

(a)

Precision 0.91 0.87 0.89 0.88 0.47 0.95

F1 score 0.89 0.86 0.89 0.90 0.53 0.95

Sensitivity 0.88 0.84 0.89 0.93 0.59 0.95

Specificity 0.96 0.93 0.99 0.98 0.94 0.99

Positive predictive value (PPV) 0.91 0.87 0.89 0.88 0.47 0.95

Negative predictive value (NPV) 0.96 0.93 1.00 0.99 0.94 0.99

Classwise accuracy 0.88 0.84 0.89 0.93 0.59 0.95

Metrics MEL NV BCC AK BKL DF VASC SCC

(b)

Precision 0.83 0.91 0.87 0.67 0.75 0.73 0.88 0.71

F1 score 0.79 0.92 0.88 0.71 0.75 0.75 0.91 0.72

Sensitivity 0.76 0.92 0.89 0.75 0.76 0.77 0.95 0.73

Specificity 0.96 0.91 0.97 0.98 0.96 0.98 0.98 0.99

Positive predictive value (PPV) 0.83 0.91 0.87 0.67 0.75 0.73 0.88 0.71

Negative predictive value (NPV) 0.96 0.92 0.98 0.98 0.97 1.00 1.00 0.99

Classwise accuracy 0.76 0.92 0.89 0.75 0.76 0.77 0.95 0.73

Table 2.  Showcasing (a) Evaluation metrics of the proposed approach on PAD-UFES20 dataset43 using the 
best-performing model- VGGNet13 and (b) Evaluation metrics of the proposed approach on ISIC-2019 
dataset44–46 using the best-performing model- DenseNet121.

 

Scientific Reports |        (2025) 15:37775 5| https://doi.org/10.1038/s41598-025-14839-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Comparative analysis with existing approaches
We have compared the performance of the proposed algorithm with multiple existing algorithms as given 
in Table 3. The algorithms were chosen for their relevance to multimodal medical image analysis and their 
application on similar skin lesion datasets. These methods use diverse fusion strategies and represent recent state-
of-the-art techniques, making them suitable baselines for comparison. We followed similar dataset protocols to 
ensure consistency and used the performance metrics reported in the original publications to avoid redundant 
computation. The key characteristics of the selected approaches are summarized below:

•	 Pacheco et al.26 studied the impact of metadata on the classification performance of skin cancer detection. The 
authors used various CNN architectures and showcased an increase of 7% in balanced accuracy

•	 Li et al.38 proposed a multiplication-based data fusion approach for skin cancer detection, where metadata 
features modulate the importance of visual feature channels by enhancing focus on relevant regions. Experi-
mental results show improved performance, especially for small-sample classes, highlighting the importance 
of selective metadata usage for optimal results.

Model Metrics VGG13 ResNet50 EfficientNet-B4 MobileNet-V2 DenseNet-121

(a)

No metadata33

ACC 0.709 0.616 0.656 0.655 0.636

BACC 0.654 0.651 0.640 0.637 0.640

AUC 0.901 0.901 0.911 0.898 0.893

Concat26

ACC 0.712 0.741 0.765 0.738 0.742

BACC 0.720 0.728 0.758 0.741 0.747

AUC 0.929 0.929 0.945 0.927 0.932

MetaNet38

ACC 0.749 0.732 0.744 0.700 0.745

BACC 0.754 0.742 0.737 0.717 0.745

AUC 0.937 0.936 0.931 0.922 0.933

MetaBlock33

ACC 0.728 0.735 0.748 0.724 0.723

BACC 0.736 0.765 0.770 0.754 0.746

AUC 0.933 0.935 0.944 0.938 0.931

Visual34

ACC 0.807 0.812 0.772 0.806 0.709

BACC 0.770 0.806 0.784 0.789 0.779

AUC 0.952 0.953 0.953 0.954 0.950

AuxNet32

ACC 0.849 0.848 0.833 0.836 0.822

BACC 0.832 0.811 0.797 0.811 0.794

AUC 0.960 0.967 0.967 0.953 0.962

Proposed

ACC 0.851 0.843 0.846 0.836 0.846

BACC 0.845 0.811 0.816 0.804 0.812

AUC 0.997 0.995 0.994 0.981 0.982

Model Metrics VGG13 ResNet50 EfficientNet-B4 MobileNet-V2 DenseNet-121

(b)

Concat26

ACC 0.724 0.729 0.784 0.716 0.738

BACC 0.729 0.726 0.768 0.723 0.737

AUC 0.949 0.948 0.960 0.946 0.952

MetaNet38

ACC 0.767 0.753 0.766 0.742 0.725

BACC 0.746 0.746 0.756 0.731 0.723

AUC 0.959 0.956 0.959 0.955 0.949

MetaBlock33

ACC 0.753 0.804 0.807 0.777 0.800

BACC 0.740 0.771 0.762 0.760 0.769

AUC 0.955 0.966 0.962 0.958 0.965

Visual34

ACC  0.846 0.827 0.826 0.804 0.839

BACC  0.818 0.791 0.782 0.790 0.807

AUC 0.976 0.971 0.968 0.968 0.967

Proposed

ACC 0.824 0.844 0.835 0.838 0.854

BACC 0.812 0.806 0.800 0.815 0.815

AUC 0.987 0.982 0.982 0.983 0.986

Table 3.  Showcasing (a) performance comparison with existing approaches on PAD-UFES20 dataset43 and 
(b) performance comparison with existing approaches on ISIC-2019 dataset44–46. (ACC: Accuracy, BACC: 
Balanced Accuracy, AUC: Area Under Curve).
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•	 MetaBlock33 introduces an LSTM-inspired architecture where metadata features act as attention weights to 
reweight intermediate visual feature maps. Experimental results demonstrate improved classification perfor-
mance on dermoscopic and clinical skin lesion datasets.

•	 Pundhir et al.34 proposed a deep learning-based skin lesion classification approach that enhances visual 
context using a visual attention mechanism over CNNs. It integrates skin lesion images with patient demo-
graphics to guide attention toward clinically relevant regions. This multimodal attention improves the overall 
classification performance.

•	 Vachmanus et al.35 proposed DeepMetaForge, a deep learning framework for multimodal skin cancer detec-
tion. It uses BEiT, a vision transformer, for image encoding and a custom Deep Metadata Fusion Module that 
merges visual and metadata features while blending them simultaneously. The authors also analysed scalabil-
ity to showcase its applicability to other relevant paradigms.

•	 Pham et al.29 proposed a multimodal skin lesion classification framework that combines smartphone-cap-
tured images with patient metadata. It uses an ensemble of three models, each integrating a pre-trained image 
encoder and a 1D CNN for metadata processing. The concatenated features are classified jointly, and the final 
prediction is obtained via weighted averaging of the models’ softmax outputs.

•	 Tang et al.39 proposed a novel fusion strategy for multimodal skin cancer classification, introducing the 
Joint-Individual Fusion (JIF) structure to jointly learn shared and modality-specific features and the Mul-
timodal Fusion Attention (MMFA) module to enhance salient features through self and mutual attention 
mechanisms. Experimental results demonstrate that the JIF-MMFA framework consistently outperforms ex-
isting fusion methods across various CNN backbones.

•	 Khurshid et al.32 introduced a method that enhances visual features through an auxiliary super-resolution 
prediction task. The approach effectively improves skin lesion classification performance by jointly optimiz-
ing the main classification task and the auxiliary task. Experimental results demonstrate superior perfor-
mance over state-of-the-art methods across multiple evaluation metrics.

Unlike prior models that fuse image and metadata features through early, late, or hybrid strategies without 
enhancing the input quality, DualRefNet introduces a visual refinement stage via an auxiliary super-resolution 
task. This encourages the shared encoder to capture fine-grained, lesion-specific details often overlooked by 
standard classification pipelines. Furthermore, to address the prevalent class imbalance issue in skin lesion 
datasets, DualRefNet incorporates a second-stage class-frequency-based weight regularization, which applies 
stronger penalties to under-represented classes in the final fully connected layers. This promotes balanced 
learning across all lesion types.

Tables 3(a),(b) compare DualRefNet with leading methods on PAD-UFES20 and ISIC-2019, respectively. For 
a fair comparison, we adopt established protocols 32,34 and baseline approaches with published metrics 26,32–34,38. 
For PAD-UFES20, our approach achieves a BACC of 0.845-exceeding the previous state-of-the-art of 0.83232-
and an AUC of 0.997, outperforming the earlier benchmark of 0.960. We have added a comparative analysis 
with other recent approaches over various evaluation metrics in Table 4. Our proposed model outperforms 
most existing approaches on all metrics. Although the Ensemble29 achieves slightly higher precision and F1-
score by 0.02 and 0.008, respectively, it relies on an ensemble of at least three visual feature extractors along 
with corresponding metadata encoders, resulting in significantly higher computational cost. In contrast, the 
proposed DualRefNet uses a single feature extractor per modality while maintaining competitive performance.

On ISIC-2019 DualRefNet, enhances state of the art in terms of ACC and AUC, and achieves a BACC of 
0.815 with DenseNet-121, closely matching the best-reported values in34. Minor differences stem from the 
limited clinical metadata available in the ISIC-2019 dataset and the exclusion of images with missing metadata. 
These findings emphasize the importance of rich metadata for optimized performance. Overall, our method’s 
strong results across both datasets highlight its ability to tackle class imbalances and variations in skin lesions, 
highlighting its suitability for clinical scenarios with diverse imaging conditions.

Qualitative analysis
Figure  4(a) provides the confusion matrices for both datasets, illustrating that DualRefNet successfully 
increases the classification accuracy for the SCC class (from 0.50 to 0.59) in PAD-UFES20, without significantly 
compromising performance for other classes. This improvement showcases the model’s balanced learning 
objectives. Meanwhile, Fig.  4(a-ii) highlights class-wise misclassifications in ISIC-2019, where sensitivity 
remains above 70% for all classes. Most errors occur between lesions that share morphological or color-based 
similarities, presenting a recognized challenge even for clinical experts. Also evident in Fig. 4(b-ii) are t-SNE 

Model Accuracy Precision Recall F1 score

MetaBlock33 0.726 0.677 0.726 0.696

DeepMetaForge35 0.769 0.773 0.769 0.769

JIF39 0.830 – – –

AuxNet32 0.849 0.825 0.832 0.828

Ensemble29 0.844 0.849 0.844 0.845

Proposed 0.851 0.828 0.847 0.837

Table 4.  Showcasing performance comparison with existing approaches using various evaluation metrics on 
the PAD-UFES20 dataset43.
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plots comparing embeddings from DualRefNet with those of a prior state-of-the-art (SOTA) approach. The 
tighter, more distinct clusters suggest that our dual-stage refinement strategy yields more discriminative feature 
representations.

Figure  5(a) further illustrates both correctly classified and misclassified samples from PAD-UFES20 and 
ISIC-2019, along with the highest predicted probability for each lesion. As shown, classes that are visually alike 
in boundary characteristics, color, or illumination often lead to misclassifications-an issue even experienced 
dermatologists can encounter. Nonetheless, these findings also suggest avenues for future improvement, such as 
incorporating additional metadata features or refined data augmentation, to better distinguish visually similar 
lesion types. To further analyze the model predictions, we used gradient-weighted class activation mapping 
(GradCAM)55. This visualization highlights the important regions which are focused on when making a 
prediction. It is evident in Fig. 5(b) that the model focuses on the colour variations or lesion borders when 
making decisions. These visualizations demonstrate the models’ ability to identify clinically relevant features 
without explicit annotation of these regions during training. To analyze and interpret the influence of metadata 
on model predictions, we used SHAP (SHapley Additive exPlanations). We generated a SHAP summary plot 
to quantify the global importance of metadata features in the proposed model. The plot aggregates the SHAP 
values across a random subset of the test set, highlighting the metadata features that consistently influence the 

Fig. 4.  Showcasing the (a) confusion matrix of the (i) PAD-UFES20 dataset43 and (ii) ISIC-2019 dataset44–46 on 
their respective best-performing models and (b) Comparing tSNE plots of the PAD-UFES20 using (i) SOTA32 
and (ii) the proposed approach on the best-performing model. The proposed approach achieves more compact 
and well-distinguished clusters, which showcases the ability of the model to learn more discriminating features 
of the dataset.
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Fig. 5.  Showcasing the (a) classification results from the PAD-UFES2043 and ISIC-2019 datasets44–46, 
highlighting cases with the highest prediction probability score. Rows (i) and (ii) showcase samples from 
PAD-UFES20, while rows (iii) and (iv) show results from ISIC-2019. The visualization highlights a key insight 
into misclassification patterns that the errors mostly occur when lesions share visual similarities with other 
diagnostic categories, making them particularly challenging to distinguish based on the appearance alone. 
(b) Visualization of the best-model attention using GradCAM for PAD-UFES20 and ISIC-2019 datasets. The 
heatmaps highlight important regions for model predictions, where red indicates higher importance and blue 
indicates lower importance. The top row is the original inputs, and the bottom row presents the GradCAM 
activation maps overlaid on the original images, demonstrating that the model focuses primarily on the regions 
affected for classification.
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predictions. Figure 6 presents the SHAP summary plot of the PAD-UFES20 and ISIC-2019 datasets, highlighting 
the key features affecting the predictions of the lesion classes.

For the PAD-UFES20 dataset, the following points summarise the key insights of the metadata features. 

	1.	 norm_D2 (Normalized secondary diameter of the lesion) and norm_age (normalized age) are the most in-
fluential metadata features, contributing significantly to predictions for multiple classes, particularly classes 
SEK and NEV.

	2.	 Features such as background_mother_POMERANIA, elevation_0 (elevated lesion), and norm_D1 (Normal-
ized primary diameter of the lesion) also show notable contributions, reflecting the ability of the model to 
learn from continuous and categorical metadata.

	3.	 The stacked SHAP values allow us to observe the class-specific contributions of each feature. For instance, 
norm_D2 is most associated with Class SEK predictions, whereas norm_age influences Classes ACK and 
NEV more prominently.

	4.	 Less influential features, such as bleed_1, pesticide_0, and has_piped_water_1, exhibit relatively minor im-
pact, suggesting the model assigns lower importance to these variables.

The following points highlight the key insights of the metadata features for the ISIC-2019 dataset. 

	1.	 norm_age (normalized age) is the most influential metadata feature, with consistently high SHAP values 
across multiple lesion classes, particularly NV, BKL, and SCC. This highlights the strong correlation between 
patient age and lesion type.

	2.	 Anatomical location features such as anatom_site_general_anterior torso, lower extremity, and upper ex-
tremity contribute notably to the model’s output. Their class-specific contributions highlight that the model 
uses regional lesion distribution patterns effectively.

	3.	 Sex-related features (sex_male, sex_female) provide moderate predictive value, with visible influence across 
classes like MEL and BCC, indicating gender-related variation in lesion occurrence.

	4.	 The stacked bar representation of SHAP values enables the interpretation of the importance of class-wise 
features. For example, the anatom_site_general_anterior torso shows greater relevance for class AK, while 
norm_age is more impactful for NV and SCC.

	5.	 Features such as anatom_site_general_palms/soles, oral/genital, and lateral torso show minimal SHAP val-
ues, revealing limited utility in class discrimination within the dataset.

Comparisons with Transformer-based Approaches: We evaluated our approach against several transformer 
backbones—including the Swin transformer (swin_base_patch4_window7_224) 56, the Vision transformer (vit_
base_patch16_224)  57 and the Convolutional vision transformer (convit_base)  58—on the PAD-UFES20 and 
ISIC-2019 datasets. As shown in Fig. 7, our method outperforms these transformer models on PAD-UFES20, 

Fig. 6.  SHAP summary plot showcasing the impact of metadata features on the model predictions on the 
PAD-UFES20 (left) 43 ISIC-2019 (right) 44–46 datasets.
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primarily due to the enriched metadata feature set and dual-stage feature refinement that collectively enhance 
classification accuracy. The metadata provides complementary lesion information, further boosting the system’s 
performance. Conversely, on the ISIC-2019 dataset-which provides only three metadata features-transformer-
based models generally perform on par with, or slightly better than, CNN-based approaches. Moreover, as 
illustrated in Fig. 7(i), the Swin Transformer occasionally misclassifies visually dissimilar images belonging to 
the same class. By contrast, our approach correctly classifies these challenging samples, owing to its dual-stage 
refinement mechanism that effectively integrates features beyond mere visual similarity.

Ablation study
To evaluate the individual contributions of each component in the proposed approach, we conducted an extensive 
ablation study under consistent hyperparameter settings across the PAD-UFES20 and ISIC-2019 datasets. This 
ablation study is done to validate the effectiveness of each design choice, ranging from metadata integration 
to adding feature refinement. We also explored fusion strategies and feature weighting, ensuring that every 
component meaningfully contributes to the balanced and generalizable performance of the model.

Figure 1e presents the ablation study results for the best-performing model under consistent hyperparameter 
settings across both PAD-UFES20 and ISIC-2019. These findings confirm that each component of DualRefNet 
contributes meaningfully to overall performance. Notably, incorporating metadata leads to substantial gains 
on both datasets, mirroring real-world diagnostic workflows that combine image observations with clinical 
details. Further integrating the auxiliary super-resolution task and class-frequency-based regularization (i.e., 
the dual-stage pipeline) produces marked improvements in balanced accuracy, particularly on PAD-UFES20. 
We attribute this to PAD-UFES20’s richer metadata, which provides a more comprehensive clinical context, 
ultimately enhancing feature representation and generalizability.

Figure  1e also includes a table comparing various super-resolution techniques, showing that DualRefNet 
consistently achieves higher balanced accuracy-a robust metric for imbalanced datasets-than existing methods. 
This highlights the model’s ability to handle minority classes effectively while maintaining strong overall 
classification metrics. Collectively, the ablation study demonstrates that each design element of DualRefNet, 
from metadata utilization to super-resolution guidance and frequency-based weight regularization, is integral to 
achieving accurate, balanced, and clinically meaningful performance on diverse skin lesion classification tasks. In 
addition, we explored the dynamic weighting of metadata features on the ISIC-2019 and PAD-UFES20 datasets 
using an attention-based feature weighting mechanism within the metadata encoder of the best-performing 

a

b

Fig. 7.  Illustration of (a) correct and incorrect classifications with the probability values by the proposed 
DualRefNet and the best Transformer model on PAD-UFES20 43 and ISIC-2019 44–46, and (b) a comparative 
analysis of both datasets in terms of classification accuracy (ACC), balanced accuracy (BACC), and area 
under the ROC curve (AUC). For PAD-UFES20, the top row shows predicted labels correctly classified 
by DualRefNet’s best model, while the bottom row displays the classes predicted for the same samples 
misclassified by the Convolutional Vision Transformer (CVT). For ISIC-2019, the top row presents predicted 
classes correctly classified by DualRefNet, whereas the bottom row highlights the predicted values of the same 
images misclassified by the Swin Transformer.
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model. Specifically, we used a two-layer neural network with a sigmoid activation to assign learnable weights to 
each metadata feature. The performance with dynamic weighting on the ISIC-2019 dataset, which contains only 
three metadata features, was comparable to that with equal weighting. We observed a balanced accuracy (BACC) 
of 81.07% using dynamic weighting, close to the 81.5% achieved with equal feature weighting. This similarity 
may be due to the lower risk of overfitting and the relatively compact nature of the metadata. In contrast, the 
PAD-UFES20 dataset includes many metadata features, some of which may be less informative. In this case, 
the attention mechanism struggled to learn optimal feature weights, resulting in diminished performance. We 
observed a BACC of 71.34% with dynamic weighting, which is notably lower than the 84.5% achieved using 
equal weighting. This observation highlights that while dynamic weighting is effective, its benefits are influenced 
by the quality and dimensionality of the metadata.

We also experimented by replacing the original feed-forward metadata encoder with a transformer encoder. 
However, we observed a lower performance than the proposed setting by getting a BACC of 80.11%, lower than 
84.5% with the feed-forward network. This outcome can be attributed to the nature of the available metadata, 
which consists of categorical and non-sequential features, such as age, gender, origin of the mother and father, 
and presence of bleeding. Such features lack inherent temporal or positional relationships and thus do not benefit 
from the inductive biases that transformer architectures offer for modelling sequential or contextually dependent 
data. Transformer-based encoders have demonstrated effectiveness in cases where metadata exhibits rich inter-
feature dependencies or follows an ordered structure. However, the available metadata is low-dimensional and 
unordered, making transformer-based modelling less suitable. We also explored replacing the fusion strategy 
with cross-attention via multi-head attention, with four heads and an embedding dimension of 512, to align 
metadata and image features. However, empirical results did not show performance improvements. A BACC of 
68.99% and 16.27% was achieved for the PAD-UFES20 and ISIC-2019 datasets, respectively. Attention-based 
fusion introduced additional parameters and computational overhead without yielding gains in accuracy. This 
could be due to the relatively low dimensionality and sparsity of the metadata, which may not benefit significantly 
from the complexity of attention mechanisms.

Discussion
The proposed DualRefNet introduces a significant advancement in handling both class imbalance and lesion 
variability, as evidenced by its strong balanced accuracy scores of 0.845 (PAD-UFES20) and 0.815 (ISIC-
2019). By achieving robust performance on both smartphone-captured and dermoscopic images, DualRefNet 
demonstrates its suitability for real-world, often unconstrained settings. This improvement arises from a dual-
stage feature refinement strategy wherein the model progressively enhances visual and fused features through 
an auxiliary super-resolution task and class-frequency-based weight regularization. Unlike earlier methods that 
rely on early fusion or modality-specific architectures, DualRefNet refines both visual and fused representations, 
thereby minimizing misclassifications linked to low inter-class and high intra-class variations. Additionally, the 
use of a weighted cross-entropy loss aligns the training process towards minority classes, ensuring balanced 
performance across all lesion categories.

Tables 3a,b compare DualRefNet with leading methods, highlighting the value of integrating metadata into 
the classification pipeline. This holistic perspective on a patient’s condition enhances diagnostic effectiveness, 
resulting in superior class separability, high AUC values, and consistently elevated balanced accuracy. Whereas 
previous approaches often relied on feature concatenation26,38 or visual attention mechanisms32–34, their efficacy 
diminished for lesions exhibiting close visual similarity. By contrast, DualRefNet’s dual-stage refinement, 
encompassing an auxiliary task and class-frequency-based weight adjustments, mitigates class overlap and 
reliably reduces misclassification of lesions such as SCC. While the PAD-UFES20 dataset benefits notably from 
richer metadata, the ISIC-2019 dataset also sees considerable gains, despite having fewer clinical features.

Quantitative metrics (e.g., specificity, sensitivity, class-wise accuracy) further reinforce DualRefNet’s balanced 
performance. Specificity exceeds 90% for most classes, while sensitivity surpasses 80% in nearly all categories; 
the SCC class in PAD-UFES20 is a mild exception, although its lower score remains clinically manageable since 
pigmented lesions typically undergo confirmatory biopsy. Qualitative insights from t-SNE embeddings and 
confusion matrices also validate improved class separability, demonstrating the model’s robustness in tackling 
visually similar lesions. Meanwhile, high PPV and NPV-often above 0.87 and consistently high, respectively-
highlight reliable positive and negative classification. The Kappa statistic exceeds 0.79 for both datasets, signifying 
substantial agreement with ground truth. These strong clinical metrics, coupled with overall accuracies near 
85%, showcase DualRefNet’s reliability for assisting in practical diagnostic use.

Although smartphone-based images generally lack the resolution of traditional dermoscopic imaging, our 
results reveal DualRefNet’s ability to adapt through its dual-stage refinement pipeline. By enhancing both visual 
features and fused representations, the model maintains high specificity, sensitivity, and class-wise accuracy, 
making it particularly suitable for resource-limited settings where specialized imaging equipment may be scarce. 
This capability suggests wide-ranging applications in teledermatology, enabling earlier screenings and more 
equitable patient care through smartphone-based submissions.

In conclusion, we propose DualRefNet, a multimodal, dual-stage feature refinement framework that effectively 
addresses class imbalance and lesion variability by jointly optimizing visual and fused features. Our approach 
employs weighted cross-entropy loss to manage class imbalance, while t-SNE visualizations confirm improved 
class separability. Comprehensive evaluations of smartphone-captured and dermoscopic images demonstrate the 
versatility and practicality of the proposed approach in unconstrained environments. DualRefNet consistently 
achieves robust performance across multiple CNN backbones and datasets, highlighting its potential for reliable 
assistance in clinical diagnosis. The effectiveness of the proposed approach is notable when processing rich 
metadata features, resulting in enhanced diagnostic accuracy. In scenarios where metadata is sparse or lacks 
sufficient descriptive information, the impact of the second-stage refinement may be reduced. Given its proven 
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success with smartphone images and ability to effectively use available metadata, DualRefNet shows particular 
promise for advancing early detection and treatment strategies in resource-constrained healthcare environments, 
mainly benefiting regions with limited dermatological expertise. Future research includes developing adaptive 
mechanisms to maintain robust performance across varying levels of metadata availability. This work represents 
a significant step forward in making reliable skin cancer diagnosis more accessible while maintaining high 
diagnostic standards.

Methods
Figure 2 outlines the overall architecture of our proposed DualRefNet. Central to this research is the concept of 
refining both visual and fused features through two complementary mechanisms: an auxiliary supervision task 
and class-frequency-based weight regularization. The auxiliary task encourages the extraction of more fine-
grained, lesion-specific information, thereby enhancing the primary classification task. Simultaneously, class-
frequency-based weight regularization ensures balanced treatment of underrepresented classes, mitigating bias 
toward majority classes.

Given a set of skin lesion images Ximg  and corresponding metadata Xmeta (e.g., demographic and clinical 
attributes), along with class labels y ∈ [1, . . . , Nclass], the objective is to train a model that accurately predicts y 
for unseen test data (Ximg-test, Xmeta-test).

Preprocessing
To minimize the impact of illumination differences and uneven contrast, each image undergoes a gray color 
constancy algorithm 59 followed by contrast-limited adaptive histogram equalization (CLAHE)60,61. These steps 
improve color uniformity and enhance contrast. For metadata, the PAD-UFES20 dataset uses a neural network-
based imputation technique28 to fill missing entries, while the ISIC-2019 dataset excludes samples lacking 
metadata to prevent potential biases given the limited number of metadata features.

Feature extraction
Visual feature extractor: We employ various CNN backbones for extracting features from input images. These 
architectures differ in breadth, depth, and connectivity (e.g., residual connections), capturing both low-level 
edges/textures and high-level lesion patterns. Denoting the visual feature extractor by ϕvisual, its output for an 
input image ximg is given by

	 F VImage = ϕvisual(ximg).� (1)

Textual feature extractor: To process patient metadata (e.g., age, gender, lesion history), we use a four-layer fully 
connected network with ReLU activations after each layer except the final output layer. This yields a learned 
vector representation:

	 F VMeta = ϕmeta(xmeta).� (2)

Combining this textual embedding with the visual embedding forms the basis of our multimodal fusion strategy.

Auxiliary task: super-resolution
To address the challenge of visually similar lesions, we introduce a super-resolution (SR) auxiliary task. 
Specifically, we generate higher-resolution images from the CNN-encoded feature maps. Experimental 
variations include bilinear/bicubic interpolation as well as deep-learning-based SR methods53,54. By learning 
to predict SR images, the encoder is guided to capture finer lesion details. This auxiliary branch shares the 
encoder’s parameters with the primary classification task, effectively serving as a regularizer that encourages 
more discriminative representation learning.

After the encoder extracts visual features, these features are passed to both a classification head and a decoder. 
The decoder is a 6-layer CNN whose goal is to reconstruct the SR image from the latent representation. Training 
jointly for classification and SR prediction helps the model focus on nuances that can differentiate lesions.

Feature-level fusion and classification
Once we obtain F VImage from the visual backbone and F VMeta from the metadata network, these are 
concatenated or otherwise combined into a fused feature vector:

	 F VFused = [F VImage ∥ F VMeta].� (3)

This fused representation then proceeds through the final fully connected layers for classification. We tackle class 
imbalance and low inter-class variability through two key strategies:

Class weight-based feature refinement
Because certain lesion classes are underrepresented, the model may overfit to majority classes. To mitigate this, 
we introduce class-frequency-based regularization in the last two fully connected layers. Each class is assigned 
a weight inversely proportional to its frequency, placing stronger penalties on lower-sampled classes and thus 
encouraging the network to focus more on minority classes. Formally, if Wbeforeclassifier,i and Wclassifier,j  
represent the weight parameters in these layers, the regularization term R is defined as:

Scientific Reports |        (2025) 15:37775 13| https://doi.org/10.1038/s41598-025-14839-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
R = λ

(
256∑
i=1

fi∥Wbeforeclassifier,i∥1 +
Nclass∑

j=1

fj∥Wclassifier,j∥1

)
,� (4)

where λ scales the overall strength of the regularization, and fi, fj  are class-specific penalty coefficients inversely 
proportional to class frequency. Empirically, we set λ = 0.3 for PAD-UFES20 and λ = 0.2 for ISIC-2019.

Loss function
The final training loss LDualRef combines classification loss, super-resolution (auxiliary) loss, and class-
frequency-based regularization:

•	 Classification loss We use a weighted cross-entropy to address class imbalance more directly. For each class i, 
let wi be the class weight inversely proportional to the sample count: 

	
Lclass = −

N∑
i=1

wyi

C∑
c=1

yi,c log ŷi,c� (5)

•	 Auxiliary loss The auxiliary (SR) loss measures the difference between the predicted super-resolved image 
ŜRi and its ground-truth SRi, using mean squared error: 

	
Laux = 1

n

n∑
i=1

(SRi − ŜRi)2.� (6)

•	 Regularization term As defined above, R penalizes weights to improve class balance in the final layers.

Thus, the overall loss is given by:

	 LDualRef = α Lclass + β Laux + γ R,� (7)

where α = 0.5, β = 1.0, and γ = 1.0 balance the relative contributions of classification, auxiliary supervision, 
and regularization.

By integrating these components-auxiliary super-resolution for finer feature extraction and class-weight-
based regularization for balanced classification-DualRefNet is designed to effectively handle both the data 
imbalance and the subtle inter-class similarities often observed in skin lesion classification.
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