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Sustainability evaluation in manufacturing industries is increasingly vital for promoting responsible 
growth and long-term competitiveness amid environmental, social, and economic challenges. 
Effective decision-making (DM) under uncertainty is crucial for managing multiple, often conflicting 
sustainability objectives. In this paper, we propose a novel hybrid model, termed Pythagorean fuzzy 
N-bipolar soft sets (PFNBSSs), which integrates Pythagorean fuzzy sets (PFSs), N-soft sets (NSSs), 
and bipolar soft sets (BSSs) within a unified multi-criteria decision-making (MCDM) framework. For 
theoretical purposes, we define basic operations and algebraic properties of PFNBSSs, supported by 
illustrative examples. To demonstrate practical applicability, the PFNBSS model is applied to assess 
sustainability practices in manufacturing industries through two numerical examples: one focusing on 
positive and negative sustainability indicators, and another emphasizing comparative sustainability 
risk assessment across diverse manufacturing sectors. Detailed interpretations of computational 
results and their relevance in practical DM are provided. This is followed by a comparative analysis 
confirming the superior discrimination power and expressive capability of the PFNBSS model over 
existing alternatives. The paper concludes with a critical evaluation of the model and suggestions for 
future research.
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In real-world DM, scenarios often involve complex evaluations where multiple factors, conflicting criteria, and 
uncertain information coexist. For instance, consider a manufacturing company aiming to select a new supplier 
based on sustainability practices. Decision-makers must assess not only positive attributes such as eco-friendly 
production and ethical sourcing but also negative concerns, including cost implications, potential supply 
chain disruptions, and sustainability risks. Furthermore, evaluations are rarely binary; suppliers may partially 
fulfill sustainability goals or present varying degrees of risk. However, many existing models lack the ability 
to simultaneously capture multilevel, bipolar, and uncertain information–particularly when balancing both 
positive drivers and risk factors–limiting their applicability in complex decision contexts. This gap motivates 
the development of enhanced soft computing frameworks capable of addressing these multifaceted challenges.

To tackle these issues effectively, various mathematical frameworks have been proposed to manage the 
uncertainty and vagueness inherent in real-world problems. One foundational approach is fuzzy set (FS) theory, 
introduced by Zadeh1, which enables the representation of partial membership degrees (MDs) of elements 
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in a set, offering a more nuanced treatment of uncertainty than classical set theory. Intuitionistic FSs (IFSs), 
introduced by Atanassov2, extend this concept by incorporating non-membership degrees (NMDs), thus 
capturing both MDs and NMDs of an element. Further generalizations, such as Pythagorean fuzzy sets (PFSs) 
introduced by Yager3, offer even greater flexibility by considering the square sum of MDs and NMDs. Due to 
their enhanced expressive power, PFSs have gained traction in both theoretical and applied domains, particularly 
in MCDM contexts where uncertainty is significant. For example, PFSs have been incorporated into TOPSIS-
based models4,5 and extended using Dombi operators6.

Soft set (SS) theory, introduced by Molodtsov7, has emerged as a robust mathematical tool for addressing 
uncertainty without requiring auxiliary conditions like parameter membership functions. Subsequent work has 
expanded SS theory through new operations8 and algebraic enhancements9. Integrating FS theory led to fuzzy 
SSs (FSSs)10, while intuitionistic FSSs (IFSSs)11 were proposed to better capture hesitation in expert opinions. 
Pythagorean FSSs (PFSSs)12 further extend this capability. A recent systematic review comprehensively analyzed 
the evolution and applications of SS theory, underscoring its growing relevance in modern DM frameworks13. 
The SS paradigm has undergone significant evolution, extending beyond classical structures to encompass 
hypersoft sets14, which provide hierarchical representation of parameterization. Notably, the development of 
N-hypersoft sets by Musa et al.15 introduces a novel extension that enhances the expressiveness of hypersoft 
frameworks for real-world applications. Further advancements include the incorporation of q-rung picture fuzzy 
environments into hypersoft models, enabling more robust and uncertain data handling, as demonstrated in 
recent works on intelligent transportation systems16, sustainable smart technologies17, and pattern recognition 
using similarity measures18. These contributions, among others, reflect a growing trend toward sophisticated and 
multidimensional DM models in the SS literature. Moreover, other advanced forms of SSs continue to emerge, 
offering additional avenues for exploration and application19.

BSSs20 have drawn increasing interest for their ability to model uncertainty and vagueness involving both 
positive and negative aspects of information. Various extensions have been proposed by integrating fuzzy, rough, 
and other uncertainty-based theories to handle bipolar information more effectively. Fuzzy BSSs (FBSSs)21 
have been examined for their algebraic structures and practical utility across domains. Hybrid models such as 
rough Pythagorean FBSSs (PFBSSs)22 have also shown promise in complex decision scenarios. Moreover, the 
development of bipolar hypersoft sets23 and fuzzy bipolar hypersoft sets24 further enhances the expressiveness of 
bipolar models by introducing parameter hierarchies and increased fuzziness in soft DM frameworks.

NSSs25 refine the classical SS framework by enabling multi-valued (multinary) parameterized representations, 
in which each parameter is assigned a specific value from a predefined domain. Unlike classical SSs that rely 
on binary associations, NSSs allow for a more granular and expressive classification of objects across multiple 
evaluation dimensions. Extensions include fuzzy NSSs (FNSSs)26 that incorporate fuzziness, and intuitionistic 
FNSSs (IFNSSs)27 that account for hesitancy. In group DM, multi-agent NSS frameworks28 support the 
aggregation of diverse expert judgments. Separable NSSs29 allow decomposition of parameter sets for finer-
grained evaluation. Pythagorean FNSSs (PFNSSs)30 generalize IFNSSs by relaxing the square-sum constraint, 
providing added flexibility. M-parameterized NSSs31 further extend the paradigm by associating multiple 
parameter values with each object. Bipolar M-parameterized NSSs32 unify bipolarity, multilevel evaluation, and 
parameterization into a powerful hybrid framework.

N-bipolar soft sets (NBSSs)33 represent a compelling hybridization of BSSs and NSSs, integrating affirmative/
negative judgments with multi-valued parameterization. This combination mirrors the nuanced nature of 
human DM, where evaluations span a spectrum of attitudes across multiple criteria. This foundational model 
has given rise to several notable extensions: N-bipolar soft expert sets34 incorporate collective expert opinions; 
fuzzy NBSSs (FNBSSs)35 model vagueness through MDs; and intuitionistic FNBSSs (IFNBSSs)36 introduce a 
hesitation component to handle indecision. N-bipolar hypersoft sets37 advance this structure by introducing 
parameter hierarchies for multi-level abstraction. Additionally, N-bipolar hypersoft topologies38 offer a 
topological foundation for modeling continuity and separation within bipolar, multi-valued settings. Together, 
these models significantly enrich soft computing by enabling flexible, layered, and context-sensitive reasoning 
in complex decision environments. For additional related studies not discussed in this paper, interested readers 
may consult Paul et al.39, El-Morsy40, Chohan et al.41, Gul and Tufail42, Badi et al.43, Garg44, Hussain et al.45, and 
Mahmood et al.46,47.

Motivation and model development
Many existing DM models, including classical FSs and SSs, face critical limitations when applied to complex, 
real-world scenarios. Specifically, they struggle to represent multi-valued evaluations, integrate both positive 
and negative information (bipolarity), and effectively handle uncertainty. These limitations become especially 
problematic in domains such as sustainable manufacturing, where decisions must simultaneously weigh benefits 
and trade-offs under vague and imprecise information.

PFSs offer a stronger framework for capturing uncertainty compared to traditional FSs and IFSs, yet they lack 
parameterization and bipolar representation. Conversely, NSSs enable multi-parameter modeling but are not 
equipped to handle bipolar or high-order uncertainty. BSSs allow for positive and negative evaluations but often 
restrict analysis to binary scales and lack higher uncertainty handling.

To address these gaps, we propose the PFNBSS framework–a hybrid model that synergistically integrates 
the strengths of PFSs, NSSs, and BSSs. This integration enables rich, multigraded, and bipolar information 
representation while maintaining parameterized structure and superior uncertainty modeling.

The motivation behind this integration is not only conceptual but also supported by a comparative analysis 
of related models. A qualitative comparison is provided in Table 32, which illustrates the distinct capabilities and 
expressive advantages of the proposed PFNBSS model.

Scientific Reports |        (2025) 15:29648 2| https://doi.org/10.1038/s41598-025-15126-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Research objectives and contributions
This study aims to establish a comprehensive DM model that effectively integrates multi-valued evaluations, 
bipolar information, and advanced uncertainty modeling based on PFSs. The main contributions of this work 
are summarized as follows:

•	 The introduction of the PFNBSS model that combines the advantages of PFSs with NBSSs to address complex 
decision problems.

•	 Development of formal definitions, algebraic operations, and illustrative examples to underpin the theoretical 
foundation of PFNBSS.

•	 Proposal of a robust DM procedure tailored to the PFNBSS framework.
•	 Demonstration of the model’s applicability through a case study evaluating sustainability practices in manu-

facturing industries.
•	 Illustration of the model’s versatility in handling risk-focused sustainability evaluations across diverse man-

ufacturing sectors.
•	 Comparative analysis illustrating the superiority of the PFNBSS model over existing methods regarding flex-

ibility, interpretability, and decision quality.

Structure of the paper
The paper is structured as follows: Section  2 presents a review of relevant foundational concepts. Section  3 
introduces the PFNBSS model along with its formal structure, operations, and algebraic properties. Section 4 
outlines a comprehensive DM methodology and demonstrates its application through two practical examples: 
(i) a sustainability evaluation of manufacturing companies and (ii) a comparative sustainability risk assessment 
across sectors. Section  5 presents the results and discussion through these two examples. The first offers a 
detailed quantitative evaluation and ranking of manufacturing companies based on sustainability criteria, 
while the second illustrates the model’s adaptability in assessing sustainability-related risks. Together, they 
demonstrate the PFNBSS model’s robustness, transparency, and effectiveness in MCDM contexts. Section  6 
provides a comparative evaluation of the proposed model with existing approaches, highlighting its advantages 
and discussing its limitations. Finally, Section 7 summarizes the main contributions of the paper and suggests 
potential directions for future research.

Preliminaries and related concepts
This section revisits the essential definitions of several models that underpin the concepts used in our proposed 
framework. Throughout the paper, L denotes the universal set of alternatives (or objects), ρ represents the set 
of attributes (or parameters), and R = {0, 1, . . . , N − 1} is the set of ordered grades, where N ∈ {2, 3, . . .}. 
For clarity and ease of reference, the key symbols and abbreviations used throughout the paper are summarized 
in Table 1.

Definition 2.1  Let ν+ : L → [0, 1] and ν− : L → [0, 1] represent, respectively, the degrees of membership and 
non-membership of ℓ ∈ L. Then, ℜ =

{⟨
ℓ, ν+(ℓ), ν−(ℓ)

⟩
: ℓ ∈ L

}
 is called: 

	 i.	 an FS1, if for all ℓ ∈ L, ν−(ℓ) = 0.
	ii.	 an IFS2, if for all ℓ ∈ L, 0 ≤ ν+(ℓ) + ν−(ℓ) ≤ 1.
	iii.	 a PFS3, if for all ℓ ∈ L, 0 ≤ (ν+(ℓ))2 + (ν−(ℓ))2 ≤ 1.

Definition 2.2  5 Let Ψ = (α+, α−) be a Pythagorean fuzzy number (PFN). Then, 

	i.	 the score value of Ψ is given by S(Ψ) = (α+)2 − (α−)2, where S(Ψ) ∈ [−1, 1].
	ii.	 the accuracy value of Ψ is given by A(Ψ) = (α+)2 + (α−)2, where A(Ψ) ∈ [0, 1].

Definition 2.3  5 Let Ψ1 = (α+
1 , α−

1 ) and Ψ2 = (α+
2 , α−

2 ) be any two PFNs. Let S(Ψ1) and S(Ψ2) denote the 
score values of Ψ1 and Ψ2, respectively, and let A(Ψ1) and A(Ψ2) denote their corresponding accuracy values. 
Then, 

	i.	 if S(Ψ1) ≻ S(Ψ2), then Ψ1 ≻ Ψ2.
	ii.	 if S(Ψ1) = S(Ψ2), and:

•	 if A(Ψ1) ≻ A(Ψ2), then Ψ1 ≻ Ψ2.
•	 if A(Ψ1) = A(Ψ2), then Ψ1 = Ψ2.

Definition 2.4  A pair (µ, ρ) is called: 

	 i.	 an SS7, if µ : ρ → 2L, where 2L denotes the set of all crisp subsets of L.
	ii.	 an FSS10, if µ : ρ → FL, where FL denotes the set of all FSs over L.
	iii.	 an IFSS11, if µ : ρ → IL, where IL denotes the set of all IFSs over L.
	iv.	 a PFSS12, if µ : ρ → PL, where PL denotes the set of all PFSs over L.

Definition 2.5  8 Let ρ = {ε1, ε2, . . . , εn} be a set of attributes. The NOT set of ρ, denoted by ¬ρ, is given by 
¬ρ = {¬ε1, ¬ε2, . . . , ¬εn}, where each ¬εi denotes the negation (i.e., the opposite) of the attribute εi, for 
i = 1, 2, . . . , n.
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Definition 2.6  A triple (τ, η, ρ) is called: 

	 i.	 a BSS20, if τ : ρ → 2L and η : ¬ρ → 2L such that, for all ε ∈ ρ, τ(ε) ∩ η(¬ε) = ∅, where τ(ε), η(¬ε) ⊆ L
.

	ii.	 an FBSS21, if τ : ρ → FL and η : ¬ρ → FL such that, for all ε ∈ ρ and ℓ ∈ L, the condition 
0 ≤ τ(ε)(ℓ) + η(¬ε)(ℓ) ≤ 1 holds, where τ(ε)(ℓ), η(¬ε)(ℓ) ∈ [0, 1].

Symbol Meaning

L Universal set of alternatives (objects)

ρ Set of attributes or decision parameters

R Ordered set of evaluation grades

FS Fuzzy set

IFS Intuitionistic fuzzy set

PFS Pythagorean fuzzy set

PFN Pythagorean fuzzy number

SS Soft set

FSS Fuzzy soft set

IFSS Intuitionistic fuzzy soft set

PFSS Pythagorean fuzzy soft set

BSS Bipolar soft set

FBSS Fuzzy bipolar soft set

IFBSS Intuitionistic fuzzy bipolar soft set

PFBSS Pythagorean fuzzy bipolar soft set

NSS N-soft set

FNSS Fuzzy N-soft set

IFNSS Intuitionistic fuzzy N-soft set

PFNSS Pythagorean fuzzy N-soft set

NBSS N-bipolar soft set

FNBSS Fuzzy N-bipolar soft set

IFNBSS Intuitionistic fuzzy N-bipolar soft set

PFNBSS Pythagorean fuzzy N-bipolar soft set

DM Decision-making

MCDM Multi-criteria decision-making

MD Membership degree

NMD Non-membership degree

ν+ Membership function for FS, IFS, and PFS

ν− Non-membership function for IFS and PFS

µ Mapping for SS, FSS, IFSS, and PFSS

τ Positive mapping for BSS, FBSS, IFBSS, and PFBSS

η Negative mapping for BSS, FBSS, IFBSS, and PFBSS

β Mapping for NSS, FNSS, IFNSS, and PFNSS

π Positive mapping for NBSS, FNBSS, and IFNBSS

κ Negative mapping for NBSS, FNBSS, and IFNBSS

ζ Positive mapping for PFNBSS

ξ Negative mapping for PFNBSS

2L Set of all crisp subsets of L

FL Set of all FSs over L

IL Set of all IFSs over L

PL Set of all PFSs over L

2L×R Set of all crisp subsets of L × R

FL×R Set of all FSs over L × R

IL×R Set of all IFSs over L × R

PL×R Set of all PFSs over L × R

Table 1.  List of symbols and notations used in the paper.
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	iii.	 an IFBSS22, if τ : ρ → IL and η : ¬ρ → IL such that, for all ε ∈ ρ and ℓ ∈ L, the following con-
ditions hold: 0 ≤ τ+(ε)(ℓ) + η+(¬ε)(ℓ) ≤ 1 and 0 ≤ τ−(ε)(ℓ) + η−(¬ε)(ℓ) ≤ 1, where 
τ+(ε)(ℓ), η+(¬ε)(ℓ) ∈ [0, 1] and τ−(ε)(ℓ), η−(¬ε)(ℓ) ∈ [0, 1] are the MDs and NMDs, respectively.

	iv.	 a PFBSS22, if τ : ρ → PL and η : ¬ρ → PL such that, for all ε ∈ ρ and ℓ ∈ L, the following condi-
tions hold: 0 ≤ (τ+(ε)(ℓ))2 + (η+(¬ε)(ℓ))2 ≤ 1 and 0 ≤ (τ−(ε)(ℓ))2 + (η−(¬ε)(ℓ))2 ≤ 1, where 
τ+(ε)(ℓ), τ−(ε)(ℓ), η+(¬ε)(ℓ), η−(¬ε)(ℓ) ∈ [0, 1].

Definition 2.7  A triple (β, ρ, N) is called: 

	 i.	 an NSS25, if β : ρ → 2L×R, with the property that for each ε ∈ ρ, there exists a unique pair (ℓ, rε) ∈ L × R 
such that (ℓ, rε) ∈ β(ε), where ℓ ∈ L and rε ∈ R. The set 2L×R denotes all crisp sets of L × R.

	ii.	 an FNSS26, if β : ρ → FL×R, with the property that for each ε ∈ ρ, there exists a unique pair (ℓ, rε) ∈ L × R 
such that ⟨(ℓ, rε), β(ℓ, rε)⟩ ∈ β(ε), where ℓ ∈ L and rε ∈ R. The set FL×R represents all FSs of L × R.

	iii.	 an IFNSS27, if β : ρ → IL×R, with the property that for each ε ∈ ρ, there exists a unique pair (ℓ, rε) ∈ L × R 
such that ⟨(ℓ, rε), β+(ℓ, rε), β−(ℓ, rε)⟩ ∈ β(ε), subject to the condition 0 ≤ β+(ℓ, rε) + β−(ℓ, rε) ≤ 1, 
where ℓ ∈ L, rε ∈ R, and β+(ℓ, rε), β−(ℓ, rε) ∈ [0, 1]. The set IL×R denotes all IFSs of L × R.

	iv.	 a PFNSS30, if β : ρ → PL×R, with the property that for each ε ∈ ρ, there exists a unique pair 
(ℓ, rε) ∈ L × R such that ⟨(ℓ, rε), β+(ℓ, rε), β−(ℓ, rε)⟩ ∈ β(ε), subject to the condition 
0 ≤ (β+(ℓ, rε))2 + (β−(ℓ, rε))2 ≤ 1, where ℓ ∈ L, rε ∈ R, and β+(ℓ, rε), β−(ℓ, rε) ∈ [0, 1]. The set 
PL×R denotes all PFSs of L × R.

Definition 2.8  A quadruple (π, κ, ρ, N) is called: 

	 i.	 an NBSS33, if π : ρ → 2L×R and κ : ¬ρ → 2L×R, with the property that for each ε ∈ ρ, there exists a 
unique pair (ℓ, rε) ∈ L × R such that (ℓ, rε) ∈ π(ε). Similarly, for each ¬ε ∈ ¬ρ, there exists a unique 
pair (ℓ, r¬ε) ∈ L × R such that (ℓ, r¬ε) ∈ κ(¬ε), subject to the condition rε + r¬ε ≤ N − 1, where 
ℓ ∈ L and rε, r¬ε ∈ R.

	ii.	 an FNBSS35, if π : ρ → FL×R and κ : ¬ρ → FL×R, with the property that for each ε ∈ ρ, there exists 
a unique pair (ℓ, rε) ∈ L × R such that ⟨(ℓ, rε), π(ℓ, rε)⟩ ∈ π(ε), and for each ¬ε ∈ ¬ρ, there ex-
ists a unique pair (ℓ, r¬ε) ∈ L × R such that ⟨(ℓ, r¬ε), κ(ℓ, r¬ε)⟩ ∈ κ(¬ε), subject to the condition 
0 ≤ π(ℓ, rε) + κ(ℓ, r¬ε) ≤ 1, where ℓ ∈ L, rε, r¬ε ∈ R, and π(ℓ, rε), κ(ℓ, r¬ε) ∈ [0, 1].

	iii.	 an IFNBSS36, if π : ρ → IL×R bipolar soft sh the property that for each ε ∈ ρ, there exists a unique pair 
(ℓ, rε) ∈ L × R such that ⟨(ℓ, rε), π+(ℓ, rε), π−(ℓ, rε)⟩ ∈ π(ε), and for each ¬ε ∈ ¬ρ, there exists a 
unique pair (ℓ, r¬ε) ∈ L × R such that ⟨(ℓ, r¬ε), κ+(ℓ, r¬ε), κ−(ℓ, r¬ε)⟩ ∈ κ(¬ε), subject to the con-
ditions 0 ≤ π+(ℓ, rε) + κ+(ℓ, r¬ε) ≤ 1 and 0 ≤ π−(ℓ, rε) + κ−(ℓ, r¬ε) ≤ 1, where ℓ ∈ L, rε, r¬ε ∈ R
, and π+(ℓ, rε), π−(ℓ, rε), κ+(ℓ, r¬ε), κ−(ℓ, r¬ε) ∈ [0, 1]. Clearly, π+(ℓ, rε) and κ+(ℓ, r¬ε) are MDs, 
while π−(ℓ, rε) and κ−(ℓ, r¬ε) are NMDs.

Pythagorean Fuzzy N-Bipolar Soft Sets
In this section, we present the PFNBSS model and develop its core operations–namely the null and whole sets, 
complement, subset, equality, union, and intersection–each accompanied by their algebraic properties and 
illustrative examples.

Definition 3.1  A quadruple (ζ, ξ, ρ, N) is called a PFNBSS, where ζ : ρ → PL×R and 
ξ : ¬ρ → PL×R, with the property that for each ε ∈ ρ, there exists a unique pair (ℓ, rε) ∈ L × R such that 
⟨(ℓ, rε), ζ+(ℓ, rε), ζ−(ℓ, rε)⟩ ∈ ζ(ε), and for each ¬ε ∈ ¬ρ, there exists a unique pair (ℓ, r¬ε) ∈ L × R such 
that ⟨(ℓ, r¬ε), ξ+(ℓ, r¬ε), ξ−(ℓ, r¬ε)⟩ ∈ ξ(¬ε), subject to the following conditions:

	

0 ≤ (ζ+(ℓ, rε))2 + (ξ+(ℓ, r¬ε))2 ≤ 1,

0 ≤ (ζ−(ℓ, rε))2 + (ξ−(ℓ, r¬ε))2 ≤ 1,

where ℓ ∈ L, rε, r¬ε ∈ R, and ζ+(ℓ, rε), ζ−(ℓ, rε), ξ+(ℓ, r¬ε), ξ−(ℓ, r¬ε) ∈ [0, 1]. Clearly, ζ+(ℓ, rε) and 
ξ+(ℓ, r¬ε) are MDs, while ζ−(ℓ, rε) and ξ−(ℓ, r¬ε) are NMDs.
Unless specified otherwise, both L and ρ are assumed to be finite. In such cases, the PFNBSS can be represented 
in a unified tabular form, where each cell contains a pair of tuples–one for ⟨rij εj

, ζ+
ij , ζ−

ij ⟩, which corresponds 

to ⟨(ℓi, rij εj
), ζ+(ℓi, rij εj

), ζ−(ℓi, rij εj
)⟩ ∈ ζ(εj); and one for ⟨rij ¬εj

, ξ+
ij , ξ−

ij⟩, which corresponds to 

⟨(ℓi, rij ¬εj
), ξ+(ℓi, rij ¬εj

), ξ−(ℓi, rij ¬εj
)⟩ ∈ ξ(¬εj), as shown in Table 2.

Now, we represent the PFNBSS (ζ, ξ, ρ, N), originally displayed in Table 2, using two separate tables: one for 
(ζ, ρ, N) with respect to the set of parameters ρ, and another for (ξ, ¬ρ, N) with respect to the set of parameters 
¬ρ, as provided in Tables 3 and 4, respectively.

To clarify the core features of our new model, let us examine the following example.

Example 3.1  Consider a technology company that is in the process of recruiting for a senior software engineering 
position. The selection committee aims to assess a group of candidates L = {ℓ1, ℓ2, ℓ3} based on a comprehensive set 
of attributes that reflect both technical skills and soft competencies. The attributes under consideration are defined as 
ρ = {ε1 = programming proficiency, ε2 = system design skills, ε3 = team collaboration, ε4 = problem-solving aptitude}.
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To ensure a balanced evaluation, the committee also considers the corresponding 
negative attributes (i.e., lack or weakness of the same capabilities), denoted by 
¬ρ = {¬ε1 = poor programming skills, ¬ε2 = weak system design skills, ¬ε3 = poor team collaboration, ¬ε4 = low problem-solving ability}. 
This bipolar perspective allows the decision-makers to capture both the positive and negative tendencies in each 
candidate’s profile, enhancing the precision and fairness of the evaluation.

In this context, the performance of each candidate with respect to the given attributes (and their negations) 
is initially expressed using qualitative markers that indicate the strength or weakness of their qualifications, see 
Table 5. These markers are then used to construct the 5BSS, which serves as a foundational step for further DM 
procedures.

According to Definition  2.8 (i.), the 5BSS (π, κ, ρ, 5) can be derived from the evaluations presented in 
Table 6, where:

L \ ρ ε1 ε2 ε3 ε4

ℓ1 ⋆ ⋆ ⋆
⋆

⋆
⋆⋆

⋆⋆
⋆⋆

⋆⋆
⋆

ℓ2 ⋆ ⋆ ⋆
⋆

◦
⋆ ⋆ ⋆⋆

⋆
⋆ ⋆ ⋆

⋆⋆
⋆

ℓ3 ⋆
⋆ ⋆ ⋆

⋆
⋆⋆

⋆⋆
⋆⋆

⋆ ⋆ ⋆
⋆

Table 5.  Initial Evaluations

 

(ξ, ¬ρ, N) ¬ε1 ¬ε2 · · · ¬εn

ℓ1 ⟨r11¬ε1 , ξ+
11, ξ−

11⟩ ⟨r12¬ε2 , ξ+
12, ξ−

12⟩ · · · ⟨r1n¬εn , ξ+
1n, ξ−

1n⟩

ℓ2 ⟨r21¬ε1 , ξ+
21, ξ−

21⟩ ⟨r22¬ε2 , ξ+
22, ξ−

22⟩ · · · ⟨r2n¬εn , ξ+
2n, ξ−

2n⟩

. . .

ℓm ⟨rm1¬ε1 , ξ+
m1, ξ−

m1⟩ ⟨rm2¬ε2 , ξ+
m2, ξ−

m2⟩ · · · ⟨rmn¬εn
, ξ+

mn, ξ−
mn⟩

Table 4.  Tabular form of (ξ, ¬ρ, N)

 

(ζ, ρ, N) ε1 ε2 · · · εn

ℓ1 ⟨r11ε1 , ζ+
11, ζ−

11⟩ ⟨r12ε2 , ζ+
12, ζ−

12⟩ · · · ⟨r1nεn , ζ+
1n, ζ−

1n⟩

ℓ2 ⟨r21ε1 , ζ+
21, ζ−

21⟩ ⟨r22ε2 , ζ+
22, ζ−

22⟩ · · · ⟨r2nεn , ζ+
2n, ζ−

2n⟩

. . .

ℓm ⟨rm1ε1 , ζ+
m1, ζ−

m1⟩ ⟨rm2ε2 , ζ+
m2, ζ−

m2⟩ · · · ⟨rmnεn
, ζ+

mn, ζ−
mn⟩

Table 3.  Tabular form of (ζ, ρ, N)

 

(ζ, ξ, ρ, N) ε1 ε2 · · · εn

ℓ1 ⟨r11ε1 , ζ+
11, ζ−

11⟩
⟨r11¬ε1 , ξ+

11, ξ−
11⟩

⟨r12ε2 , ζ+
12, ζ−

12⟩
⟨r12¬ε2 , ξ+

12, ξ−
12⟩ · · ·

⟨r1nεn , ζ+
1n, ζ−

1n⟩
⟨r1n¬εn , ξ+

1n, ξ−
1n⟩

ℓ2 ⟨r21ε1 , ζ+
21, ζ−

21⟩
⟨r21¬ε1 , ξ+

21, ξ−
21⟩

⟨r22ε2 , ζ+
22, ζ−

22⟩
⟨r22¬ε2 , ξ+

22, ξ−
22⟩ · · ·

⟨r2nεn , ζ+
2n, ζ−

2n⟩
⟨r2n¬εn , ξ+

2n, ξ−
2n⟩

. . .

ℓm ⟨rm1ε1 , ζ+
m1, ζ−

m1⟩
⟨rm1¬ε1 , ξ+

m1, ξ−
m1⟩

⟨rm2ε2 , ζ+
m2, ζ−

m2⟩
⟨rm2¬ε2 , ξ+

m2, ξ−
m2⟩ · · ·

⟨rmnεn
, ζ+

mn, ζ−
mn⟩

⟨rmn¬εn
, ξ+

mn, ξ−
mn⟩

Table 2.  Tabular form of the PFNBSS (ζ, ξ, ρ, N)
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•	 “◦” represents inadequate performance.
•	 “⋆” represents basic competency.
•	 “⋆⋆” represent moderate competency.
•	 “⋆ ⋆ ⋆” represent high competency.
•	 “⋆ ⋆ ⋆⋆” represent exceptional competency.

This symbolic grading can be easily mapped to numerical values in R = {0, 1, 2, 3, 4}, where:

•	 0 corresponds to ◦.
•	 1 corresponds to ⋆.
•	 2 corresponds to ⋆⋆.
•	 3 corresponds to ⋆ ⋆ ⋆.
•	 4 corresponds to ⋆ ⋆ ⋆⋆.

The tabular representation of the 5BSS (π, κ, ρ, 5) is shown in Table 6.
This level of detail suffices for exact data. Yet, in situations involving ambiguity or uncertainty, the PFNBSS 

framework is essential to interpret the grading of candidates. Using the established grade scale, the selection 
committee then allocates MDs and NMDs according to Pythagorean fuzzy principles, as exemplified in Table 7.

Therefore, Table 8 shows the final MDs and NMDs within a Pythagorean fuzzy environment for each 
applicant under each attribute and its negation.

We next define, for theoretical purposes, a collection of basic operations on PFNBSSs–together with their 
algebraic properties–and illustrate each with examples. These operations comprise the null and whole sets, 
complement, subset relation, equality, union, and intersection.

(ζ, ξ, ρ, 5) ε1 ε2 ε3 ε4

ℓ1 ⟨3, 0.6, 0.5⟩
⟨1, 0.3, 0.5⟩

⟨1, 0.3, 0.5⟩
⟨2, 0.5, 0.5⟩

⟨2, 0.6, 0.4⟩
⟨2, 0.5, 0.5⟩

⟨2, 0.5, 0.5⟩
⟨1, 0.3, 0.5⟩

ℓ2 ⟨3, 0.7, 0.4⟩
⟨1, 0.4, 0.4⟩

⟨0, 0.2, 0.2⟩
⟨4, 0.8, 0.6⟩

⟨1, 0.4, 0.4⟩
⟨3, 0.7, 0.5⟩

⟨2, 0.6, 0.4⟩
⟨1, 0.3, 0.5⟩

ℓ3 ⟨1, 0.4, 0.4⟩
⟨3, 0.6, 0.6⟩

⟨1, 0.3, 0.5⟩
⟨2, 0.5, 0.5⟩

⟨2, 0.6, 0.4⟩
⟨2, 0.5, 0.5⟩

⟨3, 0.6, 0.5⟩
⟨1, 0.3, 0.5⟩

Table 8.  Tabular form of the PF5BSS (ζ, ξ, ρ, 5) in Example 3.1

 

Grade Criterion

rε = 0 0.0 ≤ (ζ+(ℓ, rε))2 + (ζ−(ℓ, rε))2 < 0.2
0.0 ≤ (ξ+(ℓ, r¬ε))2 + (ξ−(ℓ, r¬ε))2 < 0.2

rε = 1 0.2 ≤ (ζ+(ℓ, rε))2 + (ζ−(ℓ, rε))2 < 0.4
0.2 ≤ (ξ+(ℓ, r¬ε))2 + (ξ−(ℓ, r¬ε))2 < 0.4

rε = 2 0.4 ≤ (ζ+(ℓ, rε))2 + (ζ−(ℓ, rε))2 < 0.6
0.4 ≤ (ξ+(ℓ, r¬ε))2 + (ξ−(ℓ, r¬ε))2 < 0.6

rε = 3 0.6 ≤ (ζ+(ℓ, rε))2 + (ζ−(ℓ, rε))2 < 0.8
0.6 ≤ (ξ+(ℓ, r¬ε))2 + (ξ−(ℓ, r¬ε))2 < 0.8

rε = 4 0.8 ≤ (ζ+(ℓ, rε))2 + (ζ−(ℓ, rε))2 ≤ 1.0
0.8 ≤ (ξ+(ℓ, r¬ε))2 + (ξ−(ℓ, r¬ε))2 ≤ 1.0

Table 7.  Evaluation grades and corresponding criteria.

 

(π, κ, ρ, 5) ε1 ε2 ε3 ε4

ℓ1 3
1

1
2

2
2

2
1

ℓ2 3
1

0
4

1
3

2
1

ℓ3 1
3

1
2

2
2

3
1

Table 6.  Tabular form of the 5BSS (π, κ, ρ, 5) in Example 3.1
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Definition 3.2  A PFNBSS (ζN, ξN, ρ, N) is defined as a relative null if, for each ε ∈ ρ and ℓ ∈ L, we have 
ζN(ε)(ℓ) = ⟨0, 0.0, 1.0⟩, and for each ¬ε ∈ ¬ρ and ℓ ∈ L, we have ξN(¬ε)(ℓ) = ⟨N − 1, 1.0, 0.0⟩.

Definition 3.3  A PFNBSS (ζU, ξU, ρ, N) is referred to as a relative whole if, for each ε ∈ ρ and ℓ ∈ L, we have 
ζU(ε)(ℓ) = ⟨N − 1, 1.0, 0.0⟩, and for each ¬ε ∈ ¬ρ and ℓ ∈ L, we have ξU(¬ε)(ℓ) = ⟨0, 0.0, 1.0⟩.

Definition 3.4  The complement of (ζ, ξ, ρ, N), denoted as (ζ, ξ, ρ, N)č, is given by (ζ, ξ, ρ, N)č = (ζ č, ξč, ρ, N), 
where for every ε ∈ ρ and ℓ ∈ L, it follows that ζ č(ε) = ξ(¬ε), i.e., rč

ε = r¬ε, ζ+č(ℓ, rε) = ξ+(ℓ, r¬ε) and 

ζ−č(ℓ, rε) = ξ−(ℓ, r¬ε). Similarly, for every ¬ε ∈ ¬ρ and ℓ ∈ L, we have ξč(¬ε) = ζ(ε), i.e., rč
¬ε = rε, 

ξ+č(ℓ, r¬ε) = ζ+(ℓ, rε) and ξ−č(ℓ, r¬ε) = ζ−(ℓ, rε).

Example 3.2  Let us consider the PF5BSS (ζ, ξ, ρ, 5) presented in Table 8 of Example 3.1. The corresponding 
complement is shown in Table 9.

Proposition 3.1  Let (ζ, ξ, ρ, N) be a PFNBSS, and let (ζN, ξN, ρ, N) and (ζU, ξU, ρ, N) denote the relative null 
set and the relative whole set, respectively. Then, 

	1.	 ((ζ, ξ, ρ, N)č)č = (ζ, ξ, ρ, N).
	2.	 (ζN, ξN, ρ, N)č = (ζU, ξU, ρ, N).
	3.	 (ζU, ξU, ρ, N)č = (ζN, ξN, ρ, N).

Proof 	  1.	 Follows directly from Definition 3.4.
	 2.	 Follows from Definitions 3.2, 3.3, and 3.4.
	 3.	 Follows from the same definitions as part 2.□

Definition 3.5  A PFNBSS (ζ1, ξ1, ρ1, N) is said to be a subset of (ζ2, ξ2, ρ2, N), denoted as 
(ζ1, ξ1, ρ1, N) ⊆̌ (ζ2, ξ2, ρ2, N), if the following conditions are satisfied: 

	1.	 ρ1 ⊆ ρ2.
	2.	 For each ε ∈ ρ1 and ℓ ∈ L, it holds that r1ε ≤ r2ε, ζ+

1 (ℓ, r1ε) ≤ ζ+
2 (ℓ, r2ε), and ζ−

2 (ℓ, r2ε) ≤ ζ−
1 (ℓ, r1ε), 

where ⟨(ℓ, r1ε), ζ+
1 (ℓ, r1ε), ζ−

1 (ℓ, r1ε)⟩ ∈ ζ1(ε) and ⟨(ℓ, r2ε), ζ+
2 (ℓ, r2ε), ζ−

2 (ℓ, r2ε)⟩ ∈ ζ2(ε).
	3.	 For each ¬ε ∈ ¬ρ1 and ℓ ∈ L, we have r2¬ε ≤ r1¬ε, ξ+

2 (ℓ, r2¬ε) ≤ ξ+
1 (ℓ, r1¬ε)

, and ξ−
1 (ℓ, r1¬ε) ≤ ξ−

2 (ℓ, r2¬ε), where ⟨(ℓ, r1¬ε), ξ+
1 (ℓ, r1¬ε), ξ−

1 (ℓ, r1¬ε)⟩ ∈ ξ1(¬ε) and 
⟨(ℓ, r2¬ε), ξ+

2 (ℓ, r2¬ε), ξ−
2 (ℓ, r2¬ε)⟩ ∈ ξ2(¬ε).

Example 3.3  Referring to Example 3.1, consider two PF5BSSs (ζ1, ξ1, ρ1, 5) and (ζ2, ξ2, ρ2, 5), presented in 
Tables 10 and 11, respectively. It is clear that (ζ1, ξ1, ρ1, 5) ⊆̌ (ζ2, ξ2, ρ2, 5).

Definition 3.6  Two PFNBSSs (ζ1, ξ1, ρ1, N) and (ζ2, ξ2, ρ2, N) are said to be equal if both 
(ζ1, ξ1, ρ1, N) ⊆̌ (ζ2, ξ2, ρ2, N) and (ζ2, ξ2, ρ2, N) ⊆̌ (ζ1, ξ1, ρ1, N) are satisfied.

(ζ1, ξ1, ρ1, 5) ε1 ε2 ε3

ℓ1 ⟨0, 0.1, 0.4⟩
⟨3, 0.8, 0.2⟩

⟨1, 0.0, 0.6⟩
⟨3, 0.8, 0.2⟩

⟨0, 0.1, 0.1⟩
⟨4, 0.9, 0.4⟩

ℓ2 ⟨3, 0.2, 0.8⟩
⟨1, 0.4, 0.4⟩

⟨1, 0.1, 0.6⟩
⟨2, 0.7, 0.0⟩

⟨0, 0.0, 0.4⟩
⟨3, 0.8, 0.2⟩

ℓ3 ⟨1, 0.2, 0.4⟩
⟨3, 0.8, 0.2⟩

⟨1, 0.3, 0.5⟩
⟨2, 0.7, 0.1⟩

⟨2, 0.2, 0.6⟩
⟨2, 0.7, 0.3⟩

Table 10.  Tabular form of PF5BSS (ζ1, ξ1, ρ1, 5) in Example 3.3

 

(ζ, ξ, ρ, 5)č
ε1 ε2 ε3 ε4

ℓ1 ⟨1, 0.3, 0.5⟩
⟨3, 0.6, 0.5⟩

⟨2, 0.5, 0.5⟩
⟨1, 0.3, 0.5⟩

⟨2, 0.5, 0.5⟩
⟨2, 0.6, 0.4⟩

⟨1, 0.3, 0.5⟩
⟨2, 0.5, 0.5⟩

ℓ2 ⟨1, 0.4, 0.4⟩
⟨3, 0.7, 0.4⟩

⟨4, 0.8, 0.6⟩
⟨0, 0.2, 0.2⟩

⟨3, 0.7, 0.5⟩
⟨1, 0.4, 0.4⟩

⟨1, 0.3, 0.5⟩
⟨2, 0.6, 0.4⟩

ℓ3 ⟨3, 0.6, 0.6⟩
⟨1, 0.4, 0.4⟩

⟨2, 0.5, 0.5⟩
⟨1, 0.3, 0.5⟩

⟨2, 0.5, 0.5⟩
⟨2, 0.6, 0.4⟩

⟨1, 0.3, 0.5⟩
⟨3, 0.6, 0.5⟩

Table 9.  The complement of the PF5BSS (ζ, ξ, ρ, 5) in Example 3.1
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Definition 3.7  The extended union of (ζ1, ξ1, ρ1, N1) and (ζ2, ξ2, ρ2, N2) is denoted and defined as 
(ζ1, ξ1, ρ1, N1) ∪̌e (ζ2, ξ2, ρ2, N2) = (ζ, ξ, ρ1 ∪ ρ2, max(N1, N2)), where for all ε ∈ ρ1 ∪ ρ2:

	

ζ(ε) =





ζ1(ε), if ε ∈ ρ1 \ ρ2,
ζ2(ε), if ε ∈ ρ2 \ ρ1,⟨(ℓ, max{r1ε, r2ε}),

max{ζ+
1 (ℓ, r1ε), ζ+

2 (ℓ, r2ε)},
min{ζ−

1 (ℓ, r1ε), ζ−
2 (ℓ, r2ε)}

⟩
, if ε ∈ ρ1 ∩ ρ2,

where ⟨(ℓ, r1ε), ζ+
1 (ℓ, r1ε), ζ−

1 (ℓ, r1ε)⟩ ∈ ζ1(ε) and ⟨(ℓ, r2ε), ζ+
2 (ℓ, r2ε), ζ−

2 (ℓ, r2ε)⟩ ∈ ζ2(ε).
Similarly, for all ¬ε ∈ ¬ρ1 ∪ ¬ρ2:

	

ξ(¬ε) =





ξ1(¬ε), if ¬ε ∈ ¬ρ1 \ ¬ρ2,
ξ2(¬ε), if ¬ε ∈ ¬ρ2 \ ¬ρ1,⟨(ℓ, min{r1¬ε, r2¬ε}),

min{ξ+
1 (ℓ, r1¬ε), ξ+

2 (ℓ, r2¬ε)},
max{ξ−

1 (ℓ, r1¬ε), ξ−
2 (ℓ, r2¬ε)}

⟩
, if ¬ε ∈ ¬ρ1 ∩ ¬ρ2,

where ⟨(ℓ, r1¬ε), ξ+
1 (ℓ, r1¬ε), ξ−

1 (ℓ, r1¬ε)⟩ ∈ ξ1(¬ε) and ⟨(ℓ, r2¬ε), ξ+
2 (ℓ, r2¬ε), ξ−

2 (ℓ, r2¬ε)⟩ ∈ ξ2(¬ε).

Example 3.4  Refer again to Example 3.1. Consider (ζ1, ξ1, ρ1, 4) and (ζ2, ξ2, ρ2, 5) as the PF4BSS and PF5BSS, 
respectively, presented in Tables 12 and 13. The resulting extended union is shown in Table 14.

Proposition 3.2  Let (ζ1, ξ1, ρ1, N1), (ζ2, ξ2, ρ2, N2), and (ζ3, ξ3, ρ3, N3) be PFN1BSS, PFN2BSS, and PFN3
BSS, respectively. Then, 

	1.	 (ζ1, ξ1, ρ1, N1) ∪̌e (ζ2, ξ2, ρ2, N2) = (ζ2, ξ2, ρ2, N2) ∪̌e (ζ1, ξ1, ρ1, N1).
	2.	 (ζ1, ξ1, ρ1, N1) ∪̌e 

(
(ζ2, ξ2, ρ2, N2) ∪̌e (ζ3, ξ3, ρ3, N3)

)
 = 

(
(ζ1, ξ1, ρ1, N1) ∪̌e (ζ2, ξ2, ρ2, N2)

)
 ∪̌e 

(ζ3, ξ3, ρ3, N3).

(ζ2, ξ2, ρ2, 5) ε1 ε2 ε4

ℓ1 ⟨1, 0.2, 0.4⟩
⟨3, 0.8, 0.3⟩

⟨2, 0.6, 0.3⟩
⟨2, 0.3, 0.6⟩

⟨0, 0.0, 0.0⟩
⟨4, 1.0, 0.0⟩

ℓ2 ⟨1, 0.2, 0.5⟩
⟨1, 0.4, 0.2⟩

⟨4, 0.2, 0.9⟩
⟨0, 0.1, 0.2⟩

⟨1, 0.0, 0.5⟩
⟨3, 0.7, 0.4⟩

ℓ3 ⟨1, 0.2, 0.4⟩
⟨0, 0.1, 0.4⟩

⟨1, 0.1, 0.6⟩
⟨2, 0.7, 0.1⟩

⟨2, 0.5, 0.5⟩
⟨2, 0.7, 0.3⟩

Table 13.  Tabular form of PF5BSS (ζ2, ξ2, ρ2, 5) in Example 3.4

 

(ζ1, ξ1, ρ1, 4) ε1 ε2 ε3

ℓ1 ⟨0, 0.2, 0.3⟩
⟨3, 0.5, 0.6⟩

⟨2, 0.6, 0.4⟩
⟨1, 0.3, 0.5⟩

⟨2, 0.7, 0.0⟩
⟨0, 0.3, 0.3⟩

ℓ2 ⟨1, 0.3, 0.5⟩
⟨2, 0.4, 0.6⟩

⟨1, 0.4, 0.2⟩
⟨1, 0.2, 0.4⟩

⟨1, 0.5, 0.2⟩
⟨2, 0.2, 0.7⟩

ℓ3 ⟨1, 0.3, 0.4⟩
⟨0, 0.3, 0.3⟩

⟨2, 0.7, 0.0⟩
⟨0, 0.0, 0.1⟩

⟨3, 0.6, 0.5⟩
⟨0, 0.4, 0.1⟩

Table 12.  Tabular form of PF4BSS (ζ1, ξ1, ρ1, 4) in Example 3.4

 

(ζ2, ξ2, ρ2, 5) ε1 ε2 ε3 ε4

ℓ1 ⟨1, 0.2, 0.4⟩
⟨2, 0.6, 0.4⟩

⟨1, 0.1, 0.6⟩
⟨3, 0.8, 0.3⟩

⟨0, 0.2, 0.3⟩
⟨4, 0.9, 0.0⟩

⟨1, 0.5, 0.3⟩
⟨1, 0.2, 0.5⟩

ℓ2 ⟨3, 0.3, 0.8⟩
⟨1, 0.4, 0.4⟩

⟨2, 0.3, 0.6⟩
⟨2, 0.7, 0.2⟩

⟨0, 0.1, 0.4⟩
⟨4, 0.9, 0.1⟩

⟨3, 0.5, 0.6⟩
⟨1, 0.2, 0.5⟩

ℓ3 ⟨1, 0.3, 0.4⟩
⟨3, 0.6, 0.6⟩

⟨2, 0.6, 0.3⟩
⟨2, 0.7, 0.2⟩

⟨2, 0.6, 0.2⟩
⟨2, 0.7, 0.2⟩

⟨2, 0.5, 0.5⟩
⟨2, 0.2, 0.6⟩

Table 11.  Tabular form of PF5BSS (ζ2, ξ2, ρ2, 5) in Example 3.3
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Proof 	  1.	 Let (ζ1, ξ1, ρ1, N1)∪̌e(ζ2, ξ2, ρ2, N2) = (ζ3, ξ3, ρ1 ∪ ρ2, max(N1, N2)). Then, for all 
ε ∈ ρ1 ∪ ρ2: 

	

ζ3(ε) =





ζ1(ε), if ε ∈ ρ1 \ ρ2,
ζ2(ε), if ε ∈ ρ2 \ ρ1,⟨(ℓ, max{r1ε, r2ε}),

max{ζ+
1 (ℓ, r1ε), ζ+

2 (ℓ, r2ε)},
min{ζ−

1 (ℓ, r1ε), ζ−
2 (ℓ, r2ε)}

⟩
, if ε ∈ ρ1 ∩ ρ2,

	 where ⟨(ℓ, r1ε), ζ+
1 (ℓ, r1ε), ζ−

1 (ℓ, r1ε)⟩ ∈ ζ1(ε) and ⟨(ℓ, r2ε), ζ+
2 (ℓ, r2ε), ζ−

2 (ℓ, r2ε)⟩ ∈ ζ2(ε). Similarly for 
all ¬ε ∈ ¬ρ1 ∪ ¬ρ2: 

	

ξ3(¬ε) =





ξ1(¬ε), if ¬ε ∈ ¬ρ1 \ ¬ρ2,
ξ2(¬ε), if ¬ε ∈ ¬ρ2 \ ¬ρ1,⟨(ℓ, min{r1¬ε, r2¬ε}),

min{ξ+
1 (ℓ, r1¬ε), ξ+

2 (ℓ, r2¬ε)},
max{ξ−

1 (ℓ, r1¬ε), ξ−
2 (ℓ, r2¬ε)}

⟩
, if ¬ε ∈ ¬ρ1 ∩ ¬ρ2,

	 where ⟨(ℓ, r1¬ε), ξ+
1 (ℓ, r1¬ε), ξ−

1 (ℓ, r1¬ε)⟩ ∈ ξ1(¬ε) and ⟨(ℓ, r2¬ε), ξ+
2 (ℓ, r2¬ε), ξ−

2 (ℓ, r2¬ε)⟩ ∈ ξ2(¬ε). 
On the other hand, let (ζ2, ξ2, ρ2, N2)∪̌e(ζ1, ξ1, ρ1, N1) = (ζ4, ξ4, ρ2 ∪ ρ1, max(N2, N1)). Then, for all 
ε ∈ ρ2 ∪ ρ1: 

	

ζ4(ε) =





ζ2(ε), if ε ∈ ρ2 \ ρ1,
ζ1(ε), if ε ∈ ρ1 \ ρ2,⟨(ℓ, max{r2ε, r1ε}),

max{ζ+
2 (ℓ, r2ε), ζ+

1 (ℓ, r1ε)},
min{ζ−

2 (ℓ, r2ε), ζ−
1 (ℓ, r1ε)}

⟩
, if ε ∈ ρ2 ∩ ρ1,

	 Similarly for all ¬ε ∈ ¬ρ2 ∪ ¬ρ1: 

	

ξ4(¬ε) =





ξ2(¬ε), if ¬ε ∈ ¬ρ2 \ ¬ρ1,
ξ1(¬ε), if ¬ε ∈ ¬ρ1 \ ¬ρ2,⟨(ℓ, min{r2¬ε, r1¬ε}),

min{ξ+
2 (ℓ, r2¬ε), ξ+

1 (ℓ, r1¬ε)},
max{ξ−

2 (ℓ, r2¬ε), ξ−
1 (ℓ, r1¬ε)}

⟩
, if ¬ε ∈ ¬ρ2 ∩ ¬ρ1,

	 Since (ζ3, ξ3, ρ1 ∪ ρ2, max(N1, N2)) and (ζ4, ξ4, ρ2 ∪ ρ1, max(N2, N1)) are equivalent for all ε ∈ ρ1 ∪ ρ2 
and ¬ε ∈ ¬ρ1 ∪ ¬ρ2, the proof follows.

	 2.	 Let (ζ2, ξ2, ρ2, N2)∪̌e(ζ3, ξ3, ρ3, N3) = (ζ4, ξ4, ρ2 ∪ ρ3, max(N2, N3)). Then, for all 
ε ∈ ρ2 ∪ ρ3: 

	

ζ4(ε) =





ζ2(ε), if ε ∈ ρ2 \ ρ3,
ζ3(ε), if ε ∈ ρ3 \ ρ2,⟨(ℓ, max{r2ε, r3ε}),

max{ζ+
2 (ℓ, r2ε), ζ+

3 (ℓ, r3ε)},
min{ζ−

2 (ℓ, r2ε), ζ−
3 (ℓ, r3ε)}

⟩
, if ε ∈ ρ2 ∩ ρ3,

	 where ⟨(ℓ, r2ε), ζ+
2 (ℓ, r2ε), ζ−

2 (ℓ, r2ε)⟩ ∈ ζ2(ε) and ⟨(ℓ, r3ε), ζ+
3 (ℓ, r3ε), ζ−

3 (ℓ, r3ε)⟩ ∈ ζ3(ε). Similarly for 
all ¬ε ∈ ¬ρ2 ∪ ¬ρ3: 

(ζ3, ξ3, ρ1 ∪ ρ2, 5) ε1 ε2 ε3 ε4

ℓ1 ⟨1, 0.2, 0.3⟩
⟨3, 0.5, 0.6⟩

⟨2, 0.6, 0.3⟩
⟨1, 0.3, 0.6⟩

⟨2, 0.7, 0.0⟩
⟨0, 0.3, 0.3⟩

⟨0, 0.0, 0.0⟩
⟨4, 1.0, 0.0⟩

ℓ2 ⟨1, 0.3, 0.5⟩
⟨1, 0.4, 0.6⟩

⟨4, 0.4, 0.2⟩
⟨0, 0.1, 0.4⟩

⟨1, 0.5, 0.2⟩
⟨2, 0.2, 0.7⟩

⟨1, 0.0, 0.5⟩
⟨3, 0.7, 0.4⟩

ℓ3 ⟨1, 0.3, 0.4⟩
⟨0, 0.1, 0.4⟩

⟨2, 0.7, 0.0⟩
⟨0, 0.0, 0.1⟩

⟨3, 0.6, 0.5⟩
⟨0, 0.4, 0.1⟩

⟨2, 0.5, 0.5⟩
⟨2, 0.7, 0.3⟩

Table 14.  The extended union (ζ1, ξ1, ρ1, 4)∪̌e(ζ2, ξ2, ρ2, 5)=(ζ3, ξ3, ρ1 ∪ ρ2, 5) in Example 3.4
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ξ4(¬ε) =





ξ2(¬ε), if ¬ε ∈ ¬ρ2 \ ¬ρ3,
ξ3(¬ε), if ¬ε ∈ ¬ρ3 \ ¬ρ2,⟨(ℓ, min{r2¬ε, r3¬ε}),

min{ξ+
2 (ℓ, r2¬ε), ξ+

3 (ℓ, r3¬ε)},
max{ξ−

2 (ℓ, r2¬ε), ξ−
3 (ℓ, r3¬ε)}

⟩
, if ¬ε ∈ ¬ρ2 ∩ ¬ρ3,

	 where ⟨(ℓ, r2¬ε), ξ+
2 (ℓ, r2¬ε), ξ−

2 (ℓ, r2¬ε)⟩ ∈ ξ2(¬ε) and ⟨(ℓ, r3¬ε), ξ+
3 (ℓ, r3¬ε), ξ−

3 (ℓ, r3¬ε)⟩ ∈ ξ3(¬ε). Now, 
let (ζ1, ξ1, ρ1, N1) ∪̌e (ζ4, ξ4, ρ2 ∪ ρ3, max(N2, N3)) = (ζ5, ξ5, ρ1 ∪ (ρ2 ∪ ρ3), max(N1, max(N2, N3)) 
= (ζ5, ξ5, ρ1 ∪ (ρ2 ∪ ρ3), max(N1, N2, N3)). Then, for all ε ∈ ρ1 ∪ (ρ2 ∪ ρ3): 

	

ζ5(ε) =




ζ1(ε), if ε ∈ ρ1 \ (ρ2 ∪ ρ3),
ζ4(ε), if ε ∈ (ρ2 ∪ ρ3) \ ρ1,⟨(ℓ, max{r1ε, max{r2ε, r3ε}}),

max
{

ζ+
1 (ℓ, r1ε), max

{
ζ+

2 (ℓ, r2ε), ζ+
3 (ℓ, r3ε)

}}
,

min
{

ζ−
1 (ℓ, r1ε), min

{
ζ−

2 (ℓ, r2ε), ζ−
3 (ℓ, r3ε)

}}
⟩

, if ε ∈ ρ1 ∩ (ρ2 ∪ ρ3),

	 where ⟨(ℓ, r1ε), ζ+
1 (ℓ, r1ε), ζ−

1 (ℓ, r1ε)⟩ ∈ ζ1(ε) Similarly, for all ¬ε ∈ ¬ρ1 ∪ (¬ρ2 ∪ ¬ρ3): 

	

ξ5(¬ε) =




ξ1(¬ε), if ¬ε ∈ ¬ρ1 \ (¬ρ2 ∪ ¬ρ3),
ξ3(¬ε), if ¬ε ∈ (¬ρ2 ∪ ¬ρ3) \ ¬ρ1,⟨(ℓ, min{r1¬ε, min{r2¬ε, r3¬ε}}),

min
{

ξ+
1 (ℓ, r1¬ε), min

{
ξ+

2 (ℓ, r2¬ε), ξ+
3 (ℓ, r3¬ε)

}}
,

max
{

ξ−
1 (ℓ, r1¬ε), max

{
ξ−

2 (ℓ, r2¬ε), ξ−
3 (ℓ, r3¬ε)

}}
⟩

, if ¬ε ∈ ¬ρ1 ∩ (¬ρ2 ∪ ¬ρ3),

	 where ⟨(ℓ, r1¬ε), ξ+
1 (ℓ, r1¬ε), ξ−

1 (ℓ, r1¬ε)⟩ ∈ ξ1(¬ε). On the other hand, let 
(ζ1, ξ1, ρ1, N1)∪̌e(ζ2, ξ2, ρ2, N2) = (ζ6, ξ6, ρ1 ∪ ρ2, max(N1, N2)). Then, for all ε ∈ ρ1 ∪ ρ2: 

	

ζ6(ε) =





ζ1(ε), if ε ∈ ρ1 \ ρ2,
ζ2(ε), if ε ∈ ρ2 \ ρ1,⟨(ℓ, max{r1ε, r2ε}),

max{ζ+
1 (ℓ, r1ε), ζ+

2 (ℓ, r2ε)},
min{ζ−

1 (ℓ, r1ε), ζ−
2 (ℓ, r2ε)}

⟩
, if ε ∈ ρ1 ∩ ρ2,

	 where ⟨(ℓ, r1ε), ζ+
1 (ℓ, r1ε), ζ−

1 (ℓ, r1ε)⟩ ∈ ζ1(ε) and ⟨(ℓ, r2ε), ζ+
2 (ℓ, r2ε), ζ−

2 (ℓ, r2ε)⟩ ∈ ζ2(ε). Similarly for 
all ¬ε ∈ ¬ρ1 ∪ ¬ρ2: 

	

ξ6(¬ε) =





ξ1(¬ε), if ¬ε ∈ ¬ρ1 \ ¬ρ2,
ξ2(¬ε), if ¬ε ∈ ¬ρ2 \ ¬ρ1,⟨(ℓ, min{r1¬ε, r2¬ε}),

min{ξ+
1 (ℓ, r1¬ε), ξ+

2 (ℓ, r2¬ε)},
max{ξ−

1 (ℓ, r1¬ε), ξ−
2 (ℓ, r2¬ε)}

⟩
, if ¬ε ∈ ¬ρ1 ∩ ¬ρ2,

	 where ⟨(ℓ, r1¬ε), ξ+
1 (ℓ, r1¬ε), ξ−

1 (ℓ, r1¬ε)⟩ ∈ ξ1(¬ε) and ⟨(ℓ, r2¬ε), ξ+
2 (ℓ, r2¬ε), ξ−

2 (ℓ, r2¬ε)⟩ ∈ ξ2(¬ε). Now, 
let (ζ6, ξ6, ρ1 ∪ ρ2, max(N1, N2)) ∪̌e (ζ3, ξ3, ρ3, N3) = (ζ7, ξ7, (ρ1 ∪ ρ2) ∪ ρ3, max(max(N1, N2), N3) 
= (ζ7, ξ7, (ρ1 ∪ ρ2) ∪ ρ3, max(N1, N2, N3)). Then, for all ε ∈ (ρ1 ∪ ρ2) ∪ ρ3: 

	

ζ7(ε) =




ζ3(ε), if ε ∈ ρ3 \ (ρ1 ∪ ρ2),
ζ6(ε), if ε ∈ (ρ1 ∪ ρ2) \ ρ3,⟨(ℓ, max{r3ε, max{r1ε, r2ε}}),

max
{

ζ+
3 (ℓ, r3ε), max

{
ζ+

1 (ℓ, r1ε), ζ+
2 (ℓ, r2ε)

}}
,

min
{

ζ−
3 (ℓ, r3ε), min

{
ζ−

1 (ℓ, r1ε), ζ−
2 (ℓ, r2ε)

}}
⟩

, if ε ∈ ρ3 ∩ (ρ1 ∪ ρ2),

	 where ⟨(ℓ, r3ε), ζ+
3 (ℓ, r3ε), ζ−

3 (ℓ, r3ε)⟩ ∈ ζ3(ε). Similarly, for all ¬ε ∈ ¬ρ3 ∪ (¬ρ1 ∪ ¬ρ2): 

	

ξ7(¬ε) =




ξ3(¬ε), if ¬ε ∈ ¬ρ3 \ (¬ρ1 ∪ ¬ρ2),
ξ6(¬ε), if ¬ε ∈ (¬ρ1 ∪ ¬ρ2) \ ¬ρ3,⟨(ℓ, min{r3¬ε, min{r1¬ε, r2¬ε}}),

min
{

ξ+
3 (ℓ, r3¬ε), min

{
ξ+

1 (ℓ, r1¬ε), ξ+
2 (ℓ, r2¬ε)

}}
,

max
{

ξ−
3 (ℓ, r3¬ε), max

{
ξ−

1 (ℓ, r1¬ε), ξ−
2 (ℓ, r2¬ε)

}}
⟩

, if ¬ε ∈ ¬ρ3 ∩ (¬ρ1 ∪ ¬ρ2),

	 where ⟨(ℓ, r3¬ε), ξ+
3 (ℓ, r3¬ε), ξ−

3 (ℓ, r3¬ε)⟩ ∈ ξ3(¬ε). Since (ζ5, ξ5, ρ1 ∪ (ρ2 ∪ ρ3), max(N1, N2, N3)) 
and (ζ7, ξ7, (ρ1 ∪ ρ2) ∪ ρ3, max(N1, N2, N3)) are equivalent for all ε ∈ ρ1 ∪ (ρ2 ∪ ρ3) and 
¬ε ∈ ¬ρ1 ∪ (¬ρ2 ∪ ¬ρ3), the proof follows.□
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Definition 3.8  The extended intersection of (ζ1, ξ1, ρ1, N1) and (ζ2, ξ2, ρ2, N2) is denoted and defined as 
(ζ1, ξ1, ρ1, N1) ∩̌e (ζ2, ξ2, ρ2, N2) = (ζ, ξ, ρ1 ∪ ρ2, max(N1, N2)), where for all ε ∈ ρ1 ∪ ρ2:

	

ζ(ε) =





ζ1(ε), if ε ∈ ρ1 \ ρ2,
ζ2(ε), if ε ∈ ρ2 \ ρ1,⟨(ℓ, min{r1ε, r2ε}),

min{ζ+
1 (ℓ, r1ε), ζ+

2 (ℓ, r2ε)},
max{ζ−

1 (ℓ, r1ε), ζ−
2 (ℓ, r2ε)}

⟩
, if ε ∈ ρ1 ∩ ρ2,

where ⟨(ℓ, r1ε), ζ+
1 (ℓ, r1ε), ζ−

1 (ℓ, r1ε)⟩ ∈ ζ1(ε) and ⟨(ℓ, r2ε), ζ+
2 (ℓ, r2ε), ζ−

2 (ℓ, r2ε)⟩ ∈ ζ2(ε).
Similarly, for all ¬ε ∈ ¬ρ1 ∪ ¬ρ2:

	

ξ(¬ε) =





ξ1(¬ε), if ¬ε ∈ ¬ρ1 \ ¬ρ2,
ξ2(¬ε), if ¬ε ∈ ¬ρ2 \ ¬ρ1,⟨(ℓ, max{r1¬ε, r2¬ε}),

max{ξ+
1 (ℓ, r1¬ε), ξ+

2 (ℓ, r2¬ε)},
min{ξ−

1 (ℓ, r1¬ε), ξ−
2 (ℓ, r2¬ε)}

⟩
, if ¬ε ∈ ¬ρ1 ∩ ¬ρ2,

where ⟨(ℓ, r1¬ε), ξ+
1 (ℓ, r1¬ε), ξ−

1 (ℓ, r1¬ε)⟩ ∈ ξ1(¬ε) and ⟨(ℓ, r2¬ε), ξ+
2 (ℓ, r2¬ε), ξ−

2 (ℓ, r2¬ε)⟩ ∈ ξ2(¬ε).

Example 3.5  Based on the PF4BSS (ζ1, ξ1, ρ1, 4) and PF5BSS (ζ2, ξ2, ρ2, 5) given in Tables 12 and 13, their 
extended intersection is detailed in Table 15.

Proposition 3.3  Let (ζ1, ξ1, ρ1, N1), (ζ2, ξ2, ρ2, N2), and (ζ3, ξ3, ρ3, N3) be PFN1BSS, PFN2BSS, and PFN3
BSS, respectively. Then, 

	1.	 (ζ1, ξ1, ρ1, N1) ∩̌e (ζ2, ξ2, ρ2, N2) = (ζ2, ξ2, ρ2, N2) ∩̌e (ζ1, ξ1, ρ1, N1).
	2.	 (ζ1, ξ1, ρ1, N1) ∩̌e 

(
(ζ2, ξ2, ρ2, N2) ∩̌e (ζ3, ξ3, ρ3, N3)

)
 = 

(
(ζ1, ξ1, ρ1, N1) ∩̌e (ζ2, ξ2, ρ2, N2)

)
 ∩̌e 

(ζ3, ξ3, ρ3, N3).

Proof 	  1.	 Similar to the proof of Proposition 3.2 (1).
	 2.	 Similar to the proof of Proposition 3.2 (2).□

Definition 3.9  The restricted union of (ζ1, ξ1, ρ1, N1) and (ζ2, ξ2, ρ2, N2) is denoted and defined as 
(ζ1, ξ1, ρ1, N1) ∪̌r  (ζ2, ξ2, ρ2, N2) = (ζ, ξ, ρ1 ∩ ρ2, max(N1, N2)), where for all ε ∈ ρ1 ∩ ρ2 ̸= ∅:

	 ζ(ε) = ⟨(ℓ, max{r1ε, r2ε}), max{ζ+
1 (ℓ, r1ε), ζ+

2 (ℓ, r2ε)}, min{ζ−
1 (ℓ, r1ε), ζ−

2 (ℓ, r2ε)}⟩,

where ⟨(ℓ, r1ε), ζ+
1 (ℓ, r1ε), ζ−

1 (ℓ, r1ε)⟩ ∈ ζ1(ε) and ⟨(ℓ, r2ε), ζ+
2 (ℓ, r2ε), ζ−

2 (ℓ, r2ε)⟩ ∈ ζ2(ε).
Similarly, for all ¬ε ∈ ¬ρ1 ∩ ¬ρ2 ̸= ∅:

	 ξ(¬ε) = ⟨(ℓ, min{r1¬ε, r2¬ε}), min{ξ+
1 (ℓ, r1¬ε), ξ+

2 (ℓ, r2¬ε)}, max{ξ−
1 (ℓ, r1¬ε), ξ−

2 (ℓ, r2¬ε)}⟩,

where ⟨(ℓ, r1¬ε), ξ+
1 (ℓ, r1¬ε), ξ−

1 (ℓ, r1¬ε)⟩ ∈ ξ1(¬ε) and ⟨(ℓ, r2¬ε), ξ+
2 (ℓ, r2¬ε), ξ−

2 (ℓ, r2¬ε)⟩ ∈ ξ2(¬ε).

Example 3.6  Consider again the PF4BSS (ζ1, ξ1, ρ1, 4) and PF5BSS (ζ2, ξ2, ρ2, 5) presented in Tables 12 and 
13, respectively. Their restricted union is shown in Table 16.

Proposition 3.4  Let (ζ1, ξ1, ρ1, N1), (ζ2, ξ2, ρ2, N2), and (ζ3, ξ3, ρ3, N3) be PFN1BSS, PFN2BSS, and PFN3
BSS, respectively. Then, 

	1.	 (ζ1, ξ1, ρ1, N1) ∪̌r  (ζ2, ξ2, ρ2, N2) = (ζ2, ξ2, ρ2, N2) ∪̌r  (ζ1, ξ1, ρ1, N1).
	2.	 (ζ1, ξ1, ρ1, N1) ∪̌r  

(
(ζ2, ξ2, ρ2, N2) ∪̌r  (ζ3, ξ3, ρ3, N3)

)
 = 

(
(ζ1, ξ1, ρ1, N1) ∪̌r  (ζ2, ξ2, ρ2, N2)

)
 ∪̌r  

(ζ3, ξ3, ρ3, N3).

(ζ4, ξ4, ρ1 ∪ ρ2, 5) ε1 ε2 ε3 ε4

ℓ1 ⟨0, 0.2, 0.4⟩
⟨3, 0.8, 0.3⟩

⟨2, 0.6, 0.4⟩
⟨2, 0.3, 0.5⟩

⟨2, 0.7, 0.0⟩
⟨0, 0.3, 0.3⟩

⟨0, 0.0, 0.0⟩
⟨4, 1.0, 0.0⟩

ℓ2 ⟨1, 0.2, 0.5⟩
⟨2, 0.4, 0.2⟩

⟨1, 0.2, 0.9⟩
⟨1, 0.2, 0.2⟩

⟨1, 0.5, 0.2⟩
⟨2, 0.2, 0.7⟩

⟨1, 0.0, 0.5⟩
⟨3, 0.7, 0.4⟩

ℓ3 ⟨1, 0.2, 0.4⟩
⟨0, 0.3, 0.3⟩

⟨1, 0.1, 0.6⟩
⟨2, 0.7, 0.1⟩

⟨3, 0.6, 0.5⟩
⟨0, 0.4, 0.1⟩

⟨2, 0.5, 0.5⟩
⟨2, 0.7, 0.3⟩

Table 15.  The extended intersection (ζ1, ξ1, ρ1, 4)∩̌e(ζ2, ξ2, ρ2, 5)=(ζ4, ξ4, ρ1 ∪ ρ2, 5) in Example 3.5
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Proof 	  1.	 Let (ζ1, ξ1, ρ1, N1)∪̌r(ζ2, ξ2, ρ2, N2) = (ζ3, ξ3, ρ1 ∩ ρ2, max(N1, N2)). For all ε ∈ ρ1 ∩ ρ2 ̸= ∅
: 

	 ζ3(ε) = ⟨(ℓ, max{r1ε, r2ε}), max{ζ+
1 (ℓ, r1ε), ζ+

2 (ℓ, r2ε)}, min{ζ−
1 (ℓ, r1ε), ζ−

2 (ℓ, r2ε)}⟩,

	 where ⟨(ℓ, r1ε), ζ+
1 (ℓ, r1ε), ζ−

1 (ℓ, r1ε)⟩ ∈ ζ1(ε) and ⟨(ℓ, r2ε), ζ+
2 (ℓ, r2ε), ζ−

2 (ℓ, r2ε)⟩ ∈ ζ2(ε).
	Similarly, for all ¬ε ∈ ¬ρ1 ∩ ¬ρ2 ̸= ∅: 

	 ξ3(¬ε) = ⟨(ℓ, min{r1¬ε, r2¬ε}), min{ξ+
1 (ℓ, r1¬ε), ξ+

2 (ℓ, r2¬ε)}, max{ξ−
1 (ℓ, r1¬ε), ξ−

2 (ℓ, r2¬ε)}⟩,

	 where ⟨(ℓ, r1¬ε), ξ+
1 (ℓ, r1¬ε), ξ−

1 (ℓ, r1¬ε)⟩ ∈ ξ1(¬ε) and ⟨(ℓ, r2¬ε), ξ+
2 (ℓ, r2¬ε), ξ−

2 (ℓ, r2¬ε)⟩ ∈ ξ2(¬ε).
	On the other hand, let (ζ2, ξ2, ρ2, N2)∪̌r(ζ1, ξ1, ρ1, N1) = (ζ4, ξ4, ρ2 ∩ ρ1, max(N2, N1)). Then, for all 

ε ∈ ρ2 ∩ ρ1 ̸= ∅: 

	 ζ4(ε) = ⟨(ℓ, max{r2ε, r1ε}), max{ζ+
2 (ℓ, r2ε), ζ+

1 (ℓ, r1ε)}, min{ζ−
2 (ℓ, r2ε), ζ−

1 (ℓ, r1ε)}⟩.

	 Similarly, for all ¬ε ∈ ¬ρ2 ∩ ¬ρ1 ̸= ∅: 

	 ξ4(¬ε) = ⟨(ℓ, min{r2¬ε, r1¬ε}), min{ξ+
2 (ℓ, r2¬ε), ξ+

1 (ℓ, r1¬ε)}, max{ξ−
2 (ℓ, r2¬ε), ξ−

1 (ℓ, r1¬ε)}⟩.

	 Since (ζ3, ξ3, ρ1 ∩ ρ2, max(N1, N2)) and (ζ4, ξ4, ρ2 ∩ ρ1, max(N2, N1)) are equivalent for all ε ∈ ρ1 ∩ ρ2 
and ¬ε ∈ ¬ρ1 ∩ ¬ρ2, the proof follows.

	 2.	 Let (ζ2, ξ2, ρ2, N2)∪̌r(ζ3, ξ3, ρ3, N3) = (ζ4, ξ4, ρ2 ∩ ρ3, max(N2, N3)). Then, for all 
ε ∈ ρ2 ∩ ρ3 ̸= ∅, 

	 ζ4(ε) = ⟨(ℓ, max{r2ε, r3ε}), max{ζ+
2 (ℓ, r2ε), ζ+

3 (ℓ, r3ε)}, min{ζ−
2 (ℓ, r2ε), ζ−

3 (ℓ, r3ε)}⟩,

	 where ⟨(ℓ, r2ε), ζ+
2 (ℓ, r2ε), ζ−

2 (ℓ, r2ε)⟩ ∈ ζ2(ε) and ⟨(ℓ, r3ε), ζ+
3 (ℓ, r3ε), ζ−

3 (ℓ, r3ε)⟩ ∈ ζ3(ε). Similarly, for 
all ¬ε ∈ ¬ρ2 ∩ ¬ρ3 ̸= ∅, 

	 ξ4(¬ε) = ⟨(ℓ, min{r2¬ε, r3¬ε}), min{ξ+
2 (ℓ, r2¬ε), ξ+

3 (ℓ, r3¬ε)}, max{ξ−
2 (ℓ, r2¬ε), ξ−

3 (ℓ, r3¬ε)}⟩,

	 where ⟨(ℓ, r2¬ε), ξ+
2 (ℓ, r2¬ε), ξ−

2 (ℓ, r2¬ε)⟩ ∈ ξ2(¬ε) and ⟨(ℓ, r3¬ε), ξ+
3 (ℓ, r3¬ε), ξ−

3 (ℓ, r3¬ε)⟩ ∈ ξ3(¬ε). Now, 
let (ζ1, ξ1, ρ1, N1)∪̌r(ζ4, ξ4, ρ2 ∩ ρ3, max(N2, N3)) = (ζ5, ξ5, ρ1 ∩ (ρ2 ∩ ρ3), max(N1, max(N2, N3))). 
Then, for all ε ∈ ρ1 ∩ (ρ2 ∩ ρ3) ̸= ∅, 

	

ζ5(ε) =

⟨(ℓ, max{r1ε, max{r2ε, r3ε}}),
max{ζ+

1 (ℓ, r1ε), max{ζ+
2 (ℓ, r2ε), ζ+

3 (ℓ, r3ε)}},

min{ζ−
1 (ℓ, r1ε), min{ζ−

2 (ℓ, r2ε), ζ−
3 (ℓ, r3ε)}}

⟩
,

	 where ⟨(ℓ, r1ε), ζ+
1 (ℓ, r1ε), ζ−

1 (ℓ, r1ε)⟩ ∈ ζ1(ε). Similarly, for all ¬ε ∈ ¬ρ1 ∩ (¬ρ2 ∩ ¬ρ3) ̸= ∅, 

	

ξ5(¬ε) =

⟨(ℓ, min{r1¬ε, min{r2¬ε, r3¬ε}}),
min{ξ+

1 (ℓ, r1¬ε), min{ξ+
2 (ℓ, r2¬ε), ξ+

3 (ℓ, r3¬ε)}},

max{ξ−
1 (ℓ, r1¬ε), max{ξ−

2 (ℓ, r2¬ε), ξ−
3 (ℓ, r3¬ε)}}

⟩
,

(ζ5, ξ5, ρ1 ∩ ρ2, 5) ε1 ε2

ℓ1 ⟨1, 0.2, 0.3⟩
⟨3, 0.5, 0.6⟩

⟨2, 0.6, 0.3⟩
⟨1, 0.3, 0.6⟩

ℓ2 ⟨1, 0.3, 0.5⟩
⟨1, 0.4, 0.6⟩

⟨4, 0.4, 0.2⟩
⟨0, 0.1, 0.4⟩

ℓ3 ⟨1, 0.3, 0.4⟩
⟨0, 0.1, 0.4⟩

⟨2, 0.7, 0.0⟩
⟨0, 0.0, 0.1⟩

Table 16.  The restricted union (ζ1, ξ1, ρ1, 4)∪̌r(ζ2, ξ2, ρ2, 5)=(ζ5, ξ5, ρ1 ∩ ρ2, 5) in Example 3.6
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	 where ⟨(ℓ, r1¬ε), ξ+
1 (ℓ, r1¬ε), ξ−

1 (ℓ, r1¬ε)⟩ ∈ ξ1(¬ε). On the other hand, let 
(ζ1, ξ1, ρ1, N1)∪̌r(ζ2, ξ2, ρ2, N2) = (ζ6, ξ6, ρ1 ∩ ρ2, max(N1, N2)). Then, for all ε ∈ ρ1 ∩ ρ2 ̸= ∅, 

	 ζ6(ε) = ⟨(ℓ, max{r1ε, r2ε}), max{ζ+
1 (ℓ, r1ε), ζ+

2 (ℓ, r2ε)}, min{ζ−
1 (ℓ, r1ε), ζ−

2 (ℓ, r2ε)}⟩,

	 where ⟨(ℓ, r1ε), ζ+
1 (ℓ, r1ε), ζ−

1 (ℓ, r1ε)⟩ ∈ ζ1(ε) and ⟨(ℓ, r2ε), ζ+
2 (ℓ, r2ε), ζ−

2 (ℓ, r2ε)⟩ ∈ ζ2(ε). Similarly, for 
all ¬ε ∈ ¬ρ1 ∩ ¬ρ2 ̸= ∅, 

	 ξ6(¬ε) = ⟨(ℓ, min{r1¬ε, r2¬ε}), min{ξ+
1 (ℓ, r1¬ε), ξ+

2 (ℓ, r2¬ε)}, max{ξ−
1 (ℓ, r1¬ε), ξ−

2 (ℓ, r2¬ε)}⟩,

	 where ⟨(ℓ, r1¬ε), ξ+
1 (ℓ, r1¬ε), ξ−

1 (ℓ, r1¬ε)⟩ ∈ ξ1(¬ε) and ⟨(ℓ, r2¬ε), ξ+
2 (ℓ, r2¬ε), ξ−

2 (ℓ, r2¬ε)⟩ ∈ ξ2(¬ε). Now, 
let (ζ6, ξ6, ρ1 ∪ ρ2, max(N1, N2))∪̌e(ζ3, ξ3, ρ3, N3) = (ζ7, ξ7, (ρ1 ∪ ρ2) ∪ ρ3, max(max(N1, N2), N3)). 
Then, for all ε ∈ (ρ1 ∩ ρ2) ∩ ρ3 ̸= ∅, 

	

ζ7(ε) =

⟨(ℓ, max{r3ε, max{r1ε, r2ε}}),
max{ζ+

3 (ℓ, r3ε), max{ζ+
1 (ℓ, r1ε), ζ+

2 (ℓ, r2ε)}},

min{ζ−
3 (ℓ, r3ε), min{ζ−

1 (ℓ, r1ε), ζ−
2 (ℓ, r2ε)}}

⟩
,

	 where ⟨(ℓ, r3ε), ζ+
3 (ℓ, r3ε), ζ−

3 (ℓ, r3ε)⟩ ∈ ζ3(ε). Similarly, for all ¬ε ∈ ¬ρ3 ∩ (¬ρ1 ∩ ¬ρ2) ̸= ∅, 

	

ξ7(¬ε) =

⟨(ℓ, min{r3¬ε, min{r1¬ε, r2¬ε}}),
min{ξ+

3 (ℓ, r3¬ε), min{ξ+
1 (ℓ, r1¬ε), ξ+

2 (ℓ, r2¬ε)}},

max{ξ−
3 (ℓ, r3¬ε), max{ξ−

1 (ℓ, r1¬ε), ξ−
2 (ℓ, r2¬ε)}}

⟩
,

	 where ⟨(ℓ, r3¬ε), ξ+
3 (ℓ, r3¬ε), ξ−

3 (ℓ, r3¬ε)⟩ ∈ ξ3(¬ε). Since (ζ5, ξ5, ρ1 ∩ (ρ2 ∩ ρ3), max(N1, N2, N3)) 
and (ζ7, ξ7, (ρ1 ∩ ρ2) ∩ ρ3, max(N1, N2, N3)) are equivalent for all ε ∈ ρ1 ∩ (ρ2 ∩ ρ3) and 
¬ε ∈ ¬ρ1 ∩ (¬ρ2 ∩ ¬ρ3), the proof follows.□

Definition 3.10  The restricted intersection of (ζ1, ξ1, ρ1, N1) and (ζ2, ξ2, ρ2, N2) is denoted and defined as 
(ζ1, ξ1, ρ1, N1) ∩̌r  (ζ2, ξ2, ρ2, N2) = (ζ, ξ, ρ1 ∩ ρ2, max(N1, N2)), where for all ε ∈ ρ1 ∩ ρ2 ̸= ∅:

	 ζ(ε) = ⟨(ℓ, min{r1ε, r2ε}), min{ζ+
1 (ℓ, r1ε), ζ+

2 (ℓ, r2ε)}, max{ζ−
1 (ℓ, r1ε), ζ−

2 (ℓ, r2ε)}⟩,

where ⟨(ℓ, r1ε), ζ+
1 (ℓ, r1ε), ζ−

1 (ℓ, r1ε)⟩ ∈ ζ1(ε) and ⟨(ℓ, r2ε), ζ+
2 (ℓ, r2ε), ζ−

2 (ℓ, r2ε)⟩ ∈ ζ2(ε).
Similarly, for all ¬ε ∈ ¬ρ1 ∩ ¬ρ2 ̸= ∅:

	 ξ(¬ε) = ⟨(ℓ, max{r1¬ε, r2¬ε}), max{ξ+
1 (ℓ, r1¬ε), ξ+

2 (ℓ, r2¬ε)}, min{ξ−
1 (ℓ, r1¬ε), ξ−

2 (ℓ, r2¬ε)}⟩,

where ⟨(ℓ, r1¬ε), ξ+
1 (ℓ, r1¬ε), ξ−

1 (ℓ, r1¬ε)⟩ ∈ ξ1(¬ε) and ⟨(ℓ, r2¬ε), ξ+
2 (ℓ, r2¬ε), ξ−

2 (ℓ, r2¬ε)⟩ ∈ ξ2(¬ε).

Example 3.7  Consider again the PF4BSS (ζ1, ξ1, ρ1, 4) and PF5BSS (ζ2, ξ2, ρ2, 5), as shown in Tables 12 and 
13, respectively. The restricted intersection of these sets is presented in Table 17.

Proposition 3.5  Let (ζ1, ξ1, ρ1, N1), (ζ2, ξ2, ρ2, N2), and (ζ3, ξ3, ρ3, N3) be PFN1BSS, PFN2BSS, and PFN3
BSS, respectively. Then, 

	1.	 (ζ1, ξ1, ρ1, N1) ∩̌r  (ζ2, ξ2, ρ2, N2) = (ζ2, ξ2, ρ2, N2) ∩̌r  (ζ1, ξ1, ρ1, N1).
	2.	 (ζ1, ξ1, ρ1, N1) ∩̌r  

(
(ζ2, ξ2, ρ2, N2) ∩̌r  (ζ3, ξ3, ρ3, N3)

)
 = 

(
(ζ1, ξ1, ρ1, N1) ∩̌r  (ζ2, ξ2, ρ2, N2)

)
 ∩̌r  

(ζ3, ξ3, ρ3, N3).

(ζ6, ξ6, ρ1 ∩ ρ2, 5) ε1 ε2

ℓ1 ⟨0, 0.2, 0.4⟩
⟨3, 0.8, 0.3⟩

⟨2, 0.6, 0.4⟩
⟨2, 0.3, 0.5⟩

ℓ2 ⟨1, 0.2, 0.5⟩
⟨2, 0.4, 0.2⟩

⟨1, 0.2, 0.9⟩
⟨1, 0.2, 0.2⟩

ℓ3 ⟨1, 0.2, 0.4⟩
⟨0, 0.3, 0.3⟩

⟨1, 0.1, 0.6⟩
⟨2, 0.7, 0.1⟩

Table 17.  The restricted intersection (ζ1, ξ1, ρ1, 4)∩̌r(ζ2, ξ2, ρ2, 5)=(ζ6, ξ6, ρ1 ∩ ρ2, 5) in Example 3.7

 

Scientific Reports |        (2025) 15:29648 14| https://doi.org/10.1038/s41598-025-15126-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Proof 	  1.	 Similar to the proof of Proposition 3.4 (1).
	 2.	 Similar to the proof of Proposition 3.4 (2).□

We now present the relationships between the extended union, extended intersection, restricted union, and 
restricted intersection within the PFNBSS framework.

Proposition 3.6  Let (ζ1, ξ1, ρ, N) and (ζ2, ξ2, ρ, N) be two PFNBSSs. Then, 

	1.	 (ζ1, ξ1, ρ, N) ∪̌e (ζ2, ξ2, ρ, N) = (ζ1, ξ1, ρ, N) ∪̌r  (ζ2, ξ2, ρ, N).
	2.	 (ζ1, ξ1, ρ, N) ∩̌e (ζ2, ξ2, ρ, N) = (ζ1, ξ1, ρ, N) ∩̌r  (ζ2, ξ2, ρ, N).

Proof 	  1.	 Follows from the fact that the set of parameters is only ρ; hence, by Definitions 3.7 and 3.9, the 
extended and restricted unions between two PFNBSSs are identical.

	 2.	 Follows from the fact that the set of parameters is only ρ; hence, by Definitions 3.8 and 3.10, the 
extended and restricted intersections between two PFNBSSs are identical.□

Proposition 3.7  Let (ζ1, ξ1, ρ1, N) and (ζ2, ξ2, ρ2, N) be two PFNBSSs. Then, 

	1.	
(
(ζ1, ξ1, ρ1, N) ∪̌e (ζ2, ξ2, ρ2, N)

)č = (ζ1, ξ1, ρ1, N)č ∩̌e (ζ2, ξ2, ρ2, N)č.

	2.	
(
(ζ1, ξ1, ρ1, N) ∩̌e (ζ2, ξ2, ρ2, N)

)č = (ζ1, ξ1, ρ1, N)č ∪̌e (ζ2, ξ2, ρ2, N)č.

	3.	
(
(ζ1, ξ1, ρ1, N) ∪̌r  (ζ2, ξ2, ρ2, N)

)č = (ζ1, ξ1, ρ1, N)č ∩̌r  (ζ2, ξ2, ρ2, N)č.

	4.	
(
(ζ1, ξ1, ρ1, N) ∩̌r  (ζ2, ξ2, ρ2, N)

)č = (ζ1, ξ1, ρ1, N)č ∪̌r  (ζ2, ξ2, ρ2, N)č.

Proof 	  1.	 Let (ζ1, ξ1, ρ1, N) ∪̌e (ζ2, ξ2, ρ2, N) = (ζ3, ξ3, ρ1 ∪ ρ2, N). Then, 
(
(ζ1, ξ1, ρ1, N) ∪̌e 

(ζ2, ξ2, ρ2, N)
)č = (ζ3, ξ3, ρ1 ∪ ρ2, N)č = (ζ č

3 , ξč
3, ρ1 ∪ ρ2, N). For all ε ∈ ρ1 ∪ ρ2: 

	

ζ3(ε) =





ζ1(ε), if ε ∈ ρ1 \ ρ2,
ζ2(ε), if ε ∈ ρ2 \ ρ1,⟨(ℓ, max{r1ε, r2ε}),

max{ζ+
1 (ℓ, r1ε), ζ+

2 (ℓ, r2ε)},
min{ζ−

1 (ℓ, r1ε), ζ−
2 (ℓ, r2ε)}

⟩
, if ε ∈ ρ1 ∩ ρ2.

	 where ⟨(ℓ, r1ε), ζ+
1 (ℓ, r1ε), ζ−

1 (ℓ, r1ε)⟩ ∈ ζ1(ε) and ⟨(ℓ, r2ε), ζ+
2 (ℓ, r2ε), ζ−

2 (ℓ, r2ε)⟩ ∈ ζ2(ε).
	Similarly, for all ¬ε ∈ ¬ρ1 ∪ ¬ρ2: 

	

ξ3(¬ε) =





ξ1(¬ε), if ¬ε ∈ ¬ρ1 \ ¬ρ2,
ξ2(¬ε), if ¬ε ∈ ¬ρ2 \ ¬ρ1,⟨(ℓ, min{r1¬ε, r2¬ε}),

min{ξ+
1 (ℓ, r1¬ε), ξ+

2 (ℓ, r2¬ε)},
max{ξ−

1 (ℓ, r1¬ε), ξ−
2 (ℓ, r2¬ε)}

⟩
, if ¬ε ∈ ¬ρ1 ∩ ¬ρ2.

	 where ⟨(ℓ, r1¬ε), ξ+
1 (ℓ, r1¬ε), ξ−

1 (ℓ, r1¬ε)⟩ ∈ ξ1(¬ε) and ⟨(ℓ, r2¬ε), ξ+
2 (ℓ, r2¬ε), ξ−

2 (ℓ, r2¬ε)⟩ ∈ ξ2(¬ε).
	Then, for all ε ∈ ρ1 ∪ ρ2: 

	

ζ č
3(ε) = ξ3(¬ε) =





ξ1(¬ε), if ε ∈ ρ1 \ ρ2,
ξ2(¬ε), if ε ∈ ρ2 \ ρ1,⟨(ℓ, min{r1¬ε, r2¬ε}),

min{ξ+
1 (ℓ, r1¬ε), ξ+

2 (ℓ, r2¬ε)},
max{ξ−

1 (ℓ, r1¬ε), ξ−
2 (ℓ, r2¬ε)}

⟩
, if ε ∈ ρ1 ∩ ρ2.

	 Similarly, for all ¬ε ∈ ¬ρ1 ∪ ¬ρ2: 

	

ξč
3(¬ε) = ζ3(ε) =





ζ1(ε), if ¬ε ∈ ¬ρ1 \ ¬ρ2,
ζ2(ε), if ¬ε ∈ ¬ρ2 \ ¬ρ1,⟨(ℓ, max{r1ε, r2ε}),

max{ζ+
1 (ℓ, r1ε), ζ+

2 (ℓ, r2ε)},
min{ζ−

1 (ℓ, r1ε), ζ−
2 (ℓ, r2ε)}

⟩
, if ¬ε ∈ ¬ρ1 ∩ ¬ρ2.

	 On the other hand, let (ζ1, ξ1, ρ1, N)č ∩̌e (ζ2, ξ2, ρ2, N)č = (ζ4, ξ4, ρ1 ∪ ρ2, N). For all ε ∈ ρ1 ∪ ρ2: 
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ζ4(ε) =




ζ č
1(ε), if ε ∈ ρ1 \ ρ2,

ζ č
2(ε), if ε ∈ ρ2 \ ρ1,⟨(ℓ, min{rč

1ε, rč
2ε}),

min
{

ζ+č
1 (ℓ, rč

1ε), ζ+č
2 (ℓ, rč

2ε)
}

,

max
{

ζ−č
1 (ℓ, rč

1ε), ζ−č
2 (ℓ, rč

2ε)
}

⟩
, if ε ∈ ρ1 ∩ ρ2.

	

=




ξ1(¬ε), if ε ∈ ρ1 \ ρ2,
ξ2(¬ε), if ε ∈ ρ2 \ ρ1,⟨(ℓ, min{r1¬ε, r2¬ε}),

min
{

ξ+
1 (ℓ, r1¬ε), ξ+

2 (ℓ, r2¬ε)
}

,

max
{

ξ−
1 (ℓ, r1¬ε), ξ−

2 (ℓ, r2¬ε)
}

⟩
, if ε ∈ ρ1 ∩ ρ2.

	 Similarly, for all ¬ε ∈ ¬ρ1 ∪ ¬ρ2: 

	

ξ4(¬ε) =




ξč
1(¬ε), if ¬ε ∈ ¬ρ1 \ ¬ρ2,

ξč
2(¬ε), if ¬ε ∈ ¬ρ2 \ ¬ρ1,⟨(ℓ, max{rč

1¬ε, rč
2¬ε}),

max
{

ξ+č
1 (ℓ, rč

1¬ε), ξ+č
2 (ℓ, rč

2¬ε)
}

,

min
{

ξ−č
1 (ℓ, rč

1¬ε), ξ−č
2 (ℓ, rč

2¬ε)
}

⟩
, if ¬ε ∈ ¬ρ1 ∩ ¬ρ2.

	

=




ζ1(ε), if ¬ε ∈ ¬ρ1 \ ¬ρ2,
ζ2(ε), if ¬ε ∈ ¬ρ2 \ ¬ρ1,⟨(ℓ, max{r1ε, r2ε}),

max
{

ζ+
1 (ℓ, r1ε), ζ+

2 (ℓ, r2ε)
}

,

min
{

ζ−
1 (ℓ, r1ε), ζ−

2 (ℓ, r2ε)
}

⟩
, if ¬ε ∈ ¬ρ1 ∩ ¬ρ2.

	 Since (ζ3, ξ3, ρ1 ∪ ρ2, N)č and (ζ4, ξ4, ρ1 ∪ ρ2, N) are equivalent for all ε ∈ ρ1 ∪ ρ2 and ¬ε ∈ ¬ρ1 ∪ ¬ρ2, 
the proof follows.

The other parts can be illustrated in the same way. □

Proposition 3.8  Let (ζ1, ξ1, ρ1, N) and (ζ2, ξ2, ρ2, N) be two PFNBSSs. Then 

	1.	 (ζ1, ξ1, ρ1, N) ∪̌e 
(
(ζ1, ξ1, ρ1, N) ∩̌r  (ζ2, ξ2, ρ2, N)

)
 = (ζ1, ξ1, ρ1, N).

	2.	 (ζ1, ξ1, ρ1, N) ∩̌e 
(
(ζ1, ξ1, ρ1, N) ∪̌r  (ζ2, ξ2, ρ2, N)

)
 = (ζ1, ξ1, ρ1, N).

	3.	 (ζ1, ξ1, ρ1, N) ∪̌r  
(
(ζ1, ξ1, ρ1, N) ∩̌e (ζ2, ξ2, ρ2, N)

)
 = (ζ1, ξ1, ρ1, N).

	4.	 (ζ1, ξ1, ρ1, N) ∩̌r  
(
(ζ1, ξ1, ρ1, N) ∪̌e (ζ2, ξ2, ρ2, N)

)
 = (ζ1, ξ1, ρ1, N).

Proof 	  1.	 Suppose that (ζ1, ξ1, ρ1, N) ∩̌r  (ζ2, ξ2, ρ2, N) = (ζ3, ξ3, ρ1 ∩ ρ2, N). Then, for all ε ∈ ρ1 ∩ ρ2 : 

	 ζ3(ε) = ⟨(ℓ, min{r1ε, r2ε}), min{ζ+
1 (ℓ, r1ε), ζ+

2 (ℓ, r2ε)}, max{ζ−
1 (ℓ, r1ε), ζ−

2 (ℓ, r2ε)}⟩,

	 where ⟨(ℓ, r1ε), ζ+
1 (ℓ, r1ε), ζ−

1 (ℓ, r1ε)⟩ ∈ ζ1(ε) and ⟨(ℓ, r2ε), ζ+
2 (ℓ, r2ε), ζ−

2 (ℓ, r2ε)⟩ ∈ ζ2(ε). Similarly, for 
all ¬ε ∈ ¬ρ1 ∪ ¬ρ2: 

	 ξ3(¬ε) = ⟨(ℓ, max{r1¬ε, r2¬ε}), max{ξ+
1 (ℓ, r1¬ε), ξ+

2 (ℓ, r2¬ε)}, min{ξ−
1 (ℓ, r1¬ε), ξ−

2 (ℓ, r2¬ε)})⟩,

	 where ⟨(ℓ, r1¬ε), ξ+
1 (ℓ, r1¬ε), ξ−

1 (ℓ, r1¬ε)⟩ ∈ ξ1(¬ε) and ⟨(ℓ, r2¬ε), ξ+
2 (ℓ, r2¬ε), ξ−

2 (ℓ, r2¬ε)⟩ ∈ ξ2(¬ε). 
Now, let (ζ1, ξ1, ρ1, N) ∪̌e (ζ3, ξ3, ρ1 ∩ ρ2, N) = (ζ4, ξ4, ρ1 ∪ (ρ1 ∩ ρ2), N) = (ζ4, ξ4, ρ1, N). Then, for 
all ε ∈ ρ1 ∪ (ρ1 ∩ ρ2): 

	

ζ4(ε) =




ζ1(ε), if ε ∈ ρ1 \ (ρ1 ∩ ρ2),
ζ3(ε), if ε ∈ (ρ1 ∩ ρ2) \ ρ1 = ∅,⟨(ℓ, max{r1ε, r3ε}),

max
{

ζ+
1 (ℓ, r1ε), ζ+

3 (ℓ, r3ε)
}

,

min
{

ζ−
1 (ℓ, r1ε), ζ−

3 (ℓ, r3ε)
}

⟩
, if ε ∈ ρ1 ∩ (ρ1 ∩ ρ2).

	

=





ζ1(ε), if ε ∈ ρ1 \ (ρ1 ∩ ρ2),⟨(ℓ, max{r1ε, min{r1ε, r2ε}}),
max

{
ζ+

1 (ℓ, r1ε), min
{

ζ+
1 (ℓ, r1ε), ζ+

2 (ℓ, r2ε)
}}

,

min
{

ζ−
1 (ℓ, r1ε), max

{
ζ−

1 (ℓ, r1ε), ζ−
2 (ℓ, r2ε)

}}
⟩

, if ε ∈ ρ1 ∩ (ρ1 ∩ ρ2).

	 where ⟨(ℓ, r3ε), ζ+
3 (ℓ, r3ε), ζ−

3 (ℓ, r3ε)⟩ ∈ ζ3(ε). Similarly, for all ¬ε ∈ ¬ρ1 ∪ (¬ρ1 ∩ ¬ρ2): 
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ξ4(¬ε) =




ξ1(¬ε), if ¬ε ∈ ¬ρ1 \ (¬ρ1 ∩ ¬ρ2),
ξ3(¬ε), if ¬ε ∈ (¬ρ1 ∩ ¬ρ2) \ ¬ρ1 = ∅,⟨(ℓ, min{r1¬ε, r3¬ε}),

min
{

ξ+
1 (ℓ, r1¬ε), ξ+

3 (ℓ, r3¬ε)
}

,

max
{

ξ−
1 (ℓ, r1¬ε), ξ−

3 (ℓ, r3¬ε)
}

⟩
, if ¬ε ∈ ¬ρ1 ∩ (¬ρ1 ∩ ¬ρ2).

	

=





ξ1(¬ε), if ¬ε ∈ ¬ρ1 \ (¬ρ1 ∩ ¬ρ2),⟨(ℓ, min{r1¬ε, max{r1¬ε, r2¬ε}}),
min

{
ξ+

1 (ℓ, r1¬ε), max
{

ξ+
1 (ℓ, r1¬ε), ξ+

2 (ℓ, r2¬ε)
}}

,

max
{

ξ−
1 (ℓ, r1¬ε), min

{
ξ−

1 (ℓ, r1¬ε), ξ−
2 (ℓ, r2¬ε)

}}
⟩

, if ¬ε ∈ ¬ρ1 ∩ (¬ρ1 ∩ ¬ρ2).

	 where ⟨(ℓ, r3¬ε), ξ+
3 (ℓ, r3¬ε), ξ−

3 (ℓ, r3¬ε)⟩ ∈ ξ3(¬ε). Hence, 

	
ζ4(ε) =

{
ζ1(ε), if ε ∈ ρ1 \ (ρ1 ∩ ρ2)
ζ1(ε), if ε ∈ ρ1 ∩ ρ2

	 and 

	
ξ4(¬ε) =

{
ξ1(¬ε), if ¬ε ∈ ¬ρ1 \ (¬ρ1 ∩ ¬ρ2)
ξ1(¬ε), if ¬ε ∈ ¬ρ1 ∩ ¬ρ2.

	 Therefore, (ζ1, ξ1, ρ1, N) ∪̌e 
(
(ζ1, ξ1, ρ1, N) ∩̌r  (ζ2, ξ2, ρ2, N)

)
 = (ζ1, ξ1, ρ1, N).

The other parts can be illustrated in the same way. □

Proposition 3.9  Let (ζ1, ξ1, ρ1, N1), (ζ2, ξ2, ρ2, N2), and (ζ3, ξ3, ρ3, N3) be PFN1BSS, PFN2BSS, and PFN3
BSS, respectively. Then, 

	1.	 (ζ1, ξ1, ρ1, N1) ∪̌e 
(
(ζ2, ξ2, ρ2, N2) ∩̌r  (ζ3, ξ3, ρ3, N3)

)
 = 

(
(ζ1, ξ1, ρ1, N1) ∪̌e (ζ2, ξ2, ρ2, N2)

)
 ∩̌r  (

(ζ1, ξ1, ρ1, N1) ∪̌e (ζ3, ξ3, ρ3, N3)
)

.
	2.	 (ζ1, ξ1, ρ1, N1) ∩̌e 

(
(ζ2, ξ2, ρ2, N2) ∪̌r  (ζ3, ξ3, ρ3, N3)

)
 = 

(
(ζ1, ξ1, ρ1, N1) ∩̌e (ζ2, ξ2, ρ2, N2)

)
 ∪̌r  (

(ζ1, ξ1, ρ1, N1) ∩̌e (ζ3, ξ3, ρ3, N3)
)

.
	3.	 (ζ1, ξ1, ρ1, N1) ∪̌r  

(
(ζ2, ξ2, ρ2, N2) ∩̌e (ζ3, ξ3, ρ3, N3)

)
 = 

(
(ζ1, ξ1, ρ1, N1) ∪̌r  (ζ2, ξ2, ρ2, N2)

)
 ∩̌e (

(ζ1, ξ1, ρ1, N1) ∪̌r  (ζ3, ξ3, ρ3, N3)
)

.
	4.	 (ζ1, ξ1, ρ1, N1) ∩̌r  

(
(ζ2, ξ2, ρ2, N2) ∪̌e (ζ3, ξ3, ρ3, N3)

)
 = 

(
(ζ1, ξ1, ρ1, N1) ∩̌r  (ζ2, ξ2, ρ2, N2)

)
 ∪̌e (

(ζ1, ξ1, ρ1, N1) ∩̌r  (ζ3, ξ3, ρ3, N3)
)

.
	5.	 (ζ1, ξ1, ρ1, N1) ∪̌r  

(
(ζ2, ξ2, ρ2, N2) ∩̌r  (ζ3, ξ3, ρ3, N3)

)
 = 

(
(ζ1, ξ1, ρ1, N1) ∪̌r  (ζ2, ξ2, ρ2, N2)

)
 ∩̌r  (

(ζ1, ξ1, ρ1, N1) ∪̌r  (ζ3, ξ3, ρ3, N3)
)

.
	6.	 (ζ1, ξ1, ρ1, N1) ∩̌r  

(
(ζ2, ξ2, ρ2, N2) ∪̌r  (ζ3, ξ3, ρ3, N3)

)
 = 

(
(ζ1, ξ1, ρ1, N1) ∩̌r  (ζ2, ξ2, ρ2, N2)

)
 ∪̌r  (

(ζ1, ξ1, ρ1, N1) ∩̌r  (ζ3, ξ3, ρ3, N3)
)

.

Proof 	  1.	 3. Suppose that 
(
(ζ2, ξ2, ρ2, N2) ∩̌e (ζ3, ξ3, ρ3, N3)

)
 = (ζ4, ξ4, ρ2 ∪ ρ3, max(N2, N3)). Then, 

for all ε ∈ ρ2 ∪ ρ3: 

	

ζ4(ε) =




ζ2(ε), if ε ∈ ρ2 \ ρ3,
ζ3(ε), if ε ∈ ρ3 \ ρ2,⟨(ℓ, min{r2ε, r3ε}),

min
{

ζ+
2 (ℓ, r2ε), ζ+

3 (ℓ, r3ε)
}

,

max
{

ζ−
2 (ℓ, r2ε), ζ−

3 (ℓ, r3ε)
}

⟩
, if ε ∈ ρ2 ∩ ρ3.

	 where ⟨(ℓ, r2ε), ζ+
2 (ℓ, r2ε), ζ−

2 (ℓ, r2ε)⟩ ∈ ζ2(ε) and ⟨(ℓ, r3ε), ζ+
3 (ℓ, r3ε), ζ−

3 (ℓ, r3ε)⟩ ∈ ζ3(ε). Similarly, for 
all ¬ε ∈ ¬ρ2 ∪ ¬ρ3: 

	

ξ4(¬ε) =




ξ2(¬ε), if ¬ε ∈ ¬ρ2 \ ¬ρ3,
ξ3(¬ε), if ¬ε ∈ ¬ρ3 \ ¬ρ2,⟨(ℓ, max{r2¬ε, r3¬ε}),

max
{

ξ+
2 (ℓ, r2¬ε), ξ+

3 (ℓ, r3¬ε)
}

,

min
{

ξ−
2 (ℓ, r2¬ε), ξ−

3 (ℓ, r3¬ε)
}

⟩
, if ¬ε ∈ ¬ρ2 ∩ ¬ρ3.

	 where ⟨(ℓ, r2¬ε), ξ+
2 (ℓ, r2¬ε), ξ−

2 (ℓ, r2¬ε)⟩ ∈ ξ2(¬ε) and ⟨(ℓ, r3¬ε), ξ+
3 (ℓ, r3¬ε), ξ−

3 (ℓ, r3¬ε)⟩ ∈ ξ3(¬ε).
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	Let (ζ1, ξ1, ρ1, N1) ∪̌r  (ζ4, ξ4, ρ2 ∪ ρ3, max(N2, N3)) = (ζ5, ξ5, ρ1 ∩ (ρ2 ∪ ρ3), max(N1, max(N2, N3)) = 
(ζ5, ξ5, λ1 ∪ λ2, max(N1, N2, N3)) where λ1 = ρ1 ∩ ρ2 and λ2 = ρ1 ∩ ρ3. Then, for all ε ∈ λ1 ∪ λ2: 

	 ζ5(ε) = ⟨(ℓ, max{r1ε, r4ε}), max{ζ+
1 (ℓ, r1ε), ζ+

4 (ℓ, r4ε)}, min{ζ−
1 (ℓ, r1ε), ζ−

4 (ℓ, r4ε)}⟩,

	 where ⟨(ℓ, r1ε), ζ+
1 (ℓ, r1ε), ζ−

1 (ℓ, r1ε)⟩ ∈ ζ1(ε) and ⟨(ℓ, r4ε), ζ+
4 (ℓ, r4ε), ζ−

4 (ℓ, r4ε)⟩ ∈ ζ4(ε).
	Similarly, for all ¬ε ∈ ¬λ1 ∪ ¬λ2: 

	 ξ5(¬ε) = ⟨(ℓ, min{r1¬ε, r4¬ε}), min{ξ+
1 (ℓ, r1¬ε), ξ+

4 (ℓ, r4¬ε)}, max{ξ−
1 (ℓ, r1¬ε), ξ−

4 (ℓ, r4¬ε)}⟩,

	 where ⟨(ℓ, r1¬ε), ξ+
1 (ℓ, r1¬ε), ξ−

1 (ℓ, r1¬ε)⟩ ∈ ξ1(¬ε) and ⟨(ℓ, r4¬ε), ξ+
4 (ℓ, r4¬ε), ξ−

4 (ℓ, r4¬ε)⟩ ∈ ξ4(¬ε).
	Hence, for all ε ∈ λ1 ∪ λ2: 

	

ζ5(ε) =




⟨(ℓ, max{r1ε, r2ε}),
max

{
ζ+

1 (ℓ, r1ε), ζ+
2 (ℓ, r2ε)

}
,

min
{

ζ−
1 (ℓ, r1ε), ζ−

2 (ℓ, r2ε)
}

⟩
, if ε ∈ λ1 \ λ2,

⟨(ℓ, max{r1ε, r3ε}),
max

{
ζ+

1 (ℓ, r1ε), ζ+
3 (ℓ, r3ε)

}
,

min
{

ζ−
1 (ℓ, r1ε), ζ−

3 (ℓ, r3ε)
}

⟩
, if ε ∈ λ2 \ λ1,

⟨(ℓ, max{r1ε, min{r2ε, r3ε}}),
max

{
ζ+

1 (ℓ, r1ε), min
{

ζ+
2 (ℓ, r2ε), ζ+

3 (ℓ, r3ε)
}}

,

min
{

ζ−
1 (ℓ, r1ε), max

{
ζ−

2 (ℓ, r2ε), ζ−
3 (ℓ, r3ε)

}}
⟩

, if ε ∈ λ1 ∩ λ2.

	 Similarly, for all ¬ε ∈ ¬λ1 ∪ ¬λ2: 

	

ξ5(¬ε) =




⟨(ℓ, min{r1¬ε, r2¬ε}),
min

{
ξ+

1 (ℓ, r1¬ε), ξ+
2 (ℓ, r2¬ε)

}
,

max
{

ξ−
1 (ℓ, r1¬ε), ξ−

2 (ℓ, r2¬ε)
}

⟩
, if ¬ε ∈ ¬λ1 \ ¬λ2,

⟨(ℓ, min{r1¬ε, r3¬ε}),
min

{
ξ+

1 (ℓ, r1¬ε), ξ+
3 (ℓ, r3¬ε)

}
,

max
{

ξ−
1 (ℓ, r1¬ε), ξ−

3 (ℓ, r3¬ε)
}

⟩
, if ¬ε ∈ ¬λ2 \ ¬λ1,

⟨ ⟨(ℓ, min{r1¬ε, max{r2¬ε, r3¬ε}}),
min

{
ξ+

1 (ℓ, r1¬ε), max
{

ξ+
2 (ℓ, r2¬ε), ξ+

3 (ℓ, r3¬ε)
}}

,

max
{

ξ−
1 (ℓ, r1¬ε), min

{
ξ−

2 (ℓ, r2¬ε), ξ−
3 (ℓ, r3¬ε)

}}⟩
⟩

, if ¬ε ∈ ¬λ1 ∩ ¬λ2.

	 On the other hand, let (ζ1, ξ1, ρ1, N1) ∪̌r  (ζ2, ξ2, ρ2, N2) = (ζ6, ξ6, ρ1 ∩ ρ2, max(N1, N2)). Then, for all 
ε ∈ ρ1 ∩ ρ2: 

	 ζ6(ε) = ⟨(ℓ, max{r1ε, r2ε}), max{ζ+
1 (ℓ, r1ε), ζ+

2 (ℓ, r2ε)}, min{ζ−
1 (ℓ, r1ε), ζ−

2 (ℓ, r2ε)}⟩.

	 Similarly, for all ¬ε ∈ ¬λ1 ∪ ¬λ2: 

	 ξ6(¬ε) = ⟨(ℓ, min{r1¬ε, r2¬ε}), min{ξ+
1 (ℓ, r1¬ε), ξ+

2 (ℓ, r2¬ε)}, max{ξ−
1 (ℓ, r1¬ε), ξ−

2 (ℓ, r2¬ε)}⟩.

	 Next, let (ζ1, ξ1, ρ1, N1) ∪̌r  (ζ3, ξ3, ρ3, N3) = (ζ7, ξ7, ρ1 ∩ ρ2, max(N1, N2)). Then, for all ε ∈ ρ1 ∩ ρ3: 

	 ζ7(ε) = ⟨(ℓ, max{r1ε, r3ε}), max{ζ+
1 (ℓ, r1ε), ζ+

3 (ℓ, r3ε)}, min{ζ−
1 (ℓ, r1ε), ζ−

3 (ℓ, r3ε)}⟩.

	 Similarly, for all ¬ε ∈ ¬λ1 ∪ ¬λ2: 

	ξ7(¬ε)(ℓ) = ⟨(ℓ, min{r1¬ε, r3¬ε}), min{ξ+
1 (ℓ, r1¬ε), ξ+

3 (ℓ, r3¬ε)}, max{ξ−
1 (ℓ, r1¬ε), ξ−

3 (ℓ, r3¬ε)}⟩.

	 Now, suppose that (ζ6, ξ6, ρ1 ∩ ρ2, max(N1, N2)) ∩̌e (ζ7, ξ7, ρ1 ∩ ρ3, max(N1, N3)) = 
(ζ8, ξ8, λ1 ∪ λ2, max(N1, N2, N3)) where λ1 = ρ1 ∩ ρ2 and λ2 = ρ1 ∩ ρ3. Then, for all ε ∈ λ1 ∪ λ2: 
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ζ8(ε) =




ζ6(ε), if ε ∈ λ1 \ λ2,
ζ7(ε), if ε ∈ λ2 \ λ1,⟨(ℓ, min{r6ε, r7ε}),

min
{

ζ+
6 (ℓ, r6ε), ζ+

7 (ℓ, r7ε)
}

,

max
{

ζ−
6 (ℓ, r6ε), ζ−

7 (ℓ, r7ε)
}

⟩
, if ε ∈ λ1 ∩ λ2.

	

=




⟨(ℓ, max{r1ε, r2ε}),
max

{
ζ+

1 (ℓ, r1ε), ζ+
2 (ℓ, r2ε)

}
,

min
{

ζ−
1 (ℓ, r1ε), ζ−

2 (ℓ, r2ε)
}

⟩
, if ε ∈ λ1 \ λ2,

⟨(ℓ, max{r1ε, r3ε}),
max

{
ζ+

1 (ℓ, r1ε), ζ+
3 (ℓ, r3ε)

}
,

min
{

ζ−
1 (ℓ, r1ε), ζ−

3 (ℓ, r3ε)
}

⟩
, if ε ∈ λ2 \ λ1,

⟨(ℓ, min{max{r1ε, r2ε}, max{r1ε, r3ε}}),
min

{
max

{
ζ+

1 (ℓ, r1ε), ζ+
2 (ℓ, r2ε)

}
, max

{
ζ+

1 (ℓ, r1ε), ζ+
3 (ℓ, r3ε)

}}
,

max
{

min
{

ζ−
1 (ℓ, r1ε), ζ−

2 (ℓ, r2ε)
}

, min
{

ζ−
1 (ℓ, r1ε), ζ−

3 (ℓ, r3ε)
}}

⟩
, if ε ∈ λ1 ∩ λ2.

	 where ⟨(ℓ, r6ε), ζ+
6 (ℓ, r6ε), ζ−

6 (ℓ, r6ε)⟩ ∈ ζ6(ε) and ⟨(ℓ, r7ε), ζ+
7 (ℓ, r7ε), ζ−

7 (ℓ, r7ε)⟩ ∈ ζ7(ε). Similarly, for 
all ¬ε ∈ ¬λ1 ∪ ¬λ2: 

	

ξ8(¬ε) =




ξ6(¬ε), if ¬ε ∈ ¬λ1 \ ¬λ2,
ξ7(¬ε), if ¬ε ∈ ¬λ2 \ ¬λ1,⟨(ℓ, max{r6¬ε, r7¬ε}),

max
{

ξ+
6 (ℓ, r6¬ε), ξ+

7 (ℓ, r7¬ε)
}

,

min
{

ξ−
6 (ℓ, r6¬ε), ξ−

7 (ℓ, r7¬ε)
}

⟩
, if ¬ε ∈ ¬λ1 ∩ ¬λ2.

	

=




⟨(ℓ, min{r1¬ε, r2¬ε}),
min

{
ξ+

1 (ℓ, r1¬ε), ξ+
2 (ℓ, r2¬ε)

}
,

max
{

ξ−
1 (ℓ, r1¬ε), ξ−

2 (ℓ, r2¬ε)
}

⟩
, if ¬ε ∈ ¬λ1 \ ¬λ2,

⟨(ℓ, min{r1¬ε, r3¬ε}),
min

{
ξ+

1 (ℓ, r1¬ε), ξ+
3 (ℓ, r3¬ε)

}
,

max
{

ξ−
1 (ℓ, r1¬ε), ξ−

3 (ℓ, r3¬ε)
}

⟩
, if ¬ε ∈ ¬λ2 \ ¬λ1,

⟨(ℓ, max{min{r1¬ε, r2¬ε}, min{r1¬ε, r3¬ε}}),
max

{
min

{
ξ+

1 (ℓ, r1¬ε), ξ+
2 (ℓ, r2¬ε)

}
, min

{
ξ+

1 (ℓ, r1¬ε), ξ+
3 (ℓ, r3¬ε)

}}
,

min
{

max
{

ξ−
1 (ℓ, r1¬ε), ξ−

2 (ℓ, r2¬ε)
}

, max
{

ξ−
1 (ℓ, r1¬ε), ξ−

3 (ℓ, r3¬ε)
}}

⟩
, if ¬ε ∈ ¬λ1 ∩ ¬λ2.

	 where ⟨(ℓ, r6¬ε), ξ+
6 (ℓ, r6¬ε), ξ−

6 (ℓ, r6¬ε)⟩ ∈ ξ6(¬ε) and ⟨(ℓ, r7¬ε), ξ+
7 (ℓ, r7¬ε), ξ−

7 (ℓ, r7¬ε)⟩ ∈ ξ7(¬ε).
	Since (ζ5, ξ5, λ1 ∪ λ1, max(N1, N2, N3)) and (ζ8, ξ8, λ1 ∪ λ2, max(N1, N2, N3)) are equivalent for all 

ε ∈ λ1 ∪ λ2 and ¬ε ∈ ¬λ1 ∪ ¬λ2, the proof follows.

The other parts can be illustrated in the same way. □

Decision-making framework and application
This section presents a comprehensive overview of the DM framework based on the proposed PFNBSS model 
and demonstrates its application in sustainability evaluation within the manufacturing industry. The framework 
systematically evaluates alternatives by accounting for both positive sustainability indicators and potential risk 
factors, relying on the structural decomposition principles inherent in the PFNBSS model.

To illustrate the versatility and practical relevance of the model, two examples are presented. The first is a 
symbolic, illustrative case used to clarify the operational mechanics of the model in a simplified setting. The 
second example focuses on a comparative sustainability risk assessment scenario involving manufacturing 
enterprises and is structured to reflect typical real-world evaluation practices. Although both examples use 
simulated data, the second is constructed around realistic sustainability indicators, challenges, and expert-based 
assessment logic commonly encountered in industrial decision environments.

The section is organized as follows. First, we introduce the PFNBSS-based DM procedure, which outlines the 
algorithmic steps for calculating aggregate and net scores to identify the most suitable alternative. Then, we apply 
the framework in two DM contexts. These examples collectively demonstrate both the internal workings of the 
model and its applicability to sustainability-related evaluations in manufacturing domains.

Decision-making procedure
In this subsection, we introduce the DM procedure based on the proposed model, PFNBSS. The procedure 
utilizes the structural decomposition of the PFNBSS framework to evaluate alternatives. It involves calculating 
aggregate score values from substructures to assess each alternative. The algorithm identifies the best alternative 
by computing net scores derived from the individual contributions of each substructure. The entire process is 
visually represented in a flowchart, providing a clear illustration of the DM steps involved.

To facilitate understanding of the computational framework, we provide the following explanation prior to pre-
senting the algorithm. This explanation bridges the representation in Table 2 with the computations in the al-
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gorithm by noting that each cell entry–comprising two tuples for the positive and negative evaluations–is first 
processed by computing corresponding score values. These individual scores, derived from the components 
⟨rijεj

, ζ+
ij , ζ−

ij ⟩ and ⟨rij ¬εj
, ξ+

ij , ξ−
ij⟩, are mapped to numerical values denoted by zij . Thus, in the algorithm, 

the symbols zij  refer to the scalar score values that represent the overall evaluation of alternative ℓi with re-
spect to attribute εj , after transforming the PFN entries into decision-relevant quantities. This transformation 
enables the calculation of aggregate and net scores and ensures consistency between the tabular representation 
and the algorithmic steps given in Figure 1.

Algorithm 1Decision-Making Based on PFNBSS.

Practical example 1: sustainability evaluation in manufacturing industries
In today’s global economy, manufacturing industries are under increasing pressure to adopt sustainable practices 
that minimize environmental impacts, optimize energy consumption, and foster social responsibility. As 
industries work towards reducing their ecological footprint, integrating sustainability into their operations is 
seen not only as a regulatory requirement but also as a strategic advantage. The assessment of sustainability 
in these industries involves evaluating several critical aspects, including resource efficiency, environmental 
protection, and corporate social responsibility.

This first example serves as a conceptual illustration of the proposed PFNBSS model, using simplified data 
to demonstrate the DM process step by step. We evaluate the sustainability performance of five representative 
manufacturing companies L = {ℓ1, ℓ2, ℓ3, ℓ4, ℓ5}, each reflecting a typical industrial profile (e.g., automotive 
parts, food processing, chemicals, textiles, electronics). The assessment is based on simulated expert ratings and 
captures key sustainability enablers and barriers in a stylized format.

Although the data used is synthetic, it is designed to resemble general sustainability evaluation scenarios and 
highlight the inner workings of the PFNBSS-based DM framework.

Key sustainability indicators
The following attributes are used to measure the sustainability practices of the manufacturing companies:

•	 ε1: Energy efficiency - This attribute evaluates how effectively the company reduces energy consumption 
during the manufacturing process without compromising product quality.

•	 ε2: Waste reduction - Assesses the company’s ability to minimize, reuse, or recycle waste materials generated 
throughout production.

•	 ε3: Use of renewable resources - Measures the extent to which the company integrates renewable materials 
into its operations, contributing to a more sustainable production process.

•	 ε4: Social responsibility - This factor gauges the company’s commitment to community engagement, fair labor 
practices, and contributing to the welfare of society at large.

Challenges to sustainability implementation
In addition to the positive sustainability outcomes, several challenges may hinder the successful implementation 
of sustainable practices. These challenges are represented by the set ¬ρ:
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•	 ¬ε1: High energy consumption - This signifies inefficiencies in energy usage that lead to higher costs and 
increased environmental impact.

•	 ¬ε2: Inefficient waste management - Reflects the company’s failure to implement effective waste reduction 
and recycling strategies.

•	 ¬ε3: Reliance on non-renewable resources - Highlights the dependence on non-renewable materials, such as 
fossil fuels, which undermine long-term sustainability goals.

•	 ¬ε4: Poor labor practices - Indicates the company’s failure to uphold ethical labor standards and its lack of 
community engagement, affecting both its reputation and operational sustainability.

Sustainability evaluation framework
The sustainability of each company is assessed based on the presence of the positive sustainability attributes and 
the challenges identified. Table 18 summarizes the evaluations, where:

•	 ◦ denotes areas with weak compliance to sustainability practices.
•	 Multiple ⋆ symbols indicate varying degrees of efficiencies in a given aspect of sustainability.

The check-marks from the previous evaluations are converted into numerical values ranging from 0 to 4 using 
the same technique as in Example 3.1, and the results are presented in Table 19.

We now identify each of (ζ, ρ, 5) and (ξ, ¬ρ, 5), as presented in Tables 20 and 21, respectively.
By Definition 2.2, we compute the score values for each of the PFNs in Tables 20 and 21, respectively. The 

corresponding results are presented in Tables 22 and 23.
Based on the developed algorithm, we are now able to recommend the most suitable alternative. Table 24 is 

constructed directly from Tables 22 and 23.
From Table 24, it is evident that max zi = z4; hence, ℓ4 is identified as the most suitable option.

Fig. 1.  Flowchart for the proposed algorithm.
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Practical example 2: comparative risk assessment in sustainable manufacturing
As industries intensify their efforts to integrate sustainable practices, there remains a pressing need to evaluate 
the risk factors that threaten long-term sustainability objectives. These risks, if not properly assessed and 
mitigated, can undermine environmental efforts, increase operational costs, and damage stakeholder trust. 
Sustainable manufacturing, therefore, demands not only proactive adoption of positive attributes but also robust 
mechanisms for identifying and responding to sustainability risks.

(ξ, ¬ρ, 5) ¬ε1 ¬ε2 ¬ε3 ¬ε4

ℓ1 ⟨1, 0.3, 0.4⟩ ⟨3, 0.8, 0.0⟩ ⟨1, 0.5, 0.3⟩ ⟨2, 0.7, 0.1⟩

ℓ2 ⟨1, 0.0, 0.6⟩ ⟨4, 0.7, 0.7⟩ ⟨2, 0.3, 0.7⟩ ⟨1, 0.3, 0.5⟩

ℓ3 ⟨1, 0.6, 0.1⟩ ⟨3, 0.7, 0.4⟩ ⟨2, 0.6, 0.4⟩ ⟨1, 0.5, 0.0⟩

ℓ4 ⟨1, 0.5, 0.3⟩ ⟨0, 0.0, 0.4⟩ ⟨3, 0.3, 0.8⟩ ⟨1, 0.3, 0.4⟩

ℓ5 ⟨1, 0.5, 0.3⟩ ⟨2, 0.6, 0.4⟩ ⟨1, 0.6, 0.0⟩ ⟨1, 0.3, 0.4⟩

Table 21.  Tabular form of (ξ, ¬ρ, 5)

 

(ζ, ρ, 5) ε1 ε2 ε3 ε4

ℓ1 ⟨2, 0.7, 0.2⟩ ⟨1, 0.5, 0.3⟩ ⟨2, 0.5, 0.5⟩ ⟨2, 0.5, 0.4⟩

ℓ2 ⟨3, 0.7, 0.5⟩ ⟨0, 0.4, 0.1⟩ ⟨1, 0.4, 0.4⟩ ⟨2, 0.7, 0.3⟩

ℓ3 ⟨3, 0.5, 0.7⟩ ⟨1, 0.5, 0.1⟩ ⟨2, 0.6, 0.2⟩ ⟨3, 0.6, 0.6⟩

ℓ4 ⟨3, 0.8, 0.3⟩ ⟨4, 1.0, 0.0⟩ ⟨1, 0.4, 0.4⟩ ⟨1, 0.4, 0.2⟩

ℓ5 ⟨1, 0.5, 0.3⟩ ⟨1, 0.1, 0.6⟩ ⟨2, 0.6, 0.3⟩ ⟨3, 0.6, 0.6⟩

Table 20.  Tabular form of (ζ, ρ, 5)

 

(ζ, ξ, ρ, 5) ε1 ε2 ε3 ε4

ℓ1 ⟨2, 0.7, 0.2⟩
⟨1, 0.3, 0.4⟩

⟨1, 0.5, 0.3⟩
⟨3, 0.8, 0.0⟩

⟨2, 0.5, 0.5⟩
⟨1, 0.5, 0.3⟩

⟨2, 0.5, 0.4⟩
⟨2, 0.7, 0.1⟩

ℓ2 ⟨3, 0.7, 0.5⟩
⟨1, 0.0, 0.6⟩

⟨0, 0.4, 0.1⟩
⟨4, 0.7, 0.7⟩

⟨1, 0.4, 0.4⟩
⟨2, 0.3, 0.7⟩

⟨2, 0.7, 0.3⟩
⟨1, 0.3, 0.5⟩

ℓ3 ⟨3, 0.5, 0.7⟩
⟨1, 0.6, 0.1⟩

⟨1, 0.5, 0.1⟩
⟨3, 0.7, 0.4⟩

⟨2, 0.6, 0.2⟩
⟨2, 0.6, 0.4⟩

⟨3, 0.6, 0.6⟩
⟨1, 0.5, 0.0⟩

ℓ4 ⟨3, 0.8, 0.3⟩
⟨1, 0.5, 0.3⟩

⟨4, 1.0, 0.0⟩
⟨0, 0.0, 0.4⟩

⟨1, 0.4, 0, 4⟩
⟨3, 0.3, 0.8⟩

⟨1, 0.4, 0.2⟩
⟨1, 0.3, 0.4⟩

ℓ5 ⟨1, 0.5, 0.3⟩
⟨1, 0.5, 0.3⟩

⟨1, 0.1, 0.6⟩
⟨2, 0.6, 0.4⟩

⟨2, 0.6, 0.3⟩
⟨1, 0.6, 0.0⟩

⟨3, 0.6, 0.6⟩
⟨1, 0.3, 0.4⟩

Table 19.  Tabular form of PF5BSS (ζ, ξ, ρ, 5)

 

L \ ρ ε1 ε2 ε3 ε4

ℓ1 ⋆⋆
⋆

⋆
⋆ ⋆ ⋆

⋆⋆
⋆

⋆⋆
⋆⋆

ℓ2 ⋆ ⋆ ⋆
⋆

◦
⋆ ⋆ ⋆⋆

⋆
⋆⋆

⋆⋆
⋆

ℓ3 ⋆ ⋆ ⋆
⋆

⋆
⋆ ⋆ ⋆

⋆⋆
⋆⋆

⋆ ⋆ ⋆
⋆

ℓ4 ⋆ ⋆ ⋆
⋆

⋆ ⋆ ⋆⋆
◦

⋆
⋆ ⋆ ⋆

⋆
⋆

ℓ5 ⋆
⋆

⋆
⋆⋆

⋆⋆
⋆

⋆ ⋆ ⋆
⋆

Table 18.  Initial Evaluations
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This second example illustrates a more industry-oriented application of the PFNBSS model. It involves a 
comparative sustainability risk assessment of five manufacturing enterprises L = {ℓ1, ℓ2, ℓ3, ℓ4, ℓ5} operating 
in sectors such as packaging, pharmaceuticals, steel, renewable energy, and electronics. The goal is to assess not 
only sustainable practices but also the extent of underlying risks that may hinder sustainability performance.

While the data is also synthetically generated, it is grounded in real-world-inspired sustainability indicators 
and expert evaluation structures. This example better reflects practical assessment logic and is intended to 
demonstrate the model’s suitability for more realistic industrial decision environments.

Positive sustainability drivers
The following set of positive indicators reflects core sustainability enablers used in the assessment:

•	 ε1: Emissions reduction strategies – Evaluates the company’s efforts in limiting greenhouse gas emissions 
through clean technologies and carbon offsetting.

•	 ε2: Sustainable supply chain – Assesses the degree to which the company integrates environmental and ethical 
considerations across its supply chain.

•	 ε3: Eco-friendly product innovation – Measures the company’s investments in designing products that reduce 
lifecycle environmental impact.

•	 ε4: Employee engagement in sustainability – Captures the company’s success in involving its workforce in 
sustainability initiatives and awareness programs.

Sustainability risk factors
The corresponding set ¬ρ represents key risks or challenges that may hinder sustainable performance:

•	 ¬ε1: High carbon footprint – Indicates that the company still relies on emission-intensive processes without 
adequate mitigation.

•	 ¬ε2: Unsustainable supplier practices – Reflects the lack of transparency and environmental standards within 
the supply chain.

•	 ¬ε3: Resistance to innovation – Points to organizational inertia or limited investment in sustainable Research 
and Development activities.

ai =
∑

j
zij bi =

∑
j

zij zi = ai − bi

a1 = 0.70 b1 = 1.21 z1 = −0.51

a2 = 0.79 b2 = −0.92 z2 = 1.71

a3 = 0.32 b3 = 0.97 z3 = −0.65

a4 = 1.67 b4 = −0.62 z4 = 2.29

a5 = 0.08 b5 = 0.65 z5 = −0.57

Table 24.  Final score table

 

(ξ, ¬ρ, 5)
¬ε1 ¬ε2 ¬ε3 ¬ε4

bi =
∑

j
zij

ℓ1 −0.07 0.64 0.16 0.48 1.21

ℓ2 −0.36 0.00 −0.40 −0.16 −0.92

ℓ3 0.35 0.17 0.20 0.25 0.97

ℓ4 0.16 −0.16 −0.55 −0.07 −0.62

ℓ5 0.16 0.20 0.36 −0.07 0.65

Table 23.  Score values of PFNs in (ξ, ¬ρ, 5) and the corresponding calculations of bi =
∑

j
zij .

 

(ζ, ρ, 5)
ε1 ε2 ε3 ε4

ai =
∑

j
zij

ℓ1 0.45 0.16 0.00 0.09 0.70

ℓ2 0.24 0.15 0.00 0.40 0.79

ℓ3 −0.24 0.24 0.32 0.00 0.32

ℓ4 0.55 1.00 0.00 0.12 1.67

ℓ5 0.16 −0.35 0.27 0.00 0.08

Table 22.  Score values of PFNs in (ζ, ρ, 5) and the corresponding calculations of ai =
∑

j
zij .
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•	 ¬ε4: Low internal sustainability awareness – Suggests insufficient training or communication efforts related 
to environmental responsibility.

Risk evaluation framework
Each company is evaluated using the PFNBSS model, which incorporates both the presence of sustainability 
drivers and the prevalence of associated risks. The evaluations are presented in Table 25, where:

•	 ◦ represents areas where sustainability engagement is lacking or inconsistent.
•	 ⋆, ⋆⋆, ⋆ ⋆ ⋆ and ⋆ ⋆ ⋆⋆ symbolize incremental levels of success in managing sustainability factors or mitigat-

ing risks.

The symbolic check-marks from the earlier assessments have been translated into numerical values on a scale 
from 0 to 4 following the method applied in Example 3.1; the corresponding results are displayed in Table 26.

We proceed by extracting the positive substructure (ζ, ρ, 5) and the negative substructure (ξ, ¬ρ, 5), which 
are detailed separately in Tables 27 and 28, respectively.

Using Definition 2.2, the score values for the PFNs listed in Tables 27 and 28 are calculated. The resulting 
scores are summarized in Tables 29 and 30, respectively.

Following the proposed algorithm, we identify the most appropriate alternative. Table 31 compiles the final 
results derived from the score values presented in Tables 29 and 30.

Table 31 clearly shows that the highest net score is z4, indicating that ℓ4 is the optimal choice among the 
alternatives.

Results and discussion
The proposed DM procedure based on the PFNBSS model demonstrates a structured and effective approach 
for handling complex sustainability evaluations in manufacturing industries. The framework decomposes 
the overall assessment into two complementary substructures: positive sustainability attributes (ζ, ρ, N) and 
negative challenges (ξ, ¬ρ, N). This bipolar decomposition facilitates a nuanced analysis that balances the 
benefits and barriers associated with each alternative.

The first numerical example involving five manufacturing companies illustrates this approach concretely. 
Key sustainability indicators such as energy efficiency, waste reduction, use of renewable resources, and social 
responsibility form the basis of the evaluation. Simultaneously, recognized challenges–including high energy 
consumption, inefficient waste management, reliance on non-renewable resources, and poor labor practices–are 
explicitly accounted for through the negative substructure.

The initial qualitative ratings, transformed into quantitative PFNs, allow the incorporation of uncertainty 
and vagueness inherent in expert evaluations. These fuzzy evaluations reflect degrees of membership and non-

(ζ, ξ, ρ, 5) ε1 ε2 ε3 ε4

ℓ1 ⟨3, 0.2, 0.8⟩
⟨1, 0.3, 0.5⟩

⟨2, 0.5, 0.5⟩
⟨2, 0.6, 0.2⟩

⟨2, 0.6, 0.4⟩
⟨0, 0.1, 0.3⟩

⟨1, 0.2, 0.4⟩
⟨2, 0.7, 0.1⟩

ℓ2 ⟨0, 0.4, 0.1⟩
⟨4, 0.8, 0.5⟩

⟨3, 0.4, 0.7⟩
⟨1, 0.3, 0.5⟩

⟨1, 0.4, 0.4⟩
⟨3, 0.3, 0.8⟩

⟨2, 0.7, 0.3⟩
⟨2, 0.2, 0.7⟩

ℓ3 ⟨1, 0.1, 0.6⟩
⟨3, 0.6, 0.5⟩

⟨2, 0.5, 0.4⟩
⟨2, 0.6, 0.4⟩

⟨2, 0.6, 0.2⟩
⟨2, 0.2, 0.7⟩

⟨3, 0.7, 0.5⟩
⟨0, 0.1, 0.4⟩

ℓ4 ⟨3, 0.8, 0.3⟩
⟨1, 0.4, 0.3⟩

⟨4, 1.0, 0.0⟩
⟨0, 0.0, 0.4⟩

⟨1, 0.1, 0, 6⟩
⟨3, 0.3, 0.8⟩

⟨1, 0.4, 0.2⟩
⟨2, 0.3, 0.7⟩

ℓ5 ⟨1, 0.5, 0.3⟩
⟨1, 0.5, 0.3⟩

⟨1, 0.1, 0.6⟩
⟨3, 0.7, 0.5⟩

⟨2, 0.6, 0.3⟩
⟨1, 0.1, 0.5⟩

⟨3, 0.8, 0.1⟩
⟨1, 0.3, 0.4⟩

Table 26.  Tabular form of PF5BSS (ζ, ξ, ρ, 5)

 

L \ ρ ε1 ε2 ε3 ε4

ℓ1 ⋆ ⋆ ⋆
⋆

⋆⋆
⋆⋆

⋆⋆
◦

⋆
⋆⋆

ℓ2 ◦
⋆ ⋆ ⋆⋆

⋆ ⋆ ⋆
⋆

⋆
⋆ ⋆ ⋆

⋆⋆
⋆⋆

ℓ3 ⋆
⋆ ⋆ ⋆

⋆⋆
⋆⋆

⋆⋆
⋆⋆

⋆ ⋆ ⋆
◦

ℓ4 ⋆ ⋆ ⋆
⋆

⋆ ⋆ ⋆⋆
◦

⋆
⋆ ⋆ ⋆

⋆
⋆⋆

ℓ5 ⋆
⋆

⋆
⋆ ⋆ ⋆

⋆⋆
⋆

⋆ ⋆ ⋆
⋆

Table 25.  Initial Evaluations

 

Scientific Reports |        (2025) 15:29648 24| https://doi.org/10.1038/s41598-025-15126-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


fi =
∑

j
zij gi =

∑
j

zij zi = fi − gi

f1 = −0.52 g1 = 0.56 z1 = −1.08

f2 = 0.22 g2 = −0.77 z2 = 0.99

f3 = 0.30 g3 = −0.29 z3 = 0.59

f4 = 1.32 g4 = −1.04 z4 = 2.36

f5 = 0.71 g5 = 0.09 z5 = 0.62

Table 31.  Final score table

 

(ξ, ¬ρ, 5)
¬ε1 ¬ε2 ¬ε3 ¬ε4

gi =
∑

j
zij

ℓ1 −0.16 0.32 −0.08 0.48 0.56

ℓ2 0.39 −0.16 −0.55 −0.45 −0.77

ℓ3 0.11 0.20 −0.45 −0.15 −0.29

ℓ4 0.07 −0.16 −0.55 −0.40 −1.04

ℓ5 0.16 0.24 −0.24 −0.07 0.09

Table 30.  Score values of PFNs in (ξ, ¬ρ, 5) and the corresponding calculations of gi =
∑

j
zij .

 

(ζ, ρ, 5)
ε1 ε2 ε3 ε4

fi =
∑

j
zij

ℓ1 −0.60 0.00 0.20 −0.12 −0.52

ℓ2 0.15 −0.33 0.00 0.40 0.22

ℓ3 −0.35 0.09 0.32 0.24 0.30

ℓ4 0.55 1.00 −0.35 0.12 1.32

ℓ5 0.16 −0.35 0.27 0.63 0.71

Table 29.  Score values of PFNs in (ζ, ρ, 5) and the corresponding calculations of fi =
∑

j
zij .

 

(ξ, ¬ρ, 5) ¬ε1 ¬ε2 ¬ε3 ¬ε4

ℓ1 ⟨1, 0.3, 0.5⟩ ⟨2, 0.6, 0.2⟩ ⟨0, 0.1, 0.3⟩ ⟨2, 0.7, 0.1⟩

ℓ2 ⟨4, 0.8, 0.5⟩ ⟨1, 0.3, 0.5⟩ ⟨3, 0.3, 0.8⟩ ⟨2, 0.2, 0.7⟩

ℓ3 ⟨3, 0.6, 0.5⟩ ⟨2, 0.6, 0.4⟩ ⟨2, 0.2, 0.7⟩ ⟨0, 0.1, 0.4⟩

ℓ4 ⟨1, 0.4, 0.3⟩ ⟨0, 0.0, 0.4⟩ ⟨3, 0.3, 0.8⟩ ⟨2, 0.3, 0.7⟩

ℓ5 ⟨1, 0.5, 0.3⟩ ⟨3, 0.7, 0.5⟩ ⟨1, 0.1, 0.5⟩ ⟨1, 0.3, 0.4⟩

Table 28.  Tabular form of (ξ, ¬ρ, 5)

 

(ζ, ρ, 5) ε1 ε2 ε3 ε4

ℓ1 ⟨3, 0.2, 0.8⟩ ⟨2, 0.5, 0.5⟩ ⟨2, 0.6, 0.4⟩ ⟨1, 0.2, 0.4⟩

ℓ2 ⟨0, 0.4, 0.1⟩ ⟨3, 0.4, 0.7⟩ ⟨1, 0.4, 0.4⟩ ⟨2, 0.7, 0.3⟩

ℓ3 ⟨1, 0.1, 0.6⟩ ⟨2, 0.5, 0.4⟩ ⟨2, 0.6, 0.2⟩ ⟨3, 0.7, 0.5⟩

ℓ4 ⟨3, 0.8, 0.3⟩ ⟨4, 1.0, 0.0⟩ ⟨1, 0.1, 0, 6⟩ ⟨1, 0.4, 0.2⟩

ℓ5 ⟨1, 0.5, 0.3⟩ ⟨1, 0.1, 0.6⟩ ⟨2, 0.6, 0.3⟩ ⟨3, 0.8, 0.1⟩

Table 27.  Tabular form of (ζ, ρ, 5)
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membership enriched by bipolar information, providing a richer representation than classical crisp or traditional 
fuzzy values.

The computation of score values for each substructure (Tables 22 and 23) reveals the aggregated performance 
of each alternative on positive and negative fronts. Notably, company ℓ4 achieves the highest aggregate positive 
score (a4 = 1.67) while simultaneously showing a negative substructure score that reduces its penalty effect 
(b4 = −0.62). This results in the highest net score z4 = 2.29, marking ℓ4 as the most sustainable option among 
the considered companies.

This outcome underscores the strength of the PFNBSS model in differentiating alternatives by synthesizing 
positive contributions and offsetting negative factors through a mathematically consistent mechanism. The 
net scoring approach effectively balances competing criteria, making it highly suitable for real-world MCDM 
problems where trade-offs are inevitable.

The methodology’s transparency is enhanced by the explicit flowchart and algorithmic description, 
which facilitate replication and potential adaptation to other domains beyond manufacturing sustainability. 
Furthermore, the flexibility of the model to accommodate different evaluation scales and fuzzy parameters 
highlights its robustness.

In practical terms, the model empowers decision-makers in manufacturing sectors to systematically assess 
sustainability efforts, identify leading companies, and recognize areas for improvement. The bipolar fuzzy 
framework captures both the promise and challenges in sustainability, offering a more comprehensive decision 
basis than unipolar or crisp models.

In summary, the results affirm that the PFNBSS-based DM framework is an effective tool for sustainability 
evaluation, balancing complexity and interpretability while accommodating uncertainty and bipolar information 
inherent in expert assessments.

To further demonstrate the versatility of the PFNBSS model, a second example involving comparative 
sustainability risk assessment across diverse manufacturing sectors was presented. This example emphasizes 
the identification and evaluation of key risk factors alongside positive sustainability drivers, reflecting a more 
nuanced real-world decision context. Although the data for this example is synthetically generated and does 
not include a detailed quantitative scoring and benchmarking, as in Example 1, it effectively showcases the 
model’s capacity to handle complex bipolar information in risk-focused sustainability evaluations. The inclusion 
of this case highlights the adaptability of the PFNBSS framework to varied industrial scenarios where balancing 
positive attributes and risk factors is critical for informed DM.

Assessment of Pythagorean Fuzzy N-Bipolar Soft Set Model
In this section, we evaluate the proposed PFNBSS model by discussing its strengths, comparing it with existing 
models, and identifying its limitations. The evaluation is conducted through both qualitative and quantitative 
analyses.

We begin by outlining the key advantages of the PFNBSS model, such as its capability to manage uncertainty 
using Pythagorean fuzzy membership functions, its support for multi-valued evaluations, and its incorporation 
of bipolarity. These features collectively contribute to its robustness in handling complex DM problems.

For the comparative analysis, we conduct a qualitative comparison focusing on structural and functional 
aspects, including membership type, evaluation methodology, and bipolarity consideration. This is followed 
by a quantitative comparison based on an illustrative example of sustainability evaluation in manufacturing 
industries, where the performance of the PFNBSS model is examined against existing models, namely FNBSS35 
and IFNBSS36. The comparison highlights the superior discrimination and expressive capability of the proposed 
model.

Additionally, we include a subsection analyzing the sensitivity of decision rankings to the fixed grading 
intervals used in mapping Pythagorean fuzzy values to evaluation grades. This analysis demonstrates the 
robustness of the model’s rankings under the selected criteria.

Finally, we discuss the limitations of the PFNBSS model, which include computational complexity, 
scalability concerns, interpretability challenges, uncertainty management overhead, subjectivity in membership 
assignment, and parameter sensitivity. These insights serve as a foundation for identifying future directions to 
improve the model’s practicality and effectiveness in real-world applications.

Strengths of the proposed model
The proposed PFNBSS model presents several key advantages over existing approaches:

•	 It integrates Pythagorean fuzzy membership, which provides a higher level of uncertainty handling compared 
to classical fuzzy and intuitionistic fuzzy models.

•	 Unlike many earlier models that operate on binary or single-valued evaluations, PFNBSS supports multi-val-
ued evaluations, enabling richer and more realistic decision environments.

•	 The model fully incorporates bipolarity, allowing it to simultaneously handle both positive and negative as-
pects of information.

•	 It maintains parameterization support, aligning with SS theory’s flexibility in dealing with varying sets of 
attributes or parameters.

•	 Among all the models reviewed, PFNBSS is the only one that combines all of these strengths – especially the 
integration of Pythagorean fuzzy logic with bipolar and multi-valued SS frameworks – making it particularly 
suitable for complex and nuanced DM scenarios.
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Comparison of the proposed model with existing approaches
In this section, we compare the proposed PFNBSS model with existing approaches to evaluate its strengths and 
performance.

Qualitative comparison
In this subsection, we provide a qualitative comparison of the PFNBSS model with several existing approaches, 
including Classical Models, Soft Sets, Bipolar Soft Sets, N-Soft Sets, and N-Bipolar Soft Sets, and their related 
extensions. The comparison focuses on various factors such as membership type, membership superiority, 
parameterization support, evaluation type, evaluation scale, and bipolar capability. Table  32 summarizes the 
key characteristics of each approach, highlighting the advantages and differences of the PFNBSS model in these 
areas.

Quantitative comparison
In this subsection, we present a quantitative comparison of the proposed PFNBSS model against the existing 
FNBSS35 and IFNBSS36 models. The comparison utilizes the illustrative sustainability evaluation scenario 
discussed in Subsection 4.2. Table 33 displays the computed scores and resulting ranking orders for all models, 
while Figure 2 visually illustrates the differences in score distributions.

To evaluate model performance more comprehensively, Table  34 reports three metrics: (i)  score spread 
(difference between the highest and lowest scores), (ii) rank distinction (presence or absence of tied alternatives), 
and (iii) consistency with expert judgment. These metrics help assess the discriminatory power and decision 
precision of each method.

Although IFNBSS shows the highest score spread numerically, it fails to distinguish between ℓ5 and ℓ3, 
resulting in tied ranks that limit its practical interpretability. A similar issue is seen with FNBSS. In contrast, 
the proposed PFNBSS model provides a complete ranking of all alternatives, avoiding ties while maintaining a 
strong score spread and preserving expert-preferred rankings.

It is also worth noting that Pythagorean fuzzy values are directly applied to the IFNBSS model–without 
adjusting for its admissibility condition–which may compromise its theoretical consistency. By contrast, the 

Models ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 Ranking Order

FNBSS35 −0.10 0.90 −0.20 1.50 −0.20 ℓ4 ≻ ℓ2 ≻ ℓ1 ≻ ℓ5 = ℓ3

IFNBSS36 −0.70 2.10 −0.90 2.50 −0.90 ℓ4 ≻ ℓ2 ≻ ℓ1 ≻ ℓ5 = ℓ3

PFNBSS (Proposed) −0.51 1.71 −0.65 2.29 −0.57 ℓ4 ≻ ℓ2 ≻ ℓ1 ≻ ℓ5 ≻ ℓ3

Table 33.  Comparison between FNBSS35, IFNBSS36, and the proposed PFNBSS models, based on the scenario 
in Subsection 4.2.

 

Group Approach
Membership
Type

Membership
Superiority

Parameterization
Support

Evaluation
Type

Evaluation
Scale

Bipolar
Capability

1. Classical Models

FS1 F Low Not Supported Continuous Single-Valued Absent

IFS2 IF Medium Not Supported Continuous Single-Valued Absent

PFS3 PF High Not Supported Continuous Single-Valued Absent

2. Soft Sets

SS7 None – Supported Discrete Binary Absent

FSS10 F Low Supported Continuous Binary Absent

IFSS11 IF Medium Supported Continuous Binary Absent

PFSS12 PF High Supported Continuous Binary Absent

3. Bipolar Soft Sets

BSS20 None – Supported Discrete Binary Present

FBSS21 F Low Supported Continuous Binary Present

IFBSS22 IF Medium Supported Continuous Binary Present

PFBSS22 PF High Supported Continuous Binary Present

4. N-Soft Sets

NSS25 None – Supported Discrete multi-valued Absent

FNSS26 F Low Supported Continuous multi-valued Absent

IFNSS27 IF Medium Supported Continuous multi-valued Absent

PFNSS30 PF High Supported Continuous multi-valued Absent

5. N-Bipolar Soft Sets

NBSS33 None – Supported Discrete multi-valued Present

FNBSS35 F Low Supported Continuous multi-valued Present

IFNBSS36 IF Medium Supported Continuous multi-valued Present

PFNBSS (Proposed) PF High Supported Continuous multi-valued Present

Table 32.  Comparison of the PFNBSS model with relevant existing approaches.
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PFNBSS model adheres to the admissibility semantics of PFNs and integrates both positive and negative aspects 
with possibility weighting, offering a more coherent and discriminative evaluation in multi-criteria contexts.

Impact of grading intervals on ranking stability and sensitivity
The evaluation grades used in the PFNBSS model, as defined by specific intervals of squared membership 
and non-membership values (see Table 7), play a crucial role in mapping continuous fuzzy data into discrete 
assessment levels. These intervals effectively serve as parameters that influence how expert evaluations are 
categorized and aggregated.

It is important to note that modifications to these grading intervals can lead to changes in the categorization 
of fuzzy values, thereby affecting the computed scores and final rankings of alternatives. For example, a slight 
adjustment in the boundary between two consecutive grades can shift certain values into a different grade 
category, potentially altering the relative ordering of alternatives.

This phenomenon highlights the sensitivity of the model’s outcomes to parameter selection, which is a 
significant aspect of DM robustness. Hence, an analysis of ranking stability and sensitivity to grading interval 
changes is essential for understanding the reliability and consistency of the PFNBSS model in practical 
applications.

While the current study employs fixed grading intervals based on well-established criteria, this approach 
demonstrates the model’s capability to produce consistent and interpretable rankings under the selected 
evaluation scheme.

Challenges and limitations
Despite its notable advantages, the PFNBSS model has some limitations:

•	 Computational complexity: The incorporation of Pythagorean fuzzy membership and multi-valued evalua-
tions increases processing time, especially for large datasets or real?time decision?making.

•	 Scalability: While the model is powerful for moderate-sized problems, applying it directly in large-scale in-
dustrial contexts may face challenges due to the computational and memory demands. Efficient algorithmic 
improvements and parallelization techniques are required to enhance practical deployment.

•	 Interpretability concerns: Multi-valued evaluations, while richer, may introduce ambiguity and make results 
harder to interpret for less?experienced users.

Model Score Spread Rank Distinction Consistency with Expert Ranking

FNBSS35 1.70 Tied ranks (ℓ5 = ℓ3) High

IFNBSS36 3.40 Tied ranks (ℓ5 = ℓ3) High

PFNBSS (Proposed) 2.80 Full distinction (no ties) High

Table 34.  Comparison of Performance Metrics for FNBSS35, IFNBSS36, and the proposed PFNBSS models, 
based on the example in Subsection 4.2.

 

Fig. 2.  Bar chart comparison of ℓi scores for FNBSS35, IFNBSS36, and the proposed PFNBSS models, based on 
the example in Subsection 4.2.
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•	 Uncertainty management overhead: Integrating bipolarity with Pythagorean fuzzy logic demands sophis-
ticated techniques to handle the higher degree of uncertainty, potentially complicating the decision process.

•	 Subjectivity in membership assignment: The process of assigning Pythagorean fuzzy membership and 
non-membership degrees may involve subjective judgments by experts, which can affect the consistency and 
reliability of the decision outcomes.

•	 Parameter sensitivity: Although parameterization is supported, accurate parameter selection can be chal-
lenging in dynamic environments where precise attribute information is unavailable or subject to change, 
further compounded by subjective expert inputs.

Concluding remarks and research outlook
This paper has presented a novel MCDM framework based on PFNBSSs, offering a flexible and expressive 
approach for evaluating complex decision problems involving multi-valued assessments and bipolarity under 
uncertainty. By integrating the strengths of PFSs, NSSs, and BSSs into a unified structure, the proposed model 
enables more nuanced representation and interpretation of expert evaluations.

We formally defined the PFNBSS structure, developed its algebraic operations, and applied the framework 
to two practical DM scenarios. The first example focused on evaluating the sustainability performance of 
manufacturing companies, while the second addressed comparative risk assessment in sustainable manufacturing 
contexts. Both applications demonstrated the model’s ability to handle ambiguity, assess opposing dimensions 
of information, and differentiate between closely ranked alternatives through the incorporation of possibility 
degrees alongside membership and non-membership values.

Quantitative and qualitative comparisons confirmed that the PFNBSS model outperforms existing approaches 
such as FNBSS and IFNBSS in terms of information richness, decision granularity, and interpretability. These 
findings highlight the robustness and adaptability of the framework across diverse sustainability-driven 
evaluation tasks.

However, the PFNBSS model has some limitations, including increased computational complexity and 
scalability challenges when applied to large-scale problems, potential difficulties in interpreting multi-valued 
evaluations, uncertainty management overhead, and subjectivity involved in expert membership assignments. 
These challenges are discussed in detail in Section 6.4 (Challenges and Limitations). Addressing these issues 
through optimized algorithms, enhanced interpretability measures, and systematic parameter tuning forms an 
important direction for future research.

Future work will also focus on developing efficient computational strategies, such as parallel processing and 
approximate aggregation methods, to improve the model’s scalability and practical deployment. Additionally, 
we plan to extend the PFNBSS framework to group DM settings, and q-rung orthopair systems–particularly 
Fermatean FNBSSs when q = 3–enabling more flexible modeling by relaxing traditional admissibility conditions 
on membership and non-membership degrees.

We anticipate that the proposed PFNBSS framework and its future extensions will serve as a powerful 
foundation for decision-support systems in various domains, including environmental sustainability, healthcare, 
supply chain risk assessment, and strategic planning.

Data availability
All data are included in the manuscript.
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