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Integrating renewable energy sources into the electricity grid requires accurate forecasts of solar power 
production. With the aim of enhancing the accuracy and reliability of forecasts, this study presents 
a comprehensive comparative analysis of eight state-of-the-art Deep Learning (DL) architectures—
Autoencoder, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Simple Recurrent 
Neural Network (SimpleRNN), Convolutional Neural Network (CNN), Temporal Convolutional 
Network (TCN), Transformer, and Lightweight Informer for Long Sequence Time-Series Forecasting 
(InformerLite)—applied to solar power prediction using a dataset with 4,200 historical records and 
20 meteorological and astronomical features. A comprehensive assessment of Root Mean Squared 
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAP E), 
and Coefficient of Determination 

(
R2)

 metrics was performed on the training, validation, and test 

datasets. The TCN model had the greatest performance across all models, achieving a test R² of 0.7786, 
an RMSE of 429.4863, and a balanced relative standard deviation ( RSD) of 0.6827, so exhibiting 
an exceptional capacity to capture temporal patterns. The Autoencoder achieved a R2 of 0.7648 and 
had the greatest overall performance on the entire dataset, resulting in a Whole R2 of 0.8437. In 
contrast, the Transformer model demonstrated significantly poorer performance (Test R2 = 0.0714), 
underscoring its limitations in this context without any architectural modifications. This study not only 
demonstrates the best DL models for solar power forecasting as qualified by useful statistical metrics, 
but also provides a scalable, interpretable, and extensible forecasting framework for real-world 
energy systems. The findings verify the informed DL integration to smart grid scenarios, laying the 
foundations for further developments in hybrid modeling, multi-horizon prediction, and deployment in 
resource-constrained environments with limited computational power and resources.
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Abbreviations
Abbreviation	� Full Form
AI	� Artificial Intelligence
ANN	� Artificial Neural Network
API	� Application Programming Interface
ARIMA	� AutoRegressive Integrated Moving Average
CI	� Confidence Interval
CNN	� Convolutional Neural Network
DL	� Deep Learning
DNN	� Deep Neural Network
EDA	� Exploratory Data Analysis
EEMD	� Ensemble Empirical Mode Decomposition
EV	� Electric Vehicle
GBM	� Gradient Boosting Machine
GOES	� Geostationary Operational Environmental Satellite
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GRU	� Gated Recurrent Unit
InformerLite	� Lightweight Informer for Long Sequence Time-Series Forecasting
LightGBM	� Light Gradient Boosting Machine
LSTM	� Long Short-Term Memory
MAE	� Mean Absolute Error
MAPE	� Mean Absolute Percentage Error
ML	� Machine Learning
MSE	� Mean Squared Error
PV	� Photovoltaic
RELAD-ANN	� Regularized Lightweight Artificial Neural Network
RF	� Random Forest
RMSE	� Root Mean Squared Error
RNN	� Recurrent Neural Network
RSD	� Relative Standard Deviation
R²	� Coefficient of Determination
SD	� Standard Deviation
SEFMNN	� Stack-based Ensemble Fusion with Meta-Neural Network
SimpleRNN	� Simple Recurrent Neural Network
TCN	� Temporal Convolutional Network
TIR	� Transformer-Infused Recurrent Neural Network
XGB-SE	� Extreme Gradient Boosting - Stacked Ensemble

The  continuously increasing world-wide demand for alternative sources of clean and sustainable energy has 
placed a bigger emphasis on the accurate forecasting of solar electricity production. One extremely exciting 
renewable energy source that requires precise prediction models to be included in the energy system as best 
as possible, enhance energy management, and ensure dependability is solar energy. Traditional time series 
forecasting methods fail  to model well the complex, non-linear patterns present in solar power data1–3. As 
such, using advanced Deep Learning (DL) techniques to improve prediction accuracy has attracted growing 
attention. The purpose of this study is to evaluate in forecasting solar power generation the efficiency of 
eight DL algorithms: Lightweight Informer for Long Sequence Time-Series Forecasting (InformerLite), Long 
Short-Term Memory (LSTM), Autoencoders, Gated Recurrent Unit (GRU), Recurrent Neural Network 
(RNN), Transformer, Convolutional Neural Network (CNN), and Temporal Convolutional Network (TCN). 
Several of these models, particularly sequence-based architectures such as LSTM, GRU, RNN, and TCN, have 
demonstrated strong capabilities in capturing temporal dependencies and non-linear interactions within large-
scale time series datasets4. The study aims to identify the most reliable and accurate model for solar power 
forecasting by comparing several methods, thereby advancing renewable energy technology and its application 
in sustainable energy systems.

Precise prediction of solar power generation is essential for several reasons. First and foremost, it facilitates 
the seamless incorporation of solar energy into the electrical grid, thus aiding in the equilibrium of energy 
supply and demand and diminishing dependence on non-renewable energy sources. Accurate predictions, 
enable grid managers to properly control the energy storage systems, which reduce impacts  due to the solar 
energy variations5. Furthermore, a reliable and accurate prediction  is of great importance to ensure the financial 
profitability of solar energy by increasing the performance and controllability of solar parks. Thus, although 
operating expenses of the company have dropped, investment income has grown6. Reliable projections also 
facilitate the establishment of well-considered and knowledgeable judgments on next solar energy projects, 
so promoting the switch to renewable and sustainable energy sources. Effective assessments of solar energy 
generation, as a result, can help decrease the risk of power interruption and  establish an available power supply 
by enhancing power system stability and reliability to the grid. Thus, to help meet global energy targets, support 
the environmental accountability of developers, and foster the technological advancements for  renewable 
energy, enhancing the solar energy yield prediction capability is of paramount importance.

In solar power forecasting, DL has evolved into a powerful tool with clear benefits over more traditional 
methods. Sometimes the complex, nonlinear links and temporally dependent patterns in solar power data are 
too difficult for conventional statistical models to adequately depict. Conversely, DL algorithms excel in these 
fields and consequently have rather great success in time-series prediction. Using large datasets not readily 
visible with conventional approaches allows DL models to discover intricate patterns and trends7–9.

An accurate estimate of solar power output is crucial for achieving the highest level of integration of solar 
energy into the power system. However, due to the intricate and nonlinear characteristics of solar data, which are 
impacted by various climatic and environmental factors, existing forecasting algorithms are unable to accurately 
predict solar power output. Inappropriate grid management, higher running costs, and less reliability of solar 
power plants follow from this disparity. Finding and appreciating the best DL techniques for handling complex 
solar power data and generating accurate forecasts is crucial10.

The application of Machine Learning (ML) and DL in Photovoltaic (PV) systems has improved the 
performance, reliability, and predictability of solar energy applications. ML methods are everywhere utilized to 
accurately predict solar power generation and ambient conditions influencing PV yield11–13. On the other hand, 
DL approaches have proved to be highly successful for automation problems, for example defect detection in solar 
cells14, fault detection and performance predication15, surface condition monitoring via image classification16. In 
addition, advanced image process and computer vision techniques have allowed for accurate PV panel damage 
detection which further facilitates predictive maintenance and operating optimization17. These developments 
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highlight the importance of smart algorithms in making PV systems smarter, more adaptive and more robust 
energy conversion tools.

The development of DL has boosted  the credibility and accuracy of solar power prediction, mainly in fields 
like Electric Vehicle (EV) battery swap station, and integrated grid connection of renewable energy. For example, 
the application of LSTM models to forecast the solar power availability in EV swapping stations can contribute 
to  an optimal scheduling of the battery charging, ultimately decreasing the reliance on the grid and improving 
energy efficiency18. DL techniques, including LSTM, AutoRegressive Integrated Moving Average (ARIMA), and 
Dual Attention-based RNNs, have been evaluated for solar irradiance forecasting, with LSTM models exhibiting 
enhanced performance in error reduction and real-time application19. Although solar forecasting is a primary 
emphasis, the application of ML in infrastructure monitoring has also gained traction. Research employing 
magnetostrictive sensors alongside decision trees and neural networks has attained elevated classification 
accuracy for bridge health evaluation, demonstrating the adaptability of ML in sensor-driven predictive 
modeling20. The amalgamation of Random Forest (RF) and Deep Neural Network (DNN) with frequency 
domain data has facilitated real-time structural integrity monitoring in prototype beam bridges, demonstrating 
the wider application of these methods beyond energy sectors21.

Recent hybrid architectures, which combine recurrent with attention-based mechanisms, such as the 
Transformer-Infused Recurrent Neural Network (TIR), have proved effective in maintaining data  complexity 
and temporal dependence22. Ensemble learning methods have  therefore recently been attracting significant 
attention, such as Stack-based Ensemble Fusion with Meta-Neural Network (SEFMNN) and Extreme Gradient 
Boosting-Stacked Ensemble (XGB-SE), which have obtained state-of-the-art results in different regions by 
combining a variety of base-learners23. In addition, decomposition methods for example Ensemble Empirical 
Mode Decomposition (EEMD) have also been widely used  for enhancing model interpretability and prediction 
accuracy by extracting the intrinsic signal modes before inputting them to neural architectures including LSTM 
and Artificial Neural Network (ANN)24. Recent reviews have clarified the transformative  effects of DL and 
ML technologies have on solar forecasting and potential to counter nonlinearities and uncertainties found 
in solar irradiance data, which in turn can help improve grid reliability and sustainable energy planning25. 
Additionally, recent advancements in modified ANN structures and lightweight Gradient Boosting Machine 
(GBM) structures such as Regularized Lightweight Artificial Neural Network (RELAD-ANN) and Light 
Gradient Boosting Machine (LightGBM) also provide plausible ways to combine computational complexity and 
predictive performance for real-time  world solar energy systems26.

This study aims to systematically evaluate the prediction of solar power output using multiple advanced DL 
algorithms. The particular aim of the study is to assess the accuracy of eight DL models—Autoencoders, GRU, 
RNN, LSTM, Transformer, CNN, TCN, and InformerLite—in forecasting solar power generation. By means of 
important performance criteria like Coefficient of Determination (R²) scores, Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), mean, Standard Deviation (SD), and 
Relative Standard Deviation (RSD) of the predictions generated on the test set, the study aims to evaluate the 
precision and dependability of these models. The goal of this work is to identify the most suitable DL algorithm 
for solar power generation prediction. This involves analyzing the models’ ability to faithfully depict complex 
time-based patterns and nonlinear linkages within the data. Moreover, the study also seeks to deliver actionable 
insights into the strengths and limitations of each model in the context of renewable energy forecasting, thereby 
supporting the integration of solar power into the energy grid. Through better understanding of how DL may 
improve solar power forecasting, the study advances more reliable and effective renewable energy systems. 
Finally, reaching these targets will offer important new perspectives on the field of renewable energy forecasting, 
thereby supporting better decision-making and solar power generation optimization.

The objectives of the  proposed research include the development of a robust and scalable model for accurate 
solar power prediction using state-of-the-art DL techniques. As shown in Fig. 1, a major contribution of this 
work is to extend beyond the conventional “Model Training” approach, testing a broad range of neural network 
architectures, judging them not  only on predictive performance but also based on efficiency and deployability. 
It is intended to be extensible and modular in nature for example researchers should be able to easily add 
new  models and types of data. Moreover, practical aspects such as uncertainty estimation and automatic result 
generation are emphasized, making the solution viable for real-world energy systems.

Methodology
Data presentation
In this study, this dataset comprises 4200 samples of historical records of solar power generation, and for 
each record, each annotated with total of 20 meteorological and astronomical input features and as well as 
one target  output, the generated power in kilowatts. The input parameters include the temperature, humidity, 
pressure, precipitation, cloud cover  at multi-levels altitude, solar radiation, wind level at different heights, and 
pressure levels, solar angle of incidence, solar position angle such as zenith and azimuth.

To analyze inter-feature relationships, this study calculated a correlation matrix as shown in Figure  2. 
This  heatmap illustrates the positive or negative linear correlations between the variables. Shortwave radiation 
and zenith is correlated most strongly with the output power with the other variables of humidity  and azimuth 
also having moderate correlation. Strong inter-correlations across different wind layers were evident, indicating 
redundancy that could  be reduced by selecting of features.

Besides correlation analysis, Lasso regression  was used to perform feature selection and to measure the 
importance of the independent variables against the target output. A resulting plot of feature importance is 
displayed in Fig. 3 and shortwave radiation is identified as the most indicative feature value, and then mean 
sea level pressure, wind speed at 80 m, and wind direction  at 80 m also are influential. In contrast, the angle 
of incidence and azimuth were penalized to very low coefficients in practise, meaning that the angle of 
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incidence  and azimuth only weakly contributed to the predictive model under the sparsity constraint of the 
Lasso. These findings informed the future design of model inputs, allowing the elimination or reduction of low-
impact characteristics to optimize training and enhance generalization.

Deep learning algorithms
An evaluation was performed to compare the predictive  power of a few DL models in the estimation of solar PV 
power production. The proposed approach incorporates robust data  pre-processing, an exploratory analysis, 
and several DL techniques to provide accurate solar power generation predictions. The end-to-end system 
is  shown in Fig. 4.

Data Preparation
The work-flow starts by uploading a pre-processed  dataset of historical solar plants generation as well as 
correlated meteorological variables. The dataset is split into training, validation and test sets in the ratio of 
(70:20:10) % to maintain neutrality while calculating the scores. The input  space will be normalized with 
standardization through feature scaling. The data is restructured into time-sequence for modeling sequences 
with  their temporal dependencies.

Exploratory data analysis and feature engineering
Exploratory Data Analysis (EDA) is performed  prior to model estimation by a correlation matrix analysis which 
provides insight into the relationships between features and suggests feature selection. The variable names are 
recoded to have long names for the sake of  intelligibility. Lasso regularization  is used for feature importance 
quantification and dimensionality reduction. The interpretations are visualized to help understanding and 
interpretation  of the model decisions.

Model Building
A broad array of DL models is employed to assess the efficacy of different architectures in predicting solar 
power generation. The configuration features an Autoencoder, designed as a dense feedforward network with 
a bottleneck layer to acquire compact latent representations of the input characteristics. RNNs, namely Simple 
Recurrent Neural Network (SimpleRNN), GRU, and LSTM, are used to capture temporal correlations in 
data because to their memory-based architecture. CNNs use one-dimensional convolutional layers to extract 

Fig. 1.  Key Contributions of the Proposed Solar Power Forecasting Framework.
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localized temporal patterns. The TCN enhances temporal learning by using dilated causal convolutions and skip 
connections, which aids in the detection of long-range temporal patterns. The Transformer can handle complex 
relationships and take sequences into consideration at the same  time due to its self-attention mechanisms. 
InformerLite, a lightweight and efficient  variant of Transformer, is well matched to the time series forecasting 
task. All models are implemented with the Keras Application Programming Interface (API), backend TensorFlow 
2.16, and as compared  to this model, enhanced compatibility, scalability, and hardware acceleration support are 
guaranteed.

Training and evaluation
Models are constructed with the  Adam optimizer and trained with early stopping and learning rate reduction 
callbacks. After learning, the inference is performed on all the  datasets. Predictions are transformed back to the 
original  scale. Evaluation metrics include RMSE, MAE, MAPE, and R2 are computed on training, validation, 
and test sets. Several visualizations — including loss curves, scatter plots, solar azimuth comparisons, residual 
histograms, and Confidence Intervals (CIs) —  are produced for visual validation.

During testing Monte Carlo dropout is used  to calculate uncertainty intervals (95% confidence), contributing 
to the interpretability of the model.

Result collection
All metrics are stored in a uniform  format as CSV files for reproducibility and downstream analysis. Other 
third-party tests for residual behavior, such as Shapiro–Wilk, Jarque–Bera, and Ljung–Box (if implemented)  are 
also applied. This work also  reports model size, training/inference time, and RSD of test predictions for a more 
complete comparison.

Figure 4 provides a complete overview of the entire methodology pipeline, from raw data ingestion to model 
evaluation and result export.

Experimental setup and configuration parameters
The experimental design of this work was meticulously organized to guarantee uniformity, repeatability, and 
dependable model assessment. The solar power generation recovery dataset was  preprocessed with standard 
normalization and divided into training, validation and test sets in a stratified manner. This work trained 
multiple models with various  DL architectures and fixed learning rate Adam optimization method with early 
stopping to avoid overfitting. To evaluate the  performance, this research used RMSE, MAE, MAPE, and R² 
measures over various data partitions. Furthermore, this research also used Monte  Carlo dropout for predicting 
uncertainty. Table 1 gives a comprehensive overview of the major parameters applied in this study, including the 
configuration of the data processing, the choice of the model, the options in  the training, and the diagnostic 
tests.

Fig. 2.  Correlation matrix showing relationships between various features in the dataset.
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Evaluation metrics
A composite accuracy measure consisting of accuracy, reliability, and statistical  consistency measures was 
adopted to provide a complete characterization to the forecasting performance of the proposed DL models for 
solar power generation. Equation (1), Eq. (2), and Equation  (3) were applied to the aggregate data, training data, 
and test data to compute R2 for the aggregate, training and test data sets respectively. These scores quantify the 
proportion of variance in the observed data that is explained by the predictions. To assess prediction accuracy 
more concretely, standard error-based metrics were applied. The RMSE, which penalizes larger deviations, is 
presented in Eq.  (4). The MAE, which measures the average magnitude of errors without considering their 
direction, is formulated in Eq. (5). Similarly, Eq. (6) defines the MAPE, a relative metric that expresses errors as a 
percentage of the actual values. To enhance comprehension of the distributional characteristics of model outputs 
on the test set, the Mean of Test Predictions is determined as illustrated in Eq. (7), and its SD is derived using 
Eq. (8). Finally, Eq. (9) delineates the RSD, which provides a standardized measure of variability in relation to the 
mean. Collectively, these criteria offer a thorough assessment of predictive performance concerning accuracy, 
stability, and generality.
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Fig. 3.  Lasso Regression-Based Feature Importance for Solar Power Forecasting.
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Fig. 4.  Flowchart of the Proposed Solar Generation Prediction Framework Using Deep Learning Algorithms.
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Results
To evaluate the performance of a number of advanced DNN models for predicting solar  power generation, this 
study performed extensive experiments with a variety of architectures. Model performance was tested on three 
sets: training, validation, and testing. RMSE, MAE, MAPE, R² were accepted as standard regression measures 
of performance. In  addition, uncertainty quantification and residual analysis were carried out for diagnostic 
purposes.

Category Parameter Value / Setting

General Setup

Random Seed 42

Framework Keras 3 with TensorFlow 2.16

Dataset File “Dataset.csv”

Data Processing

Train / Validation / Test Split 70% / 20% / 10%
(via 30% split then 1/3 split of temp set)

Feature Scaling Method StandardScaler
(z-score normalization)

Time Series Conversion Reshaping input as sequences with shape
(features, 1)

Feature Engineering
Feature Renaming Applied for clarity

(e.g., temperature_2_m_above_gnd → Temp_2m)

Feature Selection Lasso Regression
( alpha   =   0.001 )

Optimization

Optimizer Adam

Learning Rate 0.001

Loss Function Mean Squared Error (MSE)

Early Stopping patience   =   10 epochs, restore best weights

Learning Rate Scheduler ReduceLROnPlateau, patience   =   5 epochs

Training Configuration
Epochs 200 (with early stopping)

Batch Size 32

Evaluation Metrics

Forecast Metrics RMSE, MAE, MAPE, R²

Diagnostic Tests Shapiro-Wilk, Jarque-Bera, Ljung-Box

Uncertainty Estimation Monte Carlo Dropout (100 runs)

Visualization Plots Loss curves, predicted vs. real scatter, azimuth plots, residual histograms, 95% CIs

Models Evaluated

Autoencoder Dense + Bottleneck + Reconstruction

RNN Models SimpleRNN, GRU, LSTM

CNN 1D Conv + MaxPooling + Global Avg Pooling

TCN Dilated Causal Convolutions

Transformer Multi-Head Attention blocks with feedforward layers

InformerLite Causal Conv + Attention + Global Avg Pooling

Table 1.  Summary of experimental parameters and model configuration.
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Model complexity and efficiency
Table  2 delineates the intricacies of model complexity and runtime. The Autoencoder had the highest 
computational efficiency, characterized by the minimal parameter count and compact model size (3,537 
parameters, approximately 75 KB), with the briefest training duration (around 5.7 s). Conversely, the Transformer 
and TCN, despite their greater complexity (93,574 and 86,913 parameters respectively), need considerably 
longer training durations (~ 17.8s and ~ 32.1s).

Model training and convergence behavior
Figure 5 shows the MSE loss of  each model on training and validation. From the models, among the models 
Autoencoder  and TCN showed the stable and faster convergence. On the other hand,  the Transformer model 
had large validate loss implying overfitting or not enough feature extraction in this domain.

Prediction accuracy on training data
Figure 6 illustrates the prediction performance of the models on the training set. The Autoencoder, TCN, 
and SimpleRNN models exhibited a high correlation between anticipated and actual values, signifying robust 
learning capability. Table 3 corroborates this, indicating that the Autoencoder attained the greatest R² of 0.8677, 
with the TCN closely following at R² = 0.8374. Conversely, the Transformer had a markedly worse performance, 
achieving a R² of just 0.1551.

Generalization to validation set
For comparisons the  model predictions on the test set are depicted in Fig. 7, revealing that models such as the 
Autoencoder and TCN did well on data it had experienced before. This is  reinforced by Table 4, it is shown 
that the Autoencoder obtains R² of 0.7978 and the TCN follows with 0.7853. These results demonstrate  strong 
generalization.

Azimuthal feature interpretability
Figures  8 and 9 analyze how model predictions vary with solar azimuth, a key feature in solar forecasting. 
Across both training and test sets, models like the Autoencoder and TCN consistently tracked the real values, 
reinforcing their robustness and capacity to incorporate temporal and directional features effectively.

Residual error distribution
The residual distributions shown in Fig. 10 provide further insights into model reliability. The Autoencoder and 
TCN had relatively symmetric and narrow error distributions, suggesting minimal bias and lower variance in 
predictions. The Transformer, on the other hand, exhibited a broader spread and signs of skewness, aligning with 
its poor test performance.

Uncertainty Estimation with Monte Carlo dropout
Figure 11 shows that the 95% CIs produced with Monte  Carlo dropout applied to the test predictions. The 
TCN and Autoencoder models come out on top in terms of providing accurate predictions and also relatively 
tight confidence bands, indicating  high prediction confidence and robustness. The high degree of reliability is 
essential in real-world applications, for example in grid  management of solar energy, where the uncertainty 
estimation has a significant impact for the operational decision process.

Test set performance comparison
Table  5 presents test set performance, ordered by R². The TCN led with an R² of 0.7786, followed by the 
Autoencoder (0.7648) and SimpleRNN (0.7303). The Transformer again performed the worst (R² = 0.0714), 
affirming its unsuitability in this context without significant tuning or architectural adaptation.

Extended model evaluation
Further insight into model behaviour is studied with other metrics, such as RSD and global R² over the entire 
dataset  as shown in Table 6. The  Autoencoder obtained the highest R² (Whole), overall (0.8437), indicating 
good performance over all partitions. In addition, the RSD of (RSD  = 0.7499) was in reasonable limits between 
variability and accuracy.

Model Parameters Model Size (KB) Training Time (s) Inference Time (s)

Autoencoder 3537 75.8096 5.6740 0.0183

SimpleRNN 4289 75.9639 8.3670 0.1554

Transformer 93,574 1212.7295 17.8085 0.7601

LSTM 16,961 224.5088 20.3755 0.2510

InformerLite 29,313 396.6299 21.4353 0.1641

CNN 6465 108.0205 21.6511 0.0401

GRU 12,929 177.2500 25.5519 0.2741

TCN 86,913 1132.4961 32.0912 0.4429

Table 2.  Model complexity and runtime metrics sorted by training duration (Seconds).
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Fig. 5.  Training and validation loss curves (Mean Squared Error) for various deep learning architectures 
applied to solar power forecasting: (a) Transformer, (b) LSTM, (c) GRU, (d) CNN, (e) InformerLite, (f) 
SimpleRNN, (g) Temporal Convolutional Network (TCN), and (h) Autoencoder.
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Fig. 6.  Predicted versus actual solar power generation (in kW) on the training dataset for different deep 
learning models: (a) Transformer, (b) LSTM, (c) GRU, (d) CNN, (e) InformerLite, (f) SimpleRNN, (g) 
Temporal Convolutional Network (TCN), and (h) Autoencoder.
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Future work
Future studies should focus  on the scalability, robustness, and adaptability of DL models for solar power 
prediction. One interesting bracket includes hybrid architectures that merge convolutional layers with 
temporal models such as LSTM or attention-based  transformers. This kind of hibridization  could allow for 
the simultaneous modeling of short-term characteristics and long-range dependence in solar power data. 
Similarly, ensemble methods such as model averaging or stacking,  which could combine the power of different 
architectures and make more accurate and smoother predictions, are also worth investigating. Validation across 
geographic locations with varying climates would be needed to  ensure the models generalize well across sites. 
This could be achieved with domain adaptation approaches or  federated learning methodologies in order to 
diminish the necessity of remedial training on a per-site basis. Furthermore, include satellite-derived variables 
such as cloud drift, irradiance maps and atmospheric transparency from products like Geostationary Operational 
Environmental Satellite (GOES) or Himawari can  be a great help for the model in order to address fast weather 
transitions. Future efforts will also explore extending the models to support multi-horizon forecasting, enabling 
predictions several hours ahead to better support grid operations and energy storage management. Lastly, 
optimizing the computational efficiency of models—especially those based on transformers—will be important 
for enabling real-time deployment in embedded systems or edge computing environments, where resource 
constraints are a key consideration.

Conclusion
This study evaluated a set of advanced DL models—including RNN variants (SimpleRNN, GRU, LSTM), CNN, 
Transformer, Informer, Autoencoder, and TCN —for the task of solar power forecasting using a diverse range 
of meteorological and solar positional features. The TCN architecture achieved the best predictive performance 
according to performance metrics in general, particularly on the test data, which reflected its strong capacity 
for  capturing the significant temporal patterns in an organized, robust and general manner. The Autoencoder 
model also exhibited good performance across the board, as marginally the best sequence-based model and in 
terms of clustering representing low-dimensional  temporal features. On the other hand, the Transformer model 
did much worse  than anticipated, by achieving the lowest R² on the test data, and the findings suggest it may not 
be suitable for this forecasting task given the input feature set and length of sequence, at least. GRU and LSTM 
based models had moderate success but appeared to underfit to longer dependencies without the presence  of 
further attention mechanisms or architectural modifications. Reasonable level of the test performance on 
InformerLite and CNN’s  better to capture short-term and mid-term of the temporal dependency. Nevertheless, 
this study is not without  limitations. This dataset is geographically limited, and the generalization of  these 
models in different climatic zones or terrains may be limited. The experiments only consider the next single 
time step prediction and do not encompass the multi-horizon complexity that is relevant to energy planning 
and  control. Additionally,  no satellite imagery or real-time sky state information are included in the model 
inputs, which could be useful to enhance forecast accuracy under overcast conditions. Overall, the models 
exhibit very strong performance in the  present settings but more improvements and wider testing are necessary 
for deployment in practice.

Model RMSE MAE MAPE R²

Transformer 862.0321 745.9043 148581.6866 0.1551

LSTM 525.9054 418.8194 25620.8813 0.6855

GRU 486.6311 385.2489 24411.0665 0.7307

CNN 462.4756 345.9687 18104.5631 0.7568

InformerLite 423.7508 313.7759 30930.4242 0.7958

SimpleRNN 410.9217 315.5270 21515.0806 0.8080

TCN 378.1977 270.5365 11125.2028 0.8374

Autoencoder 341.0466 234.7443 13257.2408 0.8677

Table 3.  Evaluation metrics on training set ordered by increasing R² (Lower to higher Efficiency).
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Fig. 7.  Predicted versus actual solar power generation (in kW) on the test dataset for different deep learning 
models: (a) Transformer, (b) LSTM, (c) GRU, (d) CNN, (e) InformerLite, (f) SimpleRNN, (g) Temporal 
Convolutional Network (TCN), and (h) Autoencoder.
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Model RMSE MAE MAPE R²

Transformer 864.4696 755.1639 101714.3527 0.1712

LSTM 539.8949 427.3706 33203.2621 0.6767

GRU 513.7007 394.8666 33446.1366 0.7073

CNN 495.7869 370.4419 16653.6720 0.7274

InformerLite 480.1903 351.7369 39847.8133 0.7443

SimpleRNN 472.0302 355.3144 21852.0857 0.7529

TCN 439.9661 300.8601 15749.0408 0.7853

Autoencoder 427.0279 285.8551 6525.7144 0.7978

Table 4.  Evaluation metrics on validation set ordered by increasing R² (Lower to higher Efficiency).
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Fig. 8.  Generated versus predicted solar power (in kW) as a function of solar azimuth (in degrees) on the 
training dataset for different deep learning models: (a) Transformer, (b) LSTM, (c) GRU, (d) CNN, (e) 
InformerLite, (f) SimpleRNN, (g) Temporal Convolutional Network (TCN), and (h) Autoencoder.
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Fig. 9.  Generated versus predicted solar power (in kW) as a function of solar azimuth (in degrees) on the test 
dataset for different deep learning models: (a) Transformer, (b) LSTM, (c) GRU, (d) CNN, (e) InformerLite, (f) 
SimpleRNN, (g) Temporal Convolutional Network (TCN), and (h) Autoencoder.
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Fig. 10.  Residual error distributions (in kW) on the test dataset for different deep learning models, visualized 
with histograms and kernel density estimates: (a) Transformer, (b) LSTM, (c) GRU, (d) CNN, (e) InformerLite, 
(f) SimpleRNN, (g) Temporal Convolutional Network (TCN), and (h) Autoencoder.
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Fig. 11.  Predicted versus actual solar power generation (in kW) with 95% confidence intervals (CI) for the 
first 200 samples from the test dataset, using Monte Carlo dropout-based uncertainty estimation for different 
deep learning models: (a) Transformer, (b) LSTM, (c) GRU, (d) CNN, (e) InformerLite, (f) SimpleRNN, (g) 
Temporal Convolutional Network (TCN), and (h) Autoencoder.

 

Scientific Reports |        (2025) 15:31729 18| https://doi.org/10.1038/s41598-025-14908-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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