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decision-making framework for
sustainability evaluation and risk
assessment in manufacturing
industries

Maha M. Saeed?, SagvanY. Musa3, Baravan A. Asaad“* & Zanyar A. Ameen®™’

Sustainability evaluation in manufacturing industries is increasingly vital for promoting responsible
growth and long-term competitiveness amid environmental, social, and economic challenges.
Effective decision-making (DM) under uncertainty is crucial for managing multiple, often conflicting
sustainability objectives. In this paper, we propose a novel hybrid model, termed Pythagorean fuzzy
N-bipolar soft sets (PFNBSSs), which integrates Pythagorean fuzzy sets (PFSs), N-soft sets (NSSs),
and bipolar soft sets (BSSs) within a unified multi-criteria decision-making (MCDM) framework. For
theoretical purposes, we define basic operations and algebraic properties of PFNBSSs, supported by
illustrative examples. To demonstrate practical applicability, the PFNBSS model is applied to assess
sustainability practices in manufacturing industries through two numerical examples: one focusing on
positive and negative sustainability indicators, and another emphasizing comparative sustainability
risk assessment across diverse manufacturing sectors. Detailed interpretations of computational
results and their relevance in practical DM are provided. This is followed by a comparative analysis
confirming the superior discrimination power and expressive capability of the PFNBSS model over
existing alternatives. The paper concludes with a critical evaluation of the model and suggestions for
future research.

Keywords Pythagorean fuzzy N-bipolar soft sets, N-soft sets, Pythagorean fuzzy sets, MCDM, Sustainable
Manufacturing Evaluation

In real-world DM, scenarios often involve complex evaluations where multiple factors, conflicting criteria, and
uncertain information coexist. For instance, consider a manufacturing company aiming to select a new supplier
based on sustainability practices. Decision-makers must assess not only positive attributes such as eco-friendly
production and ethical sourcing but also negative concerns, including cost implications, potential supply
chain disruptions, and sustainability risks. Furthermore, evaluations are rarely binary; suppliers may partially
fulfill sustainability goals or present varying degrees of risk. However, many existing models lack the ability
to simultaneously capture multilevel, bipolar, and uncertain information-particularly when balancing both
positive drivers and risk factors-limiting their applicability in complex decision contexts. This gap motivates
the development of enhanced soft computing frameworks capable of addressing these multifaceted challenges.
To tackle these issues effectively, various mathematical frameworks have been proposed to manage the
uncertainty and vagueness inherent in real-world problems. One foundational approach is fuzzy set (FS) theory,
introduced by Zadeh!, which enables the representation of partial membership degrees (MDs) of elements

1Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.0.Box 80203, Jeddah 21589, Saudi
Arabia. 2Department of Mathematics, College of Education, University of Zakho, Zakho 42002, Iraq. 3Department
of Computer Science, College of Science, Knowledge University, Kirkuk Road, Erbil 44001, Iraq. “Department of
Mathematics, College of Science, University of Zakho, Zakho 42002, Iraq. *Department of Computer Science,
College of Science, Cihan University-Duhok, Duhok 42001, Duhok, Irag. ®Department of Mathematics, College of
Science, University of Duhok, Duhok 42001, Duhok, Iraq. *“email: zanyar.ameen@uod.ac

Scientific Reports|  (2025) 15:29648 | https://doi.org/10.1038/s41598-025-15126-1 nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-15126-1&domain=pdf&date_stamp=2025-8-13

www.nature.com/scientificreports/

in a set, offering a more nuanced treatment of uncertainty than classical set theory. Intuitionistic FSs (IFSs),
introduced by Atanassov? extend this concept by incorporating non-membership degrees (NMDs), thus
capturing both MDs and NMDs of an element. Further generalizations, such as Pythagorean fuzzy sets (PFSs)
introduced by Yager?, offer even greater flexibility by considering the square sum of MDs and NMDs. Due to
their enhanced expressive power, PESs have gained traction in both theoretical and applied domains, particularly
in MCDM contexts where uncertainty is significant. For example, PFSs have been incorporated into TOPSIS-
based models*® and extended using Dombi operators®.

Soft set (SS) theory, introduced by Molodtsov’, has emerged as a robust mathematical tool for addressing
uncertainty without requiring auxiliary conditions like parameter membership functions. Subsequent work has
expanded SS theory through new operations® and algebraic enhancements’. Integrating FS theory led to fuzzy
SSs (FSSs)!?, while intuitionistic FSSs (IFSSs)!! were proposed to better capture hesitation in expert opinions.
Pythagorean FSSs (PFSSs)!? further extend this capability. A recent systematic review comprehensively analyzed
the evolution and applications of SS theory, underscoring its growing relevance in modern DM frameworks!'>.
The SS paradigm has undergone significant evolution, extending beyond classical structures to encompass
hypersoft sets'¥, which provide hierarchical representation of parameterization. Notably, the development of
N-hypersoft sets by Musa et al.!> introduces a novel extension that enhances the expressiveness of hypersoft
frameworks for real-world applications. Further advancements include the incorporation of g-rung picture fuzzy
environments into hypersoft models, enabling more robust and uncertain data handling, as demonstrated in
recent works on intelligent transportation systems!®, sustainable smart technologies'’, and pattern recognition
using similarity measures'®. These contributions, among others, reflect a growing trend toward sophisticated and
multidimensional DM models in the SS literature. Moreover, other advanced forms of SSs continue to emerge,
offering additional avenues for exploration and application'®.

BSSs?® have drawn increasing interest for their ability to model uncertainty and vagueness involving both
positive and negative aspects of information. Various extensions have been proposed by integrating fuzzy, rough,
and other uncertainty-based theories to handle bipolar information more effectively. Fuzzy BSSs (FBSSs)?!
have been examined for their algebraic structures and practical utility across domains. Hybrid models such as
rough Pythagorean FBSSs (PFBSSs)?? have also shown promise in complex decision scenarios. Moreover, the
development of bipolar hypersoft sets** and fuzzy bipolar hypersoft sets** further enhances the expressiveness of
bipolar models by introducing parameter hierarchies and increased fuzziness in soft DM frameworks.

NSSs? refine the classical SS framework by enabling multi-valued (multinary) parameterized representations,
in which each parameter is assigned a specific value from a predefined domain. Unlike classical SSs that rely
on binary associations, NSSs allow for a more granular and expressive classification of objects across multiple
evaluation dimensions. Extensions include fuzzy NSSs (FNSSs)? that incorporate fuzziness, and intuitionistic
FNSSs (IFNSSs)?’ that account for hesitancy. In group DM, multi-agent NSS frameworks?® support the
aggregation of diverse expert judgments. Separable NSSs* allow decomposition of parameter sets for finer-
grained evaluation. Pythagorean FNSSs (PFNSSs)* generalize IFNSSs by relaxing the square-sum constraint,
providing added flexibility. M-parameterized NSSs*! further extend the paradigm by associating multiple
parameter values with each object. Bipolar M-parameterized NSSs* unify bipolarity, multilevel evaluation, and
parameterization into a powerful hybrid framework.

N-bipolar soft sets (NBSSs)** represent a compelling hybridization of BSSs and NSSs, integrating affirmative/
negative judgments with multi-valued parameterization. This combination mirrors the nuanced nature of
human DM, where evaluations span a spectrum of attitudes across multiple criteria. This foundational model
has given rise to several notable extensions: N-bipolar soft expert sets*! incorporate collective expert opinions;
fuzzy NBSSs (FNBSSs)*® model vagueness through MDs; and intuitionistic FNBSSs (IFNBSSs)*® introduce a
hesitation component to handle indecision. N-bipolar hypersoft sets®” advance this structure by introducing
parameter hierarchies for multi-level abstraction. Additionally, N-bipolar hypersoft topologies®® offer a
topological foundation for modeling continuity and separation within bipolar, multi-valued settings. Together,
these models significantly enrich soft computing by enabling flexible, layered, and context-sensitive reasoning
in complex decision environments. For additional related studies not discussed in this paper, interested readers
may consult Paul et al.*, El-Morsy??, Chohan et al.*!, Gul and Tufail*?, Badi et al.**, Garg**, Hussain et al.*>, and
Mahmood et al. 4647,

Motivation and model development

Many existing DM models, including classical FSs and SSs, face critical limitations when applied to complex,
real-world scenarios. Specifically, they struggle to represent multi-valued evaluations, integrate both positive
and negative information (bipolarity), and effectively handle uncertainty. These limitations become especially
problematic in domains such as sustainable manufacturing, where decisions must simultaneously weigh benefits
and trade-offs under vague and imprecise information.

PESs offer a stronger framework for capturing uncertainty compared to traditional FSs and IFSs, yet they lack
parameterization and bipolar representation. Conversely, NSSs enable multi-parameter modeling but are not
equipped to handle bipolar or high-order uncertainty. BSSs allow for positive and negative evaluations but often
restrict analysis to binary scales and lack higher uncertainty handling.

To address these gaps, we propose the PFNBSS framework-a hybrid model that synergistically integrates
the strengths of PFSs, NSSs, and BSSs. This integration enables rich, multigraded, and bipolar information
representation while maintaining parameterized structure and superior uncertainty modeling.

The motivation behind this integration is not only conceptual but also supported by a comparative analysis
of related models. A qualitative comparison is provided in Table 32, which illustrates the distinct capabilities and
expressive advantages of the proposed PFNBSS model.
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Research objectives and contributions

This study aims to establish a comprehensive DM model that effectively integrates multi-valued evaluations,
bipolar information, and advanced uncertainty modeling based on PFSs. The main contributions of this work
are summarized as follows:

« The introduction of the PFNBSS model that combines the advantages of PFSs with NBSSs to address complex
decision problems.

« Development of formal definitions, algebraic operations, and illustrative examples to underpin the theoretical
foundation of PFNBSS.

o Proposal of a robust DM procedure tailored to the PFNBSS framework.

« Demonstration of the model’s applicability through a case study evaluating sustainability practices in manu-
facturing industries.

o Illustration of the model’s versatility in handling risk-focused sustainability evaluations across diverse man-
ufacturing sectors.

« Comparative analysis illustrating the superiority of the PFNBSS model over existing methods regarding flex-
ibility, interpretability, and decision quality.

Structure of the paper

The paper is structured as follows: Section 2 presents a review of relevant foundational concepts. Section 3
introduces the PENBSS model along with its formal structure, operations, and algebraic properties. Section 4
outlines a comprehensive DM methodology and demonstrates its application through two practical examples:
(i) a sustainability evaluation of manufacturing companies and (ii) a comparative sustainability risk assessment
across sectors. Section 5 presents the results and discussion through these two examples. The first offers a
detailed quantitative evaluation and ranking of manufacturing companies based on sustainability criteria,
while the second illustrates the model’s adaptability in assessing sustainability-related risks. Together, they
demonstrate the PFNBSS model’s robustness, transparency, and effectiveness in MCDM contexts. Section 6
provides a comparative evaluation of the proposed model with existing approaches, highlighting its advantages
and discussing its limitations. Finally, Section 7 summarizes the main contributions of the paper and suggests
potential directions for future research.

Preliminaries and related concepts

This section revisits the essential definitions of several models that underpin the concepts used in our proposed
framework. Throughout the paper, £ denotes the universal set of alternatives (or objects), p represents the set
of attributes (or parameters), and R = {0, 1,..., N — 1} is the set of ordered grades, where N € {2,3,...}.
For clarity and ease of reference, the key symbols and abbreviations used throughout the paper are summarized
in Table 1.

Definition 2.1 Letvt : £ — [0,1]and v~ : £ — [0, 1] represent, respectively, the degrees of membership and
non-membership of £ € L. Then, R = {(¢,vF(£),v™(£)) : £ € L} is called:

i. anFSlifforalll € L,v™(¢) = 0.
ii. anIFS%ifforall¢ € £,0 < vt (€) +v (£) < 1.
iii. aPFS%ifforallfe€ £,0< (W) + (v (£)* <1

Definition 2.2 °Let ¥ = (o™, @) be a Pythagorean fuzzy number (PFN). Then,

i. the score value of W is given by S(¥) = (a™)? — (a™)?, where S(¥) € [-1,1].
ii. the accuracy value of U is given by A(¥) = (a™)? + (a™)?, where A(¥) € [0,1].

a; ) be any two PENs. Let S(U1) and S(U2) denote the

Definition 2.3 ° Let ¥y = (o], a7 ) and U3 = (o,
U1) and A(W3) denote their corresponding accuracy values.

score values of ¥; and W, respectively, and let A(
Then,

i. lfS(‘Ih) - S(‘Ilz),then Ui = W,
ii. lfS(\I/1) = S(\Ilg),and:

. ifA(\Ifl) - A(\Ilg),then Uy = Ws,
. ifA(\Ill) = A(\Ifg),then U, = Ws.

Definition 2.4 A pair (p, p) is called:
i. anSS7,ifpu:p— 2% where 2% denotes the set of all crisp subsets of L.
ii. an FSSY, if y1 : p — X, where F* denotes the set of all FSs over L.

iii. anIESS'Lifp:p — 7, where I denotes the set of all IESs over L.
iv. aPFSS'2 if ju: p — P*, where P* denotes the set of all PESs over L.

Definition 2.5  Let p = {e1,¢€2,...,en} be a set of attributes. The NOT set of p, denoted by —p, is given by

—p = {—e1,€2,..., e, }, where each —; denotes the negation (i.e., the opposite) of the attribute ;, for
i=1,2,...,n.
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Symbol | Meaning

L Universal set of alternatives (objects)

P Set of attributes or decision parameters
R Ordered set of evaluation grades

ES Fuzzy set

IFS Intuitionistic fuzzy set

PFS Pythagorean fuzzy set

PEN Pythagorean fuzzy number

SS Soft set

FSS Fuzzy soft set

IFSS Intuitionistic fuzzy soft set

PFSS Pythagorean fuzzy soft set
BSS Bipolar soft set
FBSS Fuzzy bipolar soft set

IFBSS Intuitionistic fuzzy bipolar soft set

PFBSS | Pythagorean fuzzy bipolar soft set
NSS N-soft set

FNSS Fuzzy N-soft set

IFNSS | Intuitionistic fuzzy N-soft set

PENSS | Pythagorean fuzzy N-soft set

NBSS N-bipolar soft set

FNBSS | Fuzzy N-bipolar soft set

IFNBSS | Intuitionistic fuzzy N-bipolar soft set

PENBSS | Pythagorean fuzzy N-bipolar soft set

DM Decision-making

MCDM | Multi-criteria decision-making

MD Membership degree

NMD Non-membership degree

vt Membership function for FS, IFS, and PFS

v Non-membership function for IFS and PFS

I Mapping for SS, ESS, IESS, and PESS

T Positive mapping for BSS, FBSS, IFBSS, and PFBSS
n Negative mapping for BSS, FBSS, IFBSS, and PFBSS
B Mapping for NSS, FNSS, IFNSS, and PENSS

- Positive mapping for NBSS, FNBSS, and IFNBSS
P Negative mapping for NBSS, FNBSS, and IFNBSS
¢ Positive mapping for PENBSS

13 Negative mapping for PENBSS

2~ Set of all crisp subsets of £

F* Set of all FSs over £

i Set of all IFSs over £

PL Set of all PFSs over £

2£%E | Set of all crisp subsets of £L X R

FEXR | Setofall FSsover £ X R

IEXR Set of all IFSs over £ X R

PEXR | Set of all PFSs over £ X R

Table 1. List of symbols and notations used in the paper.

Definition 2.6 A triple (7,7, p) is called:
i. aBSSX,if7:p — 2% andn : —p — 2% such that, foralle € p,7(¢) N n(—e) = 0, where 7(¢),n(—e) C L

ii. an FBSSY, if 7:p—F* and 7n:—-p— FX such that, for all € € p and £ € L, the condition
0 < 7(e)(£) + n(—e)(¢) < 1holds, where 7(£)(£), n(—¢)(¢) € [0,1].
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iii. an IFBSS?, if 7:p — ]IL and 7 : —|p —TI* such that, for all ¢ € p and ¢ € L, the following con-
ditions hold: 0 < 77 (e)(€) + 77 (—-e)(¥) < and 0< 77 (e)(0)+n (—e)(f) <1, where
() (), nt (—e)(¥) € [0 1] and 7~ ( )(#),n~ (= )( ) € [0, 1] are the MDs and NMDs, respectively.

iv. a PFBSS?, if 7: p —> P* and 77 —|p — P~ such that, for all € € p and ¢ € L, the followmg condi-
tions hold: 0 < (77 ()(€))? + (n(—e)(£))? < 1 and 0 < (77 (e)(©))? 4+ (1 (—e)(¥))? < 1, where

)

(
TH(e)(0), 7 () (D), " (=e)(0), ™ (=e)(€) € [0,

Definition 2.7 A triple (8, p, N) is called:

“3

~

i. anNSS%,if 3 : p — 2°% %, with the property that for each & € p, there exists a unique pair (£,7:) € £ x R
such that (¢,7.) € B(e), where ¢ € Landr. € R. The set 2% denotes all crisp sets of £ x R.

ii. anFNSS¥,if3 : p — FX* % with the property that for each e € p, there exists a unique pair (¢,7:) € £ x R

such that ((¢, rg), B4, 1)) € B(g), where £ € L and 7. € R. The set F**¥ represents all FSs of £ x R.

iii. anIENSSY,if 3 : p — T“*%, with the property that for each e € p, there exists a unique pair (¢, 7.) € £ x R

such that ((£,r.), BT (¢,r:), 37 (¢,7:)) € B(e), subject to the condition 0 < B+ (4, r.) + B~ (4, r:) < 1,
where £ € £, 7. € R,and 81 (£, 1), 8~ (£, 7e) € [0, 1]. The set I£* R denotes all IFSs of £ x R.

iv. a PFNSS30 if 8:p— P“*E, with the property that for each e € p, there exists a unique pair

(Z Te) 6 L X R such that ((¢,7.),87(¢,7.),87 (¢, 7c)) € B(e), subject to the condition

% (L,re))* + (B (¢, r2))? < 1, where £ € £, 7. € R, and BY (¢, re), 87 (4,7:) € [0,1]. The set

denotes all PESs of £ x R.

Definition 2.8 A quadruple (7, , p, N) is called:

i. an NBSS®, if m: p — 2%% and k : ~p — 25%E, with the property that for each ¢ € p, there exists a

unique pair (¢,7:) € £ x R such that (¢,7.) € 7(e). Similarly, for each —¢ € —p, there exists a unique
pair (¢,7-.) € L x R such that (¢,7-.) € k(—¢e), subject to the condition 7. + r-. < N — 1, where
{e€ Land 7,7 € R.

ii. an FNBSS®, if 7 : p — F£*E and k : =p — FEXE, with the property that for each € € p, there exists
a unique pair (¢,7:) € L X R such that ((¢,7r:),7(¢, 7)) € w(€), and for each —e € —p, there ex-
ists a unique pair (¢,7-:) € L X R such that ((¢,r-.),k(¢,7-c)) € k(—e), subject to the condition
0<m(l,re) + k(l,r-c) < 1,wherel € L, e, € R,and 7 (¢, ), k(£, 7<) € [0, 1].

iii. an IFNBSS%, if 7 : p — I“*¥ bipolar soft sh the property that for each € € p, there exists a unique pair
(¢,7.) € L x R such that {(¢,rc), 7" (€,re), 7 (¢,7:)) € w(e), and for each —e € —p, there exists a
unique pair (¢,7-.) € £ x R such that {(¢,7-.), k" ({,r-c), k" (£,7-¢)) € K(—e), subject to the con-
ditions 0 < 7wt (£, 7e) + k1 (€, r-c) < 1and 0 < 7~ (£, 7e) + k (£,7—c) < 1, where £ € L, 7c,7—« € R
yand m (4 re), m (6 1e), kT (6 roe), 57 (6 7—e) € [0, 1]. Clearly, 77 (¢,7.) and ™ (¢,7-.) are MDs,
while 7~ (¢, 7.) and K~ (¢, 7-) are NMDs.

Pythagorean Fuzzy N-Bipolar Soft Sets

In this section, we present the PENBSS model and develop its core operations—namely the null and whole sets,
complement, subset, equality, union, and intersection—each accompanied by their algebraic properties and
illustrative examples.

Definition 3.1 A quadruple ((,&,p,N) is called a PFNBSS, where (:p— P“*®  and
€ : =p — PE*E, with the property that for each € € p, there exists a unique pair (£,7) € £ x R such that
((l,re), CT (4 re), ¢ (€,72)) € ((e), and for each =& € —p, there exists a unique pair (¢,7-.) € £ x R such
that (£, 7-c), T (£, 7-c), € (£,7-c)) € &€(—e), subject to the following conditions:

< (€ )+ (€N (L r-e))? <1,
S r)? + (€ (L) <1,

where £ € L, re,7-c € R, and (T (€,7.),¢ (6,72), 61 (0, 7=e), € (£, 7=¢) € [0,1]. Clearly, ¢t (£, 7.) and
&1 (4, r-c) are MDs, while ¢~ (¢, ) and £~ (¢, 7. ) are NMDs.

Unless specified otherwise, both £ and p are assumed to be finite. In such cases, the PFNBSS can be represented
in a unified tabular form, where each cell contains a pair of tuples-one for (r;; e Gt %> Ci;)» which corresponds

<(€1,7"1]5j),g (El,ruaj),C (&,Tugj)) € ((g;); and one for (r”ﬂgj,fij,&ij% which corresponds to
<(£i7Tij—\gj)7§+(€i77‘ij_‘sj),57(£i77“ij_‘£j)> € &(—¢ej), as shown in Table 2.

Now, we represent the PENBSS (¢, &, p, N), originally displayed in Table 2, using two separate tables: one for
(¢, p, N) with respect to the set of parameters p, and another for (€, —p, N) with respect to the set of parameters
—p, as provided in Tables 3 and 4, respectively.

To clarify the core features of our new model, let us examine the following example.

Example 3.1 Consider atechnology company that is in the process of recruiting for a senior software engineering
position. Theselectioncommitteeaimstoassessagroupofcandidates £ = {¢1, £2, £3 } basedonacomprehensiveset
ofattributesthatreflectboth technical skillsand soft competencies. Theattributesunder considerationare defined as
p = {1 = programming proficiency, €2 = system design skills, €3 = team collaboration, ¢4 = problem-solving aptitude}
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€, &p,N) €1 =) En
+ - _ _
2 <r11517C11+’C117> <r1252,<1+2+7<12> <T1,,L5n74;;b+,4m>
<"”11"517511’511> <r12~‘5275127£12> (rlnr“syl7fl717£1n>
+ o= + o= _
£2 <7’2151’4214;C217> <T22s2»C224;C227> (T2ne,» Can s Con)
<7>21~.517£211£21> <r22~‘5275227£22> (7'2n~‘5”7§;n7§27n>
+ - + - ,
L <7’m1 €1 Cmi, C"”i> <"4m252 ’ C']ni’ Cmg> <7"mnen ) 4;,71,1 Cmn>
<"'m1ﬁ51~,£m17§m1> <"‘m2ﬁ52>£m27£m2> <T7n71.—\sn:£;:,n7£;1n>

Table 2. Tabular form of the PFNBSS (¢, &, p, N)

(€, p, N) e1 €2 soo | Em
. + - _ _
4 (r11ey5¢175 6110 <T1252741+27412) (Pinen o o)
. + o - -
£ (r21ey,Ca1sCa1) (raze,, Con Con) (rene, o)
+ - , _
b <Tm1£1 ’ Cm,l’ le> <Tm252 5 gj,;za Cm2> <7'mngn s Cr,tnv Cmn

Table 3. Tabular form of (¢, p, N)

(€y P N) —E€q —E2 TE€n
+ - — _

& (r11-e5 €075 6171) <T12ﬂ52,§j'2a§12> (Pinaen s € €00)
+ o _ _

£2 (ro1-ey5 €315 €01) <7'22ﬁ527f;27522> (T2nﬁ5n,§;n,§2n)
PR _ _

Lm (rmi-eys&m1s€m1) | (Pmzcy Ehos o) (Pmnaen s Ens Emn)

Table 4. Tabular form of (£, —p, N)

L €1 €2 €3 €a

01 * ok * * *k *k
* ok *k *

4o * K Kk o * *k
* * K Kk * K K *

l3 * * *% * * ok
* kK *k *k *

Table 5. Initial Evaluations

To ensure a balanced evaluation, the committee

also  considers the corresponding
negative  attributes (i.e., lack or weakness of the

same capabilities), denoted by
—p = {—e1 = poor programming skills, =2 = weak system design skills, =e3 = poor team collaboration, —e4 = low problem-solving ability }
This bipolar perspective allows the decision-makers to capture both the positive and negative tendencies in each
candidate’s profile, enhancing the precision and fairness of the evaluation.

In this context, the performance of each candidate with respect to the given attributes (and their negations)
is initially expressed using qualitative markers that indicate the strength or weakness of their qualifications, see

Table 5. These markers are then used to construct the 5BSS, which serves as a foundational step for further DM
procedures.

According to Definition 2.8 (i.), the 5BSS (m, x, p,5) can be derived from the evaluations presented in
Table 6, where:
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(7"9 K, Py 5) €1 o €3 €4
41 3 1 2 2
1 2 2 1
2 3 0 1 2
1 4 3 1
l3 1 1 2 3
3 2 2 1

Table 6. Tabular form of the 5BSS (7, , p, 5) in Example 3.1

Criterion

0.0 < (T (6, 72)) + (¢ (£,7))? < 0.2
0.0 < (61(6,r-e))? + (€7 (4, r-c))? < 0.2

0.2 < (¢4, 7)) + (¢ (4,re))* < 0.4
0.2 < (€1 (4,7-0))* + (€7 (¢, 7-¢))? < 0.4

0.4 < (CT(4,m))* + (¢ (4,m:))* < 0.6
0.4 < (€Y r-2))® + (6 (6, r=0))? <06

0.6 < (CT(,r))2+(C(4r))? <08
0.6 < (E1(6, 7)) + (67 (€,7-2))* < 0.8

Grade

re =0
re =1
re =2
re =3
re =4

0.8 < (CT(4,m))* + (¢ (4,m:))* < 1.0
0.8 < (ET(4, 7))+ (€7 (€, r-c))? < 1.0

Table 7. Evaluation grades and corresponding criteria.

(€, & p,5) €1 = €3 €4

2 (3,0.6,0.5) | (1,0.3,0.5) | (2,0.6,0.4) | (2,0.5,0.5)
(1,0.3,0.5) | (2,0.5,0.5) | (2,0.5,0.5) | (1,0.3,0.5)

£2 (3,0.7,0.4) | (0,0.2,0.2) | (1,0.4,0.4) | (2,0.6,0.4)
(1,0.4,0.4) | (4,0.8,0.6) | (3,0.7,0.5) | (1,0.3,0.5)

3 (1,0.4,0.4) | (1,0.3,0.5) | (2,0.6,0.4) | (3,0.6,0.5)
(3,0.6,0.6) | (2,0.5,0.5) | (2,0.5,0.5) | (1,0.3,0.5)

Table 8. Tabular form of the PF5BSS ({, &, p, 5) in Example 3.1

« »

o “o” represents inadequate performance.

« »

o “x” represents basic competency.

o “xx” represent moderate competency.

o “%x %" represent high competency.

o “%x%*” represent exceptional competency.

This symbolic grading can be easily mapped to numerical values in R = {0, 1, 2, 3, 4}, where:

0 corresponds to o.

o 1 corresponds to .

« 2 corresponds to **.

o 3 corresponds to * * x.
o 4 corresponds to * % x%.

The tabular representation of the 5BSS (, &, p, 5) is shown in Table 6.

This level of detail suffices for exact data. Yet, in situations involving ambiguity or uncertainty, the PFNBSS
framework is essential to interpret the grading of candidates. Using the established grade scale, the selection
committee then allocates MDs and NMDs according to Pythagorean fuzzy principles, as exemplified in Table 7.

Therefore, Table 8 shows the final MDs and NMDs within a Pythagorean fuzzy environment for each

applicant under each attribute and its negation.

We next define, for theoretical purposes, a collection of basic operations on PFNBSSs-together with their
algebraic properties—and illustrate each with examples. These operations comprise the null and whole sets,

complement, subset relation, equality, union, and intersection.
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(Cy €7 P> 5)é €1 €2 €3 €4

% (1,0.3,0.5) | (2,0.5,0.5) | (2,0.5,0.5) | (1,0.3,0.5)
(3,0.6,0.5) (1,0.3,0.5) (2,0.6,0.4) (2,0.5,0.5)

12 (1,0.4,0.4) | (4,0.8,0.6) | (3,0.7,0.5) | (1,0.3,0.5)
(3,0.7,0.4) (0,0.2,0.2) (1,0.4,0.4) (2,0.6,0.4)

43 (3,0.6,0.6) | (2,0.5,0.5) | (2,0.5,0.5) | (1,0.3,0.5)
(1,0.4,0.4) | (1,0.3,0.5) | (2,0.6,0.4) | (3,0.6,0.5)

Table 9. The complement of the PF5BSS (¢, £, p, 5) in Example 3.1

(ClvEl»plaS) €1 E2 €3

2 (0,0.1,0.4) (1,0.0,0.6) (0,0.1,0.1)
(3,0.8,0.2) (3,0.8,0.2) (4,0.9,0.4)

Lo (3,0.2,0.8) | (1,0.1,0.6) | (0,0.0,0.4)
(1,0.4,0.4) | (2,0.7,0.0) | (3,0.8,0.2)

l3 (1,0.2,0.4) | (1,0.3,0.5) | (2,0.2,0.6)
(3,0.8,0.2) | (2,0.7,0.1) | (2,0.7,0.3)

Table 10. Tabular form of PF5BSS ((1, &1, p1,5) in Example 3.3

Definition 3.2 A PENBSS (¢, &N, p, N) is defined as a relative null if, for each € € p and £ € £, we have
¢M(e)(#) = (0,0.0,1.0), and for each —¢ € =pand £ € L, we have £¥(—¢)(£) = (N — 1,1.0,0.0).

Definition 3.3 A PENBSS (¢V, €Y, p, N) is referred to as a relative whole if, for each € € pand £ € L, we have
¢Y(e)(¢) = (N —1,1.0,0.0), and for each =& € —pand £ € L, we have £”(—¢)(£) = (0,0.0, 1.0).

Definition3.4 Thecomplementof((, &, p, IV),denotedas (¢, &, p, N)© 1sg1venby(< £ p,N)¢ = C &, p,N),
where for every £ € p and £ € L, it follows that ¢¢(g) = £(—¢), i, 75 = 72e, (T (£, me) = €T (f r-¢) and

(_?(E, re) = & (¢, r-c). Similarly, for every —e € —p and ¢ € L, we have {é(—e) = ((e), ie., . =re,
§+C(€7 ""ﬂs) = C+(€7 7"5) and 5_6(& Tﬂs) = C_(€7 7"5)-

Example 3.2 Let us consider the PF5BSS (¢, &, p, 5) presented in Table 8 of Example 3.1. The corresponding
complement is shown in Table 9.

Proposition 3.1 Let (¢, €, p, N) be a PENBSS, and let (¢V, &Y, p, N) and (¢, €Y, p, N) denote the relative null
set and the relative whole set, respectively. Then,

L (¢, &, NI = (& p, N).
2. (¢ € p, N) = (" 5 .0 N).
3. (CU7£U7p7N)C:(C £ 2 )

Proof 1. Follows directly from Definition 3.4.
2. Follows from Definitions 3.2, 3.3, and 3.4.
3. Follows from the same definitions as part 2.0]

Definition 35VA PFNBSS (¢1,&1,p1,N) is said to be a subset of ((2,&2,p2,N), denoted as
(¢1,61,p1, N) C (G2, &2, p2, N), if the following conditions are satisfied:

L. p1 C pa.

2. Foreache € prand/ € L,itholds that 71, < 72, (4, 71c) < & (6, r20), and ¢ (6, 72.) < ¢ (6, 712),
where ((£,71.), ¢ (€, r12), (7 (6,712)) € Ci(e) and ((£,72.), & (6, 722), ¢y (£, r22)) € Ca(e).

3. For each —-c€-p1 and £€L, we have 1o <ri_. EF(Lran) <EF(L o)
, and & (6,r1o.) <& (Gre-e), where  {((6,71-0), &7 (6 r1-0), &5 (€,71-0)) € £1(—¢)  and
<(£7 TZ—\E)7€2 (Ea 7’2—*6)7527(67 TQ—‘E)) S 52("6)'

Example 3.3 Referring to Example 3.1, consider two PF5BSSs (¢1,€1,p1,5) and ((2, &2, p2,5), presented in
Tables 10 and 11, respectively. It is clear that (1, &1, p1,5) C ({2, &2, p2, 5).

Definition 3.6 Two PFNBSSs ((1,&1,p1,N) and ((2,&2,p2,N) are said to be equal if both
(¢1,61,p1,N) C(C2, &2, p2, N) and (2, &2, p2, N) C (€1, &1, p1, N) are satisfied.
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(€2, €2, p2,5) €1 €2 e3 €4

£y (1,0.2,0.4) (1,0.1,0.6) (0,0.2,0.3) (1,0.5,0.3)
(2,0.6,0.4) (3,0.8,0.3) (4,0.9,0.0) (1,0.2,0.5)

lo (3,0.3,0.8) (2,0.3,0.6) (0,0.1,0.4) (3,0.5,0.6)
(1,0.4,0.4) (2,0.7,0.2) (4,0.9,0.1) (1,0.2,0.5)

l3 (1,0.3,0.4) (2,0.6,0.3) (2,0.6,0.2) (2,0.5,0.5)
(3,0.6,0.6) (2,0.7,0.2) (2,0.7,0.2) (2,0.2,0.6)

Table 11. Tabular form of PF5BSS ({2, &2, p2, 5) in Example 3.3

(C17£1,P134) €1 €2 €3

£y (0,0.2,0.3) (2,0.6,0.4) (2,0.7,0.0)
(3,0.5,0.6) (1,0.3,0.5) (0,0.3,0.3)

lo (1,0.3,0.5) (1,0.4,0.2) (1,0.5,0.2)
(2,0.4,0.6) (1,0.2,0.4) (2,0.2,0.7)

l3 (1,0.3,0.4) (2,0.7,0.0) (3,0.6,0.5)
(0,0.3,0.3) (0,0.0,0.1) (0,0.4,0.1)

Table 12. Tabular form of PF4BSS ({1, &1, p1,4) in Example 3.4

(CZ» &29 P2, 5) €1 €2 €4

A (1,0.2,0.4) (2,0.6,0.3) (0,0.0,0.0)
(3,0.8,0.3) (2,0.3,0.6) (4,1.0,0.0)

0o (1,0.2,0.5) (4,0.2,0.9) (1,0.0,0.5)
(1,0.4,0.2) (0,0.1,0.2) (3,0.7,0.4)

43 (1,0.2,0.4) (1,0.1,0.6) (2,0.5,0.5)
(0,0.1,0.4) (2,0.7,0.1) (2,0.7,0.3)

Table 13. Tabular form of PF5BSS ({2, &2, p2, 5) in Example 3.4

Definition 3.7 The extended union of (1,&1,p1,N1) and ((2,&2, p2, N2) is denoted and defined as
(¢1y &1, p1, N1) Ue (G2, €2, p2, N2) = (¢, €, p1 U p2, max(N1, Na2)), where foralle € p1 U p2:

Gi(e), if £ € p1\ p2,
G2(e), if € € p2 \ p1,
C(E) = (‘67 max{rl‘sar?e})v
maX{Cf—(gv Tls)vcg_(zv TQE)}7 s ifee p1 M p2,
mln{(l_ (6, T16)7C2_ (67 7"25)}

where <(£7 7’15), Cf(ﬂ, 7’15), Cf (67 Tls)) € Cl (5) and <(‘€7 7”25), C;(& 7”25), C; (Zv T2€)> € CQ(E)'
Similarly, for all —e € —p1 U —pa:

&1(—e), if e € =p1 \ —p2,
£2(—e), if — € =p2 \ =p1,
6(_\8) = ([, min{rlﬁa7r2ﬁs})a
min{gfﬁ(&Tlﬁs)agg(&rQﬁs)}a ) if —e € —p1 M —p2,
max{ff (67 7”1—6)7 6; (f, T'Qﬂs)}

where <(£7 Tlﬁa)vgf(‘g’ Tlﬁs)vgl_(év Tlﬁs)> € 51(_‘5) and <(Za T2ﬁ€)>€;(£v T’zﬁg),f; (Zv T2ﬁ€)> S 52(_'5)

Example 3.4 Refer again to Example 3.1. Consider ((1, &1, p1,4) and (2, €2, p2, 5) as the PF4BSS and PF5BSS,
respectively, presented in Tables 12 and 13. The resulting extended union is shown in Table 14.

Proposition 3.2 Let (C1,&1, p1, N1), (C2, &2, p2, N2), and ((s, &3, p3, N3) be PEN;BSS, PFN3BSS, and PFN3
BSS, respectively. Then,

L (C1,€1,p1, N1) Ue (G2, &2, p2, N2) = (G2, €2, p2, N2) Ue (C1, &1, p1, N1).
2. (C1y€1,p1, N1) Ue ((Cos€2,p2, N2) Ue (C3,63,p3,N3)) = ((C1,€1,p1,N1) Ue (G2, €2, p2, N2)) Ue

(<37£37p37N3)'
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(¢35 €3, p1 U p2,5) €1 €2 €3 €4

£ (1,0.2,0.3) | (2,0.6,0.3) | (2,0.7,0.0) | (0,0.0,0.0)
(3,0.5,0.6) (1,0.3,0.6) (0,0.3,0.3) (4,1.0,0.0)

2 (1,0.3,0.5) | (4,0.4,0.2) | (1,0.5,0.2) | (1,0.0,0.5)
(1,0.4,0.6) (0,0.1,0.4) (2,0.2,0.7) (3,0.7,0.4)

l3 (1,0.3,0.4) | (2,0.7,0.0) | (3,0.6,0.5) | (2,0.5,0.5)
(0,0.1,0.4) | (0,0.0,0.1) | (0,0.4,0.1) | (2,0.7,0.3)

Table 14. The extended union ({1, &1, p1, 4)Ue (C2, €2, p2, 5)=((3, €3, p1 U p2,5) in Example 3.4

Proof 1. Let  (C1,&1,p1, N1)Ue(Co, &2, p2, N2) = (3, €3, p1 U pa, max(N1, N2)).  Then, for all
€ € p1Upa:

CI(E), if€€p1\p2,
G2(e), if e € p2\ p1,
Gs(e) = (£, max{ric,r2c}),
max{c#(& Tls),C;(e, T26)}7 , ifee p1 M p2,
mln{gf (67 TlE)u C; (47 TQE)}

where <(£7 Tle):CfL(€7 Tls):C;(Zv rls)> S Cl(s) and <(£7 7‘25)7C;(£7 7"25),(5(6, T25)> S CQ(&). Slmllarly for
all —e € —p1 U —pa:

&1 (—e), if me € —p1 \ p2,
& (o). if e € s\ o,
53(“8) = (& min{rlﬁm T2ﬁ5})7
< mln{’f;r (67 rlﬁﬁ)v 5; (Zv r2ﬁ5)}7> ) if ~e € —p1 N2,
max{ff (‘ga Tlﬁf)a é; (87 T'Qﬁa)}

where <(£7 r1ﬁ5)7£1~_(z7 Tlﬁe)agl_ (& Tlﬁ@)) € gl(_'g) and <(€7 T2ﬁ5)7§;(£1 r2ﬁs)7§2_(z7 T2ﬁ6)> € 52(_‘5)'
On the other hand, let (2, &2, p2, N2)Ue(C1, &1, p1, N1) = (Ca, €4, p2 U p1, max (N2, N1)). Then, for all
€€ p2Upr:

G2(e), ife € p2\ p1,
Ci(e), if e € p1\ p2,
Ca(e) = (¢, max{rac,r1c}),
maX{C;(ga r25)1€j(£7 T1€)}7 ) ifee p2 N p1,
mln{g‘; (év T2€)a Cf (67 7'16)}
Similarly for all = € —p2 U —p1:
&a(—e), if =& € =p2 \ —p1,
&1(—e), if e € —p1 \ p2,

mm{@’ (f’ TQ—‘E)a 51‘— (£7 Tl—f)}?
maX{fg_ (67 7"2—\5)7 61_ (gv Tl—‘E)}

if e € =pa N —p1,

€a(—e) = <(£, min{ra—c, r1-c}), >

Since (3, &3, p1 U p2, maz(N1, N2)) and (4, &4, p2 U p1, maz (N2, N1)) are equivalent for all € € p1 U p2
and —e € —p1 U —pa2, the proof follows.

2. Let  ({2,&2,p2, N2)Ue(Cs, &3, p3, N3) = ((a, &4, p2 U ps, max(Na, N3)).  Then, for all
€ € p2 Ups:

Ca(e), ife € p2\ ps,
Gs(e), if e € ps \ pa,
Cale) = (¢, max{raec, r3c}),
maX{@L(Z: 7‘25)74;(4, 7‘35)}, ’ ifee szpa,
Il’llIl{CQ_ (£7 TQE): CB_ (£7 T3€)}

where <(£7 7'26)’(;(67 7'26)’(; (‘67 T2€)> € C2(5) and <(£a 7"35)74.;(& ?"35),(::: (67 T35)> € C3(€)' Simﬂaﬂy for
all me € =pa U —ps:
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&2(—e), if —e € —p2 \ —ps,
£s(—e), if —e € =ps \ —p2,
&i(—e) = (¢, min{r2ﬂ577ﬂ3—*5})7
< mln{‘ﬁ; (& T2—‘£)7 5; (Zv 7"3—\5)}, , if-ee€ —p2 M —p3,
max{§; (67 T2—‘5)7 537 (67 T3*8)}

where((£,72-.), &5 (£,12-2), &5 (£,72-c)) € &2(—e)and((£, 73-c), &5 (6, 73-2), &5 (£,73-2)) € E3(—e).Now,
let (¢1, &1, p1, N1) Ue (Ca, €a, p2 U p3, max(Na, N3)) = (5, s, p1 U (p2 U p3), maz (N1, max(Na, N3))
= (5,85, p1 U (p2 U p3), max(N1, N2, N3)). Then, for alle € p1 U (p2 U p3):

Gi(e), if e € p1\ (p2Ups),
Ca(e), if e € (p2Ups) \ p1,
(o) = (¢, max{ric, max{rae, r3}}),
<ma'X {Cf(& TlE)vmaX {C;r(gv r2€)7§§(€a 7"35)}} 7> s ifee P1 n (P2 U )03)7
min {(l_(ﬁ, T1¢), Min {CQ_(Z, r2¢),C5 (€, 7“35)}}

where (£, 71.), ¢ (6,710), ¢ (6, 712)) € Ci () Similarly, for all ~e € —p1 U (=p2 U —p3):

51(_‘5): if —e € —p1 \ (—|p2 @] —‘;)3)7
€3(e), if ~e € (mp2U—p3) \ =1,
€5(—e) = (¢, min{r1-c, min{ra—c, r3~c }}),
<m1n {51 f Tlﬁg) min {fg Z 7"2—.5 53 E 7‘3ﬂg)}} ,> , if —e € —p1 N (—\p2 @] —|p3)7
max {fl (€, 71-¢), max {{2 (€, ra-e), &5 (4, T3_.E)}}

where ((6yr1-2), &5 (0 r1-2), &7 (B, r1-2)) € &1(—¢). On the other hand, let
(¢1, &1, p1, N1)Ue (2, €2, p2, N2) = (C6, &6, p1 U p2, max (N1, N2)). Then, forall e € p1 U pa:

Gi(e), ifeepr)\ p2,
G2(e), ife €p2\ p1,
C6 (E) = (67 maX{"'lm 7"25}),
max{gf(& Tls),cj(é,’l“Qs)}, ) ifee p1 M p2,
mln{{; (év TlE)a C; (47 TQE)}

where ((£,71.), ¢ (6, r12), ¢ (6,712)) € Ci(e) and ((€,72.), ¢ (4, 12.), ¢y (6, r22)) € C2(€). Similarly for
all —e € —p1 U —pa:

&1 (—e), if me € —p1 \ p2,
éz(“&'), if —e € —p2 \ —p1,
£6(—e) = (¢, min{ri-c, 72~ }),
< mln{&;r (67 rlﬁﬁ)v 5; (Zv T2ﬁ£)}7> ) if me € —p1 N p2,
max{ff (‘ga Tlﬁf)a é; (£7 r2ﬁ€)}

where((€,71-2), & (£,71-2), &7 (6,11-0)) € &x(me)and((€,72-0), & (£, 72-2), &5 (£,72-0)) € E2(—2).Now,
let (C6, €6, p1 U p2, max (N1, N2)) Ue ((3, €3, p3, Na) = (C7, &7, (p1 U p2) U p3, max(maz(Ni, N2), N3)
= ({7,&7, (p1 U p2) U p3, max(N1, N2, N3)). Then, for alle € (p1 U p2) U p3:

G(e), if € € p3 \ (p1 Up2),
o (), if e € (p1Up2)\ p3,
Cr(e) = (€, max{rse, max{ric,r2c}}),
<max{(?(f,rgg),max{gf(f,rla),ﬁg(f,mg)}}, 5 leEPSQ(pl UPQ),
min { (5 (€,r52),min {{ (€,712), G5 (622 } }

where ((£,73.), ¢ (€, 73¢), 5 (€,732)) € C3(€). Similarly, for all ~¢ € =p3 U (=p1 U —p2):

€3(—e), if =& € =p3 \ (mp1 U —p2),
€6 (e), if —e € (=p1 U—p2) \ —ps,
Er(—e) = (¢, min{r3—, min{ri-c, ra-c }}),
<m1n {53 L rgﬁg) min {{1 L), 65 (0 rgﬁs)}} > , if =& € =p3 N (—p1 U —p2),
max {53 (¢,r3-¢), max {51 (€, r1-¢), &5 (4, rQﬁS)}}

where {((£,73-.),&5 (£,73-¢),&5 (£,m3-0)) € €3(=e). Since ((s,&5, p1 U (p2 U p3), maz (N1, Na, N3))
and (7,87, (p1 U p2) U ps,max (N1, N2, N3)) are equivalent for all €€ piU(p2Ups) and
—e € —p1 U (—p2 U —p3), the proof follows.]
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Definition 3.8 ”{he extended intersection of ((1,&1, p1, V1) and ({2, &2, p2, N2) is denoted and defined as
(C1,€1, p1, N1) Ne (G2, €2, p2, N2) = (¢, €, p1 U p2, max (N1, N2)), where for all e € p1 U pa:

Qu(e), if e € p1 \ po,
G(e), if e € p2 \ p1,
C(E) = (67 min{rle7r25})7
<min{Cf(&Tls),C2+(57T2s)}’>7 ifgepl N p2,
maX{Cf (Z’ T15)7C; (Za T2E)}

where <(£7 Tle)a Ci‘r(& T16)7 Cl_ (4, 7"16)> €G (5) and <(€7 r26)7 C;(& r26)7 Gy (év T25)> € §2(5)-
Similarly, for all me € —p1 U —pa:

&1(=e), if me € =p1 \ p2,
&(—e), if me € =p2 \ p1,
g(ﬁg) = (47 HlaX{Tl—‘E,TQ—‘E}),
<max{§f(f, 7“1—‘5)7&.;(6, r2ﬂs)}7> ) lf € € "pl N "p27
min{&; (6,71-.),&5 (€, m2-.)}
where (£, 71-2), & (0, 11-2), & (6, r1-2)) € €1(=e) and {(£,ra—c), &F (£, ra—2), &5 (,r2-.)) € E2(—¢).

Example 3.5 Based on the PF4BSS ({1, &1, p1,4) and PF5BSS ((2, &2, p2, 5) given in Tables 12 and 13, their
extended intersection is detailed in Table 15.

PrOpOSitiOI’l 3.3 Let (Clv 51, P1, Nl), (Cz7 52, P2, Nz), and (<3, 53, p3, Ng) be PEN;BSS, PEN,BSS, and PEN3
BSS, respectively. Then,

L (G181, p1, N1) Ae (G2, €2, p2, Na) = (G2, 2, p2, N2) Me (C1, €1, p1, V1),
2. (¢, €1, 01, N1) e ((Coy€2,p2, N2) Me (C3,63,p3,N3)) = (§17§1701,N1) e (G252, p2, N2)) Ne

(¢3,83, p3, N3).

Proof 1. Similar to the proof of Proposition 3.2 (1).
2. Similar to the proof of Proposition 3.2 (2).00

Definition 3.9 The restricted union of (¢1,&1,p1,N1) and (C2,&2, p2, N2) is denoted and defined as
(C1, &1, p1, N1) Up (G2, €2, p2, N2) = (¢, €, p1 N p2, max(N1, Na)), where foralle € p1 N p2 # 0

C(s) = <(£7 maX{Tlev 7'25})7 maX{Ci‘— (£7 7”15), C;— (47 TQE)}7 min{gl_ (Ea Tle): Go (£7 TQE)}>7

where <(£7 7'16)3 C1+(£7 r15), Cl_ (Z’ Tls)) € (:1 (5) and <(‘€a 7126)7 C;(Zv 7'25)7 C2_ (Zv T25)> € CQ(S)'
Similarly, for all =¢ € —p1 N —p2 #£ 0

g(ﬁg) = <(£7 min{rlﬂs: 7"2—\6})7 min{é_i‘— (‘67 T1—|E)7 f;— (Z: 7"2—\6)}7 max{gl_ (f, Tlﬂs)a 52_ (67 7'2—\5)}>»
where <(£7 rlﬁa)vgf(‘g’ rlﬁs)vgl_ (67 Tlﬁs» € 51 (_‘6) and <(Za T2ﬁ€)7€;(£a r2ﬁs)v£2_ (Zv T2ﬁ€)> S 52(_'5)

Example 3.6 Consider again the PF4BSS ({1, &1, p1,4) and PF5BSS ((2, &2, p2, 5) presented in Tables 12 and
13, respectively. Their restricted union is shown in Table 16.

PTOPOSitiOI’l 3.4 Let (Cl, fl, P1, N1), (CQ, 62, P2, Nz), and (Cg, 53, 03, Ng) be PEN1BSS, PEN2BSS, and PFN3
BSS, respectively. Then,

L (C1s €1, 01, N1) U (G2, €2, p2, N2) = (G2, 62, p2, N2) U (C1, €1, p1, N1). 5 5
2. (C1y€1,p1, N1) Ur ((C2s €202, N2) Ur (C3,63,03, N3)) = ((C1,€1,p1, N1) Ur (G, €2, p2, N2)) Uy

(<37£37p37N3)'

(€as€a,p1 U p2,5) |, €2 €3 €a

4 (0,0.2,0.4) | (2,0.6,0.4) | (2,0.7,0.0) | (0,0.0,0.0)
(3,0.8,0.3) (2,0.3,0.5) (0,0.3,0.3) (4,1.0,0.0)

Lo (1,0.2,0.5) | (1,0.2,0.9) | (1,0.5,0.2) | (1,0.0,0.5)
(2,0.4,0.2) | (1,0.2,0.2) | (2,0.2,0.7) | (3,0.7,0.4)

L3 (1,0.2,0.4) | (1,0.1,0.6) | (3,0.6,0.5) | (2,0.5,0.5)
(0,0.3,0.3) | (2,0.7,0.1) | (0,0.4,0.1) | (2,0.7,0.3)

Table 15. The extended intersection ({1, &1, p1,4)Ne(C2, €2, p2, 5)=(C(4, €4, p1 U p2, 5) in Example 3.5
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(CS, &5, p1 ﬁp2,5) e1 €2

0 (1,0.2,0.3) (2,0.6,0.3)
(3,0.5,0.6) (1,0.3,0.6)

05 (1,0.3,0.5) (4,0.4,0.2)
(1,0.4,0.6) (0,0.1,0.4)

03 (1,0.3,0.4) (2,0.7,0.0)
(0,0.1,0.4) (0,0.0,0.1)

Table 16. The restricted union ({1, &1, p1,4)Ur (C2, €2, p2,5)=((5, €5, p1 N p2, 5) in Example 3.6

Proof 1. Let(C1,&1,p1, N1)Ur(C2, €2, p2, N2) = (C3, &3, p1 N p2, max(N1, Nz2)).Foralle € p1 N p2 # 0

C3(6) = <(‘€a max{rlsv 7125})’ maX{ClJF (67 r1€)7 C2+ (Ea r2€)}7 mm{Cf (Za 7"15), C; (Ea r2€)}>7
where <(€7 TlE)’ C:F— (f, 7"15), Cl_ (47 TlE)) € Cl (E) and <(€7 T25)7 C;_ (67 7'25)7 <2_ (E, T25)> € CQ (E)
Similarly, for all —& € —py N —p2 # 0:
53(_'5) = <(€7 min{rlﬂsv 7‘2—~£})7 mln{ﬁfr (& 1 —\6)7 g;_ (& 7‘2—~£)}7 max{gl_ (67 Tl—*s)7 52_ (Zz 7“2—\5)}>7

where (£, 71-¢), & (€,71-¢), &1 (6,71-¢)) € €1(me) and (£, 72-e), & (6, 12-2), €5 (£, 7a-e)) € Ea(—e).

<

On the other hand, let (C2,fz,p2,NQ)UT(C1,§1,p1,N1) = (C4,f4,p2 ﬂpl,max(Ng,Nl)). Then, for all
g€ paNpr # 0

Ca(e) = ((¢, maX{Tzs,ms}),maX{C;—(f, 7'25)7(;_(& r12)}, min{¢y (4,722),¢1 (6 r1)})-

Similarly, for all —=¢ € —p> N —p1 £ O

54(ﬁ5) = <(€» min{'r?ﬂs:"ﬂlﬂs})zmin{f;(& 7"2—\5)741_(& Tlﬂs)}zmax{fg(gv TQﬂE)agl_(é: 7‘1—\5)}>'

Since ({3, &3, p1 N p2, max(N1, N2)) and ((a, &4, p2 N p1, max(N2, N1)) are equivalent for all € € p1 N p2
and —e € —p1 N —p2, the proof follows.

2. Let  ({2,&2,p2, N2)Ur(Cs, &3, p3, N3) = (Ca, &4, p2 N p3, max(Na, N3)).  Then, for all
e€p2Nps#£0,
C4 (5) = <(Z7 maX{TZE, T3S}): maX{C;_ (& T25)7 C;_ (& T35)}7 mln{QZ_ (gz T2€)7 (3_ (67 7’35)}>,
where ((€,72:), ¢ (€,72:), G5 (€,72¢)) € Ca(€) and (£, 732), G5 (£, 732), G5 (£, 73¢)) € Cs(e). Similarly, for
all e € =pa N —p3 # 0,
54(_'6) = <(€7 min{TQﬁEv r3ﬁ€})7 mln{f;(& T2ﬁ€)7 ’f; (K’ r3ﬁ€)}v maX{’f; (67 T2ﬁ€)7 é.;; (f’ T’3ﬁ5)}>,
where ((¢, rgﬁs),fg'({, T2-2), &5 (,m2-¢)) € Ea(—e)and (€, 75-¢), &5 (€, 73-¢), &5 (£, 73-2)) € E3(—¢e).Now,

let (1,1, p1, N1)Ur(Ca, €4, p2 N p3, max (N2, N3)) = (5, &5, p1 N (p2 N p3), max (N1, max (N2, N3))).
Then, foralle € p1 N (p2 N p3) # 0,

<5 (E) = ma’X{CfL (‘67 Tlﬁ)? maX{C; (Ev 7'25)7 <; (Zv 7'35)}},

<(€, max{ric, max{ras,r3}}), >
min{gl_ (67 Tls), min{CQ_ (67 TQE), (3_ (& T35)}}

where (£, 71¢), P (£, 71¢), ¢ (£, 712)) € Ca(e). Similarly, for all =& € —p1 N (—p2 N —p3) # 0,

(6, min{ri-c, min{ra—c, r3-c } }),
55 (_‘6) = < mln{é-;L (& 7/'1ﬁ<f)7 mln{é-; (& rzﬁﬁ)v fj (67 r3ﬁ5)}}7 > )
max{gf (67 rlﬁﬁ)v max{&{ (f, T2ﬁ5)7 E?T ([, r3ﬁ5)}}
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where (€, r1-6), &5 (€, 11-2), &7 (6, 71-6)) € E1(—e). On the other hand, let
(¢1, &1, p1, N1)Ur(Co, &2, p2, N2) = (€6, &6, p1 N p2, max(N1, N2)). Then, foralle € p1 N p2 # 0,
CG (E) = <(Zv maX{Tliv T2€})v maX{ClJF (ev rlE)a C2+ (67 7’25)}, mln{C; (Ev T1€)7 C; (67 7'25)}>,
where ((¢,712), ¢ (¢,712), ¢ (¢,710)) € Ci(e) and ((€,722), ¢ (€,722), G5 (€,72¢)) € Ca(e). Similarly, for
all ~e € —p1 N —p2 # 0,
éﬁ("a) = <(£7 min{rl—‘€7 TQ—‘E})7 mln{&f’ (67 7"1—‘5)7 €;_ (& T2*8)}7 max{gl_ (67 Tl—‘E)v 52_ (67 TQ—‘E)}>7
where (£, 712 ), & (€, 714¢), &7 (6, 1122)) € &1(me)and (£, 2 ), &S (€, 72-2), &5 (£, 72-c)) € E2(—€). Now,

let (C6, &6, p1 U p2, max(N1, N2))Uc(C3, €3, p3, N3) = ((7, €7, (o1 U p2) U p3, max(max (N1, Nz2), N3)).
Then, foralle € (p1 N p2) N p3 #£ 0,

(¢, max{rse, max{ric,r2:}}),
C7(5) = <max{§§'(£, T35)7maX{C;—(£7 7"15), C;—(& TQE)}}7> )
min{Ci’T (Za T3E)7 min{C; (Z’ TlE)v (:; (Ev TQE)}}

where ((£,73:), 3 (6, 732),C5 (€, 732)) € C3(e). Similarly, for all = € —p3 N (—p1 N —p2) # 0,

(¢, min{rz—c, min{ri—c, ra—c } }),
§7(e) = <min{£§’((, T3-c), min{ﬁf(& Tlﬂs)f;—(& T2-2) 1}, > )
maX{éB_ (67 7ﬁ3ﬁ5)7 maX{gl_ (& 7‘1ﬁ€), £Z_ (‘67 rQﬁE)}}
where  ((£,73-2), &5 (0,73-¢), &5 (£,73-2)) € &3(—e). Since (C5,E5, p1 N (p2 N p3), max(Ni, N2, N3))

and  ({7,&7, (p1 N p2) N ps,max(Ny, Na, N3)) are equivalent for all €€ piN(p2Np3) and
—e € =p1 N (—p2 N —p3), the proof follows.(]

Definition 3.10 The restricted intersection of (1,&1, p1, N1) and (Cz2, €2, p2, N2) is denoted and defined as
(¢1, 61, 01, N1) DO (G2, &2, p2, N2) = (C, €, p1 N p2, max(N1, N2)), where forall e € p1 N p2 # O
C(E) = <(£» min{rlz—:: 7'25})7 min{(r (& Tls): C;_ (f, T2€)}7 max{(l_ (f, Tle): G (gv T2s)}>:

where <(£7 Tls)a Ci (67 Tls)a Cf (‘ea 7115)) € Cl (E) and <(‘€7 7’25), C2+ (‘67 7“25), C; (67 T2E)> € CQ(E)'
Similarly, for all —¢ € —py N —p2 # O:

§(ﬁ5) = <(£7 HlaX{’l“lﬂE, TQ—*E})7 max{ff— (Z: ! —\5)7 5;_ (f, TQWS)}: min{fl_ (& Tlﬂs)a & (Z: 7'2—\5)}>7
where <(£7 Tlﬁs)vgfr(‘ev Tlﬁs)vé.; (67 r1ﬂ6)> € 51 (_‘5) and ((67 T2ﬁ6)7€2+(ea T2ﬁ6)5527 (‘gz T2ﬁ€)> S 52(_‘5)'

Example 3.7 Consider again the PF4BSS (1, &1, p1,4) and PF5BSS ({2, &2, p2, 5), as shown in Tables 12 and
13, respectively. The restricted intersection of these sets is presented in Table 17.

PTOPOSitiOVl 3.5 Let ((1,51,p1, N1), (Cz,fz, P2, Nz), and (Cg,fg, 03, Ns) be PEN1BSS, PFN2BSS, and PFN3
BSS, respectively. Then,

L (<17§17p17N1)
2. (ChflvplaNl)

(¢3,&3, p3, N3).

(€27£25p27N2) = (CQ,fQ,PQ,NQ) ﬁT (Clvélvplle)'

Ar
O (G2, &2, p2, N2) Oy (G3,€3, 03, N3)) = ((C1, 61,1, N1) O (G, €2, p2, N2)) M

(CG? €6, p1 N p2, 5) 1 €2

0 (0,0.2,0.4) (2,0.6,0.4)
(3,0.8,0.3) (2,0.3,0.5)

09 (1,0.2,0.5) (1,0.2,0.9)
(2,0.4,0.2) (1,0.2,0.2)

03 (1,0.2,0.4) (1,0.1,0.6)
(0,0.3,0.3) (2,0.7,0.1)

Table 17. The restricted intersection ((1, &1, p1,4)Mr(C2, &2, p2,5)=(C6, &6, p1 N p2,5) in Example 3.7
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Proof 1. Similar to the proof of Proposition 3.4 (1).
2. Similar to the proof of Proposition 3.4 (2).LJ

We now present the relationships between the extended union, extended intersection, restricted union, and
restricted intersection within the PENBSS framework.

Proposition 3.6 Let ((1, &1, p, N) and ({2, &2, p, N) be two PENBSSs. Then,

L. (Cl,fl,p,N)L:Je ((2,fg,p7N):(<17£1,p7N) T(<27§27p7N)'
2. (C17§17P7N)me (C27€25p7N):(<17§17p7N) T(C25527p7N)’

Proof 1. Follows from the fact that the set of parameters is only p; hence, by Definitions 3.7 and 3.9, the
extended and restricted unions between two PENBSSs are identical.
2. Follows from the fact that the set of parameters is only p; hence, by Definitions 3.8 and 3.10, the
extended and restricted intersections between two PFNBSSs are identical.(]

U
N

Proposition 3.7 Let ((1,&1, p1, N) and (2, &2, p2, N) be two PFNBSSs. Then,

L (1,61, 01, N) Ue (G2, &2, po, )) = (C1,€1,p1, N) Ne (G2, €2, p2, N)®
2. ((¢1, 6,01, N) Pe (G2, 62, p2, ))F (C1, 61,01, N)® Ue (G2, €2, p2, N)°
3. ((¢1, 6,01, N) Uy (G2, 62, po2, ))c (C15€1,p1, N)* O (G2, €2, p2, N)°.
4. (¢ &1,p1, N) O (G262, 92, N)) = (G161, p1, N Uy (G, 62, p2, N)°

Proof 1. Let (Ci,&1,p1,N) Ue ((2,&2,p2,N) = ((3,&3,p1 Upa, N). Then, ((Clyflath) Ue
(C2’f27027N))c:(43,§3,p1 U p2, N) = (¢S, &5, p1 U pa, N). Foralle € p1 U po:

Gi(e), ife € p1\ p2,
Ca(e), ife € p2\ p1,
C?(E) - (£7 maX{T1€7r25})7
max{(f((, 7‘16)7(;—((7 TZE)}) , ifee p1 N p2.
min{gl_(& T1€)7<2_(€7 T2s)}

where <(€7 7‘15)7C;r(€, T15)7§;(Z7 T15)> € Cl(a) and <(£v TQE)vCJ(Zv T25)7<§(£7 T26)> € C2(€)'
Similarly, for all —e € —p1 U —pa:

51 _‘E if me € =p1 \_‘02,
& if me € =p2 \ p1,
(¢, mm{hﬂs,rzﬂg})
min{& (6, 71-.),& (6,2-2)}, ), if =& € =p1 N —p2.
ma‘X{€1 (E Tlﬁs) 52 (f T2ﬁa)}

where (£, 71-2), & (6, 71-2), & (6,r1-2)) € E1(=e) and (€, r2-c), &8 (6, r2-2), €5 (6,72-0)) € Ea(—¢).
Then, for alle € p1 U pa:

€1ﬂ if e € p1\ po,
. 52 ifee P2 \,017
CS(e) = &3(—e) (¢, mm{rlﬁe,rzﬁs})
min{&; (6, m1-0), &5 (6,ra-)}, ), ife € p1 N po.
max{&; ({,r1-c),&5 (€, r2-¢)}

Similarly, for all =& € —p1 U —pa:

Ci(e), if e € —p1 \ 7pe2,
) G2(e), if me € =p2 \ —p1,
&3(-e) = G(e) = (€, max{ric,ra2. }),
maX{CfL(& 7“15)7(;(57 7'25)}7 s if —e € —p1 N —p2.
mln{(l_ (67 T16)7<2_ (zv TQE)}

On the other hand, let (C1, &1, p1, N)¢ e (G2, &2, p2, N)® = (Ca, €4, p1 U p2, N). Foralle € p1 U pa:
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). ife € p1\ p2,
<§(5)7 V ) ife e P2 \pla
Ca(e) = (6, min{ry.,r5.}),
<min {a @) (s} > , ife€pinps
max {¢7*(6,8.), G (4. 75.) }
51(“6)7 ifEEpl\p%
) ife €p2\p1,

— (é, Inin{’r’lﬁs,’r‘zﬁs})7
<min {GL(Z, 7“1ﬁ5)7€2+(£, Tzﬁg)} ,> , ife € pinpa.
max {&1 (£,71-¢),&5 (,72-2) }

Similarly, for all m& € —p1 U —pa:

ff( if e € =p1 \ p2,

65( if —e € =p2 \ —p1,
(¢, max{rlﬁs,rgﬁe})

<InaX {51 E rl—‘a) 52 (‘e TQ—\E)} ’> ) if —e S —p1 N —p2.
min {&°(6,75.), & (6, 75-.) }

()

(¢)

G if =e € =p1 \ —p2,

G2 if e € ~p2 \ 7p1,
(¢, max{rls,rgs})

<maX {Cl E Tla) CQ (E T2E)} 7> s if —e € =p1 N —pa.
min {¢; (6,710), G (6r20) }

Since ({3, &3, p1 U p2, N)© and (C4, &4, p1 U pa, N) are equivalent for all € € p; U pa and —e € —py U —p2,
the proof follows.

The other parts can be illustrated in the same way. (]

Proposition 3.8 Let ((1, &1, p1, N) and ({2, &2, p2, N) be two PENBSSs. Then

L (G, 61,01, N) Ue (G161, p1, N) 0 (G2, €2, p2, N)) = (C1, 61,01, N)
2. (¢, 61,1, N) Me ((C15 61,1, N) Uy (G2, 62, p2, N)) = (G, €1, p1, N)
3. (€10, 01, N) U (€150, p1, N) Qe (G, €2, p2, N) ) = (G161, 01, N).
4 (G601, N) N (G601, N) Ue (G, €2, p2,N)) = (G €1, p1, N)

Proof 1. Suppose that ((1, &1, p1, N) N (C2, &2, p2, N) = (3, &3, p1 N p2, N). Then, foralle € p1 N p2
<3(€) = <(£a min{rla7r2s})vmin{C1+(é: 7‘15),C2+(€, T2E)}7maX{C1_(Z: 7'15)»(2_(& T25)}>7

where ((¢, r15),C1+(£, rie), ¢ (6, 1)) € Ci(e) and ((¢, 7"25),(:;(6, r2¢),Cy (€, 72¢)) € C2(€). Similarly, for
all =e € =p1 U —po:

53(_‘8) = <(éa maX{Tl —e» TQﬁE})a max{&;r (67 rlﬁs), 5;(57 T2ﬁ6)}7 min{&; (& 1 ﬁE)v 123 (6, r2ﬁ6)})>7

where <(Z 7"1—\6) €1 (Z Tlﬂs) 5;(6 Tl—ws)) 65 ( 5) and <(£7T2ﬂs)7£;(€7 r2—\5)7£27(£7r2—*6)> € 52(_'5)-
Now, let (Claglaph ) Ue (C37£3ap1mp27 (C47§4aplu(p1 ﬂp?)vN) = (C47§47p17N)' Then, for
alle € p1 U (p1 N p2):

Gi(e), ife €pi\ (p1Np2),
Cs(e), ife € (prNp2)\ pr =0,
G(e) = (¢, max{ha,rge})
<maX{C1 (0, 712), G5 (0,736 },> if e € p1N(p1Np2).
mln{Cl £,11e),C5 (€, r3e }

C1(e), if e € p1\ (p1Np2),

(¢, max{rie, min{ric, rac }}),

= <max {Cf(ﬂ, T1e), min E{f(f, 1), ¢ (L, 7“25)%% 7> , ife € pin(p1Np2).
Cf (67 Tl&)v({ (E, TQS)

min {Cf (¢,7r1c), max

where ((£,73.), ¢S (€, 73¢), 5 (€,732)) € C3(€). Similarly, for all ~¢ € =p1 U (=p1 N —p2):
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&i(=e), if — € =p1\ (=p1 N —p2),
£s(—e), if =& € (mp1 N=p2) \ —~p1 = 0,
&a(—e) = (¢, mln{lﬂlﬂaﬂ”ﬁ}ﬂa})i
min {61 (za TlﬁE)aSS (87 T3ﬁ€)} ) 5 lf - € —p1 N (_‘pl N _‘p2)-
max {&; (6, 71-c), &5 (£,73-c) }
1(e), if ~ € =p1 \ (mp1 N —p2),
(¢, min{r1-e, max{ri-c,ra-c } }),
<min {éiﬁ(& TlﬁE)a max %6?(& rlﬁE 75; E T2-e i} 7> s if —e € —p1 N (ﬁpl n ﬁpg).

max {&;(Zvrlﬁi)vmin 5;(£7T1ﬁ€ 7§2 e r2ﬁ€

where (£, 75-¢), &5 (£, 73-¢), &5 (£,73-)) € &3(—¢). Hence,

1 if 1 1 2
a@={ &l HIempmne

and

g ={ B0 foieTmACone

Therefore, (C1,&1, 01, N) Ue ((C1,&1, 01, N) 0 (G2, €2, p2, N)) = (C1, €1, p1, N).

The other parts can be illustrated in the same way. (J

PT’OpOSitiOI’! 3.9 Let (C1, 51, P1, N1), (CQ, 52, P2, Nz), and (C3, 53, P3, N3) be PFN1BSS, PFN3BSS, and PFN3
BSS, respectively. Then,

L (C1,€1,p1,N1) Ue ((Goy €2, p2, N2) O (C3,€3,p8,N3)) = ((¢1,&,p1,N1) Ue (C2, €2, p2, N2))
( C1,¢1,p1, N1) Oe (¢3,&3,p3, N3) )

2. (C1,€1, 01, N1) N ((G2,€2,p2, N2) Ur (C3,63,p3,N3)) = ((C1,€1,p1, N1) Ne (G2, €2, p2, N2)) Uy
(C1,§1,p1,N1 e (€3,€3,p3, N3) )

3. (¢, 61,01, N1) Ur (G2, 82, p2, N2) Me (G353, 03, N3)) = ((C1, 61,01, N1) Uy (G, €2, p2, N2)) e
(C1,€17p1,N1 Ur (C3,€3703,N3))-

4 (G, &1, 01, N1) O ((C2062,p2, N2) Ue (G3,68,p3,N3)) = ((C1,&1,p1, N1) O (G2, 62,p2, N2)) Ue
((C1»§17P17N1 ﬁ (Cs,€3, p3, N3)).

5. (¢1,61,p1,N1) ((C2,§2,p2,N2) - (C3,€3,p3,N3)) = ((C1,€1,,01,N1) Ur (C2,§2,p2,N2)) O
((¢1,61,p1, N1) U (G3,€3, p3, N3)).

6. (Cis€1,p1, N1) 0 (G20 €20 p2, N2) Ur (Gs,63,p3,N3)) = ((C1,€1, 01, N1) O (G2, €2, p2, N2)) Uy
((C1y€1, 1, N1) O (G5, 65, p3, N3)).

Proof 1. 3. Suppose that ((CQ,fz,pz,Nz) Ne (Cg,fg,pg,Ng)) = (C4, &4, p2 U p3, max(N2, N3)). Then,
foralle € ps U ps:

Ca(e), ife € pa2\ ps,
¢3(e), if € € p3 \ po,

Cale) = (¢, min{rac, r3e}),
<min{§;(57T25)74;'(57T35)}7>7 if86p2ﬂp3.
max {¢ (€,r22), G5 (6,73) }

where ((£,72.), ¢S (£, 722), 5 (6,722)) € Cale) and (£, 132), ¢ (6, r32), 5 (€,732)) € C3(e). Similarly, for
all ne € =p2 U —p3:

&(— if e € =p2 \ —ps,

&(— if —e € =p3 \ p2,
(¢, max{?"zﬁgmgﬁg})

<max {52 4, Tgﬁg §3 (¢, TBﬁs)} ,> , if me € mp2 N —p3.
min {52 l,ra-e), &5 (4, r3ﬁ5)}

where ((£,72-2), &5 (6,12-), &5 (£,72-.)) € E2(me) and ((€,r3-.), &5 (£,73-0), &5 (6, m3-2)) € Es(—e).
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Let (Cl,glvpla Nl) U (44»547/32 ) P37maX(N2, N3)) = (Csyf& p1N (p2 U P3)7maX(N17H1aX(N2, N3)) =
((:5,55,)\1 U Ag,maX(Nl,NQ,Ng)) where \1 = p1 M p2 and Ao = p1N pg.Then, foralle € A\ U \o:

C5(€) = <(Kv max{rlsv 7’45}), maX{ClJF (67 rls)a CZF (ea r4€)}a mln{C; (Za rls)? CZ (67 r4€)}>7
where <(£7 rls)v Cf—(ga rls)v 41_(87 T15)> S Cl(E) and <(€7 T45)7C2_(€7 T4e)7C4_(£7 T4z~:)> S <4(5)-
Similarly, for all me € =1 U =Aa:

55(ﬁ6) = <(€» min{rlﬂs: T4ﬂs})7 min{ff’ ((, ! —\6)7 62_ (67 T4ﬂs)}7 max{&l_ (Ev Tlﬂa)v N (Z: T4—\e)}>7

where <(Z7 7'1ﬁ6)7 €1+(£7 Tlﬁs)v 517(67 7‘1ﬁ5)> € 51(_‘5) and <(£7 T4ﬁ5)7 51(‘67 T4ﬁ5)7 647 (Ev 'f'4ﬁ5)> € 64(_'5)'
Hence, foralle € A1 U As:

(¢, max{ric, r2c }),
<maX{Cf—(&Tl«f)vC;(&T?E)}a>, if8€>\1\>\2,
min { {1 (4,710), G (6, 726)

(6, max{ric, rse}),
Cs(e) = <max {5 me), ¢ (0rae) } ,> , if e € Ao\ A1,
min {¢; (€,712), 5 (€,73:) }
(¢, max{ric, min{rac, r3c }}),
<max {Cf(é, T1¢), Min EG(& rac), i (¢, rss)ﬁ ,> , ife €N
C; (€7 T25)’C?T (& T35)

min {(jf (€,7r1¢), max
Similarly, for all ~e € =A; U —Aa:
(¢, min{ri-e,r2-¢ }),
<min {6l (im0, & ()} > : if e € A\ Ao,
max {& (6,r1-2),& (€,r2-2) }
(6, min{r1-e, r3-c}),
&s(e) = <min {fr(f, Tlﬁf):fg_(fa TBﬁE)} 7> , if me € = A2\ =1,

max {&; (£,71-¢), & (£,73-2) }
< (€, min{ri~c, max{ro-c,r3-c }}),

min {& (£, r1-c), max {& (¢,r2-2), &5 (L,r3-) } } > , if e € 2A1 N =),
max {§f(€,r1ﬁg),min {.f;(é,rgﬁg ), &5 (£, r3-¢) }}>

On the other hand, let (C1,§1,p1,N1) LVJT (Cz,fg,pg,Nz) = (C6,§6,P1 ﬂpg,maX(N1,N2)). Then, for all
€€ p1MNpa:

Go(e) = <(£7 maX{TlE,TQS}),maX{Cf(& T15)7C2+(€7 725)}ﬂmin{gf(& T15)7C;(£7 T25)}>'

Similarly, for all ~e € =A1 U = Aa:

gﬁ(ﬁs) = <(€» min{rlﬂs: TQ—*E})7 min{ffr ((7 T1 —\6)7 5; (E’ T2ﬂs)}7 max{&l_ (67 Tlﬂs)v 52_ (Z: 7"2—\5)}>'

Next, let (1, &1, p1, N1) Uy (C3,€3, p3, N3) = (Cr, €7, p1 N p2, max(Ni, Nz2)). Then, forall e € p1 N ps:

C7(5) = <(€v max{rlav T35})v maX{ClJF (Ea Tle)v C;F (Ev T3€)}7 min{C; (Zv Tls)v CZ: (f, T3€)}>'

Similarly, for all ~e € =A; U —Aa:

&r(=e)(€) = (¢, min{ry_, 73— }), min{&; (€, 71-.), & (€, 73-.)}, max{&; (¢,71-.),&5 (£,73-2)}).

Now, suppose that ((s,&,p1 N p2, max(N1, N2)) Ne  ((7,&7,p1 N p3, max(Ni, N3)) =
(Cs, &8, A1 U A2, max(N1, Na, N3)) where A1 = p1 N p2 and A2 = p1 N p3. Then, foralle € A1 U Aa:
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Co(€)s if e € M1\ Mg,
¢r(e), if e € A2\ A1,

CS(E) = (E, min{T657T7E})7
<min {Cg(f,rsa)7C7+(€,r75)} ,> , ife €A N
max { (g (6,76:), G7 (6,77¢) }

max{(jl (€, r1¢), Cg (£, 7“25)},

(6, max{ric,r2: }), >
, if £ € A1\ Ao,

mm{{l £,1m1e), ¢ (4, 7"26)}

< (¢ max{rlg,rgg})
= <max{§1 (6,71e), G5 (4 7"35)}a>, if e € X2\ Mg,
mln{{l £,11e),C5 (¢, 7“36)}
U mm{max{rls, T2}y max{rlg, r3e}}),
<m1n max (1 (£, 7r1e), (2 (¢, 7“25)% ,max {(1 (£, 7m1e) € T3e }} 7>
rmn{(1 (0, 7r1e), ( (é 7"35)}}

if e € A1 N s,

max {mln ¢ (8,m1e), Go (£, m2¢)

where <(£7 T6£)7 CJ(& TGE): C(; (67 TGS)) € 46(5) and <(£7 7"75)7 g;r(& 7"75)7 g; (Zv 7‘75)> € <7(5)~ Simﬂarl}’, for
all me € =1 U - Aa:

&6 (—e), if me € 21\ A2,
f7(ﬁ€), if me € 22 \ =1,

€s(—e) = <(€ , max{re—e, 7'7%} >

max { &7 (¢, rw LEF () } if =& € =A1 N —Xa.

min {{6 0,16-e),&7 (£, 77-e) }

min {51 (€, r1-2), &5 (£, 72ﬁs)}

(¢, mm{rlﬁsmzﬁi})
> if —e € =\ \ ﬂ/\z,

<max {fl lri-e), &5 (4, rzﬁs)}

(¢, mln{rlﬁg,rgﬁg})

= <m1n {fl (0, r1-2), &5 (L, Tsﬁs)} > if =e € =Xz \ 2 A1,
max {51 (L, r1-¢), &5 (4, rgﬁg)}

(¢, max{mln{rhg,rzﬁg} mln{rhg,reﬁg}})
max {mln 51 (6 m1-e), 52 (€,72-¢ % min {51 (¢, Tlﬁs),fg(zz 7"3#)}} 7> , if me € mA1 N -,
, Inax {517 (£7 Tl“E)af?j (Ea T3—*E)}}

min {max & (U r1-e), &5 (U, ra-e)

where ((¢, reﬁs),fg(& T6-c): &g (U, 76-e)) € E6(—e) and ((4, T7ﬁ5)7§;"(€, r7-e), &7 (U, 7)) € Er(—e).
Since ((s,&5, A1 U A1, max(Ny, N2, N3)) and (Cs,&s, A1 U A2, max (N1, Na, N3)) are equivalent for all
€ € A1 U A2 and —¢ € = A1 U =)\, the proof follows.

The other parts can be illustrated in the same way. [

Decision-making framework and application

This section presents a comprehensive overview of the DM framework based on the proposed PFNBSS model
and demonstrates its application in sustainability evaluation within the manufacturing industry. The framework
systematically evaluates alternatives by accounting for both positive sustainability indicators and potential risk
factors, relying on the structural decomposition principles inherent in the PFNBSS model.

To illustrate the versatility and practical relevance of the model, two examples are presented. The first is a
symbolic, illustrative case used to clarify the operational mechanics of the model in a simplified setting. The
second example focuses on a comparative sustainability risk assessment scenario involving manufacturing
enterprises and is structured to reflect typical real-world evaluation practices. Although both examples use
simulated data, the second is constructed around realistic sustainability indicators, challenges, and expert-based
assessment logic commonly encountered in industrial decision environments.

The section is organized as follows. First, we introduce the PENBSS-based DM procedure, which outlines the
algorithmic steps for calculating aggregate and net scores to identify the most suitable alternative. Then, we apply
the framework in two DM contexts. These examples collectively demonstrate both the internal workings of the
model and its applicability to sustainability-related evaluations in manufacturing domains.

Decision-making procedure

In this subsection, we introduce the DM procedure based on the proposed model, PENBSS. The procedure
utilizes the structural decomposition of the PENBSS framework to evaluate alternatives. It involves calculating
aggregate score values from substructures to assess each alternative. The algorithm identifies the best alternative
by computing net scores derived from the individual contributions of each substructure. The entire process is
visually represented in a flowchart, providing a clear illustration of the DM steps involved.

To facilitate understanding of the computational framework, we provide the following explanation prior to pre-
senting the algorithm. This explanation bridges the representation in Table 2 with the computations in the al-
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gorithm by noting that each cell entry-comprising two tuples for the positive and negative evaluations—is first
processed by computing corresponding score values. These individual scores, derived from the components
(rsj e C;;, ¢;;) and <7’7,’j“5j , §;§, §,;)> are mapped to numerical values denoted by z;;. Thus, in the algorithm,

the symbols z;; refer to the scalar score values that represent the overall evaluation of alternative ¢; with re-
spect to attribute €, after transforming the PFN entries into decision-relevant quantities. This transformation
enables the calculation of aggregate and net scores and ensures consistency between the tabular representation
and the algorithmic steps given in Figure 1.

Algorithm: Decision-Making Based on PFNBSS.

1: Input:

o L: A set of alternatives.
e p: A set of decision attributes.
e (¢,& p,N): The PFNBSS structure.

2: Steps:

i. Decompose the PFNBSS structure (¢, &, p, N) into two substructures: (¢, p, N) and (£, —p, N), as
shown in Tables 3 and 4, respectively.

ii. For each substructure, identify the corresponding PFNs and compute their score values using Defi-
nition 2.2.

iii. For each alternative ¢;, calculate the aggregate score a; = Zj zi; from the substructure (¢, p, N).
iv. Likewise, compute the aggregate score b; =Y j %ij from the substructure (£, —p, N).

v. Determine the final net score z; = a; — b; for each alternative ¢;, where i =1,2,...,n.

3: Output: Select the best alternative ¢, such that z, = max{z;}.

Algorithm 1Decision-Making Based on PFNBSS.

Practical example 1: sustainability evaluation in manufacturing industries

In today’s global economy, manufacturing industries are under increasing pressure to adopt sustainable practices
that minimize environmental impacts, optimize energy consumption, and foster social responsibility. As
industries work towards reducing their ecological footprint, integrating sustainability into their operations is
seen not only as a regulatory requirement but also as a strategic advantage. The assessment of sustainability
in these industries involves evaluating several critical aspects, including resource efficiency, environmental
protection, and corporate social responsibility.

This first example serves as a conceptual illustration of the proposed PENBSS model, using simplified data
to demonstrate the DM process step by step. We evaluate the sustainability performance of five representative
manufacturing companies £ = {1, ¢2,¢3, {4, {5}, each reflecting a typical industrial profile (e.g., automotive
parts, food processing, chemicals, textiles, electronics). The assessment is based on simulated expert ratings and
captures key sustainability enablers and barriers in a stylized format.

Although the data used is synthetic, it is designed to resemble general sustainability evaluation scenarios and
highlight the inner workings of the PENBSS-based DM framework.

Key sustainability indicators
The following attributes are used to measure the sustainability practices of the manufacturing companies:

o ¢1: Energy efficiency - This attribute evaluates how effectively the company reduces energy consumption
during the manufacturing process without compromising product quality.

o &2: Waste reduction - Assesses the company’s ability to minimize, reuse, or recycle waste materials generated
throughout production.

o &3: Use of renewable resources - Measures the extent to which the company integrates renewable materials
into its operations, contributing to a more sustainable production process.

o ¢&4: Social responsibility - This factor gauges the company’s commitment to community engagement, fair labor
practices, and contributing to the welfare of society at large.

Challenges to sustainability implementation
In addition to the positive sustainability outcomes, several challenges may hinder the successful implementation
of sustainable practices. These challenges are represented by the set —p:
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Decompose the PENBSS structure (¢, &, p, N)

The substru;;ure (¢,p,N) The substruc;n'e (&,—p,N)
Identify the PFNs aI;(,i compute their score Identify the PFNs aII(,i compute their score
values using Definition 2.2 values using Definition 2.2
Compute :1: =y ;%) Compute ;): = ;%
| |
Determine z; = a;: bi,i=1,2,....n

Output: Select ¢, su\c,h that zq = max{z} End

Fig. 1. Flowchart for the proposed algorithm.

o —e1: High energy consumption - This signifies inefficiencies in energy usage that lead to higher costs and
increased environmental impact.

o —ea: Inefficient waste management - Reflects the company’s failure to implement effective waste reduction
and recycling strategies.

« —e3: Reliance on non-renewable resources - Highlights the dependence on non-renewable materials, such as
fossil fuels, which undermine long-term sustainability goals.

o —iey4: Poor labor practices - Indicates the company’s failure to uphold ethical labor standards and its lack of
community engagement, affecting both its reputation and operational sustainability.

Sustainability evaluation framework
The sustainability of each company is assessed based on the presence of the positive sustainability attributes and
the challenges identified. Table 18 summarizes the evaluations, where:

« o denotes areas with weak compliance to sustainability practices.
o Multiple x symbols indicate varying degrees of efficiencies in a given aspect of sustainability.

The check-marks from the previous evaluations are converted into numerical values ranging from 0 to 4 using
the same technique as in Example 3.1, and the results are presented in Table 19.

We now identify each of (¢, p, 5) and (€, —p, 5), as presented in Tables 20 and 21, respectively.

By Definition 2.2, we compute the score values for each of the PFNs in Tables 20 and 21, respectively. The
corresponding results are presented in Tables 22 and 23.

Based on the developed algorithm, we are now able to recommend the most suitable alternative. Table 24 is
constructed directly from Tables 22 and 23.

From Table 24, it is evident that max z; = z4; hence, ¢4 is identified as the most suitable option.
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ﬁ\p €1 €2 €3 €a
V2 *k * *k *x
* * Kk * *k
Lo * * Kk o * *k
* * Kk kk *% *
L3 * * * * *% * %k
* * * ok *% *
7 * k * * K kk * *
* o * * * *
ls * * Kk * * *
* *k * *

Table 18. Initial Evaluations

(€, & p,5) €1 = €3 €4

21 (2,0.7,0.2) | (1,0.5,0.3) | (2,0.5,0.5) (2,0.5,0.4)
(1,0.3,0.4) | (3,0.8,0.0) | (1,0.5,0.3) (2,0.7,0.1)

2 (3,0.7,0.5) (0,0.4,0.1) (1,0.4,0.4) (2,0.7,0.3)
(1,0.0,0.6) (4,0.7,0.7) (2,0.3,0.7) (1,0.3,0.5)

L3 (3,0.5,0.7) | (1,0.5,0.1) | (2,0.6,0.2) (3,0.6,0.6)
(1,0.6,0.1) (3,0.7,0.4) (2,0.6,0.4) (1,0.5,0.0)

Ly (3,0.8,0.3) | (4,1.0,0.0) | (1,0.4,0,4) | (1,0.4,0.2)
(1,0.5,0.3) | (0,0.0,0.4) | (3,0.3,0.8) (1,0.3,0.4)

05 (1,0.5,0.3) | (1,0.1,0.6) | (2,0.6,0.3) (3,0.6,0.6)
(1,0.5,0.3) | (2,0.6,0.4) | (1,0.6,0.0) (1,0.3,0.4)

Table 19. Tabular form of PF5BSS (¢, &, p, 5)

(¢, p;5) = =) €3 =

0 (2,0.7,0.2) | (1,0.5,0.3) | (2,0.5,0.5) | (2,0.5,0.4)

Lo (3,0.7,0.5) | (0,0.4,0.1) | (1,0.4,0.4) |(2,0.7,0.3)

O3 (3,0.5,0.7) | (1,0.5,0.1) | (2,0.6,0.2) | (3,0.6,0.6)

Ly (3,0.8,0.3) | (4,1.0,0.0) | (1,0.4,0.4) |(1,0.4,0.2)

L5 (1,0.5,0.3) | (1,0.1,0.6) | (2,0.6,0.3) | (3,0.6,0.6)

Table 20. Tabular form of ({, p, 5)

(53 —pP, 5) —e1 —eg —es3 —Ea

2 (1,0.3,0.4) | (3,0.8,0.0) | (1,0.5,0.3) |(2,0.7,0.1)

123 (1,0.0,0.6) | (4,0.7,0.7) | (2,0.3,0.7) | (1,0.3,0.5)

3 (1,0.6,0.1) | (3,0.7,0.4) | (2,0.6,0.4) | (1,0.5,0.0)

04 (1,0.5,0.3) | (0,0.0,0.4) | (3,0.3,0.8) | (1,0.3,0.4)

%3 (1,0.5,0.3) | (2,0.6,0.4) | (1,0.6,0.0) | (1,0.3,0.4)

Table 21. Tabular form of (£, —p, 5)

Practical example 2: comparative risk assessment in sustainable manufacturing

As industries intensify their efforts to integrate sustainable practices, there remains a pressing need to evaluate
the risk factors that threaten long-term sustainability objectives. These risks, if not properly assessed and
mitigated, can undermine environmental efforts, increase operational costs, and damage stakeholder trust.
Sustainable manufacturing, therefore, demands not only proactive adoption of positive attributes but also robust

mechanisms for identifying and responding to sustainability risks.

Scientific Reports |

(2025) 15:29648

| https://doi.org/10.1038/s41598-025-15126-1

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

(Cy P> 5) - s - &n a; = Zj Zij
0 0.45 0.16 | 0.00 |0.09 | 0.70
0y 024 |0.15 0.00 | 0.40 | 0.79
l3 —0.24 [ 024  [0.32{0.00 | 0.32
O 0.55 1.00 0.00 | 0.12 | 1.67
05 0.16 —0.35 | 0.27 | 0.00 | 0.08

Table 22. Score values of PFNs in (¢, p, 5) and the corresponding calculations of a; = Zj Zij.

(&, —p, 5) b; = Zid
—E€71 —EQ —E3 —E€a * ZJ g

4y —0.07 | 0.64 0.16 0.48 1.21

L —0.36 | 0.00 —0.40 | —0.16 | —0.92

L3 0.35 0.17 0.20 0.25 0.97

Ly 0.16 —0.16 | —0.55 | —0.07 | —0.62

ls 0.16 0.20 0.36 —0.07 | 0.65

Table 23. Score values of PFNs in (£, —p, 5) and the corresponding calculations of b; = Z]. Zij.

®g = Zj #ij | by = Z,‘ Zij z; = a; — b;
ay; = 0.70 by =1.21 z1 = —0.51
az = 0.79 bo = —0.92 z2 = 1.71

az = 0.32 bs = 0.97 z3 = —0.65
ay = 1.67 by = —0.62 za = 2.29

as = 0.08 bs = 0.65 z5 = —0.57

Table 24. Final score table

This second example illustrates a more industry-oriented application of the PFNBSS model. It involves a
comparative sustainability risk assessment of five manufacturing enterprises £ = {¢1, {2, {3, ¢4, {5} operating
in sectors such as packaging, pharmaceuticals, steel, renewable energy, and electronics. The goal is to assess not
only sustainable practices but also the extent of underlying risks that may hinder sustainability performance.

While the data is also synthetically generated, it is grounded in real-world-inspired sustainability indicators
and expert evaluation structures. This example better reflects practical assessment logic and is intended to
demonstrate the model’s suitability for more realistic industrial decision environments.

Positive sustainability drivers
The following set of positive indicators reflects core sustainability enablers used in the assessment:

 ¢1: Emissions reduction strategies — Evaluates the company’s efforts in limiting greenhouse gas emissions
through clean technologies and carbon offsetting.

o ¢&2: Sustainable supply chain - Assesses the degree to which the company integrates environmental and ethical
considerations across its supply chain.

o ¢&3: Eco-friendly product innovation — Measures the company’s investments in designing products that reduce
lifecycle environmental impact.

+ &4: Employee engagement in sustainability — Captures the company’s success in involving its workforce in
sustainability initiatives and awareness programs.

Sustainability risk factors
The corresponding set —p represents key risks or challenges that may hinder sustainable performance:

o —eq: High carbon footprint — Indicates that the company still relies on emission-intensive processes without
adequate mitigation.

» —e2: Unsustainable supplier practices — Reflects the lack of transparency and environmental standards within
the supply chain.

« —e3: Resistance to innovation - Points to organizational inertia or limited investment in sustainable Research
and Development activities.
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L\p €1 €2 €3 €4
V2 * kK *k *x *

* *k o *k
Lo o * * * * *k

* K kk * * K K *k
L3 * *k *k * K x

* K Kk *k Kk o
7 * * Kk * * Kk * *

* o * Kk K *k
ls * * Kk * * *

* * K K * *

Table 25. Initial Evaluations

€, &, p,5) = €2 €3 €4

21 (3,0.2,0.8) | (2,0.5,0.5) | (2,0.6,0.4) (1,0.2,0.4)
(1,0.3,0.5) | (2,0.6,0.2) | (0,0.1,0.3) (2,0.7,0.1)

2 (0,0.4,0.1) | (3,0.4,0.7) | (1,0.4,0.4) (2,0.7,0.3)
(4,0.8,0.5) | (1,0.3,0.5) | (3,0.3,0.8) (2,0.2,0.7)

{3 (1,0.1,0.6) (2,0.5,0.4) (2,0.6,0.2) (3,0.7,0.5)
(3,0.6,0.5) (2,0.6,0.4) (2,0.2,0.7) (0,0.1,0.4)

Ly (3,0.8,0.3) | (4,1.0,0.0) | (1,0.1,0,6) | (1,0.4,0.2)
(1,0.4,0.3) | (0,0.0,0.4) | (3,0.3,0.8) (2,0.3,0.7)

s (1,0.5,0.3) | (1,0.1,0.6) | (2,0.6,0.3) (3,0.8,0.1)
(1,0.5,0.3) | (3,0.7,0.5) | (1,0.1,0.5) (1,0.3,0.4)

Table 26. Tabular form of PF5BSS (¢, &, p, 5)

o —e4: Low internal sustainability awareness — Suggests insufficient training or communication efforts related
to environmental responsibility.

Risk evaluation framework
Each company is evaluated using the PFNBSS model, which incorporates both the presence of sustainability
drivers and the prevalence of associated risks. The evaluations are presented in Table 25, where:

« o represents areas where sustainability engagement is lacking or inconsistent.
o X, kK, k % % and * x x* symbolize incremental levels of success in managing sustainability factors or mitigat-
ing risks.

The symbolic check-marks from the earlier assessments have been translated into numerical values on a scale
from 0 to 4 following the method applied in Example 3.1; the corresponding results are displayed in Table 26.

We proceed by extracting the positive substructure ({, p, 5) and the negative substructure (£, —p, 5), which
are detailed separately in Tables 27 and 28, respectively.

Using Definition 2.2, the score values for the PFNs listed in Tables 27 and 28 are calculated. The resulting
scores are summarized in Tables 29 and 30, respectively.

Following the proposed algorithm, we identify the most appropriate alternative. Table 31 compiles the final
results derived from the score values presented in Tables 29 and 30.

Table 31 clearly shows that the highest net score is z4, indicating that ¢4 is the optimal choice among the
alternatives.

Results and discussion

The proposed DM procedure based on the PENBSS model demonstrates a structured and effective approach
for handling complex sustainability evaluations in manufacturing industries. The framework decomposes
the overall assessment into two complementary substructures: positive sustainability attributes (¢, p, N) and
negative challenges (£, —p, N). This bipolar decomposition facilitates a nuanced analysis that balances the
benefits and barriers associated with each alternative.

The first numerical example involving five manufacturing companies illustrates this approach concretely.
Key sustainability indicators such as energy efficiency, waste reduction, use of renewable resources, and social
responsibility form the basis of the evaluation. Simultaneously, recognized challenges-including high energy
consumption, inefficient waste management, reliance on non-renewable resources, and poor labor practices—are
explicitly accounted for through the negative substructure.

The initial qualitative ratings, transformed into quantitative PFNs, allow the incorporation of uncertainty
and vagueness inherent in expert evaluations. These fuzzy evaluations reflect degrees of membership and non-
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A (3,0.2,0.8) | (2,0.5,0.5) |(2,0.6,0.4) | (1,0.2,0.4)
12 (0,0.4,0.1) |(3,0.4,0.7) | (1,0.4,0.4) |(2,0.7,0.3)
£3 (1,0.1,0.6) | (2,0.5,0.4) |(2,0.6,0.2) | (3,0.7,0.5)
n (3,0.8,0.3) | (4,1.0,0.0) | (1,0.1,0,6) | (1,0.4,0.2)
L5 (1,0.5,0.3) | (1,0.1,0.6) |(2,0.6,0.3) | (3,0.8,0.1)

Table 27. Tabular form of (¢, p, 5)

£ (1,0.3,0.5) | (2,0.6,0.2) | (0,0.1,0.3) | (2,0.7,0.1)
123 (4,0.8,0.5) | (1,0.3,0.5) | (3,0.3,0.8) |(2,0.2,0.7)
£3 (3,0.6,0.5) |(2,0.6,0.4) |(2,0.2,0.7) | (0,0.1,0.4)
Ly (1,0.4,0.3) | (0,0.0,0.4) | (3,0.3,0.8) |(2,0.3,0.7)
l5 (1,0.5,0.3) | (3,0.7,0.5) | (1,0.1,0.5) | (1,0.3,0.4)

Table 28. Tabular form of (£, —p, 5)

151 —0.60 | 0.00 0.20 ~0.12 | —0.52
12 0.15 —0.33 | 0.00 0.40 0.22
l3 —0.35 | 0.09 0.32 0.24 0.30
Ly 0.55 1.00 —0.35 | 0.12 1.32
ls5 0.16 —0.35 | 0.27 0.63 0.71

Table 29. Score values of PFNs in (¢, p, 5) and the corresponding calculations of f;

£y —0.16 | 0.32 —0.08 | 0.48 0.56
Lo 0.39 —0.16 | —0.55 | —0.45 | —0.77
l3 0.11 0.20 —0.45 | —0.15 | —0.29
Uy 0.07 —0.16 | —0.55 | —0.40 | —1.04
05 0.16 0.24 —0.24 | —0.07 | 0.09

Z]. Zij.

Table 30. Score values of PFNs in (£, —p, 5) and the corresponding calculations of g; = Zj Zij.

fi=-052 |g, =0.56 z = —1.08
f2 =0.22 g2 = —0.77 | 25 = 0.99
f3=0.30 gs = —0.29 |23 =0.59
fa=1.32 g1 =—1.04 |z =236
fs =0.71 g5 = 0.09 25 = 0.62

Table 31. Final score table
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membership enriched by bipolar information, providing a richer representation than classical crisp or traditional
fuzzy values.

The computation of score values for each substructure (Tables 22 and 23) reveals the aggregated performance
of each alternative on positive and negative fronts. Notably, company ¢4 achieves the highest aggregate positive
score (a4 = 1.67) while simultaneously showing a negative substructure score that reduces its penalty effect
(bs = —0.62). This results in the highest net score z4 = 2.29, marking ¢, as the most sustainable option among
the considered companies.

This outcome underscores the strength of the PENBSS model in differentiating alternatives by synthesizing
positive contributions and offsetting negative factors through a mathematically consistent mechanism. The
net scoring approach effectively balances competing criteria, making it highly suitable for real-world MCDM
problems where trade-offs are inevitable.

The methodology’s transparency is enhanced by the explicit flowchart and algorithmic description,
which facilitate replication and potential adaptation to other domains beyond manufacturing sustainability.
Furthermore, the flexibility of the model to accommodate different evaluation scales and fuzzy parameters
highlights its robustness.

In practical terms, the model empowers decision-makers in manufacturing sectors to systematically assess
sustainability efforts, identify leading companies, and recognize areas for improvement. The bipolar fuzzy
framework captures both the promise and challenges in sustainability, offering a more comprehensive decision
basis than unipolar or crisp models.

In summary, the results affirm that the PFNBSS-based DM framework is an effective tool for sustainability
evaluation, balancing complexity and interpretability while accommodating uncertainty and bipolar information
inherent in expert assessments.

To further demonstrate the versatility of the PFNBSS model, a second example involving comparative
sustainability risk assessment across diverse manufacturing sectors was presented. This example emphasizes
the identification and evaluation of key risk factors alongside positive sustainability drivers, reflecting a more
nuanced real-world decision context. Although the data for this example is synthetically generated and does
not include a detailed quantitative scoring and benchmarking, as in Example 1, it effectively showcases the
model’s capacity to handle complex bipolar information in risk-focused sustainability evaluations. The inclusion
of this case highlights the adaptability of the PFNBSS framework to varied industrial scenarios where balancing
positive attributes and risk factors is critical for informed DM.

Assessment of Pythagorean Fuzzy N-Bipolar Soft Set Model

In this section, we evaluate the proposed PFNBSS model by discussing its strengths, comparing it with existing
models, and identifying its limitations. The evaluation is conducted through both qualitative and quantitative
analyses.

We begin by outlining the key advantages of the PENBSS model, such as its capability to manage uncertainty
using Pythagorean fuzzy membership functions, its support for multi-valued evaluations, and its incorporation
of bipolarity. These features collectively contribute to its robustness in handling complex DM problems.

For the comparative analysis, we conduct a qualitative comparison focusing on structural and functional
aspects, including membership type, evaluation methodology, and bipolarity consideration. This is followed
by a quantitative comparison based on an illustrative example of sustainability evaluation in manufacturing
industries, where the performance of the PFNBSS model is examined against existing models, namely FNBSS*
and IFNBSS?®. The comparison highlights the superior discrimination and expressive capability of the proposed
model.

Additionally, we include a subsection analyzing the sensitivity of decision rankings to the fixed grading
intervals used in mapping Pythagorean fuzzy values to evaluation grades. This analysis demonstrates the
robustness of the model’s rankings under the selected criteria.

Finally, we discuss the limitations of the PFNBSS model, which include computational complexity,
scalability concerns, interpretability challenges, uncertainty management overhead, subjectivity in membership
assignment, and parameter sensitivity. These insights serve as a foundation for identifying future directions to
improve the model’s practicality and effectiveness in real-world applications.

Strengths of the proposed model
The proposed PENBSS model presents several key advantages over existing approaches:

« Itintegrates Pythagorean fuzzy membership, which provides a higher level of uncertainty handling compared
to classical fuzzy and intuitionistic fuzzy models.

« Unlike many earlier models that operate on binary or single-valued evaluations, PENBSS supports multi-val-
ued evaluations, enabling richer and more realistic decision environments.

« The model fully incorporates bipolarity, allowing it to simultaneously handle both positive and negative as-
pects of information.

« It maintains parameterization support, aligning with SS theory’s flexibility in dealing with varying sets of
attributes or parameters.

o Among all the models reviewed, PENBSS is the only one that combines all of these strengths - especially the
integration of Pythagorean fuzzy logic with bipolar and multi-valued SS frameworks — making it particularly
suitable for complex and nuanced DM scenarios.
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Membership | Membership | Par ization | Evaluation | Evaluation Bipolar
Group Approach Type Superiority | Support Type Scale Capability
FS! F Low Not Supported Continuous | Single-Valued | Absent
1. Classical Models IFS? IF Medium Not Supported Continuous | Single-Valued | Absent
PFS? PF High Not Supported Continuous | Single-Valued | Absent
N None - Supported Discrete Binary Absent
FSSto F Low Supported Continuous | Binary Absent
2. Soft Sets
IFSS! IF Medium Supported Continuous | Binary Absent
PFSS!? PF High Supported Continuous | Binary Absent
BSS® None - Supported Discrete Binary Present
FBSS?! F Low Supported Continuous | Binary Present
3. Bipolar Soft Sets
IFBSS? IF Medium Supported Continuous | Binary Present
PFBSS* PF High Supported Continuous | Binary Present
NSS% None - Supported Discrete multi-valued | Absent
FNSS?¢ F Low Supported Continuous | multi-valued | Absent
4. N-Soft Sets
IFNSS? IF Medium Supported Continuous | multi-valued | Absent
PFNSS PF High Supported Continuous | multi-valued | Absent
NBSS* None - Supported Discrete multi-valued | Present
FNBSS* F Low Supported Continuous | multi-valued | Present
5. N-Bipolar Soft Sets
IFNBSS* IF Medium Supported Continuous | multi-valued | Present
PENBSS (Proposed) | PF High Supported Continuous | multi-valued | Present

Table 32. Comparison of the PENBSS model with relevant existing approaches.

Models £y l2 | €3 Ly |25 Ranking Order

FNBSS* —0.10 | 0.90 | —0.20 | 1.50 | —0.20 | €4 = €2 = €1 = L5 = {3
IFNBSS*® —0.70 [ 2.10 | —0.90 |2.50 | —0.90 | £y > €2 = £1 > f5 = L3
PENBSS (Proposed) | —0.51 | 1.71 | —0.65 | 229 | —0.57 |£4 = o = €1 > €5 = U3

Table 33. Comparison between FNBSS*, IFNBSS*, and the proposed PENBSS models, based on the scenario
in Subsection 4.2.

Comparison of the proposed model with existing approaches
In this section, we compare the proposed PFNBSS model with existing approaches to evaluate its strengths and
performance.

Qualitative comparison

In this subsection, we provide a qualitative comparison of the PFNBSS model with several existing approaches,
including Classical Models, Soft Sets, Bipolar Soft Sets, N-Soft Sets, and N-Bipolar Soft Sets, and their related
extensions. The comparison focuses on various factors such as membership type, membership superiority,
parameterization support, evaluation type, evaluation scale, and bipolar capability. Table 32 summarizes the
key characteristics of each approach, highlighting the advantages and differences of the PENBSS model in these
areas.

Quantitative comparison

In this subsection, we present a quantitative comparison of the proposed PENBSS model against the existing
FNBSS** and IFNBSS*® models. The comparison utilizes the illustrative sustainability evaluation scenario
discussed in Subsection 4.2. Table 33 displays the computed scores and resulting ranking orders for all models,
while Figure 2 visually illustrates the differences in score distributions.

To evaluate model performance more comprehensively, Table 34 reports three metrics: (i) score spread
(difference between the highest and lowest scores), (ii) rank distinction (presence or absence of tied alternatives),
and (iii) consistency with expert judgment. These metrics help assess the discriminatory power and decision
precision of each method.

Although IFNBSS shows the highest score spread numerically, it fails to distinguish between /5 and /s,
resulting in tied ranks that limit its practical interpretability. A similar issue is seen with FNBSS. In contrast,
the proposed PENBSS model provides a complete ranking of all alternatives, avoiding ties while maintaining a
strong score spread and preserving expert-preferred rankings.

It is also worth noting that Pythagorean fuzzy values are directly applied to the IFNBSS model-without
adjusting for its admissibility condition-which may compromise its theoretical consistency. By contrast, the

Scientific Reports |

(2025) 15:29648 | https://doi.org/10.1038/s41598-025-15126-1 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Score

14 0.9

=z . =x - R

-1 —0.9 —-0.9

1.71
1.5

Y 0.51 0.65 0.57

0 Lo L3 4y s
Alternatives

B FNBSS IFNBSS PEFNBSS

Fig. 2. Bar chart comparison of #; scores for FNBSS*, IFNBSS*, and the proposed PENBSS models, based on
the example in Subsection 4.2.

Model Score Spread | Rank Distinction Consistency with Expert Ranking
FNBSS* 1.70 Tied ranks (5 = £3) | High
IENBSS*® 3.40 Tied ranks (£5 = £3) High
PFNBSS (Proposed) | 2.80 Full distinction (no ties) | High

Table 34. Comparison of Performance Metrics for FNBSS*, IENBSS*, and the proposed PFNBSS models,
based on the example in Subsection 4.2.

PFNBSS model adheres to the admissibility semantics of PFNs and integrates both positive and negative aspects
with possibility weighting, offering a more coherent and discriminative evaluation in multi-criteria contexts.

Impact of grading intervals on ranking stability and sensitivity

The evaluation grades used in the PFNBSS model, as defined by specific intervals of squared membership
and non-membership values (see Table 7), play a crucial role in mapping continuous fuzzy data into discrete
assessment levels. These intervals effectively serve as parameters that influence how expert evaluations are
categorized and aggregated.

It is important to note that modifications to these grading intervals can lead to changes in the categorization
of fuzzy values, thereby affecting the computed scores and final rankings of alternatives. For example, a slight
adjustment in the boundary between two consecutive grades can shift certain values into a different grade
category, potentially altering the relative ordering of alternatives.

This phenomenon highlights the sensitivity of the model's outcomes to parameter selection, which is a
significant aspect of DM robustness. Hence, an analysis of ranking stability and sensitivity to grading interval
changes is essential for understanding the reliability and consistency of the PENBSS model in practical
applications.

While the current study employs fixed grading intervals based on well-established criteria, this approach
demonstrates the models capability to produce consistent and interpretable rankings under the selected
evaluation scheme.

Challenges and limitations
Despite its notable advantages, the PFNBSS model has some limitations:

« Computational complexity: The incorporation of Pythagorean fuzzy membership and multi-valued evalua-
tions increases processing time, especially for large datasets or real?time decision?making.

« Scalability: While the model is powerful for moderate-sized problems, applying it directly in large-scale in-
dustrial contexts may face challenges due to the computational and memory demands. Efficient algorithmic
improvements and parallelization techniques are required to enhance practical deployment.

« Interpretability concerns: Multi-valued evaluations, while richer, may introduce ambiguity and make results
harder to interpret for less?experienced users.
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« Uncertainty management overhead: Integrating bipolarity with Pythagorean fuzzy logic demands sophis-
ticated techniques to handle the higher degree of uncertainty, potentially complicating the decision process.

o Subjectivity in membership assignment: The process of assigning Pythagorean fuzzy membership and
non-membership degrees may involve subjective judgments by experts, which can affect the consistency and
reliability of the decision outcomes.

o Parameter sensitivity: Although parameterization is supported, accurate parameter selection can be chal-
lenging in dynamic environments where precise attribute information is unavailable or subject to change,
further compounded by subjective expert inputs.

Concluding remarks and research outlook

This paper has presented a novel MCDM framework based on PENBSSs, offering a flexible and expressive
approach for evaluating complex decision problems involving multi-valued assessments and bipolarity under
uncertainty. By integrating the strengths of PFSs, NSSs, and BSSs into a unified structure, the proposed model
enables more nuanced representation and interpretation of expert evaluations.

We formally defined the PFNBSS structure, developed its algebraic operations, and applied the framework
to two practical DM scenarios. The first example focused on evaluating the sustainability performance of
manufacturing companies, while the second addressed comparative risk assessment in sustainable manufacturing
contexts. Both applications demonstrated the model’s ability to handle ambiguity, assess opposing dimensions
of information, and differentiate between closely ranked alternatives through the incorporation of possibility
degrees alongside membership and non-membership values.

Quantitative and qualitative comparisons confirmed that the PENBSS model outperforms existing approaches
such as FNBSS and IFNBSS in terms of information richness, decision granularity, and interpretability. These
findings highlight the robustness and adaptability of the framework across diverse sustainability-driven
evaluation tasks.

However, the PFNBSS model has some limitations, including increased computational complexity and
scalability challenges when applied to large-scale problems, potential difficulties in interpreting multi-valued
evaluations, uncertainty management overhead, and subjectivity involved in expert membership assignments.
These challenges are discussed in detail in Section 6.4 (Challenges and Limitations). Addressing these issues
through optimized algorithms, enhanced interpretability measures, and systematic parameter tuning forms an
important direction for future research.

Future work will also focus on developing efficient computational strategies, such as parallel processing and
approximate aggregation methods, to improve the model’s scalability and practical deployment. Additionally,
we plan to extend the PFNBSS framework to group DM settings, and g-rung orthopair systems—particularly
Fermatean FNBSSs when ¢ = 3-enabling more flexible modeling by relaxing traditional admissibility conditions
on membership and non-membership degrees.

We anticipate that the proposed PFNBSS framework and its future extensions will serve as a powerful
foundation for decision-support systems in various domains, including environmental sustainability, healthcare,
supply chain risk assessment, and strategic planning.
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Received: 7 May 2025; Accepted: 5 August 2025
Published online: 13 August 2025

References
1. Zadeh, L. A. Fuzzy sets. Information and Control 8, 338-353 (1965).
2. Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87-96 (1986).
3. Yager, R. R. Pythagorean fuzzy subsets. In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 57-61
(2013).
4. Akram, M. & Arshad, M. A novel trapezoidal bipolar fuzzy TOPSIS method for group decision-making. Group Decis. Negot. 28,
565-584 (2019).
5. Zhang, X. & Xu, Z. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 29(12),
1061-1078 (2014).
6. Akram, M., Dudek, W. A. & Dar, ]. M. Pythagorean Dombi fuzzy aggregation operators with application in multi-criteria decision-
making. Int. J. Intell. Syst. 34(11), 3000-3019 (2019).
7. Molodtsov, D. Soft set theory-first results. Comput. Math. Appl. 37, 19-31 (1999).
8. Maji, P. K, Biswas, R. & Roy, A. R. Soft set theory. Comput. Math. Appl. 45, 555-562 (2003).
9. Ali, M. I, Feng, E, Liu, X., Min, W. K. & Shabir, M. On some new operations in soft set theory. Comput. Math. Appl. 57, 1547-1553
(2009).
10. Maji, P. K., Biswas, R. & Roy, R. Fuzzy soft sets. J. Fuzzy Math. 9, 589-602 (2001).
11. Maji, P. K., Biswas, R. & Roy, R. Intuitionistic fuzzy soft sets. J. Fuzzy Math. 9, 677-692 (2001).
12. Peng, X,, Yang, Y., Song, J. & Jiang, Y. Pythagorean fuzzy soft set and its application. Computer Engineering 41(7), 224-229 (2015).
13. Alcantud, J. C. R., Khameneh, A. Z., Santos-Garcia, G. & Akram, M. A systematic literature review of soft set theory. Neural
Comput. Appl. 36(16), 8951-8975 (2024).
14. Smarandache, F. Extension of soft set to hypersoft set and then to plithogenic hypersoft set. Neutrosophic Sets Syst. 22, 168-170
(2018).
15. Musa, S. Y., Mohammed, R. A. & Asaad, B. A. N-hypersoft sets: An innovative extension of hypersoft sets and their applications.
Symmetry 15(9), 1795 (2023).
16. Mohammed, B. A., Dhumras, H., Shukla, V., Bajaj, R. K. & Al-Mekhlafi, Z. G. Innovative evaluation framework for consumer
electronics-enabled intelligent transportation systems: Leveraging ¢-rung picture fuzzy hypersoft Schweizer-Sklar aggregation
operators. IEEE Open J. Comput. Soc. 6, 834-845 (2025).

Scientific Reports |

(2025) 15:29648 | https://doi.org/10.1038/s41598-025-15126-1 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

17. Xue, X., Dhumras, H., Thakur, G., Bajaj, R. K. & Shukla, V. Schweizer-Sklar T-norm operators for picture fuzzy hypersoft sets:
Advancing sustainable technology in social healthy environments. Comput. Mater. Contin. 84(1), (2025).

18. Dhumras, H., Shukla, V. & Bajaj, R. K. (2025). Distance and similarity measures of g-rung picture fuzzy hypersoft set with
application in pattern analysis. In: Chaturvedi, A., Roy, B.K., Tsaban, B. (eds) Mathematics and Logics in Computer Science.
ICMLCS 2024. Algorithms for Intelligent Systems. Springer, Singapore.

19. Fujita, T. & Smarandache, F An introduction to advanced soft set variants: SuperHyperSoft Sets, IndetermSuperHypersoft Sets,
IndetermTreeSoft Sets, BiHyperSoft Sets, GraphicSoft Sets, and beyond. Neutrosophic Sets Syst. 82, 817-843 (2025).

20. Shabir, M. & Naz, M. On bipolar soft sets. arXiv:1303.1344 (2013).

21. Naz, M. & Shabir, M. On fuzzy bipolar soft sets, their algebraic structures and applications. J. Intell. Fuzzy Syst. 26, 1645-1656
(2014).

22. Akram, M. & Ali, G. Hybrid models for decision-making based on rough Pythagorean fuzzy bipolar soft information. Granul.
Comput. 5, 1-15 (2020).

23. Musa, S. Y. & Asaad, B. A. Bipolar hypersoft sets. Mathematics 9, 1826 (2021).

24. Asaad, B. A,, Musa, S. Y. & Ameen, Z. A. Fuzzy bipolar hypersoft sets: a novel approach for decision-making applications. Math.
Comput. Appl. 29, 50 (2024).

25. Fatimah, E, Rosadi, D., Hakim, R. B. & Alcantud, J. C. R. N-soft sets and their decision making algorithms. Soft Comput. 22,
3829-3842 (2018).

26. Akram, M., Adeel, A. & Alcantud, J. C. R. Fuzzy N-soft sets: a novel model with applications. J. Intell. Fuzzy Syst. 35, 4757-4771
(2018).

27. Akram, M., Ali, G. & Alcantud, J. C. R. New decision-making hybrid model: intuitionistic fuzzy N-soft rough sets. Soft Comput.
23, 9853-9868 (2019).

28. Alcantud, J. C. R,, Santos-Garcia, G. & Akram, M. A novel methodology for multi-agent decision-making based on N-soft sets. Soft
Comput. (2023).

29. Khan, M. J,, Alcantud, J. C. R., Akram, M. & Ding, W. Separable N-soft sets: A tool for multinary descriptions with large-scale
parameter sets. Appl. Intell. 55(6), 561 (2025).

30. Zhang, H., Jia-Hua, D. & Yan, C. Multi-attribute group decision-making methods based on Pythagorean fuzzy N-soft sets. IEEE
Access 8, 62298-62309 (2020).

31. Riaz, M., Razzaq, A., Aslam, M. & Pamucar, D. M-parameterized N-soft topology-based TOPSIS approach for multi-attribute
decision making. Symmetry 13, 748 (2021).

32. Musa, S. Y. & Asaad, B. A. Bipolar M-parametrized N-soft sets: a gateway to informed decision-making. J. Math. Comput. Sci. 36,
121-141 (2025).

33. Shabir, M. & Fatima, J. N-bipolar soft sets and their application in decision making. Research Square (2021).

34. Musa, S. Y., Alajlan, A. I, Asaad, B. A. & Ameen, Z. A. N-bipolar soft expert sets and their applications in robust multi-attribute
group decision-making. Mathematics 13, 530 (2025).

35. Musa, S. Y., Asaad, B. A., Alohali, H., Ameen, Z. A. & Algahtani, M. H. Fuzzy N-bipolar soft sets for multi-criteria decision-
making: Theory and application. CMES-Comput. Model. Eng. Sci. 143, 911-943 (2025).

36. Musa, S. Y., Asaad, B. A., Alagal, W. & Ameen, Z. A. Novel multi-criteria decision-making approach for selecting the optimal
artificial intelligence implementation in medical diagnosis using intuitionistic fuzzy N-bipolar soft sets. Int. . Comput. Intell. Syst.
(2025).

37. Musa, S. Y. N-bipolar hypersoft sets: Enhancing decision-making algorithms. PLoS ONE 19, 0296396 (2024).

38. Musa, S. Y. & Asaad, B. A. A progressive approach to multi-criteria group decision-making: N-bipolar hypersoft topology
perspective. PLoS ONE 19, 0304016 (2024).

39. Paul, T. K, Jana, C. & Pal, M. Enhancing multi-attribute decision making with Pythagorean fuzzy Hamacher aggregation operators.
J. Ind. Intell. 1(1), 30-54 (2023).

40. El-Morsy, S. Stock portfolio optimization using Pythagorean fuzzy numbers. J. Oper. Strateg. Analyt. 1(1), 8-13 (2023).

41. Chohan, M. S., Ashraf, S. & Dong, K. Enhanced forecasting of Alzheimer’s disease progression using higher-order circular
Pythagorean fuzzy time series. Healthcraft Front. 1(1), 44-57 (2023).

42. Gul, R. & Tufail, E Multi-attribute green supplier decision-making using picture fuzzy rough Schweizer-Sklar aggregation
operators. Int. J. Knowl. Innov. Stud. 3(2), 60-73 (2025).

43. Badi, I, Bouraima, M. B,, Su, Q., Qiu, Y. J. & Wang, Q. P. Prioritization of poverty alleviation strategies in developing countries
using the Fermatean fuzzy SWARA method. Oppor. Chall. Sustain. 4(1), 33-40 (2025).

44. Garg, H. Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making process. Int. J. Intell. Syst. 33(6),
1234-1263 (2018).

45. Hussain, A., Ullah, K., Alshahrani, M. N., Yang, M.-S. & Pamucar, D. Novel Aczel-Alsina operators for Pythagorean fuzzy sets with
application in multi-attribute decision making. Symmetry 14(5), 940 (2022).

46. Mahmood, T., Ur Rehman, U,, Ali, Z. & Haleemzai, I. Analysis of TOPSIS techniques based on bipolar complex fuzzy N-soft
setting and their applications in decision-making problems. CAAI Trans. Intell. Technol. 8(2), 478-499 (2023).

47. Mahmood, T., Ur Rehman, U,, Shahab, S., Ali, Z. & Anjum, M. Decision-making by using TOPSIS techniques in the framework of
bipolar complex intuitionistic fuzzy N-soft sets. IEEE Access 11, 105677-105697 (2023 ).

Acknowledgements

The authors sincerely thank the editor and the anonymous reviewers for their insightful comments and con-
structive feedback, which have significantly enhanced the clarity and quality of this work.

Author contributions

Conceptualization, S.M.; Formal analysis, M.S., S.M., B.A., and Z.A.; Funding, M.S.; Investigation, M.S., S.M.,
B.A,, and Z.A ; Methodology, S.M., B.A., and Z.A.; Resources, S.M.; Validation, B.A., and Z.A.; Writing - origi-
nal draft, S.M.; Writing review & editing, M.S., B.A., and Z.A.; All authors agreed to publish this version of the
manuscript.

Funding

This research received no external funding.

Declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Scientific Reports |

(2025) 15:29648 | https://doi.org/10.1038/s41598-025-15126-1 nature portfolio


http://arxiv.org/abs/1303.1344
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Competing interests
The authors declare no competing interests.

Content for publication
During the preparation of this work, the author(s) never used any Al tools.

Additional information
Correspondence and requests for materials should be addressed to Z.A.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Scientific Reports |

(2025) 15:29648 | https://doi.org/10.1038/s41598-025-15126-1 nature portfolio


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Pythagorean fuzzy N-bipolar soft sets-based multi-criteria decision-making framework for sustainability evaluation and risk assessment in manufacturing industries
	﻿Motivation and model development
	﻿Research objectives and contributions
	﻿Structure of the paper
	﻿﻿Preliminaries and related concepts
	﻿﻿Pythagorean Fuzzy N-Bipolar Soft Sets
	﻿﻿Decision-making framework and application
	﻿Decision-making procedure
	﻿﻿Practical example 1: sustainability evaluation in manufacturing industries
	﻿Key sustainability indicators
	﻿Challenges to sustainability implementation
	﻿Sustainability evaluation framework
	﻿Practical example 2: comparative risk assessment in sustainable manufacturing
	﻿Positive sustainability drivers
	﻿Sustainability risk factors
	﻿Risk evaluation framework


	﻿﻿Results and discussion
	﻿﻿Assessment of Pythagorean Fuzzy N-Bipolar Soft Set Model
	﻿Strengths of the proposed model
	﻿Comparison of the proposed model with existing approaches
	﻿Qualitative comparison
	﻿Quantitative comparison


	﻿Impact of grading intervals on ranking stability and sensitivity
	﻿﻿Challenges and limitations
	﻿﻿Concluding remarks and research outlook
	﻿References


