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Diabetic Retinopathy (DR) is a complication caused by diabetes that can destroy the retina, leading 
to blurred vision and even blindness. We propose a multi-attention residual refinement architecture 
that enhances conventional CNN performance through three strategic modifications: class-specific 
multi-attention for diagnostic feature weighting, space-to-depth preprocessing for improved spatial 
information preservation, and Squeeze-and-Excitation blocks for enhanced representational capacity. 
Our framework demonstrates universal applicability across different CNN architectures (ResNet, 
DenseNet, EfficientNet, MobileNet), consistently achieving 2-5% performance improvements on the 
EyePACS dataset while maintaining computational efficiency. The attention mechanism provides 
interpretable visualizations that align with clinical pathological patterns, validating the model’s 
diagnostic reasoning.

Keywords  Diabetic retinopathy, Attention mechanism, Deep learning model

Diabetes is a lifelong disease in which the amount of glucose in the blood increases due to a lack of control over 
insulin levels1. It affects different body parts, such as the nerves, kidneys, heart, and retinas1. The retina is the 
light-sensitive lining at the innermost layer of the eye, which lines the posterior part of the eye2. The function 
of the retina is to process visual information and coordinate with the brain by transmitting light through 
nerve signals3. The retina receives blood nourishment through microvessels4, and it is necessary to maintain 
blood glucose levels with uninterrupted blood flow. Even in pre-diabetes, high blood sugar levels can damage 
microvessels. A complication of diabetes may cause progressive damage (swell, leak fluids, and bleed) to the 
blood vessels in the retina, which is called Diabetic Retinopathy (DR)5,6. DR causes progressive vision loss and 
is one of the most common causes of permanent blindness7. The International Diabetes Federation estimated 
that about 537 million diabetic adults worldwide in 2021, and almost 30% suffer from DR8. Early diagnosis of 
DR is essential since conditions are more treatable in the early stages9, and the progression of visual impairment 
can be slowed or avoided if DR is detected in time10. DR is a progressive eye disease classified by four stages (No 
DR is Class 0):

•	 Mild nonproliferative diabetic retinopathy (Mild NPDR, Class 1);
•	 Moderate nonproliferative diabetic retinopathy (Moderate NPDR, Class 2);
•	 Severe nonproliferative diabetic retinopathy (Severe NPDR, Class 3);
•	 Proliferative diabetic retinopathy (PDR, Class 4).

Mild DR is characterized by swelling of retinal blood vessels and is usually asymptomatic. During the moderate DR 
stage, there is a significant increase in microvascular swelling. Swelling will interfere with blood flow from blood 
vessels to the retina, prevent proper nourishment, and lead to blurred vision. In the severe DR stage, abnormal 
vascular growth can significantly reduce retinal blood flow. Late DR shows hyperplastic retinal detachment with 
significant retinal breaks that can lead to complete vision loss. The diagnosis of DR requires ophthalmologists to 
identify the presence of retinal vascular abnormalities associated with related lesions. However, as the number 
of DR patients increases, most areas with large populations still lack professional knowledge resources from 
clinicians. With the development of deep learning in recent years, many works have made considerable progress 
in DR automatic screening using image classification9–12, image detection13–15, and image segmentation16–18.

Medical image classification is a challenging task for practical computer vision applications because medical 
images contain a large amount of irrelevant information. Therefore, it is necessary to utilize attention algorithms 
to concentrate on the critical parts of the image for classification decisions. However, the research methods 
in this field are complicated with heavy calculations, and the lack of intuitive explanation makes it difficult to 
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generalize. In order to notice the different spatial regions corresponding to various lesions more effectively, this 
paper uses a class-specific residual multi-attention algorithm and applies it to the current popular algorithm 
model. By proposing a spatial attention score, class-specific residual multi-attention generates specific features 
for each category, and average pooling is then used for feature fusion. The algorithm is easy to implement with 
small computation, can be directly fused to the fully-connected layer of deep learning models, and has multiple 
advantages such as solid interpretability and easy visualization. The deep learning models used in this paper all 
use pre-training techniques19, and the proposed methods have been trained, validated, and tested on publicly 
available datasets from EyePACS20. The experimental results show that the proposed method has considerable 
performance improvement on the original basis. The methodology presented in this paper has the following 
contributions:

•	 A novel class-specific multi-attention mechanism is developed to dynamically weight spatial features accord-
ing to their diagnostic relevance for each DR severity level, resulting in improved classification accuracy and 
model interpretability.

•	 An enhanced preprocessing approach utilizing space-to-depth layers is proposed to preserve spatial infor-
mation during downsampling, effectively expanding the receptive field compared to conventional methods.

•	 Squeeze-and-Excitation blocks are strategically integrated into the residual framework to optimize chan-
nel-wise feature representations, enhancing model capacity while maintaining computational efficiency.

Related work
Attention model
The attention model is derived from the human biological system, which can focus on the most critical points 
when processing high-resolution images or large amounts of text information21. The attention mechanism 
has become essential in deep learning models in recent years. Several studies have shown that the attention 
mechanism can visually express the understanding of model learning21. For medical image classification, this 
mechanism can directly highlight the most concerned part of the model and further explain the decision-making 
principle of the model. Attention mechanisms can be used in various tasks such as image classification, machine 
translation, image segmentation, etc. It can solve the underfitting caused by the diversification of information, 
focus on the more valuable information in big data, and filter out the useless parts. It has recently attracted lots 
of awareness from researchers, and its design philosophy is gradually improved. For example, multi-attention 
mechanisms can focus on multiple vital parts of the images simultaneously, which is better than single-attention 
mechanisms22.

Residual network refinement
The residual network23 is a famous architecture with high training efficiency and better accuracy. Numerous 
recent studies have proposed architecture optimization methods based on residual neural networks24. 
These optimization methods usually vary the number of layers of residual neural networks to obtain better 
performance than the original model. Alternatively, the bottleneck in the original model can be redesigned 
to generate model variants to improve the theoretical stability boundary. The feature extraction ability can be 
significantly enhanced by introducing new architectures and increasing the model depth. Due to the limitation 
of computational resources, many researchers focus on the trade-off between computational complexity and 
accuracy. For example,25 provided an explicit mechanism for establishing model dynamics and nonlinear 
channel dependence to simplify the learning process and enhance the ability of network representation.

Methods
This section focuses on the method of the proposed model. We first introduced the class-specific residual attention 
module and then proposed a multi-attention mechanism to improve the ability of small object detection (lesions 
detection). Then, we present the refinements of the model, such as using the Space-to-depth layer to improve the 
receptive field and redesigning the residual block to enhance the information flow in the model.

Class-specific multi-attention module
Medical image classification requires focused attention on discriminative regions that vary across different 
pathological conditions. To address this challenge, we propose a class-specific multi-attention mechanism that 
dynamically weights spatial features according to their relevance for each diagnostic category, enabling more 
precise and interpretable classification decisions.

Class-specific residual attention module
The feature matrix x ∈ Rd×h×w  of the image I is extracted using the feature extractor (convolutional neural 
network). d, h, and w represent the dimension, height, and width of the feature matrix, respectively. The feature 
extraction process can be represented by the function θ:

	 x = ϕ(I; θ).� (1)

Assume that the dimension of the feature matrix from the function θ is 2048×7×7. Firstly, the feature matrix 
is decoupled into a group of the position feature matrix: x1, x2, · · · , x49 (xj ∈ R2048). Then, a fully-connected 
layer (1×1 convolution) is used as a classifier. Note that each class has its specific classifier, and the parameter 
of the classifier for the class i is mi ∈ R2048. The constant 49 here can be changed according to different model 
settings.

Define the class-specific residual attention score for class i and position j:
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where T (T > 0) is a temperature factor that controls the sensitivity of the attention score. It represents the 
probability of the class i appearing in the position j.

For class i, the weight corresponding to the position feature vector xj is si
j . All the groups of the position 

feature matrix are weighted and summed to get the class-specific feature vector:

	
ai =

49∑
k=1

si
kxk.� (3)

In traditional average pooling, the entire group of position feature vectors is directly averaged without considering 
the corresponding weights of the position feature vectors:

	
g = 1

49

49∑
k=1

xk.� (4)

Since average pooling has been widely used in practice and achieved superior results, we fuse vectors 
ai =

∑49
k=1 si

kxk  and g = 1
49

∑49
k=1 xk . Finally, the class-specific residual attention fi for the class i is:

	 fi = (1 − λ)g + λai,� (5)

where λ is the hyperparameter (λ=0.2). The above formulas constitute the whole class-specific residual attention 
module.

Multi-attention module
We introduced the multi-attention mechanism to extend the class-specific residual attention module. With the 
introduction of the multi-attention mechanism, there is no need to finetune temperature hyperparameters T 
manually. Multi-attention uses different temperature parameters to calculate and output multiple probabilities 
sequentially. In the experimental design of multi-attention, most proposed methods usually follow the convention 
that the probability value of the output is gradually controlled and reduced according to the orders, and the last 
attention output tends to be 0. We also follow this design and define a rule for the temperature factor T and the 
number of attention heads H, as shown in Table 1.

Multiple logical probability outputs can be obtained successively using multi-attention: ŷT1 , ŷT2 , . . . , ŷTH
. 

Note that each output here is from a class-specific residual attention module. In this paper, the logical output of 
each head is summed directly to get the final multi-attention logic output:

	
ŷo =

H∑
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ŷTi
=
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(
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)
|Ti =

H∑
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2 f2, . . . , mT

C fC
)

|Ti ,� (6)

where C is num of classes, Ti is the temperature factor of the class i. The class-specific residual attention module 
incorporates the attention features of all locations. Intuitively, when complex textures exist in the medical image, 
this module has a clear advantage over global average pooling or maximum pooling alone.

Residual refinement method
To enhance the performance of convolutional neural networks while maintaining computational efficiency, we 
propose a systematic residual refinement approach that operates on both the input preprocessing stage and the 
feature representation enhancement. Our methodology introduces two key architectural modifications: (1) a 

Number of Attention Heads Temperature Factors

H = 2 T0 = 1, T1 = 99

H = 3 T0:1 = 1, 2, T2 = 99

H = 4 T0:2 = 1, 2, 3, T3 = 99

H = 5 T0:3 = 1, 2, 3, 4, T4 = 99

H = 6 T0:4 = 1, 2, 3, 4, 5, T5 = 99

H = 7 T0:5 = 1, 2, 3, 4, 5, 6, T6 = 99

H = 8 T0:6 = 1, 2, 3, 4, 5, 6, 7, T7 = 99

Table 1.  The rule maps of temperature factor T and attention heads H. The probability value of the output is 
gradually controlled and reduced according to the orders, and the last attention output tends to be 0 (T=99).
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space-to-depth preprocessing layer that preserves spatial information while expanding the receptive field, and 
(2) channel-wise attention mechanisms via Squeeze-and-Excitation blocks to boost representational capacity.

Improving the extent of receptive field
Deep learning networks usually first resize the input image and down-sample the spatial dimension to 224×
224×3. Sandler et al.26 prove that simply increasing the image resolution does not significantly improve the 
model’s performance because the high resolution only plays a limited role in the first few layers of the network. 
The accuracy of the model is affected by the receptive field other than high resolution. The model accuracy can 
gradually increase by increasing the image resolution in a specific receptive field. However, when the image 
resolution exceeds the receptive field, the increasing trend of model accuracy will slow down or even decline. In 
this paper, the Space-to-depth layer is used to increase the extent of the receptive field, which can retain more 
pixel information for later layers. On the contrary, most popular networks use the convolution module to reduce 
image resolution directly. Figure 1 shows the transformation of the Space-to-depth layer: the high-resolution 
matrix is converted into a deeper matrix with lower resolution, while the original image information is not lost.

We use the Space-to-depth layer followed by 1×1 convolution to match the required number of channels, 
which can replace the traditional 7×7 convolution down-sampling method, thus preserving more information, 
as seen in Fig. 2. In this research, we used the input resolution higher than the classic image resolution, which 
is 448×448. After the Space-to-depth layer and 1×1 convolution processing, we can get the output matrix with 
112×112×64 dimensions.

Boosting the representation power of the model
To improve the representation of the model, we introduce the Squeeze-and-Excitation block [25]to optimize our 
network. For a given convolutional transformation:

	 Ftr : X → U, X ∈ RH′×W ′×C′
, U ∈ RH×W ×C ,� (7)

where X is input matrix, H ′, W ′, and C′ represent the height, width, and channel of the input matrix, U is 
output matrix from the convolution or a set of the convolutions, H, W, and C represent the height, width, 
and channel of the output matrix. First, we passed the feature matrix U through to the Squeeze operation, 
which aggregates its spatial dimensions H × W × C  into embedding space Z with 1 × 1 × C . The embedding 
space can respond to the global feature distribution channel-wise, conveying the information flow to the bottom 
layer and improving the overall model representation ability. The global average pooling is used to perform the 
squeeze operation, and Z is calculated by:

	
Z = Fsq(U) = 1

H × W

H∑
i=1

W∑
j=1

U(i, j)� (8)

112 112 48
Space-to-depth 

Layer with s = 4

1 1 Conv, 

64 Ch

Input image:

448 448 3

Output matrix:

112 112 64

Figure 2.  The proposed down-sampling method. The Space-to-depth layer is followed by 1×1 convolution, 
which can replace the traditional 7×7 convolution down-sampling method, thus preserving more information.
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Figure 1.  The transformation process of the Space-to-depth Layer. The high-resolution matrix is converted 
into a deeper matrix with lower resolution, while retaining more pixel information for later layers. s is the 
upscaling factor, H represents the height of the matrix.
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To fully capture the channel-wise dependence, the excitation operation is used to learn the nonlinearity between 
the channels and ensure that the multiple channels are activated. We utilize the gating mechanism with a sigmoid 
activation to implement the excitation process, and excitation output S is calculated by:

	 S = Fex(Z, W) = σ(g(Z, W)) = σ (W2δ (W1Z)) ,� (9)

where σ is the ReLU function, W1 ∈ R
C
r

×C , W2 ∈ RC× C
r , and r is hyperparameter. The actual module 

construction of the Excitation process uses two fully-connected layers to stack. The first fully-connected layer 
compresses the number of channels according to the parameter r to reduce the number of channels to C/r, and 
the second expands the channels to the original size C. Finally, the feature matrix U is reweighted according to 
the excitation output S to generate the output of the entire Squeeze-and-Excitation block, which will feed in 
subsequent layers, as shown in Fig. 3. The output of the Squeeze-and-Excitation block X̃ is calculated by:

	 x̃c = F scale (uc, sc) = sc · uc, X̃ = [x̃1, x̃2, . . . , x̃c],� (10)

where sc is the c-th element of S,the Fscale means the channel-wise multiplication of the scalar S and matrix U.

Overall architecture
The novel Squeeze-and-Excitation block was introduced to design the ResNet50 enhanced model to obtain 
better model representation capabilities based on the classical residual network design concept. We proposed a 
new down-sampling method based on the Space-to-depth layer followed by 1×1 convolutions to increase the 
size of the receptive field. For the classifier of the model, the proposed multi-attention method is used to set 
different classifier parameters according to the category to improve the accuracy of the model. The block design, 
width, and quantity of each layer of ResNet50 enhanced model are shown in Table 2.

Computational complexity
Our refinement framework is specifically designed to maintain computational efficiency while enhancing 
model capability. The modular design ensures that each enhancement component contributes meaningfully 
to performance improvement while minimizing computational overhead. We present a detailed breakdown of 
FLOPs consumption for each architectural modification when applied to the ResNet50 backbone with 448×448 
input resolution Table 3.

Experiments
This section discusses the evaluation metrics, comparisons from different models, and ablation experiments. 
The proposed and currently popular medical classification models are pre-trained on open source datasets28 and 
then fine-tuned on the EyePACS dataset20. The EyePACS dataset is presently the largest RA public classification 
dataset, containing 88702 classified color fundus images. This dataset can be divided into five categories: 0 (No 
DR), 1 (Mild DR), 2 (Moderate), 3 (Severe), and 4 (Proliferative DR). The dataset is relatively close to the needs 
of the actual clinical environment. The dataset contains noise from images and labels, such as the image may be 
underexposed and out of focus. Due to the large dataset size and the near-realistic data noise, the accuracy and 
robustness of each model can be compared appreciably. The officially divided training set (46032) and test set 
(42670) were used in this experiment on different models.

Due to the unavailability of public labels for the original Kaggle competition’s EyePACS test set, we 
implemented a comprehensive data split strategy to ensure robust and fair evaluation. We combined two data 
sources: the EyePACS dataset and clinical images from our institution. The EyePACS training set was randomly 
divided in an 8:2 ratio to create training and validation partitions. Additionally, we collected 1,800 fundus 
images from the ophthalmology outpatient clinic of the First Affiliated Hospital of Anhui University of Chinese 
Medicine. These clinical images were evenly distributed across all three splits (training, validation, and test) in a 
1:1:1 ratio to ensure balanced representation. All clinical images were independently labeled and cross-validated 
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Figure 3.  The design of the Squeeze-and-Excitation block. First, we passed the feature matrix U through to the 
squeeze operation to generate the embedding space Z with 1 × 1 × C , then we utilized the gating mechanism 
with a sigmoid activation to implement the excitation process to get excitation output S. Finally, the feature 
matrix U is reweighted according to the excitation output S to get the output X̃ of the Squeeze-and-Excitation 
block.
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by three experienced professional ophthalmologists to ensure label accuracy and provide objective assessment 
on real-world clinical data. We applied standard data augmentation techniques including horizontal flipping 
(p=0.5) and random rotation (±15◦).

The models we constructed are all built on the PyTorch library, and other deep learning libraries also can 
implement these models. We used stochastic gradient descent for learning and fine-tuned all parameters of 
models after pre-training, with learning rate set to 0.001, weight decay set to 0.001, momentum set to 0.9, and 
batch size set to 32. We do not use dropout. Training was conducted for a maximum of 200 epochs with early 
stopping enabled (patience=10 epochs) based on validation loss to prevent overfitting. The training environment 
was Ubuntu 18.04 workstation with an Intel(R) Xeon(R) Silver 4114 CPU and 1080Ti 8GB GPU.

Evaluation metrics
We calculated the mean values of sensitivity, specificity, and AUC for the five categories in the test set. The 
optimal threshold is determined according to the maximum sum of the sensitivity and specificity, also known 
as the Youden index. We also used the Kappa coefficient to evaluate the model. The mathematical calculations 
of these metrics are as follows:

	
Sensitivity = T P

T P + F N
, � (11)

	
Specificity = T N

T N + F P
, � (12)

	
Kappa = p0 − pe

1 − pe
, � (13)

where TP represents the number of the sample which correctly classified as positive, FP is incorrectly classified 
as positive, TN is correctly classified as negative, FN is incorrectly classified as negative, p0 indicates the relative 

Component ResNet50 Baseline (M-FLOPs) ResNet50 Enhanced (+Ours) (M-FLOPs)

Standard ResNet50 backbone 16,400 16,400

Space-to-depth preprocessing 0 5

Expansion layers 0 1350

SE blocks (distributed) 0 670

Multi-attention module 0 12

Total 16,400 18,437

Table 3.  Detailed FLOPs analysis of the proposed architectural enhancements. The baseline represents 
standard ResNet50 with 448×448 input resolution (16.4×109 FLOPs), and our method shows the additional 
computational cost introduced by each component.

 

Layers name Output size ResNet50 enhanced model

Space-to-depth layer 112×112 Space-to-depth layer, s=4

Expansion layer 112×112

3×3 max pool[
1 × 1 conv, 64

3 × 3 dwise
SE layer, r = 6
1 × 1 conv, 128

]
× 4

Residual_block1

28×28 [
1 × 1 conv, 128

3 × 3 dwise
SE layer, r = 6
1 × 1 conv, 256

]
× 4

Residual_block2

14×14 [
1 × 1 conv, 256

3 × 3 dwise
SE layer, r = 6
1 × 1 conv, 512

]
× 6

Residual_block3

7×7 [
1 × 1 conv, 512

3 × 3 dwise
SE layer, r = 6
1 × 1 conv, 1024

]
× 4

Multi_attention 1×5 Multi-attention module

Table 2.  The overall architecture of the ResNet50 enhanced model. The size of the input image is 448×448×3. 
All convs and dwises from the residual blocks are preceded by the BN + ReLU layer; the SE layer represents the 
Squeeze-to-Excitation block; dwise means depthwise separable convolution27.
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observed agreement among raters, and pe represents the probability of each observer seeing each category 
randomly from the observed data.

Comparison
The fine-tuning process of the ResNet50 enhanced model is shown in Fig. 4. It can be seen that the training loss 
and validation loss slowly decline with the iteration of epochs, and the model does not suffer from overfitting 
problems. We selected the optimal training model with the lowest validation loss. The metrics of the different 
models in the test set are compared in Table 4. It shows that our ResNet50 enhanced model is better than other 
famous models and may indicate the effectiveness of our method in improving the size of the receiving field and 
representation capability.

To further analyze the ability of the ResNet50 enhanced model to discriminate between different diabetes 
categories, ROC curves are provided in Fig. 5. According to the ROC curves, the comprehensive classification 
performance of this model was good, but label 4 (proliferative DR) was inadequate. The normalized confusion 
matrix is provided in Fig. 6, and it can be seen that the part of proliferative DR samples is classified as severe or 
moderate DR. This indicates that the algorithm needs to be improved in the discrimination of proliferative DR. 
The algorithm has good discrimination ability for other DR classifications (No DR, Mild DR, Moderate DR, 
and Severe DR) and has specific clinical application value. Figure 7 shows attention heatmaps that validate our 
model’s training effectiveness by demonstrating focused attention on pathological features in moderate NPDR 
cases.

Ablation study
We performed ablation experiments on the ResNet50 enhanced model to better understand its relative 
importance. The experimental results are shown in Table 5. It shows that the multi-attention module, the proposed 
down-sampling method, and the Squeeze-and-Excitation block all affect the model’s performance. Among 
these methods, the Squeeze-and-Excitation block has the most significant impact on the model performance, 
suggesting that the higher complexity of the model may have a higher feature extraction ability. The multi-
attention module has a specific influence on the results, which means that multi-attention can improve the 
model’s accuracy. Compared with the traditional 7×7 convolution down-sampling method, the model accuracy 
of the proposed down-sampling method is improved, which indicates that the proposed down-sampling method 
can theoretically improve the model performance by improving the receiver domain of the model.

We also performed ablation experiments to explore the effect of the number of multi-attention heads on 
the model’s accuracy. As seen in Table 6, increasing the number of heads will improve the model’s accuracy to 

Methods

Baseline models Enhanced models (+ours)

Sens. Spec. Kappa AUC Sens. Spec. Kappa AUC

MobileNet V327 0.76 0.74 0.76 0.81 0.78 0.77 0.79 0.84

ResNet5029 0.78 0.77 0.78 0.84 0.80 0.81 0.82 0.89

ResNet10129 0.79 0.78 0.79 0.85 0.81 0.82 0.83 0.90

DenseNet12130 0.80 0.78 0.78 0.86 0.82 0.81 0.82 0.91

EfficientNet-B0 0.77 0.76 0.77 0.83 0.79 0.79 0.80 0.86

Table 4.  Performance comparison of baseline models and their enhanced versions using our proposed 
refinement framework on the EyePACS test dataset. The enhancement includes space-to-depth preprocessing, 
expansion layers, SE blocks, and multi-attention mechanism (H = 4).
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Figure 4.  The fine-tuning process of the ResNet50 enhanced model in the test dataset.
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a certain extent, but the precision will decrease if the number of heads exceeds 5. This may indicate that the 
appropriate number of multi-attention heads may lead to better performance.

Conclusions
This study presents a multi-attention residual refinement framework that systematically enhances CNN 
architectures for diabetic retinopathy classification through class-specific attention, space-to-depth 
preprocessing, and Squeeze-and-Excitation blocks. Our experimental evaluation demonstrates consistent 2-5% 
performance improvements across multiple architectures (ResNet, DenseNet, EfficientNet, MobileNet) while 
maintaining computational efficiency and providing interpretable attention visualizations. Although our results 
suggest potential for clinical applications, we acknowledge important limitations including the need for external 
validation on independent datasets, formal clinical evaluation by additional ophthalmologists, and assessment 
of real-world deployment challenges beyond technical performance metrics. Future work should focus on 
prospective clinical validation and evaluation across diverse healthcare settings to establish the practical utility 
of our approach in actual clinical workflows.
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Figure 6.  Normalized confusion matrix of the ResNet50 enhanced model on the test dataset.
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Figure 5.  ROC curve of the ResNet50 enhanced model on our test datasets.
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Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.

Number of attention heads Sensitivity Specificity Kappa AUC

H = 2 0.78 0.80 0.80 0.87

H = 3 0.79 0.80 0.81 0.88

H = 4 0.80 0.81 0.82 0.89

H = 5 0.79 0.81 0.82 0.88

H = 6 0.78 0.80 0.80 0.87

H = 7 0.77 0.80 0.80 0.86

H = 8 0.77 0.79 0.80 0.85

Table 6.  Performance of the ResNet50 enhanced model used different numbers of attention heads on the test 
dataset.

 

Ablation study Sensitivity Specificity Kappa AUC

Replace the multi-attention module with an FClayer 0.77 0.80 0.80 0.87

Replace the proposed down-sampling method with a 7×7 convolution 0.79 0.81 0.81 0.88

Remove the squeeze-and-excitation block 0.76 0.79 0.81 0.86

ResNet50 enhanced (+Ours) 0.80 0.81 0.82 0.89

Table 5.  Performance of ResNet50 enhanced model indifferent ablation experiments on our test dataset.

 

Figure 7.  ResNet50 enhanced model effectiveness demonstration on Grade 2 moderate NPDR cases. Original 
fundus images (a, c) and corresponding attention heatmaps (b,d) show strong correlation between pathological 
features and model focus regions.
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