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Comparative analysis of deep
learning architectures in solar
power prediction

Montaser Abdelsattar**!, Mohamed A. Azim?, Ahmed AbdelMoety* & Ahmed Emad-Eldeen?

Integrating renewable energy sources into the electricity grid requires accurate forecasts of solar power
production. With the aim of enhancing the accuracy and reliability of forecasts, this study presents

a comprehensive comparative analysis of eight state-of-the-art Deep Learning (DL) architectures—
Autoencoder, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Simple Recurrent

Neural Network (SimpleRNN), Convolutional Neural Network (CNN), Temporal Convolutional

Network (TCN), Transformer, and Lightweight Informer for Long Sequence Time-Series Forecasting
(InformerLite)—applied to solar power prediction using a dataset with 4,200 historical records and

20 meteorological and astronomical features. A comprehensive assessment of Root Mean Squared
Error (RM SE), Mean Absolute Error (M AFE), Mean Absolute Percentage Error (M APE),

and Coefficient of Determination (R2) metrics was performed on the training, validation, and test

datasets. The TCN model had the greatest performance across all models, achieving a test R2 of 0.7786,
an RM SE of 429.4863, and a balanced relative standard deviation ( RS D) of 0.6827, so exhibiting
an exceptional capacity to capture temporal patterns. The Autoencoder achieved a R? of 0.7648 and
had the greatest overall performance on the entire dataset, resulting in aWhole R? of 0.8437. In
contrast, the Transformer model demonstrated significantly poorer performance (Test R? = 0.0714),
underscoring its limitations in this context without any architectural modifications. This study not only
demonstrates the best DL models for solar power forecasting as qualified by useful statistical metrics,
but also provides a scalable, interpretable, and extensible forecasting framework for real-world

energy systems. The findings verify the informed DL integration to smart grid scenarios, laying the
foundations for further developments in hybrid modeling, multi-horizon prediction, and deployment in
resource-constrained environments with limited computational power and resources.
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Abbreviations

Abbreviation Full Form

Al Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface
ARIMA AutoRegressive Integrated Moving Average
CI Confidence Interval

CNN Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

EDA Exploratory Data Analysis

EEMD Ensemble Empirical Mode Decomposition
EV Electric Vehicle

GBM Gradient Boosting Machine

GOES Geostationary Operational Environmental Satellite
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GRU Gated Recurrent Unit

InformerLite Lightweight Informer for Long Sequence Time-Series Forecasting
LightGBM Light Gradient Boosting Machine

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

MSE Mean Squared Error

PV Photovoltaic

RELAD-ANN  Regularized Lightweight Artificial Neural Network
RF Random Forest

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

RSD Relative Standard Deviation

R’ Coeficient of Determination

SD Standard Deviation

SEFMNN Stack-based Ensemble Fusion with Meta-Neural Network
SimpleRNN Simple Recurrent Neural Network

TCN Temporal Convolutional Network

TIR Transformer-Infused Recurrent Neural Network
XGB-SE Extreme Gradient Boosting - Stacked Ensemble

The continuously increasing world-wide demand for alternative sources of clean and sustainable energy has
placed a bigger emphasis on the accurate forecasting of solar electricity production. One extremely exciting
renewable energy source that requires precise prediction models to be included in the energy system as best
as possible, enhance energy management, and ensure dependability is solar energy. Traditional time series
forecasting methods fail to model well the complex, non-linear patterns present in solar power data!=. As
such, using advanced Deep Learning (DL) techniques to improve prediction accuracy has attracted growing
attention. The purpose of this study is to evaluate in forecasting solar power generation the efficiency of
eight DL algorithms: Lightweight Informer for Long Sequence Time-Series Forecasting (InformerLite), Long
Short-Term Memory (LSTM), Autoencoders, Gated Recurrent Unit (GRU), Recurrent Neural Network
(RNN), Transformer, Convolutional Neural Network (CNN), and Temporal Convolutional Network (TCN).
Several of these models, particularly sequence-based architectures such as LSTM, GRU, RNN, and TCN, have
demonstrated strong capabilities in capturing temporal dependencies and non-linear interactions within large-
scale time series datasets®. The study aims to identify the most reliable and accurate model for solar power
forecasting by comparing several methods, thereby advancing renewable energy technology and its application
in sustainable energy systems.

Precise prediction of solar power generation is essential for several reasons. First and foremost, it facilitates
the seamless incorporation of solar energy into the electrical grid, thus aiding in the equilibrium of energy
supply and demand and diminishing dependence on non-renewable energy sources. Accurate predictions,
enable grid managers to properly control the energy storage systems, which reduce impacts due to the solar
energy variations®. Furthermore, a reliable and accurate prediction is of great importance to ensure the financial
profitability of solar energy by increasing the performance and controllability of solar parks. Thus, although
operating expenses of the company have dropped, investment income has grown®. Reliable projections also
facilitate the establishment of well-considered and knowledgeable judgments on next solar energy projects,
so promoting the switch to renewable and sustainable energy sources. Effective assessments of solar energy
generation, as a result, can help decrease the risk of power interruption and establish an available power supply
by enhancing power system stability and reliability to the grid. Thus, to help meet global energy targets, support
the environmental accountability of developers, and foster the technological advancements for renewable
energy, enhancing the solar energy yield prediction capability is of paramount importance.

In solar power forecasting, DL has evolved into a powerful tool with clear benefits over more traditional
methods. Sometimes the complex, nonlinear links and temporally dependent patterns in solar power data are
too difficult for conventional statistical models to adequately depict. Conversely, DL algorithms excel in these
fields and consequently have rather great success in time-series prediction. Using large datasets not readily
visible with conventional approaches allows DL models to discover intricate patterns and trends’~°.

An accurate estimate of solar power output is crucial for achieving the highest level of integration of solar
energy into the power system. However, due to the intricate and nonlinear characteristics of solar data, which are
impacted by various climatic and environmental factors, existing forecasting algorithms are unable to accurately
predict solar power output. Inappropriate grid management, higher running costs, and less reliability of solar
power plants follow from this disparity. Finding and appreciating the best DL techniques for handling complex
solar power data and generating accurate forecasts is crucial'’.

The application of Machine Learning (ML) and DL in Photovoltaic (PV) systems has improved the
performance, reliability, and predictability of solar energy applications. ML methods are everywhere utilized to
accurately predict solar power generation and ambient conditions influencing PV yield!!"13. On the other hand,
DL approaches have proved to be highly successful for automation problems, for example defect detection in solar
cells**, fault detection and performance predication'®, surface condition monitoring via image classification'®. In
addition, advanced image process and computer vision techniques have allowed for accurate PV panel damage
detection which further facilitates predictive maintenance and operating optimization'”. These developments
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highlight the importance of smart algorithms in making PV systems smarter, more adaptive and more robust
energy conversion tools.

The development of DL has boosted the credibility and accuracy of solar power prediction, mainly in fields
like Electric Vehicle (EV) battery swap station, and integrated grid connection of renewable energy. For example,
the application of LSTM models to forecast the solar power availability in EV swapping stations can contribute
to an optimal scheduling of the battery charging, ultimately decreasing the reliance on the grid and improving
energy efficiency'®. DL techniques, including LSTM, AutoRegressive Integrated Moving Average (ARIMA), and
Dual Attention-based RNNs, have been evaluated for solar irradiance forecasting, with LSTM models exhibiting
enhanced performance in error reduction and real-time application'®. Although solar forecasting is a primary
emphasis, the application of ML in infrastructure monitoring has also gained traction. Research employing
magnetostrictive sensors alongside decision trees and neural networks has attained elevated classification
accuracy for bridge health evaluation, demonstrating the adaptability of ML in sensor-driven predictive
modeling?®. The amalgamation of Random Forest (RF) and Deep Neural Network (DNN) with frequency
domain data has facilitated real-time structural integrity monitoring in prototype beam bridges, demonstrating
the wider application of these methods beyond energy sectors®..

Recent hybrid architectures, which combine recurrent with attention-based mechanisms, such as the
Transformer-Infused Recurrent Neural Network (TIR), have proved effective in maintaining data complexity
and temporal dependence?. Ensemble learning methods have therefore recently been attracting significant
attention, such as Stack-based Ensemble Fusion with Meta-Neural Network (SEFMNN) and Extreme Gradient
Boosting-Stacked Ensemble (XGB-SE), which have obtained state-of-the-art results in different regions by
combining a variety of base-learners?. In addition, decomposition methods for example Ensemble Empirical
Mode Decomposition (EEMD) have also been widely used for enhancing model interpretability and prediction
accuracy by extracting the intrinsic signal modes before inputting them to neural architectures including LSTM
and Artificial Neural Network (ANN)?4. Recent reviews have clarified the transformative effects of DL and
ML technologies have on solar forecasting and potential to counter nonlinearities and uncertainties found
in solar irradiance data, which in turn can help improve grid reliability and sustainable energy planning®.
Additionally, recent advancements in modified ANN structures and lightweight Gradient Boosting Machine
(GBM) structures such as Regularized Lightweight Artificial Neural Network (RELAD-ANN) and Light
Gradient Boosting Machine (LightGBM) also provide plausible ways to combine computational complexity and
predictive performance for real-time world solar energy systems?°.

This study aims to systematically evaluate the prediction of solar power output using multiple advanced DL
algorithms. The particular aim of the study is to assess the accuracy of eight DL models—Autoencoders, GRU,
RNN, LSTM, Transformer, CNN, TCN, and InformerLite—in forecasting solar power generation. By means of
important performance criteria like Coeflicient of Determination (R?) scores, Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), mean, Standard Deviation (SD), and
Relative Standard Deviation (RSD) of the predictions generated on the test set, the study aims to evaluate the
precision and dependability of these models. The goal of this work is to identify the most suitable DL algorithm
for solar power generation prediction. This involves analyzing the models’ ability to faithfully depict complex
time-based patterns and nonlinear linkages within the data. Moreover, the study also seeks to deliver actionable
insights into the strengths and limitations of each model in the context of renewable energy forecasting, thereby
supporting the integration of solar power into the energy grid. Through better understanding of how DL may
improve solar power forecasting, the study advances more reliable and effective renewable energy systems.
Finally, reaching these targets will offer important new perspectives on the field of renewable energy forecasting,
thereby supporting better decision-making and solar power generation optimization.

The objectives of the proposed research include the development of a robust and scalable model for accurate
solar power prediction using state-of-the-art DL techniques. As shown in Fig. 1, a major contribution of this
work is to extend beyond the conventional “Model Training” approach, testing a broad range of neural network
architectures, judging them not only on predictive performance but also based on efficiency and deployability.
It is intended to be extensible and modular in nature for example researchers should be able to easily add
new models and types of data. Moreover, practical aspects such as uncertainty estimation and automatic result
generation are emphasized, making the solution viable for real-world energy systems.

Methodology

Data presentation

In this study, this dataset comprises 4200 samples of historical records of solar power generation, and for
each record, each annotated with total of 20 meteorological and astronomical input features and as well as
one target output, the generated power in kilowatts. The input parameters include the temperature, humidity,
pressure, precipitation, cloud cover at multi-levels altitude, solar radiation, wind level at different heights, and
pressure levels, solar angle of incidence, solar position angle such as zenith and azimuth.

To analyze inter-feature relationships, this study calculated a correlation matrix as shown in Figure 2.
This heatmap illustrates the positive or negative linear correlations between the variables. Shortwave radiation
and zenith is correlated most strongly with the output power with the other variables of humidity and azimuth
also having moderate correlation. Strong inter-correlations across different wind layers were evident, indicating
redundancy that could be reduced by selecting of features.

Besides correlation analysis, Lasso regression was used to perform feature selection and to measure the
importance of the independent variables against the target output. A resulting plot of feature importance is
displayed in Fig. 3 and shortwave radiation is identified as the most indicative feature value, and then mean
sea level pressure, wind speed at 80 m, and wind direction at 80 m also are influential. In contrast, the angle
of incidence and azimuth were penalized to very low coefficients in practise, meaning that the angle of
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|
|
______________ | and construct 95% confidence intervals for model outputs. :

validation, and evaluation of deep learning models
| on solar power forecasting tasks.

SimpleRNN, GRU, LSTM, CNN, Transformer,
| InformerLite, Autoencoder, and TCN

: | Integrated Monte Carlo dropout during inference to estimate predictive uncertainty

 Model Efficiency Analysis

Evaluated each model in terms of training/inference time, parameter count, and

memory footprint, offering insight into both accuracy and computational cost.

Fig. 1. Key Contributions of the Proposed Solar Power Forecasting Framework.

incidence and azimuth only weakly contributed to the predictive model under the sparsity constraint of the
Lasso. These findings informed the future design of model inputs, allowing the elimination or reduction of low-
impact characteristics to optimize training and enhance generalization.

Deep learning algorithms

An evaluation was performed to compare the predictive power of a few DL models in the estimation of solar PV
power production. The proposed approach incorporates robust data pre-processing, an exploratory analysis,
and several DL techniques to provide accurate solar power generation predictions. The end-to-end system
is shown in Fig. 4.

Data Preparation

The work-flow starts by uploading a pre-processed dataset of historical solar plants generation as well as
correlated meteorological variables. The dataset is split into training, validation and test sets in the ratio of
(70:20:10) % to maintain neutrality while calculating the scores. The input space will be normalized with
standardization through feature scaling. The data is restructured into time-sequence for modeling sequences
with their temporal dependencies.

Exploratory data analysis and feature engineering

Exploratory Data Analysis (EDA) is performed prior to model estimation by a correlation matrix analysis which
provides insight into the relationships between features and suggests feature selection. The variable names are
recoded to have long names for the sake of intelligibility. Lasso regularization is used for feature importance
quantification and dimensionality reduction. The interpretations are visualized to help understanding and
interpretation of the model decisions.

Model Building

A broad array of DL models is employed to assess the efficacy of different architectures in predicting solar
power generation. The configuration features an Autoencoder, designed as a dense feedforward network with
a bottleneck layer to acquire compact latent representations of the input characteristics. RNNs, namely Simple
Recurrent Neural Network (SimpleRNN), GRU, and LSTM, are used to capture temporal correlations in
data because to their memory-based architecture. CNNs use one-dimensional convolutional layers to extract
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Fig. 2. Correlation matrix showing relationships between various features in the dataset.

localized temporal patterns. The TCN enhances temporal learning by using dilated causal convolutions and skip
connections, which aids in the detection of long-range temporal patterns. The Transformer can handle complex
relationships and take sequences into consideration at the same time due to its self-attention mechanisms.
InformerLite, a lightweight and efficient variant of Transformer, is well matched to the time series forecasting
task. All models are implemented with the Keras Application Programming Interface (API), backend TensorFlow
2.16, and as compared to this model, enhanced compatibility, scalability, and hardware acceleration support are
guaranteed.

Training and evaluation
Models are constructed with the Adam optimizer and trained with early stopping and learning rate reduction
callbacks. After learning, the inference is performed on all the datasets. Predictions are transformed back to the
original scale. Evaluation metrics include RMSE, MAE, MAPE, and R? are computed on training, validation,
and test sets. Several visualizations — including loss curves, scatter plots, solar azimuth comparisons, residual
histograms, and Confidence Intervals (CIs) — are produced for visual validation.

During testing Monte Carlo dropoutisused to calculate uncertainty intervals (95% confidence), contributing
to the interpretability of the model.

Result collection
All metrics are stored in a uniform format as CSV files for reproducibility and downstream analysis. Other
third-party tests for residual behavior, such as Shapiro-Wilk, Jarque-Bera, and Ljung-Box (if implemented) are
also applied. This work also reports model size, training/inference time, and RSD of test predictions for a more
complete comparison.

Figure 4 provides a complete overview of the entire methodology pipeline, from raw data ingestion to model
evaluation and result export.

Experimental setup and configuration parameters

The experimental design of this work was meticulously organized to guarantee uniformity, repeatability, and
dependable model assessment. The solar power generation recovery dataset was preprocessed with standard
normalization and divided into training, validation and test sets in a stratified manner. This work trained
multiple models with various DL architectures and fixed learning rate Adam optimization method with early
stopping to avoid overfitting. To evaluate the performance, this research used RMSE, MAE, MAPE, and R*
measures over various data partitions. Furthermore, this research also used Monte Carlo dropout for predicting
uncertainty. Table 1 gives a comprehensive overview of the major parameters applied in this study, including the
configuration of the data processing, the choice of the model, the options in the training, and the diagnostic
tests.
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Fig. 3. Lasso Regression-Based Feature Importance for Solar Power Forecasting.

Evaluation metrics
A composite accuracy measure consisting of accuracy, reliability, and statistical consistency measures was
adopted to provide a complete characterization to the forecasting performance of the proposed DL models for
solar power generation. Equation (1), Eq. (2), and Equation (3) were applied to the aggregate data, training data,
and test data to compute R? for the aggregate, training and test data sets respectively. These scores quantify the
proportion of variance in the observed data that is explained by the predictions. To assess prediction accuracy
more concretely, standard error-based metrics were applied. The RMSE, which penalizes larger deviations, is
presented in Eq. (4). The MAE, which measures the average magnitude of errors without considering their
direction, is formulated in Eq. (5). Similarly, Eq. (6) defines the MAPE, a relative metric that expresses errors as a
percentage of the actual values. To enhance comprehension of the distributional characteristics of model outputs
on the test set, the Mean of Test Predictions is determined as illustrated in Eq. (7), and its SD is derived using
Eq. (8). Finally, Eq. (9) delineates the RSD, which provides a standardized measure of variability in relation to the
mean. Collectively, these criteria offer a thorough assessment of predictive performance concerning accuracy,
stability, and generality.
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Fig. 4. Flowchart of the Proposed Solar Generation Prediction Framework Using Deep Learning Algorithms.

Scientific Reports|  (2025) 15:31729 | https://doi.org/10.1038/s41598-025-14908-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Category Parameter Value / Setting
Random Seed 42

General Setup Framework Keras 3 with TensorFlow 2.16
Dataset File “Dataset.csv”

Data Processing

Train / Validation / Test Split

70% / 20% / 10%
(via 30% split then 1/3 split of temp set)

Feature Scaling Method

StandardScaler
(z-score normalization)

Time Series Conversion

Reshaping input as sequences with shape
(features, 1)

Feature Engineering

Feature Renaming

Applied for clarity
(e.g., temperature 2 m above gnd-> Temp 2m)

Feature Selection

Lasso Regression
(alpha = 0.001)

Optimizer

Adam

Learning Rate

0.001

Optimization Loss Function Mean Squared Error (MSE)
Early Stopping patience = 10 epochs, restore best weights
Learning Rate Scheduler ReduceLROnPlateau, patience = 5 epochs
Epochs 200 (with early stopping)

Training Configuration
Batch Size 32

Evaluation Metrics

Forecast Metrics

RMSE, MAE, MAPE, R*

Diagnostic Tests

Shapiro-Wilk, Jarque-Bera, Ljung-Box

Uncertainty Estimation

Monte Carlo Dropout (100 runs)

Visualization Plots Loss curves, predicted vs. real scatter, azimuth plots, residual histograms, 95% CIs
Autoencoder Dense + Bottleneck + Reconstruction
RNN Models SimpleRNN, GRU, LSTM
CNN 1D Conv + MaxPooling + Global Avg Pooling
Models Evaluated
TCN Dilated Causal Convolutions
Transformer Multi-Head Attention blocks with feedforward layers
InformerLite Causal Conv + Attention + Global Avg Pooling

Table 1. Summary of experimental parameters and model configuration.

Results
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To evaluate the performance of a number of advanced DNN models for predicting solar power generation, this
study performed extensive experiments with a variety of architectures. Model performance was tested on three
sets: training, validation, and testing. RMSE, MAE, MAPE, R* were accepted as standard regression measures
of performance. In addition, uncertainty quantification and residual analysis were carried out for diagnostic

purposes.
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Model complexity and efficiency

Table 2 delineates the intricacies of model complexity and runtime. The Autoencoder had the highest
computational efficiency, characterized by the minimal parameter count and compact model size (3,537
parameters, approximately 75 KB), with the briefest training duration (around 5.7 s). Conversely, the Transformer
and TCN, despite their greater complexity (93,574 and 86,913 parameters respectively), need considerably
longer training durations (~17.8s and ~ 32.1s).

Model training and convergence behavior

Figure 5 shows the MSE loss of each model on training and validation. From the models, among the models
Autoencoder and TCN showed the stable and faster convergence. On the other hand, the Transformer model
had large validate loss implying overfitting or not enough feature extraction in this domain.

Prediction accuracy on training data

Figure 6 illustrates the prediction performance of the models on the training set. The Autoencoder, TCN,
and SimpleRNN models exhibited a high correlation between anticipated and actual values, signifying robust
learning capability. Table 3 corroborates this, indicating that the Autoencoder attained the greatest R* of 0.8677,
with the TCN closely following at R* = 0.8374. Conversely, the Transformer had a markedly worse performance,
achieving a R? of just 0.1551.

Generalization to validation set

For comparisons the model predictions on the test set are depicted in Fig. 7, revealing that models such as the
Autoencoder and TCN did well on data it had experienced before. This is reinforced by Table 4, it is shown
that the Autoencoder obtains R* of 0.7978 and the TCN follows with 0.7853. These results demonstrate strong
generalization.

Azimuthal feature interpretability

Figures 8 and 9 analyze how model predictions vary with solar azimuth, a key feature in solar forecasting.
Across both training and test sets, models like the Autoencoder and TCN consistently tracked the real values,
reinforcing their robustness and capacity to incorporate temporal and directional features effectively.

Residual error distribution

The residual distributions shown in Fig. 10 provide further insights into model reliability. The Autoencoder and
TCN had relatively symmetric and narrow error distributions, suggesting minimal bias and lower variance in
predictions. The Transformer, on the other hand, exhibited a broader spread and signs of skewness, aligning with
its poor test performance.

Uncertainty Estimation with Monte Carlo dropout

Figure 11 shows that the 95% Cls produced with Monte Carlo dropout applied to the test predictions. The
TCN and Autoencoder models come out on top in terms of providing accurate predictions and also relatively
tight confidence bands, indicating high prediction confidence and robustness. The high degree of reliability is
essential in real-world applications, for example in grid management of solar energy, where the uncertainty
estimation has a significant impact for the operational decision process.

Test set performance comparison

Table 5 presents test set performance, ordered by R>. The TCN led with an R* of 0.7786, followed by the
Autoencoder (0.7648) and SimpleRNN (0.7303). The Transformer again performed the worst (R* = 0.0714),
affirming its unsuitability in this context without significant tuning or architectural adaptation.

Extended model evaluation

Further insight into model behaviour is studied with other metrics, such as RSD and global R? over the entire
dataset as shown in Table 6. The Autoencoder obtained the highest R*> (Whole), overall (0.8437), indicating
good performance over all partitions. In addition, the RSD of (RSD = 0.7499) was in reasonable limits between
variability and accuracy.

Model Parameters | Model Size (KB) | Training Time (s) | Inference Time (s)
Autoencoder 3537 75.8096 5.6740 0.0183
SimpleRNN 4289 75.9639 8.3670 0.1554
Transformer | 93,574 1212.7295 17.8085 0.7601
LSTM 16,961 224.5088 20.3755 0.2510
InformerLite | 29,313 396.6299 21.4353 0.1641
CNN 6465 108.0205 21.6511 0.0401
GRU 12,929 177.2500 25.5519 0.2741
TCN 86,913 1132.4961 32.0912 0.4429

Table 2. Model complexity and runtime metrics sorted by training duration (Seconds).
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Fig. 5. Training and validation loss curves (Mean Squared Error) for various deep learning architectures

applied to solar power forecasting: (a) Transformer, (b) LSTM, (c) GRU, (d) CNN, (e) InformerLite, (f)

SimpleRNN, (g) Temporal Convolutional Network (TCN), and (h) Autoencoder.
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Fig. 6. Predicted versus actual solar power generation (in kW) on the training dataset for different deep
learning models: (a) Transformer, (b) LSTM, (c) GRU, (d) CNN, (e) InformerLite, (f) SimpleRNN, (g)
Temporal Convolutional Network (TCN), and (h) Autoencoder.
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Model RMSE MAE MAPE R

Transformer | 862.0321 | 745.9043 | 148581.6866 | 0.1551
LSTM 525.9054 | 418.8194 | 25620.8813 | 0.6855
GRU 486.6311 | 385.2489 | 24411.0665 | 0.7307
CNN 462.4756 | 345.9687 | 18104.5631 | 0.7568

InformerLite | 423.7508 | 313.7759 | 30930.4242 | 0.7958
SimpleRNN | 410.9217 | 315.5270 | 21515.0806 | 0.8080
TCN 378.1977 | 270.5365 | 11125.2028 | 0.8374
Autoencoder | 341.0466 | 234.7443 | 13257.2408 | 0.8677

Table 3. Evaluation metrics on training set ordered by increasing R* (Lower to higher Efficiency).

Future work

Future studies should focus on the scalability, robustness, and adaptability of DL models for solar power
prediction. One interesting bracket includes hybrid architectures that merge convolutional layers with
temporal models such as LSTM or attention-based transformers. This kind of hibridization could allow for
the simultaneous modeling of short-term characteristics and long-range dependence in solar power data.
Similarly, ensemble methods such as model averaging or stacking, which could combine the power of different
architectures and make more accurate and smoother predictions, are also worth investigating. Validation across
geographic locations with varying climates would be needed to ensure the models generalize well across sites.
This could be achieved with domain adaptation approaches or federated learning methodologies in order to
diminish the necessity of remedial training on a per-site basis. Furthermore, include satellite-derived variables
such as cloud drift, irradiance maps and atmospheric transparency from products like Geostationary Operational
Environmental Satellite (GOES) or Himawari can be a great help for the model in order to address fast weather
transitions. Future efforts will also explore extending the models to support multi-horizon forecasting, enabling
predictions several hours ahead to better support grid operations and energy storage management. Lastly,
optimizing the computational efficiency of models—especially those based on transformers—will be important
for enabling real-time deployment in embedded systems or edge computing environments, where resource
constraints are a key consideration.

Conclusion

This study evaluated a set of advanced DL models—including RNN variants (SimpleRNN, GRU, LSTM), CNN,
Transformer, Informer, Autoencoder, and TCN —for the task of solar power forecasting using a diverse range
of meteorological and solar positional features. The TCN architecture achieved the best predictive performance
according to performance metrics in general, particularly on the test data, which reflected its strong capacity
for capturing the significant temporal patterns in an organized, robust and general manner. The Autoencoder
model also exhibited good performance across the board, as marginally the best sequence-based model and in
terms of clustering representing low-dimensional temporal features. On the other hand, the Transformer model
did much worse than anticipated, by achieving the lowest R? on the test data, and the findings suggest it may not
be suitable for this forecasting task given the input feature set and length of sequence, at least. GRU and LSTM
based models had moderate success but appeared to underfit to longer dependencies without the presence of
further attention mechanisms or architectural modifications. Reasonable level of the test performance on
InformerLite and CNN’s better to capture short-term and mid-term of the temporal dependency. Nevertheless,
this study is not without limitations. This dataset is geographically limited, and the generalization of these
models in different climatic zones or terrains may be limited. The experiments only consider the next single
time step prediction and do not encompass the multi-horizon complexity that is relevant to energy planning
and control. Additionally, no satellite imagery or real-time sky state information are included in the model
inputs, which could be useful to enhance forecast accuracy under overcast conditions. Overall, the models
exhibit very strong performance in the present settings but more improvements and wider testing are necessary
for deployment in practice.
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Fig. 7. Predicted versus actual solar power generation (in kW) on the test dataset for different deep learning
models: (a) Transformer, (b) LSTM, (c) GRU, (d) CNN, (e) InformerLite, (f) SimpleRNN, (g) Temporal
Convolutional Network (TCN), and (h) Autoencoder.
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Model RMSE MAE MAPE R

Transformer | 864.4696 | 755.1639 | 101714.3527 | 0.1712
LSTM 539.8949 | 427.3706 | 33203.2621 | 0.6767
GRU 513.7007 | 394.8666 | 33446.1366 | 0.7073
CNN 495.7869 | 370.4419 | 16653.6720 | 0.7274
InformerLite | 480.1903 | 351.7369 | 39847.8133 | 0.7443
SimpleRNN | 472.0302 | 355.3144 | 21852.0857 | 0.7529
TCN 439.9661 | 300.8601 | 15749.0408 | 0.7853
Autoencoder | 427.0279 | 285.8551 6525.7144 | 0.7978

Table 4. Evaluation metrics on validation set ordered by increasing R* (Lower to higher Efficiency).
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Fig. 8. Generated versus predicted solar power (in kW) as a function of solar azimuth (in degrees) on the
training dataset for different deep learning models: (a) Transformer, (b) LSTM, (c) GRU, (d) CNN, (e)
InformerLite, (f) SimpleRNN, (g) Temporal Convolutional Network (TCN), and (h) Autoencoder.
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Fig. 9. Generated versus predicted solar power (in kW) as a function of solar azimuth (in degrees) on the test
dataset for different deep learning models: (a) Transformer, (b) LSTM, (c) GRU, (d) CNN, (e) InformerLite, (f)
SimpleRNN, (g) Temporal Convolutional Network (TCN), and (h) Autoencoder.
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Fig. 10. Residual error distributions (in kW) on the test dataset for different deep learning models, visualized
with histograms and kernel density estimates: (a) Transformer, (b) LSTM, (c) GRU, (d) CNN, (e) InformerLite,
(f) SimpleRNN, (g) Temporal Convolutional Network (TCN), and (h) Autoencoder.
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Fig. 11. Predicted versus actual solar power generation (in kW) with 95% confidence intervals (CI) for the
first 200 samples from the test dataset, using Monte Carlo dropout-based uncertainty estimation for different
deep learning models: (a) Transformer, (b) LSTM, (c) GRU, (d) CNN, (e) InformerLite, (f) SimpleRNN, (g)
Temporal Convolutional Network (TCN), and (h) Autoencoder.
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Model RMSE MAE MAPE R

Transformer | 879.6619 | 745.8583 | 35820.3200 | 0.0714
LSTM 543.2085 | 433.6328 | 23050.6910 | 0.6459
GRU 515.3331 | 403.0911 | 23191.7061 | 0.6813
CNN 482.4263 | 366.5691 | 28959.5578 | 0.7207

SimpleRNN | 474.0869 | 362.3404 | 33187.8351 | 0.7303

InformerLite | 475.2679 | 360.5724 | 20010.0381 | 0.7289

Autoencoder | 442.6765 | 298.2939 | 18438.3318 | 0.7648

TCN 429.4863 | 306.5778 | 26614.8583 | 0.7786

Table 5. Test set performance of deep learning models ordered by increasing R* (Lower to higher Efficiency).

Model R* (Whole) | R* (Train) | R* (Test) | Mean (Test) | SD (Test) | RSD

Transformer | 0.1506 0.1551 0.0714 1099.4890 455.0978 | 0.4139
LSTM 0.6800 0.6855 0.6459 1126.9376 617.3073 | 0.5478
GRU 0.7213 0.7307 0.6813 1130.9634 654.9133 | 0.5791
CNN 0.7474 0.7568 0.7207 1141.4810 766.4372 | 0.6714
InformerLite | 0.7789 0.7958 0.7289 1116.9305 793.1338 | 0.7101
SimpleRNN | 0.7894 0.8080 0.7303 1160.7808 722.1749 | 0.6221
Autoencoder | 0.8437 0.8677 0.7648 1131.9559 848.8374 | 0.7499
TCN 0.8211 0.8374 0.7786 1147.5944 783.4791 | 0.6827

Table 6. Extended performance metrics ordered by increasing R” on test set (R” - test).
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