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The mine ventilation system is a vital component in ensuring mine safety, and optimizing it is crucial 
for reducing energy consumption and improving efficiency. However, traditional optimization methods 
face limitations when applied to complex mine ventilation systems, making it challenging to achieve 
optimal results. This paper presents an optimization method for mine ventilation systems utilizing an 
enhanced Dung Beetle Optimizer (DBO). Several enhancement strategies have been made to address 
issues such as uncoordinated global search, limited local exploitation, and slow convergence speed 
in the standard DBO, including chaotic initialization, random walk strategy, and cross-strategy. The 
Strategy-Combined Dung Beetle Optimizer (SCDBO) is used to optimize mine ventilation systems by 
reducing energy consumption through improved air distribution and resistance management within 
the network. Experimental results show that SCDBO can effectively reduce the energy consumption of 
mine ventilation systems, achieving a 27% energy savings and providing a practical new approach for 
optimizing mine ventilation.
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The mine ventilation system is essential for maintaining safety and efficiency in mining operations. Its main 
function is to provide fresh air underground, disperse and remove hazardous gases, and regulate temperature 
and humidity, ensuring a safe and healthy environment for miners1,2. Since the 1950s, mechanical ventilation 
systems have been used in China’s metal mines. However, the efficiency of ventilation fans has consistently 
fallen below optimal levels. Low fan efficiency mainly results from design redundancy, untimely regulation, and 
complex airflow paths, leading to their consistent failure to reach rated energy efficiency during actual operation. 
Data shows that these fans operate at about 40% efficiency, which is well below the target. Additionally, ventilation 
energy use accounts for roughly one-third of overall mine energy consumption, with electricity for ventilation 
making up around 70% of that. In large mines, the installed power of fans can reach several thousand kilowatts, 
resulting in annual ventilation costs of millions of yuan (approximately 40-80 thousand USD). Traditional 
ventilation design and management methods no longer meet the higher standards for efficiency and safety in 
modern mines. As a result, optimizing mine ventilation systems has become a crucial and urgent issue in the 
field of mining engineering3.

There are significant differences in the airflow requirements of various mine areas at different times of the 
day. These differences usually result from the following: multiple mining faces operating simultaneously, which 
requires dynamic adjustment of ventilation airflow distribution; toxic and hazardous gas (e.g., methane, CO) 
concentrations fluctuate over time and area, necessitating temporary increases in airflow to ensure safety; and 
frequent changes in operation schedules and equipment operating cycles, leading to regular adjustments in 
airflow needs.

These factors that directly affect the organization of mine airflow make fixed airflow design no longer suitable 
for the flexibility requirements of modern mine operations. Failure to dynamically allocate airflow according 
to actual demand will lead to safety hazards due to insufficient air supply in some areas and wasteful energy 
consumption in other areas. Consequently, it is crucial to investigate intelligent optimization algorithms capable 
of addressing ’variable air demand,’ which can enhance ventilation efficiency and energy conservation in mines.

In recent years, with the widespread application of intelligent algorithms, researchers have introduced them 
into the field of mine ventilation, achieving remarkable results. Lowndes et al. utilized genetic algorithms to 
optimize the ventilation system, evaluating and selecting the most cost-effective solution during the process, 
which successfully minimized the energy consumption of fan operation4. V. R. Babu Particle swarm optimization 
technique was applied to obtain the optimum rotational speed of the mine ventilation fan, and the optimized 
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solution was used in underground coal mines to obtain better fan performance and lowest operating cost5. T. 
Fogarty and Z. Y. Yang utilized genetic methods to optimize the mine ventilation system by determining the 
optimal fan position to minimize the fan’s operating cost6. In China, Wei used a penalty function to transform 
the model constraint equations into a penalty function to establish a mathematical model of nonlinear 
unconstrained optimization and performed airflow optimization through the bionic ant colony algorithm7. 
Chen et al. introduced a novel approach that integrates an improved differential evolution algorithm with a 
critical path-driven methodology grounded in multivariate decoupling principles. This hybrid framework aims 
to improve the efficiency of finding optimal global outcomes by strategically separating interdependent variables 
within the solution space8. Si et al. introduced a greedy search strategy based on the study of the standard DE 
algorithm, and they also proposed an improved differential evolution algorithm using the greedy search strategy 
to solve the nonlinear optimization model of the ventilation network9.

In the field of mine ventilation optimization, a popular approach is to establish corresponding objective 
functions tailored to the specific needs of actual ventilation. This involves applying intelligent optimization 
algorithms and computer software technology to optimize the mine ventilation system by searching for an 
optimal solution to the objective function and generating an optimal regulation scheme. Wu et al. enhanced the 
fireworks optimization framework by embedding a novel opposition-based elite learning mechanism, which 
strengthens the algorithm’s search in spatial neighborhoods and thus improves the global search capability10. 
Shao et al. developed a hybrid computational framework by synergistically merging the stochastic exploration 
capabilities of simulated annealing with the swarm intelligence principles of an improved particle swarm 
optimization technique, thereby establishing a robust multi-algorithm integration paradigm for complex 
optimization challenges11. Song integrated an enhanced particle swarm optimization algorithm with a forbidden 
search algorithm. The purpose of this integration was to enhance the algorithm’s convergence velocity and 
precision12. Han proposed a sparrow search algorithm with multi-strategy fusion and developed an MSSA-
based optimization search and solution method for the wind volume objective function13. Current research 
on mine ventilation optimization mainly uses intelligent algorithms, but each method has different strengths 
and limitations in managing complex ventilation networks. Genetic Algorithms (GA) effectively solve discrete 
optimization problems but encounter slow convergence and high computational costs in large networks. Particle 
Swarm Optimization (PSO) shows fast convergence; however, it often gets stuck at local optima when optimizing 
high-dimensional resistance parameters. Differential Evolution (DE) performs well in global exploration but 
has difficulty with nonlinear constraints common in ventilation safety rules. Hybrid strategies reduce individual 
weaknesses but add complexity due to hyperparameter tuning.

In summary, although current research has made some progress, there are shortcomings in terms of 
convergence speed, global optimality, and multi-objective synergy. With the development of artificial intelligence, 
hybrid algorithms that integrate multiple strategies have emerged as a research trend, enabling more robust and 
precise ventilation optimization under complex and variable working conditions. In this study, a hybrid strategy-
combined dung beetle optimizer (SCDBO) method is proposed to address the nonlinear and constrained 
characteristics of mine ventilation systems, aiming to solve these problems. This study aims to address these 
issues by proposing a hybrid SCDBO approach tailored to the nonlinear, constrained nature of mine ventilation 
systems.

This study presents an in-depth analysis of the mine ventilation network, focusing on the challenges of 
variable wind demand and excessive ventilation energy consumption in the coal mine ventilation system. It 
aims to develop a wind control scheme that can achieve wind distribution according to demand and minimize 
ventilation operation costs. The outer-point penalty function method is employed to address the issue of 
nonlinear constraints, thereby enabling the formulation of a nonlinear unconstrained mathematical optimization 
model specifically designed for the mine ventilation network. SCDBO is introduced. Optimization simulation 
experiments were conducted based on this nonlinear, unconstrained optimization model of the ventilation 
network. These experiments were designed to confirm the practicality and superiority of the SCDBO when 
applied to optimizing airflow within the mine ventilation network.

Mathematical model for mine ventilation network optimization
Figure 1 depicts the flowchart of the mine ventilation network optimization model, which shows the complete 
optimization framework from problem input to optimal solution generation in a visual form.

Constraints
To create a mathematical optimization model aimed at distributing air volume within mine ventilation networks 
while minimizing total energy consumption, the model must meet the following constraints14:

•	 The law of airflow balance: At any point in time and any branch node in the ventilation network, the inflow air 
volume is always equal to the outflow air volume. The formula for the law is as follows: 

	

N∑
j=1

aijQj = 0, i = 1, 2, · · · , J − 1 � (1)

	
aij =

{
1, The air flow of branch j flows into node i

−1, The air flow of branch j flows out of node i
0, Node i is not an endpoint of branch j

� (2)
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N and J represent the ner  number of branches and nodes in the ventilation network, respectively. Qj is the 
airflow in branch j, m3/s.

•	 The resistance law: The ventilation pressure of the branch is equal in magnitude but opposite in direction to 
the ventilation resistance. 

	 Hj = Rj |Qj | Qj � (3)

 
where Hj  represents the air pressure in branch j, Pa. Rj  represents the resistance of branch j, kg/m7. In mine 
ventilation tunnels, environmental parameters and ventilation equipment also affect the ventilation network 
system. The following equation is satisfied in any ventilation tunnel: 

	 H ′
j = Hj + Hrj − Hnj − Hb� (4)

 where H ′
j  is the pressure drop in branch j,yj  represents the change in resistance value during the resistance 

adjustment process in branch j,ng  represents the natural air pressure in branch j, and Hf  represents the fan 
pressure in branch j.

•	 Pressure balance law: At any point in time and for any loop in the ventilation network, the algebraic sum of 
the pressure drops of all branches in the loop is equal to zero under the set forward flow direction15. 

	

N∑
j=1

brj (Hj + Hrj − Hrj − Hfj) = 0, k = 1, 2, · · · S� (5)

Fig. 1.  Flowchart of the mine ventilation network optimization model.
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 where bk  represents the k-th independent loop in the independent loop matrix. S represents the number of 
independent loops, S = N − J + 1, and bkj  is an independent circuit matrix. 

	
aij =

{
1, The airflow of branch j flows into node i

−1, The airflow of branch j flows out of node i
0, Node i is not an endpoint of branch j

� (6)

•	 Upper and lower limits of ventilation variables 

	




Qj min < Qj < Qj max
Hj min < Hj < Hj max

Hf < 0.9Hf max
W out /W in ≥ 70%

� (7)

 Minimizing the total power consumption of the ventilation network fans is the optimization objective of the 
ventilation network model, which is expressed as follows: 

	
min W =

Nf∑
f=1

|Hf | |Qf |� (8)

 where W denotes the total power of the fan, kW. Nf  denotes the number of fan branches in the ventilation 
network. Hf  and Qf  denote the air pressure and air volume of the fan branches, Pa, m3/s, respectively16.

Unconstrained optimization model
Considering the complex, dynamic, and nonlinear characteristics of the coal mine ventilation network, during 
the ventilation optimization process, parameters such as air volume and air pressure in any branch may fluctuate 
due to changes in other variables. Therefore, additional constraints and penalties are required for the external 
anomalies of the feasible domain, so the penalty function method for outer point is used for unconstrained 
optimization modeling17, as shown in Eq. (9):

	

min W =
Nf∑
f=1

|Hf | |Qf | + α

(
J∑

i=1j=1

N∑
ij

(aj)2 +
S∑

k=1j=1

N∑
kj

(Hj + Hyj − Hnj − Hfj)2

)

− β

N∑
j=1

(ln (1/ (|min {0, Qj max − Qj}| + 1) + ln (1/ (|min {0, Qj − Qj min}| + 1))

+ ln (1/ (|min {0, Hj max − Hj}| + 1)) + ln (1/ (|min {0, Hj − Hj min}| + 1)))

− γ

Nf∑
f=1

(ln (1/ (|min {0, 0.9Hf max − Hf }| + 1)) + ln(1/(| min{0, η − 70%}| + 1)))

� (9)

where ln denotes the natural logarithm. α, β and γ denote strictly ordered positive sequences.

Experimental methods
Improvement of dung beetle algorithm
The Dung Beetle Optimizer (DBO) is a novel population intelligence optimization algorithm first proposed by 
Jiankai Xue and Bo Shen in 202218. DBO was selected due to its biologically inspired behavioral mechanisms, which 
allow for diversified search processes. Compared to traditional methods like PSO and DE, DBO incorporates 
five distinct behaviors (e.g., ball rolling, dancing, and foraging), naturally balancing between exploration and 
exploitation. However, the DBO algorithm has some drawbacks, including low initial population diversity and a 
tendency to become trapped in local extreme values. The Dung Beetle optimizer does not balance global search 
in the early stages of the algorithm and local exploration in the late stages, resulting in a decrease in the accuracy 
of the solution19. To address this issue, the present study improves it through hybrid strategies, making SCDBO 
particularly suitable for complex ventilation optimization tasks.

•	 Initialize the dung beetle population using Piecewise chaotic mapping

Since the basic dung beetle search algorithm’s initial population is randomly generated, the uniform distribution 
of individuals’ initial positions in the search space cannot be guaranteed, which impacts the algorithm’s search 
speed and optimization performance. Piecewise mapping is introduced in the initialization process of the 
improved dung beetle algorithm to enhance the initial population’s traversability.

The principle of piecewise mapping refers to utilizing segmented functions in order to describe an integral 
function. It does this by dividing the definition domain of the overall function into several subintervals and 
defining the corresponding expression on each subinterval. In this way, the overall function can be obtained by 
combining the expressions on these subintervals. The formula is as follows:
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x(t + 1) =




x(t)
p

, 0 ≤ x(t) < p
x(t)−p
0.5−p

, p ≤ x(t) < 0.5
1−p−x(t)

0.5−p
, 0.5 ≤ x(t) < 1 − p

1−x(t)
p

, 1 − p ≤ x(t) < 1

. � (10)

The parameter p of the segmented chaotic mapping in this study is set to 0.5-0.9, which is screened by pre-
experimentation.

•	 Perturbation of Dung Beetle Ball Rolling Behavior using Random Walk Strategy

The dung beetle ball-rolling behavior, as the first-stage behavior of the dung beetle algorithm, searches for 
the global position and determines the optimization ability of the entire algorithm. This improvement uses 
the random wandering strategy to perturb the dung beetle ball rolling behavior stage. To prevent increasing 
the complexity of the algorithm, it is set that when the optimal value of the dung beetle algorithm remains 
unchanged for five iterations, the random wandering strategy is used.The formula for the random wandering 
strategy is as follows:

	 X(t) = {0, c ussum [2r (t1) − 1] , c ussum [2r (t2) − 1] , · · · , c ussum [2r (tn) − 1]}� (11)

Take a random function r(t) as in Eq(12) :

	
r(t) =

{ 1, rand > 0.5
0, rand ⩽ 0.5 � (12)

Since the action trajectory of the intelligent algorithm has a specific range, the position of the algorithm cannot 
be updated directly with the above equation. To ensure that the algorithm walks within a specific range, it needs 
to be normalized, as shown in equation (13):

	
Xt

i =
(
Xt

i − ai

) (
dt

i − ct
i

)
(bi − ai)

+ ct
i � (13)

where Xt
i  is the position of the i-th dung beetle in the t-th iteration; ai and bi are the minimum and maximum 

values of the i-th-dimensional random wandering variable, respectively; Ct
i  and Dt

i  are the minimum and 
maximum values of the i-th-dimensional random wandering variable in the t-th iteration, respectively.

The random walk perturbation is triggered when the best fitness value of the population remains unchanged 
for 5 consecutive iterations. This threshold was determined through sensitivity testing to balance between 
avoiding premature stagnation and preserving convergence stability.

•	 Longitudinal and transversal crossover strategies to perturb dung beetle rolling behavior

The longitudinal crossover strategy includes both horizontal and vertical crossover. Population search using 
transverse crossover can reduce blind spots in the search and enhance the algorithm’s global search capability20. 
The premature convergence of many population-based intelligent search algorithms is often attributed to specific 
stagnant dimensions within the population. A vertical crossover can help address these stagnant dimensions, 
allowing the algorithm to escape from local optima. Furthermore, crossover operations can increase the diversity 
of the population, which further enhances search effectiveness. The vertical and horizontal crossover strategies 
also involve a competitive process, where the resulting offspring are compared with their parents to ensure that the 
update results in an improved direction. Horizontal crossover and vertical crossover are performed sequentially, 
with the two interactions enhancing the algorithm’s solution accuracy and speeding up convergence.These two 
crossover operations are briefly described below. A horizontal crossover is an arithmetic crossover between two 
different individuals operating in all dimensions. The individuals in the population are first randomly paired, 
and then a transverse crossover is performed between the two paired individuals. Assume that SMi1 and SMi2 
are the paired parent individuals whose children are SMhc

i1  and SMhc
i2  are generated by the following equation:

	 SMhc
i1j =r1 · SMi1j + (1 − r1) × SMi2j + c1 · (SMi1j − SMi2j) � (14)

	 SMhc
i2j =r2 · SMi2j + (1 − r2) · SMi1j + c2 · (SMi2j − SMi1j) � (15)

where SMi1j  and SMi2j  denote the j -th dimension of SMi1 and SMi2, j = 1, 2, · · · , D, SMhe
i1j  and SMk

i2j  
are the j -th dimensions of the offspring generated by the horizontal crossover of SMi1j  and SMi2j  in the j-
th dimension. The generated offspring are each compared with their parents, and the individuals with smaller 
objective function values are retained.

A longitudinal crossover is an arithmetic crossover involving all individuals, applied across two different 
dimensions. Each individual performs a longitudinal crossover to update only one of these dimensions, leaving 
the others unchanged. This allows the stagnant dimension to potentially escape the local optimum without 
disrupting another dimension that might already be optimal. Assuming that the current pair performs a 
longitudinal crossover and randomly selects two dimensions j1 and j2, the j1th dimension of its offspring is 
obtained from Eq. (16), and the other dimensions are kept the same as the parent’s SMi :
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	 SMve
ij1 = r · SMij1 + (1 − r) · SMij2� (16)

where r is a uniformly distributed random number in the range (0, 1). The generated offspring are compared with 
their parents, and individuals with smaller objective function values are retained. The longitudinal crossover 
strategy is added at the end of the dung beetle algorithm to perturb the entire population of dung beetles. Again, 
to avoid increasing the complexity of the algorithm, this improvement introduces a longitudinal and transversal 
crossover strategy factor pv, when r < pv :

	 pv = 2 ∗ (1 − (t/M)1.5)/3� (17)

where t is the current iteration number and M is the total iteration number.
When r is greater than pv, the vertical and horizontal crossover strategy is used, and when r is less than pv, 

this iteration skips both the vertical and horizontal crossover strategy.
All parameter settings were fine-tuned using existing literature or through pilot experiments to maximize 

convergence accuracy and solution robustness within the specific constraints of mine ventilation optimization.

Experimental model
As shown in Fig. 2, the ventilation network topology of the experimental model is constructed using the 
ventilation network topology of the underground working face of a coal mine, which has a good experimental 
reference value20. Each color of the line represents an independent circuit. This model has a total of five 
independent circuits. The ventilation experiment includes 12 nodes, 16 branches, and 5 independent circuits. 
The air inlet and air outlet are atmospherically connected, represented by pseudo-branches of No. 16, and the 
wind resistance is zero.

Table 1 displays the basic parameters of the ventilation network, including the distribution of wind resistance 
and the distribution type of each branch. The values are based on a combination of practical mine design 
parameters and empirical data from a referenced coal mine case. In an actual mine ventilation system, due to 
the limitations of the roadway environment and other conditions, it is not possible to realize the adjustability of 
each branch. The experimental model also refers to this factor; combined with the experimental model of the 
network ventilation design, it takes branches 3, 4, 7, 8, 9, 10, 12, 13, and 14 as adjustable branches. The air-using 
branches in the ventilation network are branches 7, 8, and 9, and their target air demand is 8m3/s, 21m3/s, 
and 21m3/s, respectively.

The ventilation network contains five linearly independent loops, with their distributions shown in Table 2. 
Counterclockwise is the positive direction of the loop; negative signs in the table indicate airflow opposite to this 
direction.

According to the improved dung beetle algorithm, the experiments in this study set the population size to 80, 
the number of iterations to 100, and the definition domain to [0,1]. In addition to testing the effectiveness and 
superiority of SCDBO applied to ventilation network airflow optimization, this study employs DBO, POA, and 
SSA to conduct a comparative experimental analysis, aiming to obtain more comprehensive results. The initial 
parameters of DBO, the Pelican Optimization Algorithm (POA), and the Salp Swarm Algorithm (SSA) are set 
according to references18,21,22. The parameters of SCDBO were tuned to strike a balance between convergence 
speed and solution accuracy under the given mine ventilation scenario. The parameters of DBO, POA, and SSA 
were adopted from their respective foundational papers and adjusted via grid search within acceptable ranges 
based on pre-testing.

Matlab 2024 b was used to program the software for mine ventilation optimization. Based on the experimental 
ventilation network optimization model, simulation experiments were conducted using the four algorithms 
mentioned earlier.

Results and analyses
The four methods(SCDB0, DBO, POA, SSA) were repeated 30 times for comparison. The running results are 
shown in Fig. 3.

From Fig. 3,we see that the optimal solution and average solution of SCDBO are the smallest, 17.41 kW 
and 17.67 kW, respectively. This demonstrates that this algorithm performs the best and effectively reduces the 
system’s energy consumption compared to three other algorithms, which significantly meets the target demand 
of the mine ventilation network’s on-demand air distribution and energy-saving optimization.

Regarding the convergence time of the optimization, the DBO-based airflow optimization of the ventilation 
network has the fastest convergence speed, with an average convergence time of only 12.31 seconds. The 
convergence time of SCDBO is 12.37 s, while the convergence times for POA and SSA are 15.60 s and 16.21 s, 
respectively. The convergence time of SCDBO has a greater advantage compared with POA and SSA. Although a 
certain amount of time cost has been added based on SCDBO, compared to the time required for regulating the 
mine ventilation system, the increased time cost of SCDBO will not have any impact on the airflow optimization 
and regulation process of the mine ventilation network.

Meanwhile, the iterative curves of ventilation network optimization for the four algorithms within the same 
coordinate system are shown in Fig. 4.

As shown in Fig. 4, the SCDBO algorithm rapidly reduces the objective function value in the early iterations, 
with the iteration curve decreasing the fastest, escaping the local optimal solution, and then stabilizing after 
about 20 iterations, with the optimal power decreasing to 17.4 kW. The DBO algorithm is the second fastest, 
while the other two algorithms converge at a relatively slower rate. At the end of the iterations, the objective 
function values of all the algorithms stabilized. Among them, the SCDBO algorithm achieves the lowest 
objective function value and performs the best in this experiment. In terms of the smoothness of the curve, 
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the SCDBO and DBO algorithms show better stability during the iteration process, with less fluctuation in the 
objective function value. The standard deviations of POA and SSA reached 1.25 and 1.10, respectively; however, 
the SCDBO’s standard deviation over 30 runs was 0.42 kW, compared to DBO’s 0.87 kW, confirming superior 
stability.

Table 3 displays the airflow of each branch before and after optimization. Among them, SCDBO and DBO 
ensure that the airflow of the air-using branch is the minimum of the central ventilator. In the case of natural air 
distribution, the fixed air volume delivered and the air pressure of the fan branch are 107m3/s and 803.21 Pa, 
respectively, and the total power consumption of ventilation is 85.94 kW. Compared with natural air distribution, 
the ventilation network airflow optimization after optimizing SCDBO, DBO, POA, and SSA decreases the total 
power consumption of ventilation to meet the air volume requirement of the air-using branches. The total 
power consumption of the ventilation network optimization, based on the optimized airflow of SCDBO, DBO, 
POA, and SSA, decreases. The airflow optimization of the SCDBO-based mine ventilation network yields the 
most significant energy savings effect. The airflow and air pressure of the fan branch decrease to 85.6m3/s 

Fig. 2.  Ventilation network topology.
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and 732.74 Pa, and the total power consumption of ventilation drops to 62.74 kW, with the ventilation energy-
saving rate reaching 27%. The 27% energy-saving rate achieved by SCDBO is primarily attributed to optimized 
airflow allocation in key high-resistance branches such as branches 3, 6, 10, and 14. By reallocating airflow more 
efficiently according to demand and resistance, SCDBO reduces the overall fan load. Moreover, the algorithm 

Fig. 3.  Histogram of the running results of the four algorithms.

 

Individual circuit number Residual tree branch number Independent loop branch

1 5 5 → 7 → (−8) → (−6)

2 9 9 → 13 → (−14) → (−10)

3 2 2 → 6 → 10 → 14 → (−11) → (−4) → (−3)

4 9 9 → 13 → (−12) → (−8)

5 1 1 → 3 → 4 → 11 → 15 → 16

Table 2.  Independent circuit groups for ventilation network.

 

Branch number Start node Terminal node Airway resistance (kg/m7) Adjustable Branch type

1 1 2 0.1000 No General branch

2 2 3 0.1000 No General branch

3 2 4 0.3963 Yes General branch

4 4 7 0.1000 Yes General branch

5 3 5 5.8983 No General branch

6 3 6 0.1000 No Constant flow branch

7 5 8 0.1000 Yes Constant flow branch

8 6 8 0.1000 Yes Constant flow branch

9 6 9 0.1000 Yes General branch

10 6 10 0.4245 Yes General branch

11 7 11 0.1000 No General branch

12 8 11 0.1127 Yes General branch

13 9 11 0.1000 Yes General branch

14 10 11 0.1000 Yes General branch

15 11 12 0.1000 No Fan branch

16 1 12 0 No Atmospheric Branch

Table 1.  Basic parameters of the ventilation network.

 

Scientific Reports |        (2025) 15:37582 8| https://doi.org/10.1038/s41598-025-15263-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


avoids over-ventilation in non-essential areas and only adjusts necessary branches, thereby minimizing total 
energy consumption without compromising airflow requirements at the working faces.

Although this study focuses on the single-objective optimization of the ventilation system energy 
consumption, it reveals multidimensional engineering value through deep mining analysis of the experimental 
data. While ensuring the core energy saving target, the optimized solution naturally meets the key safety 
constraints. The gas concentration in all the air-using branches is controlled to be at 55%-65% of the safety 
thresholds (branches 7/8/9 are respectively 0.32%/0.41%/0.28%, which are significantly below the 0.5% limit). 
When the wind demand fluctuates by ±15%, SCDBO still maintains an energy-saving rate of more than 25%, 
and the increase in convergence time is less than 8%. Its stochastic wandering strategy provides the algorithm 
with dynamic adaptability, effectively overcoming the limitations of a single scenario. The pre-study reveals 

Branch number Optimized front air volume (m3/s) SCDBO (m3/s) DBO (m3/s) POA (m3/s) SSA (m3/s)

1 107 85.60 85.60 86.01 85.64

2 72 59.18 57.81 58.10 56.73

3 35 26.42 27.79 27.91 28.91

4 35 26.42 27.79 27.91 28.91

5 9.6 8 8 8 8

6 62.4 51.18 49.81 50.10 48.73

7 9.6 8 8 8 8

8 19.5 21 21 21 21

9 25.4 21 21 21 21

10 17.5 9.18 7.81 8.10 6.73

11 35 26.42 27.79 27.91 28.91

12 29.1 29 29 29 29

13 25.4 21 21 21 21

14 17.5 9.18 7.81 8.10 6.73

15 107 85.60 85.60 86.01 85.64

16 107 85.60 85.60 86.01 85.64

Table 3.  Airflow in each branch before and after optimization.

 

Fig. 4.  Iteration curves for the four algorithms.
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that the framework has the potential for multi-objective expansion, laying the groundwork for the subsequent 
integration of real-time monitoring data to achieve multi-objective optimization.

Conclusion
In this study, we developed a mathematical model to optimize the airflow distribution in mine ventilation 
networks, thereby reducing energy consumption. The model thoroughly considers the three fundamental 
laws governing mine ventilation networks, the operating constraints of the ventilator, the characteristics of the 
ventilator pressure curve, and the conditions necessary for safe and effective operation. By optimizing airflow in 
the mine ventilation network, it aims to reduce ventilation energy consumption. Then, the model is transformed 
using the exterior point penalty function method to transform the constraints into an unconstrained optimization 
model of mine ventilation airflow distribution. Then, the optimized dung beetle algorithm is proposed and 
solved. Finally, the original DBO algorithm and SCDBO algorithm are used to optimize the airflow of a typical 
mine ventilation network and are compared with POA and SSA. The simulation results demonstrate that the 
improved dung beetle algorithm performs effectively when compared with three other optimization algorithms. 
SCDBO exhibits superior global optimization ability with the lowest computational time cost. Furthermore, 
SCDBO effectively reduces the total power consumption of ventilation optimization, achieving a ventilation 
energy-saving rate of 27%, which significantly meets the target demand for on-demand air distribution and 
energy-saving optimization of the mine ventilation network.

Limitations and future work
Although the effectiveness of the SCDBO algorithm is verified by simulation in this study, numerous dynamic 
and uncertain factors exist in the actual mine ventilation system, including changes in the operating surface, 
real-time variations in wind resistance parameters, and unstable operating statuses of equipment. Moreover, the 
acquisition and feedback period of field data is long, which may affect the adjustment and response speed of the 
algorithm. To improve the feasibility of SCDBO applications in real projects, it can be integrated with digital 
twin technology in the future to enable real-time simulation and online optimization control, and an adaptive 
parameter adjustment mechanism can be introduced to address dynamic changes in mine operating conditions. 
This study focuses on single-objective energy-saving optimization and will explore the introduction of safety 
constraints, multi-objective joint modeling, and the online deployment of the algorithm in real mines in the 
future. The related software and hardware deployment conditions and arithmetic support requirements will also 
be further explored and verified in the future.
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