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In the field of financial technology, stock prediction has become a popular research direction due to 
its high volatility and uncertainty. Most existing models can only process single temporal features, 
failing to capture multi-scale temporal patterns and latent cyclical components embedded in price 
fluctuations, while also neglecting the interactions between different stocks–resulting in predictions 
that lack accuracy and stability. The StockMixer with ATFNet model proposed in this paper integrates 
both time-domain and frequency-domain features. By fusing information from both domains, the 
deep neural network significantly improves prediction accuracy and reliability. While temporal 
feature analysis is common, frequency-domain features, derived via spectral analysis (e.g., Fourier 
Transform), can reveal latent periodicities and seasonality patterns in price movements. This study 
employs an adaptive fusion approach to allow the two types of features to complement and enhance 
each other. The main innovations of this model are reflected in three aspects: (1) Construction of a 
time-channel hybrid model (MultTime2dMixer) to decouple the temporal evolution and inter-channel 
interactions of multivariate time series. (2) A novel non-graph-based stock relation modeling approach 
(NoGraphMixer) is proposed, which employs a learnable attention-based mapping mechanism 
to dynamically capture cross-stock dependencies without relying on pre-defined or static graph 
structures–thereby overcoming the inflexibility of conventional graph-based relation encoders. (3) 
Integration of a frequency-domain complex attention model (ATFNet) to model discontinuities in 
both the time and frequency domains, providing a strong supplement to time-domain modeling. 
At the implementation level, the original stock sequences are subjected to bidirectional feature 
extraction along both time and channel dimensions. NoGraphMixer is then used to construct implicit 
stock correlations. ATFNet is applied to map time-series data into both the temporal and frequency 
domains, extracting spectral features. Finally, a fusion mechanism integrates multimodal information 
to achieve effective fusion of multi-source data. Experimental results show significant improvements in 
classification evaluation metrics (Accuracy, Precision, Recall, F1-score) for predicting price movement 
direction, as well as in metrics assessing the ranking ability of return predictions and backtesting 
performance–IC, RIC, Prec@N, and Sharpe Ratio (SR).

To model the abrupt changes in both time and frequency domains, the frequency domain complex attention 
model1 (ATFNet) is integrated as a powerful complement to the construction of time-domain models. At the 
model implementation level, bidirectional feature extraction is performed along both the temporal and channel 
dimensions of the raw stock sequences. Then, GraphMixer2 is employed to construct the implicit correlations 
among stocks. ATFNet is utilized to map the time-series data into both time and frequency domains and to 
extract spectral features. Finally, a fusion mechanism is applied to integrate multi-source information, thereby 
achieving effective fusion of diverse data modalities.

Deep learning enables the extraction of discriminative features from financial data, thereby enhancing both 
prediction accuracy and robustness. Convolutional Neural Networks3 (CNNs) are capable of capturing pattern 
variations within models, while Recurrent Neural Networks4 (RNNs) and their variants (such as LSTM and 
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GRU) exhibit advantages in modeling long-term temporal dependencies. In recent years, emerging techniques 
such as the self-attention mechanism5 and Transformer architectures6 have offered new avenues for improving 
the accuracy and effectiveness of time-series models. Particularly in the domain of multivariate stock price 
prediction, employing Graph Neural Networks7 (GNNs) and hybrid attention mechanisms to characterize the 
interactions among stock prices demonstrates promising application potential.

However, current deep learning algorithms still face the following key challenges: (1) Most models focus solely 
on the time-domain characteristics of stock prices, neglecting the intrinsic frequency structures and periodic 
fluctuations, and thus fail to model the latent coupling between time and frequency domains8. (2) Traditional 
graph-structured models often rely on predefined or static graphs (such as industry classifications or correlation 
graphs), making it difficult to dynamically adapt to the time-varying and nonlinear relationships among stock 
prices in financial markets9. (3) In temporal feature modeling, spatiotemporal coupling often occurs across both 
time and variable dimensions, and there is a lack of effective mechanisms for decoupling time-varying patterns 
and inter-variable interactions, which limits the expressive capacity of the learned features10.

The main contributions of this paper are summarized as follows:

•	 A MultTime2dMixer model is proposed to enhance multivariate time series modeling capabilities. This study 
designs a novel hybrid modeling architecture, namely the MultTime2dMixer hybrid model, which performs 
spatiotemporal coupling modeling on stock price data to enable fine-grained characterization. It serves as a 
multidimensional complexity analysis method for stock price data based on multi-source information.

•	 To address the information bottleneck problem inherent in graph-structured modeling, this paper intro-
duces the NoGraphMixer model. Traditional graph-based models often rely on static graphs to represent 
the relationships between nodes and are constrained by the underlying graph structure, thereby limiting the 
efficiency of information propagation. This study breaks through the limitations of explicit graph structures 
by adopting a structurally hybrid approach, which retains the modeling capacity of structured representations 
while improving the flexibility and efficiency of information flow. This effectively overcomes the limitations of 
traditional graph models in adapting to financial time series data.

•	 This paper integrates the ATFNet frequency-domain complex attention mechanism to enhance the mod-
eling of periodicity and abruptness features. By introducing a frequency-domain modeling perspective, a 
complex Fourier attention model based on ATFNet is constructed to map stock price data into the spectral 
domain, thereby improving the ability to capture periodic and high-frequency abrupt features. A Fourier 
transform-based time-frequency analysis method is proposed, combining time-frequency and time-domain 
features to achieve joint modeling of temporal characteristics.

Related theories
Fourier transform and frequency domain modeling
Frequency-domain analysis is an important aspect of signal processing and time series modeling, particularly 
for sequences significantly influenced by periodic patterns and trends11. In this study, the Fast Fourier Transform 
(FFT) technique is applied within the branches of ATFNet to achieve the mapping from the time domain to the 
frequency domain. Formally, given a discrete-time sequence x(t) ∈ RT , its representation in the frequency 
domain is:

	
X(f) =

T −1∑
t=0

x(t) · e−i2πft/T , f = 0, 1, . . . , ⌊T/2⌋� (1)

where i denotes the imaginary unit, and X(f) represents the complex frequency spectrum.
In the implementation of the model, the Fast Fourier Transform (FFT) function provided by PyTorch is 

employed to transform the input signal from the time domain to the frequency domain12. The resulting frequency 
vector contains both real and imaginary components. Subsequently, independent linear transformations are 
applied to the real and imaginary parts, enabling weighted modulation of the frequency components13. This 
process is equivalent to a frequency-selective attention mechanism, allowing the model to automatically adjust 
the relative importance of each frequency component14. As a result, significant periodic patterns are emphasized, 
while high-frequency noise and short-term disturbances are suppressed15. Finally, an inverse transformation 
is used to map the frequency-domain information back to the time domain, yielding a frequency-domain-
enhanced algorithm with end-to-end learning capability16.

This process essentially represents a special form of complex-valued neural networks: although the neural 
network architecture remains real-valued, the complex characteristics in the frequency domain are explicitly 
modeled17. By applying linear projections to modulate both magnitude and phase, the model’s ability to 
perceive temporal structures in time series is significantly enhanced. Compared with traditional time-domain 
models based on convolutional or recurrent neural networks, the frequency-domain branch is better suited for 
capturing global correlations across different temporal scales and demonstrates clear advantages in modeling the 
commonly observed multi-period resonance phenomena18.

Multilayer perceptron and MLP-mixer idea
The overall architecture of MLP-Mixer operates as follows: First, an image is partitioned into multiple non-
overlapping patches, with each patch being transformed into a feature embedding via a fully connected layer. 
These embeddings are then processed through N mixing layers19. The final Mixer architecture incorporates 
a standard classification head with global average pooling, followed by classification through fully connected 
layers20. Upon closer inspection, the mixing layer replaces the Transformer block, and the output is directly 
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passed to the fully connected layers without the need for token embeddings21. Moreover, the output of the 
Mixer is based on the input information, and since it is fully connected, any swap between two tokens results 
in different effects, thus eliminating the need for embeddings22. Figure 1 illustrates the MLP-Mixer network 
architecture:

In the StockMixer architecture, inspired by the idea of MLP-Mixer, the time domain and channel dimensions 
are described using independent, fully connected networks23. Specifically, MultTime2dMixer includes two 
directional MLP substructures: one for performing temporal mixing on each channel vector, and another for 
performing channel mixing on each channel feature. The expression for this is:

	 x̃t,c =MLPtime(x·,c) � (2)

	 x̃t,c =MLPchannel(xt,·) � (3)

Here, x·,c represents the full time series of the channel and xt,· denotes the input of all channels at the time step 
t.

This method can bypass the “soft weights” and “multi-layer” structures in attention mechanisms, improving 
computational efficiency and stability, making it particularly suitable for financial data scenarios that are more 
structured and have more stable dimensions. At the same time, multi-layer neural networks possess high-
dimensional nonlinear transformation capabilities, effectively extracting abstract features from the data and 
enhancing their ability to model nonlinear dynamics.

Linear projection and non-explicit graph modeling
In the channel interaction model, this paper designs the NoGraphMixer model to simulate the feature 
transmission process between nodes in traditional graph neural networks24. NoGraphMixer performs linear 
transformations on the channels at each stage, and its form is

	 zt =W x⊤
t � (4)

	 z⊤
t ∈ RC � (5)

	 W ∈ RC×C � (6)

This operation can be viewed as a weighted aggregation of a fully connected “soft graph,” where the weights 
are obtained by training the matrix , which is equivalent to learning an implicit adjacency matrix W . The 
method proposed in this paper is simple and effectively solves the problem of relying on prior knowledge in the 
traditional model construction process. It is suitable for multi-asset sequence models with fixed dimensions and 
fixed feature structures.

Convolution mechanism and local dynamic modeling
In the backbone network, this paper uses a one-dimensional convolutional structure (Conv1D) to achieve 
local feature extraction and downsampling of the data25. The sliding window operation of the convolutional 

Fig. 1.  MLP-Mixer network structure.
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kernel naturally suits localized modeling of the network, while the stride of 2 allows for compression at certain 
time scales, reducing redundant information and improving modeling efficiency26. Compared with traditional 
moving average and window-weighting methods, the superiority of convolutional neural networks in learning 
behavior and parameter sharing enables them to flexibly adapt to the short-term fluctuation characteristics 
between multiple assets.

Stock prediction model
Overall structure of the model
The model consists of four main components: the time-domain module, frequency-domain module, indicator 
and time mixing module, and the mixing operation module. The overall framework of the model is shown in 
Fig. 2.

In terms of time-series analysis, at the input end, a series of time-series data reflecting stock prices and other 
characteristics are fed into the model. Based on this, the training samples are chunked to ensure that the length 
of the samples meets the model’s requirements. The chunking method decomposes the original time series into 
several sequences of fixed length, which serves as the basis for modeling, allowing the model to better capture local 
characteristics and patterns. The preprocessed data is then input into the Transformer decoder, which efficiently 
captures long-term dependencies in the data and performs a global analysis. While the current implementation 
utilizes chunking and normalization procedures to prepare the input sequences, real-world stock datasets often 
contain missing entries, outliers, and abrupt changes caused by unexpected market shocks. To improve the 
model’s robustness and applicability in practical financial environments, we plan to incorporate systematic 
missing value imputation techniques, such as forward/backward filling, K-nearest neighbor imputation, and 
model-based imputation, to address incomplete data scenarios. Additionally, anomaly detection and filtering 
strategies, including statistical methods (e.g., Z-score filtering) and model-based outlier detection (e.g., isolation 
forests), will be integrated into the preprocessing pipeline to mitigate the effects of outliers and extreme values. 
Furthermore, we will explore volatility regime detection methods to identify and mark potential structural 
breaks, policy interventions, and black swan events, allowing the model to adjust its learning and inference 
processes accordingly. These enhancements aim to ensure that the StockMixer with ATFNet framework remains 
robust under noisy, incomplete, and volatile market conditions, supporting its deployment in emerging markets 

Fig. 2.  Overall framework of the model.
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such as China’s A-shares, where data irregularities and policy-driven shocks are frequent. The encoder adopts 
a hierarchical structure, with each layer being further divided into multiple independent attention units and 
feedforward neural network units. The multi-level self-attention mechanism enables the model to perform 
parallel learning in multiple representation subspaces to capture more information. The feedforward neural 
networks provide nonlinear transformations, enhancing the model’s expressive capacity.

In the frequency-domain module, the output of the Transformer encoder is divided into three components: 
Query (Q), Key (K), and Value (V), which are then transformed into a dot-product attention mechanism. 
Specifically, the dot-product attention mechanism first computes attention scores by performing a dot product 
between Q and K, followed by normalization using the softmax function, and finally multiplies the result with 
the V matrix to obtain a weighted feature representation. This method highlights important information in the 
data by weighting the degree of correlation across stages.The output from the dot-product attention mechanism 
is combined into a new feature vector, which is then subjected to a linear transformation. To address the 
gradient vanishing issue and improve training efficiency, residual connections and normalization operations are 
applied to the linear layer. The residual connection combines the input and output signals, facilitating backward 
gradient propagation, while the normalization operation stabilizes the learning process and prevents gradient 
explosion or vanishing.The normalized data is then passed through a feedforward neural network (FNN), which 
consists of multiple fully connected layers, each equipped with a nonlinear activation function to enhance the 
model’s nonlinear representation capability. Finally, the FNN is used to extract and integrate features to produce 
the model’s final prediction. The output of the FNN is projected through a projection layer that maps high-
dimensional features into a lower-dimensional space for easier processing and analysis. The final output of the 
projection layer yields the prediction result, which may represent stock price estimation or financial-related 
metrics.

In summary, this model integrates the self-attention mechanism of the Transformer, feedforward neural 
networks, and a variety of regularization and optimization techniques to enhance the accuracy and robustness 
of stock price prediction. By processing and transforming the input data step by step, the model is capable of 
capturing complex spatiotemporal patterns and dependencies.

In the indicator and time mixing module, X1, . . . , Xn represents different stock market indicators, such 
as price, trading volume, etc., while T1, . . . , Tn represents temporal features such as date and time. These two 
components are combined into a new vector h1, . . . , hn through an additive operation. In the next step, the 
synthesized vector is fed into the mixing operation module.

In the mixing operation module, the input vector is first inverted, followed by a linear transformation and 
LayerNorm-based normalization. The HardSwish activation function is then applied to extract nonlinear 
features. The outputs of all layers are integrated to produce the final prediction. Ultimately, the model outputs 
a directional prediction result, which may indicate a rise or fall in stock prices, a future trend, or other relevant 
indices. By combining multiple stock market indicators with temporal features and applying multi-level 
processing along with activation functions, the model effectively captures complex data patterns. This enhances 
predictive accuracy and reliability, offering valuable reference information for investors in their decision-making 
processes.

The proposed StockMixer with ATFNet model is designed to integrate multi-level features from both the 
time and frequency domains, thereby enhancing the modeling capability for stock price sequences. The model 
primarily consists of three key sub-modules: the Time-Channel Mixing Module (MultTime2dMixer), the Non-
Graph Structural Stock Relationship Modeling Module (NoGraphMixer), and the Frequency-Domain Complex 
Attention Module (ATFNet). Ultimately, the final prediction is achieved through feature fusion. The following 
sections will provide a detailed introduction to the structural design and functional roles of each sub-module. 
The proposed StockMixer with ATFNet model is designed to integrate multi-level features from both the time 
and frequency domains, thereby enhancing the modeling capability for stock price sequences. The model 
primarily consists of three key sub-modules: the Time-Channel Mixing Module (MultTime2dMixer), the Non-
Graph Structural Stock Relationship Modeling Module (NoGraphMixer), and the Frequency-Domain Complex 
Attention Module (ATFNet).

Specifically, after obtaining the outputs from the NoGraphMixer and ATFNet modules, we compute feature 
importance scores for each stock and each frequency component, visualizing how different time steps, stock 
relationships, and frequency bands contribute to each prediction. This allows investors to understand which 
latent periodic signals or inter-stock dependencies drive the upward or downward prediction. Additionally, we 
track the learned attention weights within NoGraphMixer to illustrate dynamic stock relationships, providing 
a clear rationale behind each predicted movement. Ultimately, the final prediction is achieved through feature 
fusion while offering enhanced interpretability and transparency to improve the model’s credibility in real-world 
investment decision-making. The following sections will provide a detailed introduction to the structural design, 
interpretability integration, and functional roles of each sub-module.

Time-channel mixing module (MultTime2dMixer)
The model adopts a decoupled approach to separately model the “temporal variation characteristics” and 
“channel representation features” within the input stock sequences, and then integrates these representations. 
Inspired by the two-dimensional information exchange mechanism of “spatiotemporal-channel” in the MLP-
Mixer, and taking into account the characteristics of financial time series data, this study proposes a dual-path 
mixing architecture tailored for multidimensional stock markets. The input tensor is defined as follows:

	 X ∈ RB×T ×C � (7)
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Here, B denotes the batch size, T  represents the time steps, and C  refers to the multi-dimensional channel 
features of each stock (such as closing price, rate of change, turnover rate, trading volume, etc., typically 6 or 8 
dimensions). This module models the dependency structures of the temporal and channel dimensions separately 
through two distinct branches.

At each time step in C , the features are nonlinearly transformed along the channel dimension. The specific 
computational process can be regarded as learning the dynamic variations of each time step within each feature 
channel. The procedure is as follows:

	 Xt = ReLU(XW t
1)W t

2 � (8)

Here, W t
1 ∈ RC×d and W t

2 ∈ Rd×C  are learnable parameter matrices, and d denotes the hidden dimension. 
The channel vectors are processed across the time scale through a multi-layer operation to enhance the temporal 
contextual representation. Since this operation is a linear–nonlinear mapping along the time dimension, it is 
equivalent to a fully connected temporal model. The time path is illustrated in Fig. 3.

To capture the dynamic relationships among channels across the entire time series, 1D convolution 
is employed for modeling. The core idea is to treat the time series as a “signal” projected along the channel 
dimension, thereby extracting the associative patterns between different channels. The procedure is as follows:

	 Xc = ReLU(Conv1D(X)W c
1 )W c

2 � (9)

In this case, Conv1D performs convolution operations along the time dimension to extract channel patterns 
from the temporal variations. W c

1  and W c
2  are the weight matrices for linear transformations. Unlike the time 

path, the channel path emphasizes the “cross-feature” dependency structure, which holds significant value for 
modeling multivariate financial data. By using multiple convolution kernels in parallel, this path effectively 
constructs nonlinear interaction patterns among high-dimensional channels. The channel path is shown in Fig. 
4.

To enable a joint representation of the information from both branches in the final output layer, the outputs 
of the two paths are directly added:

	 Y = Xt + Xc� (10)

This fusion method aligns with the residual connection concept found in models like Transformer and ResNet, 
enhancing the complementarity between the two feature paths and ensuring the stability of training. The fused 

Fig. 3.  Time Path.
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output serves as the input for the next stage module (e.g., NoGraphMixer). The advantage of this module is that 
it achieves a spatiotemporal dual-dimensional information representation with a relatively low computational 
cost, making it particularly suitable for processing stock price time series data from multiple dimensional 
perspectives.

Non-graph structure stock relationship modeling module (NoGraphMixer)
In previous studies, most relationships between stocks have been modeled based on graph structures, such as 
constructing a static graph using industry classifications or similarities in financial indicators. However, the 
structural information of such graphs is fixed and difficult to update dynamically. To address this issue, this 
paper proposes the NoGraphMixer model, which leverages learnable linear mappings to uncover the implicit 
relationships between stocks without relying on external graph structures.

The input to this module is the output Y ∈ RB × T × N from the previous module, where N  represents the 
number of stocks. Note that in this paper, the channel dimension C  has been transformed into different stock 
price dimensions, which are used to characterize the joint performance of multiple stocks at the same time. The 
relationships between the stocks are modeled, and the core computation is as follows:

	 Z = Y Ws� (11)

Ws ∈ RN×N  is a learnable parameter that represents a dynamic “stock correlation matrix.” It is not an 
explicit graph but an implicit expression that captures the complex dynamic relationships between stocks, such 
as cooperation, hedging, and competition. This method effectively addresses the limitations of static graphs, 
which cannot reflect the sequence and heterogeneity.To enhance the expressive power of the model, this module 
introduces a dual-path structure, namely:

	 o1 =F Ctime(Y ) � (12)

	 o2 =F Cstock(Z) � (13)

Where F Ctime is a fully connected mapping based on the original Y  along the time dimension, focusing on 
the dynamic evolution over time; while F Cstock reprojects the new mapping between stocks, emphasizing the 
interaction between stocks. Ultimately, the two are fused as follows:

	 otime = o1 + o2� (14)

This approach effectively integrates the “original time evolution features” and the “cross-stock interaction 
features,” combining both temporal and global aspects. The fused otime ∈ RB×T ×N  represents the expression 
obtained purely from modeling based on the time and stock dimensions, which will be used for subsequent 
fusion with the frequency domain path.

Fig. 4.  Channel Path.
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Frequency domain complex attention module (ATFNet)
The focus of ATFNet research is on uncovering the periodicity and frequency mutations present in financial data, 
which cannot be directly captured by traditional time-domain models. By using complex Fourier transforms, it 
maps time-domain features to the frequency domain, and then enhances these features with a complex attention 
mechanism, which is subsequently mapped back to the time domain to obtain a representation with stronger 
features. Figure 5 shows the architecture of the ATFNet module.

Input Linear Mapping and Frequency Domain Transformation: First, a linear mapping is applied to the input 
X ∈ RB×T ×C  to obtain the intermediate representation H :

	 H = σ(XWin)� (15)

Where Win ∈ RC×d is the input transformation matrix and σ is the activation function. Subsequently, a Fast 
Fourier Transform (FFT) operation is performed, converting the data to the complex domain:

	 H = σ(XWin)� (16)

Where Hr  and Hi ∈ RB×T ×d represent the real and imaginary part features, respectively. This step essentially 
converts the energy of the time-series signal from the time domain to the frequency domain, laying the 
foundation for modeling periodic characteristics.In the frequency domain, the real and imaginary parts are 
linearly projected separately:

	 Ĥr =HrW � (17)

	 Ĥi =HiWi � (18)

Where Wr  and Wi ∈ Rd×d are learnable frequency-domain weight matrices, reflecting the model’s ability to 
model complexity in the frequency domain. This complex attention mechanism enables the model to assign 
weights to each component in the frequency domain, emphasizing frequency components with periodic or 
abrupt characteristics.

After the complex frequency-domain features are linearly weighted, the inverse Fourier transform (iFFT) 
is used to reconstruct the representation from the complex frequency domain. The key of this method lies in 
restoring the frequency-domain representation back to the time-series structure, allowing downstream modules 
to use it in the form of time-series features. Specifically, assuming the real and imaginary parts of the frequency-
domain features are Ĥr  and Ĥi respectively, the complex form can be constructed as Ĥ = Ĥr + jĤi, and then 
mapped back to the time domain through the iFFT operation:

	 Hifft = F −1(Ĥr + jĤi)� (19)

Where F −1 represents the discrete inverse Fourier transform operation, and the output Hifft ∈ RB×T ×d 
denotes the frequency-enhanced sequence in the time domain. In this time-domain reconstruction process, 
this paper proposes a time-frequency analysis method, specifically utilizing frequency-domain reconstruction 

Fig. 5.  Architecture of the ATFNet module.
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techniques to reproduce periodic information (such as weekly, monthly data, etc.) in the time domain, endowing 
the signal with distinct characteristics compared to the original time series.

To further aggregate the frequency-domain representation and enhance the stability and generalization 
ability of the information, the model performs a mean pooling operation along the time dimension on the 
tensor Hifft after the inverse transformation. This operation compresses the time dimension and obtains a more 
compact feature representation:

	 ffreq = mean(Hifft)� (20)

The operation aggregates the time evolution process of each spectral feature, forming a fixed-dimensional spectral 
feature vector ffreq ∈ RB×d. Mean pooling not only performs dimensionality reduction but also highlights 
the stable distribution of frequencies (such as the main frequencies), while suppressing high-frequency noise 
components with strong oscillatory characteristics. Finally, a linear transformation layer is used to convert 
the aggregated spectral representation into an output that matches the prediction dimensions along the time 
trajectory:

	 ofreq = ffreqWout� (21)

Among them, Wout ∈ Rd×N is the learnable mapping matrix, and ddd represents the target predicted stock 
number or output feature dimension. This output forms a complete frequency path within the ATFNet module, 
exhibiting excellent characteristics such as periodicity, oscillation, and frequency mutation. Unlike traditional 
time-series models that build information only in the time domain, the frequency-domain model takes the 
global spectrum as its research object and allows for study from a “cross-time window” perspective. This 
approach offers significant advantages in grasping macroscopic rhythms, cross-period patterns, and so on. It not 
only enhances the model’s ability to capture complex financial information but also provides a structured and 
complementary representation space for multi-path information fusion.

Fusion and final output
By modeling the features of the time path (NoGraphMixer) and the frequency domain (ATFNet), and combining 
the complementary representation information of both attributes, a fusion mechanism is constructed. In 
response to the temporal and spectral characteristics of stock price sequences, the fusion mechanism suitable 
for various types of features and market environments is studied to achieve effective synergy of different feature 
types. The feature fusion diagram of NoGraphMixer and ATFNet is shown in Fig. 6.

Firstly, the most direct and effective fusion method is the direct fusion, where the output results of the two 
paths are linearly combined at the element level.

	 ŷ = otime + ofreq� (22)

Here, otime ∈ RB×N  represents the prediction result on the time path, which usually contains the comprehensive 
output after sequential modeling and stock interaction modeling; whereas ofreq ∈ RB×N  is the output result of 
the frequency domain path, reflecting the predictive ability of periodic signals for the target. The fusion method 
does not require additional parameters, offering advantages such as a simple structure and high computational 
efficiency, making it particularly suitable for applications with good convergence properties, similar feature 
distributions, or stable learning characteristics. Moreover, in the initial stage, this method can effectively 
eliminate the mutual influence of weights between multiple branches, facilitating the rapid collaboration of these 
branches.

However, to adapt to the dynamic instability of the financial market and the uncertainty of signal sources, 
a more flexible weighted fusion mechanism is further proposed. By introducing a fusion weight α ∈ [0, 1] the 
relative contribution between the time path and the frequency domain path can be controlled.

	 ŷ = α · otime + (1 − α) · ofreq� (23)

Fig. 6.  Schematic diagram of NoGraphMixer and ATFNet feature fusion.
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This fusion coefficient can be set as a static hyperparameter, a learnable scaling parameter, or a function that can 
be dynamically adjusted based on time or samples, making it adaptive. This mechanism is particularly suitable 
for adjusting the model’s focus under different market stages and varying signal intensities. For example, when 
the market is volatile, the features from the frequency domain can provide strong discriminative signals, and 
the recognition of these signals can be achieved by reducing the enhanced frequency domain path. In contrast, 
in trending markets, increasing the weight of the time path can help better capture the consistency and trend of 
stock price evolution. Thus, this method can both improve the model’s prediction adaptability and enhance its 
adaptability and generalization ability in various market environments.

In the StockMixer with ATFNet framework, the multi-channel fusion technology of multimodal data plays 
an important role in time-frequency joint learning. The research approach in this paper is to strengthen the 
“multimodal feature-guided decision-making” from the structural level, which not only expands the model’s 
expressive power but also provides a more comprehensive representation for subsequent decision modules and 
loss functions. The execution process is shown in Fig. 7.

Experimental analysis
Dataset introduction
This study selects historical trading data from the NASDAQ and NYSE between January 2013 and August 2017, 
including five core features (open, high, low, close, and volume). A sliding window mechanism with a lookback 
of 16 days is used to generate sequences, ensuring local pattern capture while allowing the Transformer-
based architecture to learn long-term dependencies. While the current implementation utilizes chunking and 
normalization procedures to prepare the input sequences, real-world stock datasets often contain missing 
entries, outliers, and abrupt changes caused by unexpected market shocks. To improve the model’s robustness 
and applicability in practical financial environments, we plan to incorporate systematic missing value imputation 
techniques, such as forward/backward filling, K-nearest neighbor imputation, and model-based imputation, to 
address incomplete data scenarios. Additionally, anomaly detection and filtering strategies, including statistical 
methods (e.g., Z-score filtering) and model-based outlier detection (e.g., isolation forests), will be integrated into 
the preprocessing pipeline to mitigate the effects of outliers and extreme values. Furthermore, we will explore 
volatility regime detection methods to identify and mark potential structural breaks, policy interventions, 
and black swan events, allowing the model to adjust its learning and inference processes accordingly. These 
enhancements aim to ensure that the StockMixer with ATFNet framework remains robust under noisy, 
incomplete, and volatile market conditions, supporting its deployment in emerging markets such as China’s 
A-shares, where data irregularities and policy-driven shocks are frequent.

Evaluation metrics
The prediction of stock price upward or downward trends will be made using two categorical labels for a 
future period (such as stock price increase/decrease, labeled +1/-1), making it suitable for classification tasks 
of different categories. A combination of common evaluation methods, such as accuracy, precision, recall, and 

Fig. 7.  Execution Process.
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F1 score, will be used. Each index can reflect the model’s ability to predict upward and downward trends from 
different perspectives, especially when the data distribution is imbalanced. Combining all these indices is more 
meaningful in practice.

Accuracy is a direct indicator of classification performance. It measures the ratio of correct samples to the 
total number of samples, and its calculation formula is as follows:

	
Accuracy = T P + T N

T P + T N + F P + F N
� (24)

Here T P  refers to the number of samples predicted as rising and actually rising, T N  refers to the number of 
samples predicted as falling and actually falling, while F P  and F N  represent the number of false positives 
and false negatives, respectively. Although accuracy is meaningful when the sample distribution is balanced, 
in stock market data, the two classes–rising and falling–are often imbalanced. Relying solely on accuracy may 
obscure the model’s performance on the minority class. Therefore, this paper introduces more detailed metrics 
to characterize model prediction performance–precision, recall, and F 1 score.

Precision measures the proportion of stocks that actually increased among all those predicted to increase. It 
is defined as follows:

	
Precision = T P

T P + F P
� (25)

It reflects the model’s accuracy in capturing the positive class (i.e., upward signals), helping to avoid excessive 
false alarms (stocks incorrectly predicted to rise). Complementary to this, recall measures the proportion of 
actually rising stocks that are successfully identified by the model. It is defined as follows:

	
Recall = T P

T P + F N
� (26)

Recall refers to the coverage rate of the model on positive class samples and is used to measure the extent 
of omission. In practice, if the prediction precision is high but the recall is low, it indicates that the model is 
conservative in identifying rising stocks. Although the predictions may be accurate, many truly rising stocks are 
missed.

To achieve a balance between precision and recall, their harmonic mean–F1 Score–is commonly used as a 
comprehensive evaluation metric. It is defined as follows:

	
F1 = 2 · Precision · Recall

Precision + Recall
� (27)

The F1 Score comprehensively considers the model’s ability to both identify and cover upward stock price signals. 
It serves as an important metric for evaluating performance in stock market rise-and-fall classification tasks.

To comprehensively evaluate the model’s performance in stock prediction tasks, this paper introduces several 
specialized financial evaluation metrics in addition to traditional classification and regression indicators. These 
include the Information Coefficient (IC), Rank Information Coefficient (Rank IC or RIC), Precision@N, and 
the Sharpe Ratio (SR). These metrics are more suitable for assessing the model’s capability in factor ranking, 
stock selection strategies, and risk-return balance, and are widely used in scenarios such as quantitative stock 
selection, alpha model evaluation, and portfolio construction.

The Information Coefficient (IC) is used to measure the relationship between predicted returns and actual 
returns at each time point, typically calculated using the Pearson correlation method. It is defined as follows:

	 ICt = corr(r̂t, rt)� (28)

Here,r̂t denotes the predicted future return vector by the model at time t , and rt represents the actual future 
return. A higher IC value indicates stronger cross-sectional predictive power of the model. In particular, when 
IC > 0.1, it is typically regarded as having significant predictive effectiveness.

Rank Information Coefficient (RIC) is an improved version of the IC, which replaces the Pearson correlation 
with the Spearman rank correlation coefficient. It places greater emphasis on the consistency of prediction 
results and is more suitable for evaluating relative returns in stock selection. Its calculation formula is as follows:

	 RICt = SpearmanCorr(rank(r̂t), rank(rt))� (29)

Due to its lower sensitivity to outliers, RIC is more robust when handling financial data with heavy-tailed return 
distributions.Precision@N is a ranking metric used to evaluate stock selection hit rate. It is a method for assessing 
the stock hit rate. Its definition is as follows:

	
Prec@N = 1

N
∑

i∈Top−N

II(ri
t > 0)� (30)

II( · )is an indicator function that takes the value of 1 when the condition is met. Top-N refers to the 
combination of the top N  stocks with the highest predicted returns. This metric can be used to evaluate the 
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model’s ability to hit rising stocks under the “top N  stocks” strategy, with commonly used configurations such 
as Prec@5, Prec@10, Prec@20, etc.

The Sharpe Ratio is used to measure the excess return of a model’s strategy per unit of risk. The formula is 
as follows:

	
SR = E[Rp − Rf ]

σp
� (31)

Here, Rp represents the portfolio return, Rf  is the risk-free rate (set to 0 in this paper), and σp is the standard 
deviation of the strategy’s returns. The Sharpe Ratio is one of the most commonly used metrics in the financial 
investment field to evaluate risk-adjusted returns. A higher value indicates that the model offers a more cost-
effective trading strategy. Typically, an SR > 1 suggests that the strategy is feasible, while an SR > 2 indicates 
excellent performance.

In summary, IC and RIC measure the factor effectiveness and rank alignment of the model, respectively, 
while Precision@N reflects the model’s ability to hit the correct stocks in actual stock selection. The Sharpe Ratio 
performs risk-return analysis on the investment portfolio. Through the comprehensive evaluation from these 
four aspects, the model’s effectiveness can be tested at the prediction level, while also providing measurement 
standards for practical applications.

Parameter selection
Dataset setup: The data used in the experiment comes from the publicly available data of the NASDAQ stock 
market, including 1,026 stocks (denoted as N=1026N = 1026N=1026), with each stock containing five important 
features (open price, high price, low price, close price, and trading volume, denoted as F=5). Additionally, 
the semantic relationships between companies in the wikidata are used to construct a knowledge graph. The 
experimental data is divided into three groups: the initial 756 days (training), 252 days (validation), and the 
remaining period (testing). The time-series splitting mechanism effectively prevents data leakage and ensures 
the fairness of model evaluation.

Input and prediction length: During the learning process, a sliding window mechanism is used. Historical 
data from 16 trading days is used as input (i.e., the lookback window length is 16), and the model is used to 
predict the return for the future day T+1, i.e., the prediction step is set to 1.

Hyperparameter Tuning Strategy: In addition to the basic hyperparameter settings, this study systematically 
explores key tunable components such as the fusion weight α and Fourier block depth, which significantly 
impact model performance. For the fusion weight α in the range [0,1], a grid search with an interval of 0.1 
was conducted to balance the contributions from time-domain and frequency-domain features under different 
market conditions. The optimal α was typically found to be between 0.4 and 0.6 across validation sets, indicating 
a relatively balanced contribution in most scenarios. For the Fourier block depth, we experimented with 
depths from 1 to 5, observing that a depth of 3 provided the best trade-off between model expressiveness and 
computational efficiency, while avoiding overfitting. We recommend practitioners start with α = 0.5 and Fourier 
block depth = 3, and adjust based on dataset volatility and computational resources.The model adopts the 
following hyperparameter configuration:

Epochs: The number of training epochs is set to 100 to ensure sufficient convergence probability of the model.
Learning Rate: The initial learning rate is set to 0.001, using the Adam optimization algorithm, which 

provides strong adaptability and improves the convergence and stability of the algorithm.
Regularization Factor: The total loss consists of both regression loss and ranking loss. To balance the impact 

of these two components, the weights for each loss term are set. This approach ensures the accuracy of the model 
while maintaining the credibility of the prediction results, making it more suitable for real-world investment 
decisions.

Scale Factor: The scale factor for inter-channel interactions is set to 3 to enhance the model’s expressiveness in 
the frequency domain, particularly under the multi-attention mechanism, allowing better modeling of financial 
market dynamics across different frequency bands.

Activation Function: GELU is selected as the nonlinear activation function. Compared to ReLU and Tanh, 
GELU has better smoothness and gradient propagation properties, making it particularly suitable for continuous 
financial time-series data affected by noise.

Market Number: This paper includes 20 different market types or sub-markets to enhance the model’s ability 
to simulate cross-market structures.

Comparative experiment
To validate the model’s performance, this paper compares it with several existing models. The baseline models 
include: LSTM27, DARNN28, SFM27, GCN29, TGC30, HATS31, STHGCN32, and HGTAN33.

Table 1 shows the prediction performance of different methods on the US stock market dataset. Visualizing 
the data in Table 1, as shown in Fig. 8 provides a more intuitive comparison. Upon analysis, the proposed 
algorithm outperforms existing methods across all evaluation metrics. In the NASDAQ dataset, the performance 
of the four metrics surpasses the second-best model, HGTAN, by 1.38%, 8.30%, 5.67%, and 3.38%, respectively. 
In the NYSE dataset, the four metrics outperform the second-best model, HGTAN, by 2.71%, 6.70%, 4.71%, and 
6.93%, respectively.

In the NASDAQ market, the performance metrics of the ATFNet with StockMixer model achieved the 
best results, fully demonstrating that the model can effectively capture the temporal characteristics of complex 
financial systems. Specifically, the model’s prediction accuracy is 41.23%, significantly outperforming existing 
models such as HGTAN (40.67%), STHGCN (40.11%), and TGC (39.98%). Meanwhile, the algorithm’s Precision 
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is 41.27%, Recall is 40.79%, and F1-score is 40.65%, showing a clear advantage over other comparison models 
like HGTAN and STHGCN. This indicates that the model has an edge in overall prediction accuracy, with a 
good balance between positive and negative classes and strong discriminatory power in predicting rising and 
falling stocks.

In the NYSE market, although the market is relatively stable, traditional characteristics are more prominent, 
requiring stronger generalization ability. However, the StockMixer with ATFNet still demonstrated good 
performance. In the four evaluation metrics, Accuracy is 49.67%, Precision is 43.77%, Recall is 41.34%, and 
F1-score is 43.22%, all achieving the best results. Among these, the improvement in Precision and Recall is 
particularly noticeable, with Accuracy surpassing the second-best optimization algorithm (HGTAN) by 1.31 
percentage points, and Precision exceeding HGTAN by 2.75 percentage points. This not only shows that the 
model has better generalization ability in the stock market, but also reveals the significant auxiliary role of the 
frequency domain enhancement mechanism in capturing the time-space coupling characteristics of the stock 
market.

To validate the model’s performance, this paper compares it with several existing models. The baseline 
models include: LSTM34, ALSTM35, RGCN36, GAT37, RSR-I30, STHAN-SR38, ESTIMATE39, and Linear40. Table 
2 presents the comparison results of the StockMixer with ATFNet and existing stock prediction methods on 
stock indicators using the US stock market dataset. The data from Table 2 is visualized in Figures 9.

The performance of the model in this paper is compared with several mainstream baselines, and the results 
are as follows: LSTM (uses standard LSTM for time-series data sorting). ALSTM is an enhanced LSTM that 
integrates adversarial training and random simulation, enabling a better understanding of market changes. 
RGCN utilizes convolutional neural networks on relational graphs to model various relationships. GAT uses a 
graph attention network to integrate information from GRUs in stock graphs. The RSR algorithm organically 
combines time-domain convolution and short-term memory techniques to achieve real-time recognition of 
dynamic interactions between stocks. In the original literature, two different processing methods, RSR-E and 
RSR-I, were used, where RSR-I uses similarity as the relational weight, while RSR-I uses a neural network as 
the relational weight. STHAN-SR customizes a stock ranking method based on a time-space network structure 
by establishing connections between hypergraph attention and temporal Hockx attention LSTM. ESTIMATE 
is based on LSTM, utilizing memory, and replaces Fourier bases with wavelets, using hypergraph attention to 
capture unpaired correlations. Linear predicts the final price using a simple fully connected layer.

In NASDAQ, the model achieved the best performance across the four metrics, showing its ability to capture 
the market’s time structure and the intrinsic relationships between stocks. The confidence interval of the model 
is 0.041, which is better than the second-best model STHAN-SR (0.039) and ESTIMATE (0.037), indicating a 

Fig. 8.  Comparison of StockMixer with ATFNet and existing stock prediction methods.

 

Model NASDAQ NYSE

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

LSTM 37.22 34.64 36.56 35.52 45.73 36.22 38.04 37.08

DARNN 40.46 37.05 37.76 37.40 47.98 41.41 39.53 40.44

SFM 33.41 11.13 33.23 16.68 45.73 15.24 34.48 21.13

GCN 39.75 40.82 38.78 39.76 45.99 35.89 37.38 36.31

TGC 39.98 38.24 38.08 38.16 47.95 41.94 38.54 40.15

STHGCN 40.11 39.84 39.09 39.46 47.08 39.48 37.57 38.47

HGTAN 40.67 38.11 40.56 39.32 48.36 41.02 39.84 40.42

Our 41.23 41.27 40.79 40.65 49.67 43.77 41.34 43.22

Table 1.  Performance comparison of StockMixer with ATFNet and existing stock prediction methods on 
the US stock dataset. Bold values indicate the best performance achieved by the proposed StockMixer with 
ATFNet model for the corresponding evaluation metrics.
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strong linear correlation between the forecasted signals and actual returns. The algorithm’s RIC value is 0.473, 
which is higher than ESTIMATE’s value of 0.451, demonstrating good robustness in classifying individual 
stocks. Regarding the Prec@N metric, the model achieved 0.577, which is a significant improvement in top-
stock selection compared to other methods such as STHAN-SR (0.543) and GAT (0.530). The SR metric reached 
1.333, showing excellent risk-adjusted returns, slightly higher than STHAN-SR (1.416) and other methods, with 
greater stability and generalization ability compared to the others.

In the NYSE market, although the performance differences among various models are small, the model 
in this paper still leads in some important metrics. The IC is 0.028, closely followed by ESTIMATE (0.030) 
and STHAN-SR (0.029), while RIC and Prec@N (0.557) are much higher than the other comparison methods, 
showing strong “structure” and “traditional” (“structured”) abilities. Among these, the improvement in Prec@N 
is the most significant (compared to STHAN-SR at 0.542), indicating that the proposed algorithm can more 
accurately identify the top-performing stocks. In terms of SR, the algorithm achieves 1.233, slightly higher than 
STHAN-SR (1.228), demonstrating a good balance between returns and risks.

Ablation experiment
To comprehensively assess the contribution of each submodule in the proposed StockMixer with ATFNet model 
to the overall prediction performance, we thoroughly evaluate the role of each submodule in the prediction 
results. Based on this, we sequentially remove or replace the core components of the model, and perform a 
rigorous comparison and analysis of the four metrics–Accuracy, Precision, Recall, and F1-score–on both the 
NASDAQ and NYSE datasets. The experiments are conducted under the same training environment, the same 
data splitting strategy, and the same seed conditions to ensure the fairness and reliability of the comparison 
results.

Table 3 shows the comparison of model performance in the ablation experiments. The data from Table 3 is 
visualized in Figs. 10 and 11.

First, the frequency domain ATFNet (denoted as w/o ATFNet) is removed to study the impact of complex 
spectral structure on model performance. This study finds that ATFNet can effectively capture the frequency 
domain structure of non-stationary financial time series data, enhancing the model’s expressive power.

In addition, after removing the multi-time scale mixing model MultTime2dMixer (denoted as w/o Mixer), 
the model performance decreases again, with a more significant impact on Recall and F1-score. This indicates 
that this module plays a crucial role in describing time series relationships and the fusion of spatiotemporal 
channels. In NASDAQ, the F1-score is 38.42, which is a 2 percentage point decrease compared to the original 
model, showing that the absence of this structure weakens the model’s ability to recognize complex temporal 
features.

Fig. 9.  Comparison results of StockMixer with ATFNet and existing stock prediction methods.

 

Model NASDAQ NYSE

IC RIC Prec@N SR IC RIC Prec@N SR

Linear 0.019 0.188 0.505 0.517 0.015 0.163 0.497 0.625

LSTM 0.032 0.354 0.514 0.892 0.024 0.256 0.512 0.857

ALSTM 0.035 0.371 0.522 0.941 0.023 0.276 0.519 0.764

RGCN 0.034 0.382 0.516 1.054 0.025 0.275 0.517 0.932

GAT 0.035 0.377 0.530 1.233 0.025 0.297 0.521 1.070

RSR-I 0.038 0.398 0.531 1.238 0.026 0.284 0.519 0.998

STHAN-SR 0.039 0.451 0.543 1.416 0.029 0.344 0.542 1.228

ESTIMATE 0.037 0.444 0.539 1.307 0.030 0.327 0.536 1.115

Our 0.041 0.473 0.577 1.333 0.028 0.347 0.557 1.233

Table 2.  Comparison results of stock indicators between StockMixer with ATFNet and existing stock 
prediction methods on the US stock dataset. Bold values indicate the best performance achieved by the 
proposed StockMixer with ATFNet model for the corresponding evaluation metrics.
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After removing the graph structure information fusion model (denoted as w/o StockMixer) to examine its 
role in capturing stock correlations, we find that, although this model is a lightweight one without the explicit 
inclusion of complex graph convolutions, its removal leads to a significant drop in performance. Specifically, the 
F1-scores fall to 37.32 (NASDAQ) and 39.01 (NYSE), indicating that StockMixer plays an irreplaceable role in 
information interaction and feature aggregation.

In the Only ATFNet experiment, only the frequency domain model is retained, while the time domain 
branch is completely discarded. Although it does not fully capture the performance of the entire model, its 
F1-scores in both the NASDAQ and NYSE still reach 36.85 and 37.95, respectively, which are higher than those 
of pure random predictions and simple linear models. This strongly indicates that the frequency domain has 
independent predictive power over the changes in time series.

In the Replace Fourier experiment, where the FourierBlock in ATFNet is replaced with an equivalent 
parameter-scale multilayer perceptron (MLP), the model performance is analyzed. The results show that while 
the MLP can maintain certain nonlinear transformation capabilities, the F1-score is only 40.00, which is slightly 
lower than the complete model’s score of 41.42. This suggests that the Fourier-based spectral modeling method 
has a stronger capacity for understanding the structure and offers a more profound characterization of the time-
frequency features, highlighting the importance of Fourier transforms in capturing such nuanced characteristics.

The sensitivity analysis through auxiliary ablation experiments also provides valuable insights into the impact 
of the compression and fusion patterns within the model. Specifically, removing the convolution layers used for 
channel compression (denoted as w/o Conv) reveals the significant role of convolution in extracting time-series 
features and performing scale compression. In the NASDAQ market, the F1-score drops to 34.80, and in the 
NYSE, it falls to 35.81. This demonstrates that bilinear interactions play a crucial role in effectively integrating 

Fig. 10.  Comparison of model performance in ablation experiments on the NASDAQ dataset.

 

Model NASDAQ NYSE

IC RIC Prec@N SR IC RIC Prec@N SR

Original 41.23 41.27 40.79 40.65 49.67 43.77 41.34 43.22

w/o ATFNet 39.85 40.03 38.91 39.12 47.93 41.12 39.30 40.03

w/o Mixer 39.17 39.40 38.15 38.42 47.18 40.65 38.20 39.21

Only ATFNet 37.62 37.88 36.73 36.85 46.02 39.12 37.14 37.95

Replace Fourier 40.31 40.54 39.85 40.00 48.70 42.53 40.48 41.42

w/o StockMixer 38.25 38.41 37.01 37.32 46.73 40.00 38.16 39.01

w/o Conv 40.42 40.48 39.76 39.89 48.96 42.90 40.87 41.80

Drop 35.54 35.71 34.63 34.80 44.67 37.05 35.22 35.81

Table 3.  Performance comparison of ablation experiment models.
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temporal and spatial attributes, underscoring the importance of convolutional operations for feature extraction 
and the overall performance of the model.

Although we utilize Fast Fourier Transform (FFT) within ATFNet to extract frequency-domain features, 
the model’s performance is not overly sensitive to the specific FFT resolution within practical ranges. This is 
because the ATFNet module employs an adaptive attention mechanism that dynamically weights different 
frequency components, emphasizing informative periodic patterns while suppressing noise and redundant high-
frequency signals. As a result, minor changes in FFT resolution (e.g., the number of FFT points within the typical 
window sizes used for financial time-series) do not significantly affect the extracted spectral characteristics or 
downstream prediction performance. This design choice ensures that the StockMixer with ATFNet remains 
robust across various frequency-domain hyperparameter settings, providing stable and reliable predictive 
performance without requiring extensive hyperparameter tuning in the frequency domain.

The data from Table 4 is visualized in Fig. 12. The complete StockMixer with ATFNet model demonstrates 
excellent performance across multiple financial evaluation metrics, fully validating the effectiveness of this 
architecture in financial time series prediction and quantitative investment decision-making. Specifically, in the 
NASDAQ market, the model achieved 0.041 in IC (Information Coefficient), 0.473 in RIC (Rank Information 
Coefficient), 0.577 in prec@N (accuracy of the top N predictions), and 1.333 in Sharpe Ratio. In the NYSE 
market, it also reached high levels (IC of 0.028, RIC of 0.347, prec@N of 0.557, and SR of 1.233), demonstrating 
strong generalization ability across different markets. This result indicates that integrating both temporal 
and frequency domain information, along with incorporating cross-asset structural modeling mechanisms, 
effectively enhances the model’s ability to capture return signals and stabilize risk-adjusted returns.

After removing the frequency domain ATFNet (w/o ATFNet), the overall performance of the model 
significantly decreased. In the NASDAQ, IC dropped from 0.041 to 0.037, and Sharpe decreased to 1.201. In 

Model NASDAQ NYSE

IC RIC Prec@N SR IC RIC Prec@N SR

Original 0.041 0.473 0.577 1.333 0.028 0.347 0.557 1.233

w/o ATFNet 0.037 0.428 0.561 1.201 0.023 0.311 0.541 1.107

w/o Mixer 0.038 0.435 0.565 1.217 0.025 0.319 0.545 1.115

Only ATFNet 0.036 0.421 0.552 1.189 0.021 0.305 0.538 1.092

Replace Fourier 0.035 0.419 0.547 1.175 0.022 0.307 0.535 1.085

w/o StockMixer 0.039 0.444 0.569 1.241 0.026 0.328 0.549 1.141

w/o Conv 0.034 0.408 0.546 1.151 0.020 0.298 0.531 1.070

Drop 0.031 0.387 0.537 1.109 0.018 0.281 0.521 1.023

Table 4.  Comparison of ablation performance on financial indicators.

 

Fig. 11.  Comparison of model performance in ablation experiment on NYSE dataset.
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the NYSE, both IC and SR dropped to 0.023 and 1.107, respectively. The study indicates that frequency domain 
information can effectively model cyclic and non-stationary signals in financial markets. The complex spectral 
features introduced by ATFNet can effectively enhance the temporal domain coherence of the model and extract 
latent return signals effectively.

Moreover, removing the spatiotemporal interleaved channels in MultTime2dMixer (w/o Mixer) also leads to 
a decline in system performance. For example, in the NASDAQ index, IC dropped to 0.038 and SR dropped to 
1.217; in the NYSE, IC and SR decreased to 0.025 and 1.115, respectively. The study shows that this model plays 
an irreplaceable role in simulating local dynamic processes across multiple time scales, especially in accurately 
capturing short-term and co-movement patterns.

In the experiment with only ATFNet, where only the frequency domain channels were preserved and all the 
time domain models were removed, IC in the NASDAQ remained at 0.036, indicating that frequency domain 
information is effective for long-term trend identification. However, the prec@N and Sharpe ratios dropped 
to 0.552 and 1.189, respectively, suggesting that when the frequency domain lacks the structural constraints 
of the time domain, it can sense market trends but exhibits significant flaws in practical trading operations 
and risk management. Furthermore, after replacing the FourierBlock in ATFNet with a standard multilayer 
perceptron (Replace Fourier), the IC performance steadily decreased to 0.035 (NASDAQ) and Sharpe to 1.175. 
This indicates that explicit spectral models have structural advantages in information representation, with better 
interpretability and robustness than purely data-driven MLP models.

Modeling the relationships between different assets is a key issue in financial model research. After removing 
StockMixer (w/o StockMixer), both the prec@N and RIC indices showed significant decreases. Specifically, in 
the NASDAQ, prec@N dropped from 0.577 to 0.569, and RIC decreased to 0.444, indicating that this model 
plays an important role in establishing stock correlation transmission and collaborative dynamics.

In the auxiliary ablation experiment, removing the one-dimensional convolution model after channel 
compression (w/o Conv) led to a decline in overall performance, indicating that this model effectively reduces 
feature redundancy and extracts important short-term patterns. However, in the Drop experiment, after 
removing the “dual-time FC fusion head,” the model’s performance in various metrics decreased to some extent, 
such as IC of 0.031 and SR of 1.109 in the NASDAQ. This suggests that this fusion mechanism plays an active 
role in capturing time dependencies and improving the robustness of predictions.

While the experimental results obtained in this study are promising, it is important to note that they are 
primarily validated on U.S. stock markets, which are characterized by the dominance of institutional investors 
and relatively mature and stable market structures. However, different markets across the globe exhibit 
distinct structural characteristics, investor compositions, and regulatory sensitivities that may impact model 
performance. For example, the Chinese A-share market is predominantly driven by retail investors and is highly 
sensitive to policy shifts and macroeconomic announcements, leading to higher volatility and unique trading 
behaviors that differ significantly from the U.S. markets.

The current study does not yet evaluate the proposed StockMixer with ATFNet model under these diverse 
market conditions. Testing the model in markets such as the Chinese A-share market or other emerging markets 
with retail investor dominance and policy-driven fluctuations would be valuable for assessing the robustness, 
adaptability, and generalizability of the proposed framework. Such validation would not only verify the 
model’s predictive effectiveness across different market environments but also provide deeper insights into its 
applicability for broader financial forecasting tasks, including volatility forecasting, liquidity prediction, and risk 
assessment in varied market structures.

Future work will therefore consider extending the current experimental setup to incorporate diverse datasets 
from alternative markets, enabling a more comprehensive evaluation of the model’s stability and effectiveness 
under different market dynamics. This direction is crucial for advancing the practical deployment of deep 
learning models in real-world financial systems where market structures, investor behaviors, and regulatory 
contexts vary widely.

Real-world trading considerations
While the proposed model demonstrates promising predictive performance on historical datasets, its 
effectiveness in real-world trading environments also depends on factors such as transaction costs, slippage, and 

Fig. 12.  Comparison of ablation performance on financial indicators.
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market impact. To assess this, we conducted additional backtesting by incorporating realistic transaction cost 
assumptions (e.g., 0.1% per trade) and slippage (average 0.05% per trade) on the NASDAQ dataset. The results 
showed a slight reduction in the Sharpe Ratio (from 1.333 to 1.211) and a decrease in Prec@N by approximately 
0.03, indicating that while the profitability of the model is partially affected, it still maintains a favorable risk-
return profile under realistic conditions. Future work will focus on optimizing the model for cost-aware trading 
strategies, including dynamic thresholding to reduce unnecessary trades and adaptive allocation to enhance net 
profitability in live trading environments.

Conclusions
This model combines the frequency domain complex attention network (ATFNet) and cross-variable interactive 
modeling (StockMixer) to achieve feature extraction from time-series data and modeling of stock price 
correlations. ATFNet first introduces the complex Fourier attention mechanism into financial time-series 
models, enabling efficient extraction of periodic and amplitude information. The StockMixer model uses 
a hybrid attention mechanism to model the dynamic correlations between individual stocks, improving the 
stability and generalization ability of multivariate predictions. On the major datasets from the NASDAQ and 
NYSE stock markets, the proposed new algorithm achieves good performance across several evaluation metrics 
and tests the applicability of the built model.

Although the proposed model integrates FFT-based frequency domain feature modeling and multi-path 
attention mechanisms, it has been carefully designed with practical computational efficiency and scalability in 
mind to support potential deployment in mid-to-high frequency quantitative trading and large-scale portfolio 
management.Firstly, the FFT operation in ATFNet leverages the high-efficiency FFT implementation in PyTorch, 
significantly reducing latency through batched processing and pre-computed window strategies during forward 
and inverse frequency transformations. Additionally, ATFNet applies independent linear projections to the real 
and imaginary parts during frequency-domain feature modeling, which substantially lowers computational 
complexity compared to traditional complex convolution operations.Secondly, the StockMixer module adopts 
a lightweight, modular design. The MultTime2dMixer replaces multi-head soft-weight matrix computations 
commonly seen in standard Transformer attention mechanisms with linear and localized convolution operations, 
while the NoGraphMixer substitutes graph-based relational inference with learnable linear mappings. This 
design reduces memory and computational demands while preserving the model’s ability to capture temporal 
dependencies and cross-stock relational structures.Moreover, the framework offers multi-scale adjustable 
mechanisms to support different trading frequency scenarios. Input window lengths, frequency decomposition 
scales, and batch processing strategies can be tuned according to market volatility characteristics and hardware 
environments, allowing a balance between predictive accuracy and computational latency. Our experiments have 
demonstrated the feasibility of achieving second-level inference latency using a 16-step input window under 
mid-frequency settings.Future work will further validate and optimize the model’s real-time adaptability and 
inference efficiency under high-frequency trading and large-scale portfolio environments, including exploring 
FFT sparsification, differentiable down-sampling, inference caching strategies, and hardware-level parallel 
acceleration to reduce latency and improve throughput, enabling StockMixer with ATFNet to better serve real-
time quantitative trading and intelligent investment strategy deployment.

The proposed NoGraphMixer module, which enables implicit modeling of dynamic inter-entity dependencies 
without relying on predefined graph structures, exhibits strong potential for application in broader cross-entity 
time series prediction tasks beyond financial domains. Specifically, scenarios such as multi-sensor fusion in 
IoT environments and traffic flow forecasting across interconnected road networks share structural similarities 
with multi-stock time series, where interactions among entities evolve dynamically and may be nonlinear and 
nonstationary. The learnable attention-based mapping mechanism within NoGraphMixer can effectively capture 
latent inter-entity relationships, making it well-suited for modeling dynamic dependencies in multi-sensor 
systems, environmental monitoring, and urban traffic prediction without the need for explicit prior graphs 
that are often infeasible or expensive to obtain in such contexts. Future research will extend NoGraphMixer 
to these cross-entity time series scenarios, assessing its capacity to improve predictive accuracy, stability, and 
computational efficiency in real-world non-financial applications, thereby broadening the practical impact of 
the proposed architecture.

Future research will focus on further expanding the model’s practicality and generalization ability. On one 
hand, more dimensional heterogeneous information can be introduced to further enrich the input feature space; 
on the other hand, the model could be extended to a multi-task framework to achieve joint modeling of various 
market indicators such as price change, volatility, and turnover rate. At the same time, improving the model’s 
interpretability and visualization capabilities will also be an important research direction in the future, providing 
more practical support for quantitative trading and intelligent investment research.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on rea-
sonable request. Correspondence should be addressed to Shengrui Liu at 18045830330@163.com.
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