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This study aimed to identify miRNA-based biomarkers in a multi-ethnic cohort of SARS-CoV-2-infected 
individuals to enhance preparedness for future variants of concern. A total of 31 healthy controls 
and 154 infected patients were enrolled, from which 13 matched controls and 38 infected nasal swab 
samples were analyzed using miRNA sequencing, followed by qRT-PCR validation. Among the 1788 
miRNAs detected, 14 differentially expressed miRNAs and four novel miRNAs were identified, with 
novel-miR-264-5p showing a ≥ 2-fold change. Correlation with clinical markers highlighted several 
miRNAs as potential prognostic biomarkers. Seven miRNAs, including miR-146b-3p, miR-154-5p, miR-
5010-3p, miR-127-3p, miR-335-3p, miR-30c-5p, and miR-202-5p, showed strong prognostic potential. 
Combined ROC analysis demonstrated that a panel of top-performing miRNAs significantly enhanced 
diagnostic accuracy (AUC 0.939–0.972; p < 0.0001). Moreover, integrating miRNA biomarkers with 
clinical parameters further improved performance (AUC = 0.982; p < 0.0001). miR-146b-3p, detected 
exclusively in infected patients, emerged as a highly specific biomarker. Several nasal miRNAs mirrored 
blood profiles, highlighting the utility of nasal swabs for non-invasive monitoring. Collectively, these 
findings suggest that miRNA-based biomarkers, alone or combined with clinical markers, offer a 
promising platform for COVID-19 prognosis and diagnosis, and lay groundwork for future miRNA-
based antiviral strategies.
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Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the cause of coronavirus disease 2019 
(COVID-19) and infected over 778 million individuals globally and caused over 7 million deaths until June 14, 
2025 (https://covid19.who.int/). SARS-CoV-2 infection may result in symptoms ranging from being completely 
asymptomatic to having severe disease manifestations, such as the severe pulmonary disease, acute respiratory 
distress syndrome (ARDS)1,2. It can also induce inflammatory responses, such as cytokine storm and activation 
of chemokines, hypoxemia, disruption of kidney and liver enzymes among individuals, etc.,3–9. The infection 
occurs in both genders and can lead to multi-organ failure. However, men are more prone to severe COVID-19 
than women, irrespective of age10. Co-morbidities, including previous lung infections, diabetes, hypertension, 
heart-associated risk factors, obesity, older age, immune disorders, and other organs manifestations, are all 
associated with induction of severe disease2,3,11–13.
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Since the emergence of COVID-19, numerous studies have attempted to establish the crucial role of host 
responses at the molecular and cellular levels to the severity of the disease in the infected patients. Viral infections 
in general can alter host-immune as well as cellular transcriptional responses to facilitate their replication and 
infectivity. This can result in molecular changes at cellular levels that can be detected clinically14–19. Interestingly, 
not every patient shows a similar host-response pattern and there is always a need to find molecular biomarkers 
that may differentiate COVID-19 infected patients from non-infected ones through simple and straightforward 
clinical tests20–22.

Currently, researchers are emphasizing the exploration of microRNAs (miRNAs) as biomarkers for 
disease diagnosis and prognosis, especially due to their stability and resistance to degradation in routinely 
examined body fluids, including nasopharyngeal discharge, saliva, urine, blood, plasma, and serum19,23–28. In 
viral infections, miRNA-based biomarkers can be especially useful since host miRNAs are induced as a host’s 
natural innate anti-viral response, better known as RNA interference (RNAi), to control virus infections29,30. 
Viruses, on the other hand, can exploit host miRNAs to subvert this response to facilitate their own replication 
or manipulate the host’s immune responses31,32. This has been observed in a number of clinically important 
viruses, such as the human immunodeficiency virus (HIV), hepatitis B & C viruses, influenza, dengue,  and 
others33–38. An added advantage of identifying dysregulated miRNAs in diseases is the use of this information 
for eventual development of miRNA-based therapeutics39. MiRNAs are small, non-coding functional RNAs 
encoded by genes and expressed in cells and by viruses as key regulators of gene expression. They function in 
a post-transcriptional manner by attacking specific host mRNAs via sequence complementarity, causing their 
translational inhibition or degradation40–43. Thus, miRNAs regulate gene expression in a highly targeted manner 
and the best way to identify and quantitate them are approaches based on next generation sequencing (NGS)44.

At present, most of the published data in this area of research is mainly driven from miRNAs isolated from 
blood samples; however, nasopharyngeal sample collection was the most widely used method to detect SARS-
CoV-2 infection globally19,45–47. It is well known that miRNAs are expressed in a tissue-specific manner and 
released in body fluids in a manner that each type of body fluid reveals its own canvas of miRNAs, a profile that 
changes upon disease induction and its severity. In COVID-19, there are only a few studies that report miRNA 
expression analysis from the nasopharyngeal samples in SARS-CoV-2 infected patients, despite the wide use of 
this sample in diagnosis9,19,48–51. Most of these studies were limited to only a selection of miRNAs and did not 
investigate the whole miRNA expression profile.

To overcome this limitation, we used miRNAseq followed by quantitative reverse transcriptase PCR (RT-
qPCR) to characterize miRNAs expressed during SARS-CoV-2 infection. While COVID-19 is no longer as deadly 
as it initially was and seems to have adapted well to the human population, the danger persists that a variant-
of-concern (VOC) may emerge anytime that could cause another major pandemic, as is the case with other 
respiratory viruses like influenza. Thus, the aim of this study was to identify miRNAs that are uniquely expressed 
in a consistent manner following SARS-CoV-2 infection so that such miRNAs can be used as biomarkers for not 
only disease prognosis, but also the ability to develop novel RNA-based anti-virals and therapeutics that can be 
created rapidly to tackle any future pandemics.

Materials and methods
Ethical permission and informed consent
The study was approved by the UAE University (UAEU) Human Research Ethics Committee (HREC approval 
no: ERH-2020-7219 2020-22) and the Dubai Scientific Research Ethics Committee (DSREC) of the Dubai Health 
Authority (DHA) (DSREC approval nos: DSREC-11/2020_16 and DSREC-11/2021_08). Informed Consent 
was taken from each subject following DHA and UAEU established procedures using approved consent forms 
available both in English and Arabic. Moreover, we confirmed that all methods were carried out in accordance 
with relevant guidelines and regulations.

Control and patient enrollment
The patients included in this study were confirmed positive for the virus by the COVID-19 nasal swab RT-qPCR 
test approved by the national health authorities prior to enrollment into the study. They were admitted to the 
Rashid Hospital, Dubai, the largest tertiary care hospital managing patients with COVID-19 infection since the 
start of the pandemic in the UAE. The control subjects were recruited from the staff of the Rashid Hospital as 
well as the UAE University. Each subject tested negative for SARS-CoV-2 infection by the COVID-19 RT-qPCR 
test performed on samples taken from nasal swab. A total of 154 infected patient samples were collected from 
September 2021- March 2022, while 31 control samples were collected for the study.

Clinical data
Clinical and demographic data for the enrolled patients was collected from the electronic medical records of 
the Rashid Hospital, Dubai. The patients were assessed for any medical symptoms (either acute or chronic) 
at the time of enrollment. Most of the symptoms included cough, diarrhea, chest problems, fever, and nausea. 
The comorbidities reported by infected individuals included diabetes, hypertension, thyroid issues, lipidemia, 
anemia, asthma, viral infections, kidney problems, previous history of chest infections, and heart-related issues. 
Chest X-rays were performed, depending upon the severity of disease symptoms. Routine laboratory tests were 
performed as per hospital protocol.

RNA extraction and MiRNA sequencing
MiRNAs were extracted from nasal swab samples using the Macherey-Nagel NucleoSpin miRNA mini kit (cat. 
no. 740971), as described by the manufacturer, and quantified using Nano Drop in house. The miRNA sample 
integrity was tested by Agilent 2100 Bioanalyzer and sequenced at the Beijing Genomics Institute (BGI, Hong 
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Kong) using UMI small RNA Library prep via the DNBSEQ platform (SE 50-single end; 50 bp size) at 20 M 
(20 million) clean read resolution.

RNAseq data analysis
RNAseq was performed on 38 SARS-CoV-2 infected and 13 control (non-infected) individuals, as described 
above. The raw data was filtered using BGI in-house software known as SOAPnuke v1.5.252 and the impurities 
in the data like sequences without inserts, sequences that were too long or of low-quality, poly A sequences, 
small fragment sequences, and sequences with adaptor contaminations were removed. The clean sequences were 
subjected to filtration based on read length and the sequences ranging from 18 to 30 nt were selected for the next 
step. The Pearson correlation coefficients were calculated to compare the quality of gene expression between 
each sample, which showed higher similarities between each sample within a group. Principal component 
analysis (PCA) was used to remove any outliers from samples. The filtered clean reads were then subjected to 
quality control using FASTQ53.

After sequencing, an average of 26.93 million reads (of ~ 50 nt length) were generated per sample and subjected 
to quality control. The clean reads were aligned to the reference genome sequence GCF_000001405.39_GRCh38.
p13 (Homo sapiens), with an average alignment of 78.63% using Bowtie254. The results were submitted to the 
BGI in-house software Dr. Tom accessed through an online server for further analysis. The raw and analyzed 
data (BioProject accession number: PRJNA1049129) can be downloaded from the server (​h​t​t​p​s​:​​/​/​w​w​w​.​​n​c​b​i​.​n​​l​m​
.​n​i​h​​.​g​o​v​/​​b​i​o​p​r​o​​j​e​c​t​/​?​​t​e​r​m​=​P​​R​J​N​A​1​0​4​9​1​2​9) for data re-analysis and further processing.

RNAseq: DEGs analysis
After sequencing and cleaning (removal of adaptors), the data in fastq file(s) format were analyzed using 
the automated Dr. Tom software from BGI that allowed visualization and analysis of raw data. The DESeq2 
method55 (Q-value/adjusted p-value ≤ 0.05) was used to detect differentially expressed miRNAs. The miRNAs 
with adjusted p-value of ≤ 0.05 and log2FC ≥ 2/≤ −2 were considered as differentially expressed genes (DEGs) 
and presented in red (upregulated) or green (downregulated) throughout the manuscript. All of the data were 
downloaded from Dr. Tom and re-analyzed using Microsoft Excel for any discrepancies. Venn diagrams were 
drawn for the overlapping miRNAs/transcripts using the online platform Bioinformatics & Evolutionary 
Genomics from Van de Peer laboratory website (http://bioinformatics.psb.ugent.be/webtools/Venn/). Heatmaps 
were generated using Multiple Experiment Viewer v4.9.056. The volcano and other plots used in this study were 
generated through Dr. Tom and were further improved accordingly.

Prediction of possible targeted mRNAs and associated pathways
MiRNAs function by targeting mRNAs; however, the number of experimentally verified mRNA targets of miRNAs 
are still limited. To overcome this lacuna, there are several methods (either supervised or semi-supervised) based 
on support vector machine (SVM). Most of these methods predict miRNA-mRNA interactions based on high-
throughput sequencing experiments or from other verified sources. Three commonly used databases include: 
miRDB57 (https://mirdb.org/), TargetScan58 (https://www.targetscan.org/vert_80/), and DIANA-microT-CDS59 
(http://www.microrna.gr/microT-CDS). These databases were employed to predict targets for the miRNAs 
identified in this study primarily due to limited available target-interaction data.

Identification of experimentally validated MiRNAs targets
Experimentally-validated miRNA targets were extracted from the miRTarBase60 (​h​t​t​p​s​:​​/​/​m​i​r​t​​a​r​b​a​s​e​​.​c​u​h​k​.​​e​d​u​
.​c​n​/​~​m​i​R​T​a​r​B​a​s​e​/​m​i​R​T​a​r​B​a​s​e​_​2​0​2​2​/​p​h​p​/​i​n​d​e​x​.​p​h​p), miRpathDB61 (​h​t​t​p​s​:​​/​/​m​p​d​.​​b​i​o​i​n​f​​.​u​n​i​-​s​​​b​.​​d​e​/​m​i​r​n​​a​s​.​h​​t​m​
l​?​o​r​g​a​n​​​i​s​m​=​h​s​a.), and miRwayDB62 (http://www.mirway.iitkgp.ac.in/) databases. These databases collect ​m​i​R​
N​A​-​t​a​r​g​e​t interactions after surveying existing literature and classify them as strong or poor targets based on 
reporter assays. In this study, we chose the targets associated with strong experimental evidence only.

Functional enrichment of gene ontology (GO) and pathway analysis
The list of predicted and experimentally identified targeted genes were separately uploaded to DAVID ​(​​​h​
t​t​p​s​:​/​/​d​a​v​i​d​.​a​b​c​c​.​n​c​i​f​c​r​f​.​g​o​v​/​t​o​o​l​s​.​j​s​p​​​​​​​6​3​​ for gene ontology (GO) and pathway analysis using Homo sapiens as 
the reference species. The GO analysis plots genes according to their function, biological processes, cellular 
presence, and molecular functions. DAVID generated the list of genes involved in several biological pathways 
using KEGG (Kyoto Encyclopedia of Genes and Genomes: https://www.genome.jp/kegg/pathway.html)64 and 
Reactome (https://reactome.org/)65 pathway databases.

RT-qPCR assays
Real time RT-qPCR was used to validate the miRNAseq results obtained. This was accomplished by retesting 15 
patient miRNA samples analyzed by miRNAseq for 16 miRNAs using miRNA-based TaqMan assays from Applied 
Biosystems (Thermo Fisher Scientific, Waltham, MA USA). Briefly, the extracted RNAs were first converted into 
cDNAs using the TaqMan Advanced miRNA cDNA Synthesis Kit, as per manufacturer’s directions (cat. no. 
A28007). This was followed by conducting TaqMan Advanced miRNA Assays for the miRNAs listed in Table 1 
using the TaqMan Fast Advanced Master Mix (cat. no. 4444964) and the QuantStudios 7 Flex Real-Time PCR 
system. A 384-plate format was used to test the miRNAs in triplicates.

Statistical analysis
To distinguish miRNAs expression between control and infected patients, a p value < 0.05 (student’s t-test) and Q 
value < 0.05 (False Discovery Rate (FDR) using Storey-Tibshirani procedure) were used. Levene’s test for equality 
of variances was used for comparing clinical data using SPSS v.26. GraphPad Prism v8 software was used to 
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create Receiver Operating Characteristic (ROC) curves using the expression profiles of the miRNAs, as well as 
to generate other graphs presented in this study. The area under the curve (AUC) with a p value < 0.05 was used 
to assess the ability of a miRNA to distinguish between control and infected patients. AUC with p value < 0.05 
for any miRNA could predict the usefulness of a miRNA to distinguish between control and infected patients 
effectively. To further account for multiple comparisons and reduce the risk of false positives, FDR correction 
using the Benjamini-Hochberg method was applied to ROC p-values. Only FDR-adjusted p-values (p-adjusted) 
below 0.05 were considered statistically significant. For other graphical data, a p value < 0.05 was considered as 
a significant change.

Results
Patient demographics
This study encompassed a total of 31 control individuals (23 males (74.2%) and 8 females (25.8%), and 154 
infected patients (116 males (75.3%) and 38 females (24.7%). The United Arab Emirates (UAE) is a diverse and 
multinational country, home to people from various parts of the world. While the participants included in this 
research hailed from 40 different countries (Fig. 1a), a significant portion of them originated from India (n = 44; 
23.8%),  Philippines (n = 22; 11.9%), Pakistan (n = 18; 9.7%),  UAE (n = 10; 5.4%), Egypt (n = 9; 4.9%), and Iran 
(n = 7; 3.8%). Additionally, there were 6 participants from Jordan and Iraq (3.2%), 5 from Bangladesh (2.7%), as 
well as 4 from Lebanon and Palestine (2.2%). Furthermore, Belgium, China, Nepal, Poland, Senegal, Sudan, and 
Syria were represented by 3 participants each (1.62%), while Australia, Ethiopia, Russia, South Africa, Sri Lanka, 
UK, and USA had 2 participants each (1.08%). Finally, Afghanistan, Armenia, Burundi, the Czech Republic, 
Eritrea, Germany, Ghana, Indonesia, Malaysia, Morocco, Switzerland, Thailand, Vietnam, and Yemen each had 
1 participant, with one participant remaining unclassified (0.54%).

Clinical data shows distorted levels of ferritin, CRP, WBC, ALT, urea, & GFR in infected 
patients
Figure 1b shows the comparison of other demographic and clinical parameters between the control and infected 
groups. The mean age of the control and infected groups was 44.23 ± 11.3 and 46.67 ± 13.1 years, respectively. 
The age variation was not statistically different within either control or infected groups (Fig. 1; Table 2). Both the 
control and infected groups showed similar body mass index (BMI) of ~ 27–28, revealing an overall overweight 
cohort. Although the controls showed presence of common morbidities like hypertension and diabetes, they 
were never reported to be previously infected with SARS-CoV-2 at the time of data collection. Some clinical 
laboratory data for the control group could not be included in this study due to the unavailability of test reports 
or because these tests were not conducted since the individuals were not experiencing any illness. Nonetheless, 
the available data for the control group fell within the already defined normal value range. Among the 154 
infected patients at the time of infection, 55 (35.7%) had received vaccinations. The vaccines administered 
included Sinopharm BIBP (n = 38), Pfizer-BioNTech (n = 10), and other vaccines (n = 7), with the majority 
having received two doses of any vaccine (n = 44). A majority of the infected participants (n = 86; 55.8%) had 
cough, fatigue, fever, and shortness of breath at the time of infection. While X-ray reports were not available for 
controls, they were taken for 104/154 (67.5%) of the infected patients. Among the enrolled patients, 35 (22.7%) 
required respiratory support with oxygen delivery rates of up to 6 L/min and 51 (33.1%) with > 6 L/min.

 Routine or pre-defined laboratory tests were conducted for each infected patient. These tests involved the 
measurement of various clinical markers in patient blood, including ferritin, D-dimer, IL-6, C-reactive protein 
(CRP), white blood cell (WBC) & lymphocyte count, platelet count, hemoglobin levels, alanine transaminase 
(ALT), aspartate aminotransferase (AST), urea, creatinine, and glomerular filtration rate (GFR). WBCs represent 
a broader category of cells involved in the body’s immune response than lymphocytes which are a specific 
subtype of white blood cells that play key roles in adaptive immunity, including T cells, B cells, and natural killer 
cells. For example, lymphopenia, which is a decrease in the number of lymphocytes in the blood, is a common 
finding in patients with severe COVID-19, while the total WBC count can vary in the same patients, depending 
on factors such as the presence of secondary bacterial infections or other inflammatory conditions. The levels 
of these clinical markers were then compared with either control or established normal ranges (Fig. 1; Table 2). 
A significant elevation was identified in the plasma concentrations of ferritin, CRP, and ALT among infected 
patients, surpassing the defined normal range. Induced levels of WBC, hemoglobin, and urea were also noted, 
but within the normal range, compared to the control. A marked reduction in GFR was observed compared 

Serial Number miRNA tested Serial number miRNA tested

1 hsa-miR-550a-3p 9 hsa-miR-92b-5p

2 hsa-miR-132-3p 10 hsa-miR-30c-5p

3 hsa-miR-877-3p 11 hsa-miR-328-3p

4 hsa-miR-95-3p 12 hsa-miR-106b-5p

5 hsa-miR-486-5p 13 has-miR-5010-3p

6 hsa-miR-221-3p 14 has-miR-125b-5p

7 hsa-miR-2110 15 hsa-miR-16-5p

8 hsa-miR-941 16 hsa-miR-191-5p

Table 1.  List of the miRNAs tested by TaqMan assays for relative expression.
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to controls despite remaining within normal ranges, while a slight reduction in lymphocytes was observed. 
Although elevated levels of D-dimer and IL-6 were observed in infected patients, insufficient data precluded 
their inclusion in subsequent analysis.

Finally, in terms of vaccines, at the time of sample collection, SARS-CoV-2 vaccination was not yet widespread. 
Among the 13 healthy controls, 2 individuals (15.4%) had received Pfizer vaccinations, while the remaining 11 
were unvaccinated. In the infected group, 17 of our infected patients (44.7%) were vaccinated: 6 patients had 
received the Pfizer vaccine, 9 had received Sinopharm, and 2 had received Covishield. The remaining 21 infected 
patients were unvaccinated.

SARS-CoV-2 infection significantly alters expression of a small subset of host MiRNAs
RNA was extracted from the nasopharyngeal swabs. Depending upon the amount and quality of the RNA, a 
select group of samples were analyzed by miRNAseq. Nevertheless, statistically significant number of samples 

Fig. 1.  Visual representation of demographic and clinical outcomes of the participants. (a) A map displays 
the diverse origin of the participants of this study, representing 40 different countries across the globe. The 
intensity of green colors on the map indicates varying participant numbers from each country, with darker 
shades representing more participants and lighter shades indicating fewer. The world map was created using 
Microsoft Excel (Microsoft Excel LTSC Professional Plus 2024, 64-bit). (b) Comparative analysis of age, BMI, 
plasma levels of IL-6, ferritin, D-dimer, CRP, lymphocyte, WBC, and platelet count, hemoglobin levels, ALT, 
AST, urea, creatinine, and glomerular filtration rate (GFR) between uninfected and SARS-CoV-2 infected 
patients. The red or green scatter plots represent significantly up- or downregulated clinical markers, while 
orange indicates non-significant change.
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were selected, including 13 control and 38 individuals infected with SARS-CoV-2. The average age of the control 
and infected patient was 47.62 ± 12.76 and 47.66 ± 12.92 years, respectively, while the male/female ratio was 3:1 
for both groups (Table 3).

Figure 2 shows the quality of data and the overall results obtained from the miRNAseq analysis. The heatmap 
displaying the raw expression data (Fig.  2a), the bar graphs representing transcript expression profiles from 
individual samples (Fig. 2b), as well as the two groups with data represented as box plots (Fig. 2c), demonstrated 
consistent distribution within each sample from both groups, highlighting reliability of the data. The initial data 
analysis yielded a total of 1788 transcripts, with 1456 of them being previously known and 332 identified as novel 
miRNAs (Supplementary Data S1). Among the miRNAs detected, 1218 (67%) were expressed in both the control 
and infected groups, 78 (4.3%) miRNAs were uniquely expressed in the control group, while 492 (27.1%) were 
uniquely expressed in the infected group (Fig. 2d). Pearson correlation of miRNA expression changes between 
control and infected groups revealed that SARS-CoV-2 infection altered ~ 2.6% of the host miRNAs (Fig. 2e). Of 
the significantly altered miRNAs, 44 were known and 4 were novel miRNAs (29 up- and 15 downregulated; with 
p and Q values < 0.05) that may be able to distinguish between control from infected groups (Fig. 2f). Despite 
miRNAseq being a well-established and reliable technique that may not necessitate additional validation66, we 
took the extra step of confirming our overall miRNAseq findings. This was achieved by randomly selecting 15 
RNA samples (7 control and 8 infected) that had been sequenced and subjecting them to TaqMan RT-qPCR 
assays for 16 miRNAs  (two as endogenous controls). The results from our RT-qPCR analysis indicated that, 
with the exception of two miRNAs (miR-5010-3p and miR-2110), the remaining samples exhibited a similar 
trend in miRNA expression (non-significant variance) to what was observed in the miRNAseq analysis (Fig. 3). 
Our findings demonstrate a superiority over the previously established normal range, with a 15–20% non-
concordance in gene expression between RT-qPCR and miRNAseq.

Characterization of the differentially regulated miRNAs observed in infected patients
Next, we closely analyzed the 48 miRNAs with p/Q values < 0.05 observed in the infected patients. As shown, 
among the 44 known miRNAs, 29 were upregulated and 15 were downregulated (Fig. 4a and b). However, only 
36 of the 44 showed a fold change of > 1, with 24 being upregulated and 12 downregulated (Fig. 4b). Additionally, 
14 miRNAs (12 upregulated and 2 downregulated) showed a fold change greater than ± 2 (Fig. 4b). Notably, miR-
146b-3p and miR-365b-3p were significantly upregulated, while miR-202-5p was markedly downregulated (as 
shown in Fig. 4c; Table 4). Among the four novel miRNAs examined, novel-miR-285-5p displayed significant 

Patient groups Gender (M/F) Average Age

Control (n = 13) 10 M/3F (3:1) 47.62 ± 12.76

Infected (n = 38) 29 M/9F (3:1) 47.66 ± 12.92

Table 3.  Gender and age of the patients selected for MiRNAseq data analysis. There was no significant 
difference in the average age of the two groups (p > 0.992).

 

95% CI of the differenceVariable
(Normal Reference Range)

Control
(n= 31)

Infected
(n=154)

Significance
(p value) Lower Upper

Gender (M/F) 23/8 116/38 0.876 - -
Age within group (M/F) 45.1±12.5/

41.5±6.3
46.1±12.6/
48.2±14.8

- - -

Age within cohort 44.23±11.3 46.6±13.1 0.337 -7.454 2.568
BMI 28.1±5.7 27.5±5.1 0.781 -3.234 4.294

*Ferri�n (30-400 ng/mL) 120.4±190 1060.2±1175 0.013 -1676.467 -203.107
D-dimer (<0.5 µg/mL) 0.14±0.0 1.32±1.62 - -4.418 2.040

IL-6 (<7 pg/mL) 5.7±4.1 249.9±1133 0.763 -1847.507 1359.088
*CRP (<5 mg/L) 10.9±20.8 79.5±92.6 0.006 -117.942 -19.681

*WBC (3.6-11 103/µL) 6.9±1.94 10.1±5.7 0.004 -5.264 -1.031
*Lymphocytes (1-3 103/µL) 1.6±0.78 1.2±0.85 0.034 0.0325 0.794
Platelets (150-400 103/µL) 259.5±109.6 275.1±125.1 0.584 -70.936 40.095

*Hemoglobin (12-17.5 g/dL) 11.6±2.34 13.5±2.1 0.001 -2.828 -1.013
*ALT (0-41 U/L) 21.4±16.5 57.3±60.6 0.024 -67.081 -4.908
AST (0-40 U/L) 23.5±9.98 62.1±61.5 0.238 -88.997 22.366

*Urea (12-40 mg/dL) 22.2±8.9 35.9±8.9 0.029 -25.992 -1.458
Crea�nine (0.5-1.2 mg/dL) 0.62±.16 0.92±0.6 0.052 -0.615 0.003

*GFR (>60 mL/min) 120.5±13.1 97.6±26.2 0.008 10.792 34.998
*Parameters in red (upregulated) and green (downregulated) show significant differences between controls and 
infected groups.  Insufficient data for D-dimer and IL-6 precluded their proper analysis.

Table 2.  Clinical characteristics of the patients (n = 154) and control (n = 31) subjects.
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upregulation, whereas the other three novel miRNAs, miR-115-5p, miR-189-5p, and miR-264-3p, were 
downregulated in patients infected with SARS-CoV-2 (Table 4).

miRNAs may serve as possible prognostic markers in defining SARS-CoV-2 infected patients
The primary objective of this study was to evaluate the potential of differentially regulated miRNAs as prognostic 
markers when identifying SARS-CoV-2-infected patients. This was accomplished by conducting ROC analysis 
of each miRNA that helps discriminate the true negatives from true positives. Thus, ROC curves were created 
for each known miRNA that showed differential regulation in our study (with a fold change of ± 2 or more), as 
well as for the novel miRNAs identified during our research. Furthermore, we constructed ROC curves for four 
previously-reported miRNAs with an FC < 2 in our study (miR125-5p, miR-151b, miR590-3p, and miR-625-5p) 
(Table 5), but that had been shown to have potential as biomarkers to test their overall diagnostic performance 
in our SARS-CoV-2-infected patients67. These ROC curves were drawn using normalized miRNA read counts 
levels observed in both the control and infected groups. The analysis of the ROC area under the curve (AUC) 
was used as a feature used to measure the accuracy of our biomarkers. Several miRNAs, including miR-146b-
3p (AUC = 0.999, p < 0.0001), miR-154-5p (AUC = 0.891, p = 0.002), miR-335-3p (AUC = 0.874, p < 0.0001), and 
miR-30c-5p (AUC = 0.761, p = 0.004), demonstrated excellent discriminative ability between infected and control 
samples. (Fig. 5a). Among the novel miRNAs, N-miR-264-5p showed a high diagnostic value with an AUC of 
0.902 (p < 0.0001), while N-miR-115-5p also displayed strong potential (AUC = 0.792, p = 0.001). (Fig. 5b).

The ROC curves for the previously reported circulating miRNAs associated with viral infections were 
evaluated using expression data from our study. MiRNAs such as miR-125-5p (AUC = 0.746, p = 0.007), miR-
151b (AUC = 0.749, p = 0.006), and miR-590-3p (AUC = 0.823, p < 0.0001) demonstrated robust predictive 
performance, validating previous reports (Fig. 5c). The optimal sensitivity and specificity values for identified 

Fig. 2.  Summary of the miRNA expression analysis of the raw data. In this study, 13 control and 38 infected 
samples were subject to miRNAseq. MiRNA sequencing resulted in 1788 transcripts that were identified 
as potential miRNAs. The data was analyzed using the fully automated program Dr. Tom from BGI. (a) 
Heatmap of the hierarchal clustered raw data representing control and infected groups. (b) Tukey box plots 
showing the expression of miRNAs in individual control and infected samples after normalization. (c) Tukey 
box plot comparing the whole group level distributions of miRNAs expression data after normalization. (d) 
Pearson’s correlation plot representing the correlation (r) values between control and infected groups. (e) Venn 
diagram of intersection of miRNAs expressed in control and infected groups representing 1296 control and 
1710 infected miRNAs in sub groups with fold change (FC) > 0, 1 and 2. (f) Volcano plot of the differentially 
regulated miRNAs. Red and green dots represent up- and downregulated miRNAs with FC ≥ 1.
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markers in our study ranged from 65.91 to 100% and 61.54–100%, respectively, revealing high specificity with 
low to zero false rates since an AUC value of 1 indicates 100% accuracy (Supplementary Data S2)68. The cut-off 
values for differentially regulated miRNA biomarkers were also determined based on normalized read counts to 
achieve an optimal balance between sensitivity and specificity using ROC curve analysis (Supplementary Data 
S2). This approach provides a robust estimate of the classification potential of the identified miRNAs within our 
cohort, aligning with methodologies previously described in biomarker research68,69.

To account for multiple comparisons, the FDR correction using the Benjamini-Hochberg method was 
applied to ROC p-values. Only FDR-adjusted p-values (p-adjusted) below 0.05 were considered statistically 
significant. This correction ensured that the significance of miRNAs as biomarkers is not due to random chance 
when evaluating multiple candidates. After correction, miR-146b-3p, miR-154-5p, miR-5010-3p, miR-127-3p, 
miR-335-3p, miR-30c-5p and miR-202-5p emerged as the most promising biomarker candidates (Fig. 5a). These 
miRNAs demonstrated strong discriminative power, with AUC values ranging from 0.75 to 0.99 and statistically 

Fig. 3.  Quantitative RT-PCR validation of the miRNAseq data. The relative normalized expression values (log 
2 of infected/control) of the individual samples obtained from the miRNAseq analysis (n = 13 control and 38 
infected) were compared with those obtained from the RT-qPCR data (n = 7 control and 8 infected). The red 
and green box and violin graphs show up- and down-regulated miRNAs, while the blue depicts the results 
that contradict the findings of the miRNAseq analysis. The floating line for every bar represents the mean 
expression value. The p value shows difference in mean (student’s t-test) for each miRNA in the miRNAseq and 
RT-qPCR cohort.
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significant p-values after multiple testing correction. Finally, combined ROC curve analyses, integrating 
multiple top-performing miRNAs (such as miR-146b-3p, miR-154-5p, miR-335-3p, miR-127-3p, miR-30c-5p, 
and miR-202-5p) significantly enhanced diagnostic performance, achieving AUC values between 0.939 and 
0.972 (p < 0.0001) (Fig. 5d). These findings highlight the potential advantage of using multi-miRNA panels over 
individual biomarkers for improving COVID-19 diagnosis from nasal swab samples.

Clinical markers and miRNAs showed significant correlation among each other
In our study, we noticed notable changes in both clinical indicators and miRNA expression among individuals 
infected with SARS-CoV-2 when compared to those who were healthy. To delve deeper into their connections, 
we conducted a correlation analysis by calculating the Pearson’s coefficient that evaluates the linear relationship 
between variables (Fig. 6).

This analysis uncovered significant associations not only within the clinical markers or miRNA expression 
levels, but also between these two categories. Within the clinical markers, we observed both positive and negative 
correlations. For instance, ferritin displayed significant positive correlations with CRP, WBC, and ALT, while 
CRP exhibited a positive correlation with urea but a negative correlation with GFR. Additionally, GFR showed a 
strong negative correlation with urea levels in COVID-19 infected patients (Fig. 6a).

Notably, we also detected significant correlation among differentially regulated miRNAs. For this analysis, 
we selected miRNAs with an AUC greater than 0.75 and a p-value less than 0.05. These miRNAs included miR-
154-5p, miR-5010-3p, miR-335-3p, miR-30c-5p, miR-202-5p, miR-590-3p, miR-625-3p, novel-miR-115-5p, and 
novel-miR-264-5p (Supplementary Data S2 and Fig. 5). Our results revealed positive correlation between several 
miRNAs pairs, such as miR-154-5p/miR-5010-5p, miR-5010-3p/miR-30c-5p, miR-335-3p/miR-30c-5p, miR-
30c-5p/miR-5010-3p, miR-202-5p/miR-625-5p, miR-590-3p/miR-625-5p, novel-miR-115-5p/novel-miR-264-
5p, as well as miR-625-5p/miR-202-5p (Fig. 6b). Additionally, significant negative correlations were observed 

Fig. 4.  Summary of the differentially regulated miRNAs in the infected patients. DEG analysis identified 48 
miRNAs with p/Q values < 0.05 with 44 known and 4 novel miRNAs. (a) Heatmap of the hierarchal clustered 
DEGs in individual infected samples. The blue boxes represent downregulated miRNAs, while yellow boxes 
show upregulated miRNAs in infected samples when compared to the control. These boxes represent log2 
(Infected/Control) values for individual infected samples. (b) Bar graph representing up- and downregulated 
miRNAs in infected vs. control groups. Red bars represent up- while green bar represent downregulated 
miRNAs. (c) Volcano plot of differentially expressed up- (red dots) and down- (green dots) regulated 14 
miRNAs in the infected group when compared to the control.
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between miR-154-5p/novel-miR-264-5p, miR-5010-3p/novel-miR-115-5p, miR-335-3p/novel-miR-264-5p, 
miR-30c-5p/novel-miR-115-5p and novel-miR-264-5p (Fig. 6b).

Remarkably, we also detected meaningful associations between the expression values of clinical markers and 
miRNAs expression levels (Fig. 6c). Individual scatter plot analyses further confirmed significant correlations 
between selected miRNAs and key clinical markers. N-miR-115-5p levels negatively correlated with ferritin 
concentrations, while N-miR-30c-5p levels positively correlated with urea and CRP. Furthermore, miR-5010-3p 
demonstrated a positive association with urea and a negative association with GFR. Similarly, N-miR-264-5p 

Gene ID log2 (INF / C) Q value (INF / C) Sequence
hsa-miR-146b-3p 5.730947 8.05E-04 GCCCUGUGGACUCAGUUCUGGU
hsa-miR-365b-3p 4.378259 0.010506574 UAAUGCCCCUAAAAAUCCUUAU
hsa-miR-6887-3p 3.705266 0.004003607 UCCCCUCCACUUUCCUCCUAG
hsa-miR-154-5p 3.587474 0.001157487 UAGGUUAUCCGUGUUGCCUUCG

hsa-miR-103a-2-5p 3.381681 0.001036401 AGCUUCUUUACAGUGCUGCCUUG
hsa-miR-5010-3p 3.291951 0.014768648 UUUUGUGUCUCCCAUUCCCCAG
hsa-miR-1307-5p 3.027761 0.004698828 UCGACCGGACCUCGACCGGCU
hsa-miR-127-3p 2.708188 5.80E-05 UCGGAUCCGUCUGAGCUUGGCU
hsa-miR-132-3p 2.610516 5.80E-05 UAACAGUCUACAGCCAUGGUCG
hsa-miR-335-3p 2.472328 0.001223249 UUUUUCAUUAUUGCUCCUGACC
hsa-miR-30c-5p 2.058221 4.68E-05 UGUAAACAUCCUACACUCUCAGC
hsa-miR-18a-3p 2.00516 0.045680824 ACUGCCCUAAGUGCUCCUUCUGG

hsa-miR-3663-5p -3.41945 0.015572181 GCUGGUCUGCGUGGUGCUCGG
hsa-miR-202-5p -10.4339 2.31E-12 UUCCUAUGCAUAUACUUCUUUG

hsa-let-7i-5p 0.697993 0.002242401 UGAGGUAGUAGUUUGUGCUGUU
hsa-miR-12136 -1.76799 0.004003607 GAAAAAGUCAUGGAGGCC

hsa-miR-125b-5p 1.599187 0.001583263 UCCCUGAGACCCUAACUUGUGA
hsa-miR-141-3p 0.845649 0.019876311 UAACACUGUCUGGUAAAGAUGG
hsa-miR-149-5p -0.97359 0.046564279 UCUGGCUCCGUGUCUUCACUCCC
hsa-miR-151b 1.115742 0.002898613 UCGAGGAGCUCACAGUCU
hsa-miR-184 -1.73535 0.029000052 UGGACGGAGAACUGAUAAGGGU

hsa-miR-205-5p 0.885464 0.039869951 UCCUUCAUUCCACCGGAGUCUG
hsa-miR-218-5p 0.80418 0.032148394 UUGUGCUUGAUCUAACCAUGU
hsa-miR-221-3p 1.092684 0.001630869 AGCUACAUUGUCUGCUGGGUUUC
hsa-miR-23b-5p -1.57949 5.60E-06 UGGGUUCCUGGCAUGCUGAUUU
hsa-miR-28-3p 1.366327 0.001583263 CACUAGAUUGUGAGCUCCUGGA

hsa-miR-30d-5p 1.566186 1.12E-04 UGUAAACAUCCCCGACUGGAAG
hsa-miR-324-5p 1.352434 0.002242401 CGCAUCCCCUAGGGCAUUGGUG
hsa-miR-335-5p 1.946634 0.011046937 UCAAGAGCAAUAACGAAAAAUGU
hsa-miR-345-5p 1.647679 1.70E-04 GCUGACUCCUAGUCCAGGGCUC
hsa-miR-3615 -0.96064 0.028617112 UCUCUCGGCUCCUCGCGGCUC

hsa-miR-375-3p -1.16926 4.57E-06 UUUGUUCGUUCGGCUCGCGUGA
hsa-miR-3909 -1.47514 0.004063997 UGUCCUCUAGGGCCUGCAGUCU

hsa-miR-425-5p 0.949645 0.005828459 AAUGACACGAUCACUCCCGUUGA
hsa-miR-449b-5p 1.910009 2.77E-04 AGGCAGUGUAUUGUUAGCUGGC

hsa-miR-4521 1.043369 0.046564279 GCUAAGGAAGUCCUGUGCUCAG
hsa-miR-574-3p -1.01832 6.07E-06 CACGCUCAUGCACACACCCACA
hsa-miR-574-5p -1.29315 0.002242401 UGAGUGUGUGUGUGUGAGUGUGU
hsa-miR-590-3p -1.09975 0.002898613 UAAUUUUAUGUAUAAGCUAGU
hsa-miR-625-5p -1.21737 0.004063997 AGGGGGAAAGUUCUAUAGUCC

hsa-miR-664a-3p 1.281961 0.011046937 UAUUCAUUUAUCCCCAGCCUACA
hsa-miR-941 -1.42048 0.015572181 CACCCGGCUGUGUGCACAUGUGC

hsa-miR-95-3p 1.672024 0.014768648 UUCAACGGGUAUUUAUUGAGCA
hsa-miR-99b-5p -0.58543 0.029000052 CACCCGUAGAACCGACCUUGCG

Differen�ally regulated 4 novel miRNAs in infected pa�ents
novel-hsa-miR-115-5p -1.56834 0.049243 GGCUGGUCCGAGUGCAGUGG
novel-hsa-miR-189-5p -1.30326 0.032148 GGCCGGUUAGCUCAGUUGG
novel-hsa-miR-264-3p -1.53852 0.002899 GGCUGGUCCGAUGGUAGU
novel-hsa-miR-285-5p 1.998879 0.046564 UUCCCGGCCCAUGCACCA

*RED and GREEN highlight up- and downregulated miRNAs, respec�vely, with a FC≥2. 
 ORANGE highlights the four previously-reported important miRNAs reanalyzed in our study. 
**BLUE highlights miRNAs also observed to be dysregulated in previous studies.

Table 4.  Differentially regulated known MiRNAs (n = 44) in infected patients (FC ≥ 0.5, Q < 0.05)*, **.
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levels were significantly associated with GFR, highlighting their potential relevance to kidney function during 
SARS-CoV-2 infection (Fig. 6c).

Next, ROC curve analysis was conducted to evaluate the diagnostic performance of individual clinical 
markers and their combination with miRNAs (Fig. 6d). Among the clinical markers, ferritin (AUC = 0.931), CRP 
(AUC = 0.844), GFR (AUC = 0.777), and urea (AUC = 0.753) demonstrated reasonable discriminative ability 
between infected and control groups. When clinical markers were combined, diagnostic performance improved 
(AUC = 0.951, p = 0.002). Importantly, integrating selected miRNA biomarkers with clinical markers further 
enhanced diagnostic accuracy, achieving an AUC of 0.982 (p < 0.0001), suggesting that a combined miRNA-
clinical marker panel could serve as a highly sensitive and specific approach for detecting SARS-CoV-2 infection. 
Overall, our findings demonstrate a notable connection between the expression levels of specific miRNAs and 
clinical markers, revealing a biological association between the two. This association has the potential to serve as 
valuable prognostic markers for distinguishing SARS-CoV-2 infected patients from healthy individuals.

Differentially-expressed miRNAs share crucial biological pathways associated with disease 
severity
Next, we aimed at identifying the targets of the differentially-regulated miRNAs observed in our study. While 
numerous computer-based tools are available for predicting potential miRNA targets, we chose to focus solely 
on experimentally verified target genes for our specific miRNAs. To identify these targets, we conducted a 
thorough search of online databases, including miRTarBase, miRpathDB, and miRwayDB, which revealed that 
out of 14 miRNA that exhibited FC > ± 2, ten miRNAs, including miR-30c-5p, miR-132-3p, miR-127-3p, miR-
18a-3p, miR-154-5p, miR-335-3p, miR-146b-3p, miR-202-5p, and miR-103a-2-5p targeted a total of 40, 34, 18, 
7, 6, 5, 5, 3, and 2 human genes, respectively, while there were no experimentally-validated targets identified for 
the remaining four miRNAs (Table 5).

To gain further insights into whether the genes we predicted as experimental targets share various biological 
pathways, we initially constructed a protein network encompassing all proteins transcribed by these genes using 
the STRING database. Among the 122 genes, 118 were found to be interconnected (resulting in 118 nodes and 
344 edges) at higher confidence STRING settings (Fig. 7a). Subsequently, we conducted searches for associated 
KEGG pathways, biological processes, molecular functions, and diseases using the DAVID database. DAVID 
analysis yielded 112 biological pathways (Supplementary Data S3) with a p-value < 0.05, including prominent 
pathways such as FoxO, MAPK, neurotrophin, PI3-AKT, prolactin, relaxin, TGF-β, AGE-RAGE, ErbB, and 
apelin signaling (Fig. 7b). The number of genes associated with each pathway are indicated by the size of the 
circle shown (Fig. 7b).

Network analysis further revealed that many genes associated with multiple pathways could be regulated by 
similar miRNAs (Fig. 7c & Supplementary Data S4). For example, among the miRNAs identified in this study, 
the MAPK signaling pathway could be influenced by miR-132-3p, miR-18a-3p, miR-28-3p, miR-30c-5p, miR-
202-5p, and miR-146-3p. Similarly, the crucial PI3-AKT pathway is linked to miR-132-3p, miR-18a-3p, miR-28-
3p, miR-30c-5p, miR-335-3p, and miR-154-5p. The same was true of many other genes, including AGE-RAGE, 
Apelin, FoxO, Relaxin, Neurotrophin, Prolactin, ErbB, and chemokine.

Gene ontology analysis demonstrated that the predicted experimentally verified genes in this study regulate 
numerous biological processes, including transcription, apoptosis, morphogenesis, protein phosphorylation, 
and cell proliferation, among others, as shown in Fig. 7d & Supplementary Data S5) and molecular functions, 
such as protein binding, DNA binding, enzyme binding, miRNA binding, and transcription factor regulation, 
as illustrated in Fig. 7e & Supplementary Data S6). Furthermore, expression of these genes was associated with 
various diseases, especially many different types of cancers (breast, lung, ovarian, colorectal, prostate, oral, 
stomach, etc.), bone mineral density disease (osteoporosis), hypercholesterolemia, kidney failure, and human 
papillomavirus infection (Fig. 7f & Supplementary Data S7). These findings underscore the potential implications 
of dysregulated miRNAs in SARS-CoV-2 infected patients as they may have significant consequences.

miRNA(s) Number of genes Experimentally verified genes name

hsa-miR-30c-5p 40
SNAI1, SERPINE1, UBE2I, SMAD1, IL11, VIM, TWF1, MTA1, HSPA4, TGIF2, HDAC4, SOCS3, BCL9, 
DDIT4, DLL4, CCND2, IDH1, RARB, NCOR2, RFX6, CASP3, RUNX2, JAK1, MTTP, SNAI2, NOTCH1, TP53, 
FASN, EIF2S1, BECN1, DNMT1, RASAL2, CAMK2D, IER2, CDC42, PAK1, FOXO3, CTGF, MCL1, TRADD

hsa-miR-335-3p 5 NOS3, ESR1, PAX6SP1, MET, SP1

hsa-miR-132-3p 34
ARHGAP32, SIRT1, CDKN1A, RB1, CRK, HBEGF, RASA1, TJAP1, TLN2, SPRED1, MUC13, CCNA2, 
CCNB1, FOXO1, JPT1, BDNF, KLHL11, MAPK1, SOX4, SOX5, IRAK4, EGFR, RAF1, SPRY1, MMP9, GDF5, 
YY1AP1, AGO2, PIK3R3, SOX6, SMAD2, SLC2A1, FOXO3, PTEN,

hsa-miR-127-3p 18 MAPK4, MMP13, PRDM1, XBP1, BCL6, KMT5A, XRCC3, SKI, SEPT7, RGMA, ZWINT, SFRP1, SERPINB9, 
MGMT, BAG5, IGF1R, IRS1, BLVRB

hsa-miR-103a-2-5p 2 SMAD4, PDCD10

hsa-miR-146b-3p 5 PER1, MAT2A, NPAS4, IRAK1, SMAD4

hsa-miR-202-5p 3 TGFBR1, TGFBR2, TNFSF13B

hsa-miR-18a-3p 7 KRAS, CBX7, ATM, HIF1α, IRF2, S6k1, 4EBPL

hsa-miR-154-5p 6 TLR2, ZEB2, HMGA2, CCND2, WNT5A, E2F5

hsa-miR-28-3p 2 STAT5B, TP53, BAG1, IGF1

Table 5.  Experimentally verified target genes associated with differentially regulated miRNAs.
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Discussion
The aim of this study was to identify miRNA-based biomarkers in our ethnically-rich population infected 
with SARS-CoV-2 for prognosis/diagnosis purposes and beyond (Fig.  1a). SARS-CoV-2 infection often 
leads to abnormal inflammatory and biochemical markers, including elevated D-dimers, ferritin, CRP, urea, 
creatinine, and abnormal cell counts, contributing to organ dysfunction and ICU admissions13,70. In our cohort, 
ferritin, hemoglobin, CRP, WBC, ALT, and urea were significantly elevated, while GFR was reduced. IL-6 and 
D-dimer levels exceeded normal thresholds, but lacked control group comparisons (Fig. 1b; Table 2). Notably, 
ferritin correlated with CRP, WBC, ALT, and GFR, while urea was linked to lower GFR and higher CRP. These 
correlations highlight their potential as screening markers for infected patients (Fig. 6).

Our study is unique due to its comprehensive data collection and diverse cohort, comprising individuals 
from over 40 countries in the UAE (Fig. 1a). This diversity enhances insights into SARS-CoV-2-induced clinical 
and biochemical alterations. Due to sample quality limitations, sequencing analysis was conducted on 57 
samples (control: n = 13, infected: n = 38), with additional validation performed on 15 RT-PCR samples. While 
the cohort size may impact statistical power, similar studies have used comparable sample sizes (Table 6), and the 
application of FDR correction, inclusion of age- and sex-matched controls, and RT-PCR validation strengthens 
the reliability of our findings.

We analyzed 14 differentially expressed miRNAs (≥ 2-fold change), along with four novel and four known 
miRNAs, as potential biomarkers using ROC analysis (Figs.  2, 3 and 4; Table 5). Seven miRNAs, including 

Fig. 6.  Correlation analysis and diagnostic performance of clinical markers and miRNA biomarkers in 
SARS-CoV-2 infection. Pearson’s correlation coefficient (r), p-values, and R² values were calculated to assess 
associations between clinical markers and differentially expressed miRNAs. Analyses were conducted using 
RNA sequencing data and clinical parameters from up to 51 samples (controls: n = 13; infected: n = 38). (a) 
Heatmap representing Pearson’s correlation coefficients among clinical markers, including ferritin, C-reactive 
protein (CRP), white blood cell count (WBC), alanine aminotransferase (ALT), urea, and glomerular 
filtration rate (GFR). Significant correlations are indicated by asterisks (*p < 0.05, **p < 0.01). (b) Heatmap 
showing Pearson correlation values among selected potential biomarker miRNAs. (c) Scatter plots illustrating 
significant individual correlations between specific clinical markers (ferritin, CRP, GFR, urea) and candidate 
miRNAs (N-miR-115-5p, N-miR-264-5p, N-miR-30c-5p, and miR-5010-3p). (d) ROC curve analysis assessing 
the diagnostic performance of individual clinical markers (ferritin, CRP, urea, and GFR), their combined 
performance, and performance in combination with selected miRNAs. Integration of miRNA expression 
profiles with clinical markers markedly improved diagnostic accuracy (AUC = 0.982, p < 0.0001).
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miR-146b-3p, miR-154-5p, miR-5010-3p, miR-127-3p, miR-335-3p, miR-30c-5p and miR-202-5p, showed 
strong prognostic potential (AUC: 0.75–1, p < 0.05). Additionally, four previously reported miRNAs, though 
less dysregulated, exhibited consistent expression (miR125-5p, miR-151b, miR590-3p, and miR-625-5p)71, 
reinforcing their biomarker potential (Figs. 5, Table S2). Despite being less significantly dysregulated, these four 
miRNAs were also reported to be dysregulated in blood samples51,71–82.

In this study, cut-off values for miRNA biomarkers were established using normalized read counts to balance 
sensitivity and specificity through ROC curve analysis (Supplementary Data S2). Higher sensitivity thresholds 
were emphasized for early screening to minimize false negatives, whereas specificity was prioritized in the 
context of disease severity assessment or prognostic evaluation, to avoid overestimating risk and ensuring 
accurate clinical decision-making. These thresholds serve as reference points within our cohort and should be 
further validated in future studies tailored to specific clinical applications. Furthermore, to ensure consistency 
across samples and comparability, all read counts were normalized for library size and distribution prior to ROC 
analysis, enhancing the robustness of classification estimates. While absolute expression levels may vary across 
detection platforms, normalization methods, and different cohorts, the consistent directionality of deregulated 
miRNAs (their up- or down-regulation) supports their reproducibility as biomarkers. Therefore, while the 
specific cut-off values identified here may require external validation, they offer a reliable reference for assessing 
clinical utility within this study.

Interestingly, our combined ROC curve analyses further demonstrated the advantage of using multi-miRNA 
panels for diagnostic purposes. Integration of multiple top-performing miRNAs, including miR-146b-3p, miR-
154-5p, miR-335-3p, miR-127-3p, miR-30c-5p, and miR-202-5p, significantly enhanced diagnostic performance, 
with AUC values ranging from 0.939 to 0.972 (p < 0.0001). These results suggest that a multi-miRNA panel may 
offer superior sensitivity and specificity compared to individual biomarkers. Such panels could be particularly 

Fig. 7.  Gene Ontology (GO) and pathway analysis of experimentally verified targeted genes. Ten of the 
differentially regulated miRNAs (FC > ± 2) identified in our study were used to predict their target genes and 
associated biological pathways. (a) Protein-protein interactions in miRNAs-associated targets during SARS-
CoV-2 infection using STRING. Proteins showing two or more interactions were included in this figure. 
(b) Biological pathways associated with target genes in our study. (c) Interaction analysis demonstrating the 
connections between miRNAs (shown in blue), associated genes (shown in black), and the targeted pathways 
(shown in red). The blue lines show the connection between the miRNAs and their target genes, while the 
green lines represent the connections between miRNAs and the targeted pathways. This network of identified 
pathways, genes, and miRNAs was constructed and visualized using Cytoscape and resulted in 54 nodes and 
154 edges. The genes associated with only one miRNA or pathway were excluded. (d) Biological processes 
associated with the targeted genes. (e) Molecular functions associated with the targeted genes. (f) Association 
between the targeted genes and various diseases.
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valuable in improving the detection of SARS-CoV-2 infection from nasal swab samples, providing a more 
reliable molecular diagnostic tool in clinical practice.

Next, we compared our findings with differentially regulated miRNAs in WBCs, plasma, and serum (Fig. 8). 
While our findings provide valuable insights into the role of miRNAs identified using nasal swab, it is important 
to consider the potential relationship between miRNA profiles in blood samples. Blood-based miRNA profiling 
is widely used for biomarker discovery due to the stability and systemic nature of circulating miRNAs; however, 
nasal swabs offer a more direct and localized assessment of respiratory tract infections. Despite the fact that most 
studies used miRNA sequencing, the expression profiles varied, with only a few miRNAs overlapping (Fig. 8). 
Notably, Chen et al., 202072 and Fernandez-Pato et al., 202274 showed 86% and 100% concordance with our nasal 
swab findings using WBCs and plasma, respectively. Interestingly, WBCs and plasma profiles were more similar 
to nasal swabs than serum, suggesting the use of coagulants can affect results. miR-125b-5p was frequently 
dysregulated across all sample types, while miR-127-3p and miR-151b were upregulated in nasal swabs, WBCs, 
and plasma but absent in serum. Furthermore, miR-590-3p was consistently downregulated in nasal swabs, 
WBCs, and serum but unreported in plasma. These findings highlight distinct miRNA expression patterns across 
sample types and underscore the potential of nasal swabs as biomarkers for COVID-19 therapeutic monitoring. 
Even though our study focused on nasal swabs, future studies comparing miRNA profiles from paired blood and 
nasal samples could enhance the reliability and clinical applicability of these biomarkers. Such comparisons may 
help determine whether specific miRNAs identified in nasal swabs also exhibit similar diagnostic potential in 
blood-based assays.

Understanding host responses to viral infection is crucial for managing patient health and predicting 
outcomes. Circulatory miRNAs have emerged as potential biomarkers for diagnosing SARS-CoV-2 infection 
and assessing disease severity71. Combining miRNA expression with clinical markers may improve disease 
monitoring and prognosis. Our analysis revealed significant correlations between identified miRNAs and clinical 
parameters (Fig.  6). MiR-30c-5p and miR-5010-3p correlated with high urea and low GFR, indicating poor 
prognosis, while novel-miR-264-5p correlated with low CRP and high GFR, suggesting a good prognosis. These 
findings highlight the potential of miRNA-based markers combined with clinical data for improved patient 
assessment. While individual clinical markers such as ferritin, CRP, GFR, and urea demonstrated reasonable 
discriminatory ability, combining these clinical markers significantly enhanced diagnostic performance 
(AUC = 0.951, p = 0.002). Notably, the addition of selected miRNA biomarkers to the clinical parameters further 
improved diagnostic accuracy, achieving an impressive AUC of 0.982 (p < 0.0001). These findings highlight that 

Dysregulated miRNAs Iden�fiedStudy 
authors and 

reference

 
Country

 

Technique 
(RNAseq, RT-

qPCR)

No of 
Infected/
Control

Study Groups 
Analyzed

No miRNAs 
(total/up/

down) Up Down
Eichmeier et 
al 2022 [48]

Czech 
Republic

RNAseq
p<0.05

10/10 Inf vs control 9 (8/1) miR-100, miR-34b, miR-200a, miR-34c, miR-
342, let-7i, miR-29a, miR-21

miR-148a

Farr et al
2022 [49]

Australia RNAseq
FC>±1, p<0.05

12/8 Inf vs control 8 (5/3) miR-19a-3p, miR-93-5p, miR-451a, miR-486-
5p, miR-142-3p

miR-3065-3p, miR-3065-5p, miR-
628-3p

La�ni et al, 
2022 [50]

Italy RT-qPCR
FC>±1.5, p<0.05

35/25 Inf vs control 1 let-7b-5p  

McDonald et 
al, 2021 [51]

USA ddPCR/RNAseq
FC>±1.2, 
p<0.05

10/10 Inf vs control 1/7 miR-2392 miR-10, miR-10a-5p, miR-124-3p, 
miR-1-3p, miR-155-5p, miR-30c-
5p, miR-34a-5p

Zhao et al, 
2023 [83]

China RT-qPCR p<0.05 10/10 Inf vs control 1 Cv-miR-2 (viral miRNA)  

Slotane et al, 
2023 [84]

Egypt RT-qPCR
p<0.05

216/57 Mild/ 
Moderate/

Severe/ Control

5/1 miR-21, miR-146a, miR-155, miR-223, let-7 miR-146b

Garnier et al, 
2022 [85]

France RT-qPCR
p<0.05

20/20 Severe/Control 0/14  miR-125a-5p, miR-200b-3p, miR-
200c-3p, miR-218-5p, miR-27a-
3p, miR-30d-5p, miR-30c-5p, miR-
375, miR-378a-3p, miR-422a, 
miR-455-5p, miR-532-5p, miR-
340-5p, miR-491-5p

Wu et al, 
2022 [86]

USA RNASeq
FC>±2, 
p<0.05

6/7 Inf vs control 35/6 miR-10401-5p, miR-12116, miR-1224-3p, 
miR-1268a, miR-1268b, miR-1281, miR-139-
3p, miR-140-3p, miR-1469, miR-186-5p, miR-
204-3p, miR-2110, miR-3196, miR-320b, 
miR-320c, miR-378a-3p, miR-4443, miR-
4646-3p, miR-4716-5p, miR-4728-5p, miR-
6510-5p, miR-665, miR-6741-3p, miR-6758-
5p, miR-6823-3p, miR-6880-3p, miR-6886-
3p, miR-7107-5p, miR-7111-3p, miR-762, 
miR-765, miR-769-5p, miR-7847-3p, miR-
877-3p, miR-92b-5p

miR-26a-5p, miR-328-3p, miR-
34b-3p, miR-6510-3p, miR-92b-
3p, miR-99a-5p

Molinero et 
al, 2022 [87]

Spain RT-qPCR
p<0.05

18/14 Inf vs control 
bronchial 
aspirate

3/2 miR-133a-3p, miR-486-5p, miR-27a-3p miR-199a-5p, miR-222-3p

This study:
Biomarkers 
iden�fied: 
n=20

UAE RNAseq/
RT-qPCR

FC>±1, p<0.05
FC>±2, p<0.05

44/13
8/7

Inf vs control 13/2
(1 novel)

miR-146b-3p, miR-365b-3p, miR-6887-3p, 
miR-154-5p, miR-103a-2-5p, miR-5010-3p, 
miR-1307-5p, miR-127-3p, miR-132-3p, miR-
335-3p, miR-30c-5p, miR-18a-3p; miR-125-
5p; miR-151b; miR-590-3p; miR-625-5p

miR-3663-5p; miR-202-5p, novel-
miR-115-5p; novel-miR-264-5p;

Key: Red = Seen in other studies with opposite profile; Blue = Seen in other studies with same profile; Green = miRs in same family, but different arm (3p/5p) or group (a, b, c, etc.).

Table 6.  Comparison of studies using nasal swab samples for miRNA discovery.
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miRNA expression profiles, when integrated with routine clinical data, could offer a highly sensitive and specific 
approach for identifying SARS-CoV-2 infection. This combinatorial strategy may overcome the limitations of 
using clinical markers alone and provide a more robust platform for early and precise diagnosis, particularly in 
cases where clinical symptoms are ambiguous or overlapping with other respiratory infections.

We also compared our results with eight studies analyzing miRNA profiles in nasopharyngeal 
samples48–51,82–86, and one in bronchial aspirates87. While no single miRNA was shared across all studies, several 
miRNAs, including miR-486-5p, let-7 family, miR-34b, miR-200 family, miR-21, and miR-27a-3p, appeared in 
multiple studies with similar or contrasting expression patterns (Table 6). Notably, miR-486-5p and miR-27-3p 
were common between a nasal swab and bronchial aspirate study but absent in other nasal swab studies. These 
findings highlight shared and unique miRNA dysregulation patterns in COVID-19 across different respiratory 
sample types. We could identify only one miRNA that was common to one published nasal swab study that had 
the same expression profile as we reported, miR-21. To the contrary, we identified three miRNAs (miR-378a-
3p, miR-146-3p, and miR-30c-5p) that were identified in another study, but with opposing expression profile 
(Table 6). This inconsistency was not exclusive to the current analysis of nasopharyngeal samples, but was also 
observed in studies involving blood or serum samples (reviewed in71. Based on these observations, it is plausible 
that validated biomarkers in one study may not align with those in another conducted elsewhere, as factors such 
as ethnicity, gender, age, presence of comorbidities, medications, types of COVID-19 treatments & vaccines 
administered, and the strain of SARS-CoV-2, etc., could influence miRNA expression profiles in COVID-19 
patients71,88.

It has been evident that SARS-CoV-2 infection alters host miRNA expression, impacting biological functions 
and clinical outcomes71. It is widely recognized that miRNAs target genes within interconnected pathways 
rather than randomly across the transcriptome89. Our analysis identified miRNA-targeted genes involved in 
key signaling pathways, including FoXO, MAPK, PI3-Akt, prolactin, TGF-β, and chemokine activation (Table 
6; Fig. 7). These pathways regulate essential cellular processes such as transcription, apoptosis, proliferation, 
differentiation, morphogenesis, enzyme activity, and receptor functions, highlighting the critical role of 
miRNAs in COVID-19 pathogenesis and potential therapeutic targets. While bioinformatics predictions provide 

Fig. 8.  Comparative analysis of miRNA expression levels between our nasal swab (NS) samples and those 
obtained from various studies on blood. We examined the expression levels of fourteen identified miRNAs 
showing > 2-fold change in expression from our study in comparison to samples from blood, including WBC, 
plasma, and serum. Red boxes denote miRNAs that were upregulated, while green boxes denote those that 
were downregulated following COVID-19 infection. The miRNAs highlighted in blue showed the same 
expression profile in our nasal swab samples as those observed in the WBCs, plasma, or serum reported from 
other studies, while the miRNA in orange was the most consistently dysregulated miRNA reported in most 
studies listed here. This is contrary to the profile of serum miRNAs reported that were mostly dysregulated in 
the opposite manner; i.,e., upregulated in nasal swabs, but downregulated in serum. All the studies reported in 
this figure used RNAseq except the one in the last column reported by Li et al., 2022 that used RT-qPCR.
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mechanistic insights, functional validation through RT-qPCR, luciferase assays, and knockdown experiments is 
warranted to confirm miRNA-mRNA interactions and their roles in SARS-CoV-2 infection.

A majority of the miRNAs identified in this study (Table 5) have previously been linked to either host immune 
responses or oncogenesis. For instance, miR-146b-3p, which we and others have found to be dysregulated in 
SARS-CoV-2 infected patients72, has been associated with pro-inflammatory markers, such as IL-6 and IL-
890,91. Inhibition of miR-146b-3p has been shown to result in a 49% reduction in IL-6 expression, making it a 
promising inflammatory marker91.

Another identified miRNA, miR-154-5p, known as a regulator of allergic inflammation, has been proposed 
as a potential marker in patients with endometriosis92,93. The upregulated miR-103a-5p in our study has been 
linked to T-cell activation in COVID-19 patients at rehabilitation stage and found to be upregulated in the 
plasma of COVID-19 patients72,80. Additionally, the upregulated miR-132-3p reported in our study is known 
to mediate anti-inflammatory effects by targeting acetylcholine and could impact processes like autophagy and 
calcium signaling94.

Three upregulated miRNAs—miR-1307-5p, miR-127-3p, and miR-30c-5p—are known to mediate host-
viral responses and oncogenesis71. miR-1307 promotes NF-κβ/MAPK signaling, enhancing cell proliferation95. 
miR-127-3p downregulation over-activates type I IFN signaling, affecting transcription and antiviral defense96. 
Meanwhile, miR-30c-5p inhibits hepatocellular carcinoma progression and improves tamoxifen response in 
breast cancer97. Other upregulated miRNAs, including miR-365b-3p, miR-6887-3p, miR-5010-3p, and miR-335-
3p, regulate apoptosis, MAPK/JAK/STAT signaling, and tumor development98,99. Another upregulated miRNA 
in our study, miR-18a-3p is linked to p53-mediated ceRNA networks, where its knockdown reduces tumor 
growth and promotes differentiation100.

Two of our identified miRNAs, miR-3663-5p and miR-202-5p, showed downregulation upon SARS-CoV-2 
infection. MiR-3663-5p has previously been reported as dysregulated in non-alcoholic fatty liver disease 
(NAFLD) and may be linked to insulin signaling, metabolic regulation, and inflammation101. On the other hand, 
the downregulated miR-202-5p has been identified as an tumor suppressor and a potential diagnostic biomarker 
with reduced levels associated with cancer progression102. Overall, the potential outcomes of the markedly 
disrupted miRNAs observed in this study indicate that SARS-CoV-2 infection not only initiates a host immune 
response and inflammation, but also encourages tissue damage that could be associated with organ failure, 
and in the long term, even cancer103. Our study suggests that miRNA dysregulation might induce oncogenic 
responses by activating IL-6 and TNF-α, while also potentially inciting anti-tumor responses following infection, 
implying a multifaceted relationship between SARS-CoV-2 and the progression of cancer.

Beyond their prognostic value, the differentially expressed miRNAs identified in this study may offer 
therapeutic potential. The emergence of non-coding RNAs as promising candidates for therapeutic applications 
across infectious and non-infectious diseases is well established104–110. Restoring the expression of downregulated 
miRNAs like miR-202-5p could enhance antiviral defenses, while targeting upregulated miRNAs such as miR-
146b-3p, miR-132-3p, miR-103a-5p, miR-127-3p, and miR-30c-5p could modulate immune and antiviral 
pathways in SARS-CoV-2 infected patients. For instance, miRNA-132-3p, showing an upregulation in this 
study, has been shown to facilitate influenza A infection and enhance viral gene expression111,112. If miRNA-
132-3p has a similar effect during COVID-19, downregulation of this miRNA could potentially be a valuable 
therapeutic target in COVID-19. Our findings thus suggest diverse roles of these miRNAs in host response and 
viral pathogenesis. Future mechanistic studies on their direct functional impact on SARS-CoV-2 could open 
avenues for promising RNA-based anti-COVID strategies, as has been seen in other diseases. For example, Liu et 
al.113 demonstrated that miR-146b-3p attenuates ARDS in septic mice by targeting and inhibiting the PI3K/AKT 
signaling pathway, thus reducing inflammation and tissue damage. Thus, future studies are needed to validate 
the therapeutic potential of the identified miRNAs, though currently, their strongest application remains in 
prognosis and disease monitoring.

Conclusions.
We have identified 14 known, 4 novel, and 4 previously-identified miRNAs with the potential to serve as 

biomarkers for COVID-19 infection, miRNAs that exhibit differential regulation following SARS-CoV-2 
infection in nasal swab samples. This research is unique in its presentation of data from a diverse global cohort 
residing in the UAE, making these biomarkers more suitable to a wide range of ethnicities. Many of the miRNAs 
identified demonstrated promising potential for distinguishing individuals infected with SARS-CoV-2 from 
uninfected individuals in combination with clinical parameters. Our results are consistent with previously 
reported data, and the newly discovered miRNAs in this study should be considered as promising candidates 
for future research. These biomarkers should also be valuable towards the rapid development of novel anti-virals 
and therapeutics against future variants-of-concern (VOC) that may emerge with pandemic potential.

Limitations and future directions
This study identifies important miRNA-based biomarkers for future studies; however, with certain limitations. 
For instance, sample size & quality, and potential confounders such as medications, vaccination status, and 
circulating viral variants could have influenced miRNA profiles and host responses. Furthermore, a longitudinal 
sampling design could have better captured the temporal changes in miRNA expression with disease progression 
along with an analysis of paired blood samples to determine systemic biomarker signatures. Therefore, future 
research should track miRNA dynamics across the acute, recovery, and post-COVID-19 phases to enhance 
biomarker relevance and correlate with disease severity. Future studies are also warranted with larger, stratified 
cohorts and detailed clinical metadata to refine biomarker reliability. Finally, while our findings highlight 
miRNAs with strong prognostic potential, it is important to distinguish their biomarker role from direct antiviral 
functions. Although prior studies, such as Haddad et al.114, suggest miRNAs may influence viral transmission, 
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we did not directly assess such functional impacts. In short, our results lay a foundation for future functional 
investigations, with the immediate clinical utility of these miRNAs lying in prognosis and disease monitoring.

Data availability
The control and patient samples are being further analyzed for other biomolecules and hence not available. The 
datasets generated and/or analysed during the current study are available in the BioProject repository under 
accession number: PRJNA1049129 (https:​​​//w​ww.n​cbi​.nl​m.n​ih.gov/bio​​proj​ect​/?term=PRJNA1049129).
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